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Abstract

In the early 50’s, Markowitz introduced the modern portfolio selection theory which, to
this very day, constitutes the basis of many investment decisions. Given different correlated
assets, how does an investor create a portfolio maximizing the expected utility? Markowitz’s
contribution was to show that an investor might do very well, relying only on the means and
variances/covariances of the assets, which simplifies the portfolio selection tremendously.
The validity of the mean-variance approximation to exact utility maximization has been
verified, but only in the unrealistic case of choosing among 10-20 securities. This paper
examines how well the quadratic approximation works in a larger allocation problem, where
investors characterized by different utility functions can choose among nearly 120 securities.
The effects of more aggressive investment strategies are also investigated, allowing for limited
short selling and the inclusion of synthetic options in the security set.

*The author is indebted to David Edgerton for clearing out questions regarding statistical issues, as well as

Bjorn Hansson and Mattias Persson for stimulating conversations.



1 Introduction

The mean-variance approximation to expected utility maximization has been subject to much
controversy, ever since introduced by Markowitz (1952) in the 50’s. As is well known, the mean-
variance approximation (a second-order Taylor expansion of the utility function around the mean
portfolio return) is exact if returns are jointly normally distributed and the utility function is
a negative exponential, or if returns belong to an arbitrary probabilistic distribution and the
utility function is quadratic. However, there is neither theoretical nor empirical support for these
assumptions. For arbitrary utility functions and normality in returns, the mean-variance model
is no longer precise, but if the utility function can be approximated by a higher-order Taylor
expansion, the portfolio maximizing expected utility will still belong to the efficient frontier,
since the expected utility is then approximated by a function of the first two moments only.
Naturally, a Taylor approximation is supposed to be valid only in the neighborhood of the
expansion point. For other cases, all bets are off.

Levy and Markowitz (1979) showed the accuracy of the quadratic approximation over a
wide range of portfolio returns numerically. They also ”constructed” an empirical distribution
of yearly and monthly returns of 149 mutual funds, and found that picking the portfolio (fund)
on the basis of the mean-variance criteria meant that there was also a very high probability of
maximizing the expected utility for a variety of utility functions. This put criticism on hold,
but it still remained an open question how well relying on only mean and variance would work
in a true asset allocation problem, that is, when choosing the portfolio weights maximizing the
expected utility among correlated securities.

The issue was treated by Pulley (1981), Kallberg and Ziemba (1983), and Kroll et al. (1984),
who all showed the excellency of the mean-variance approximation. However, they only examined
cases with a very small number of securities (10-20) because of computational considerations.
One of the purposes is to investigate whether these findings result from the small number of assets
involved, or whether the mean-variance approximation still holds in a larger portfolio selection
problem, namely maximizing expected utility over the historical distribution of monthly returns
of 119 Swedish stocks from February 1984 to December 1990.

Furthermore, the articles above are concerned with the restriction of non-negative portfolio
weights, although Kroll et al. explored the effects of leverage by allowing limited borrowing at a
constant yearly rate of 10%. Therefore, I will examine the effects of limited short selling of risky
assets. This is a greater challenge for the mean-variance approximation as it is more likely to fail
when opportunity sets show increased variability. Since the mean-variance approximation only
concerns an optimal trade-off of the first two first moments of the securities, I investigate how

the inclusion of options, that is, securities with high levels of skewness and kurtosis, influences



its performance. Monthly returns are considered, although a mean-variance approximation is
expected to be less accurate for longer holding periods. The reason for this is that monthly
monitoring of stock portfolios is believed to be more reasonable from a practical point of view.

Recently, Adcock and Shutes (1999) showed how skewness can be incorporated in portfolio
selection using the multivariate skew normal distribution of Azzalini and Dalla Valle (1996), and
assuming a negative exponential utility function. The possibility of an extension to a skewed
multivariate ¢-distribution is mentioned. The approach here is different, however. I do not make
any distributional assumptions, but instead examine the welfare losses of not considering higher
moments of the asset returns than the variance in the expected utility maximizations. Higher
order moments will certainly influence the utility maximizations, but they may or may not be
of any economic significance.

In section 6.2, the maximization problem is discussed in more detail. Section 6.3 describes
the data used, and section 6.4 presents the utility functions studied. Section 6.5 contains the

results of the empirical comparisons, and a summary and concluding remarks are found in section
6.6.

2 The Maximization Problem

Assume that investors with utility function U act myopically. Then, they seek to maximize the
expected utility of each end-of-period wealth subject to a budget constraint and, in the standard

case, with no short positions:

max  E[U(1 —&—szrz)}

subject to  x; >0, i=1,...,n (1)
Zwi =1,
i
where n is the number of risky assets, r; is the net return of asset i, and z; is the proportion of
the ith asset. Initial wealth is assumed to equal one. Following the notation from Kroll et al.
(1984), the expected utility from this maximization is denoted EU.
An approximation to the above would be to trace out the efficient frontier by solving the

following quadratic programming problem:
min  2'Qx

subject to z; >0,

in = (2)
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where {2 is the covariance matrix of the security returns, p, is the expected return of security
T, €,ax 1S the maximum feasible return of any portfolio, and e, ;, is the return of the minimum
variance portfolio. For any utility function, it is now easy to calculate E[U(1 + >, z;r;)]. The
maximum of the expected utility of the mean-variance efficient portfolios is denoted E*U, and
the portfolio weights 7, i =1, ...,n.

How is the accuracy of E*U quantified compared to EU? Since an affine transformation of
the utility function studied gives the same solution to the optimization problems, neither the
difference nor the ratio of £*U and EU could be used as a measure. Kroll et al. avoid this
problem by using the following index:

I E*U — ENU (3)
EU - ENU

where E\ U is the expected utility of a "naive” portfolio. Virtually any inefficient portfolio could

be used as a reference point. Kroll et al. choose a portfolio consisting of 1/nth of each security.

The index I € [0, 1], where a value close to zero indicates that the approximation performs badly,

while if [ is close to one, the approximation works well.

Although the I-measure is invariant to linear transformations of the utility function, it is
not invariant to the choice of reference point, as commented by Pulley (1985), and Reid and
Tew (1986) respectively. If EnNU is high compared to E*U and EU, the index I will be lower
than if £y U is low, which is, of course, an inappropriate property of an efficiency criterion. To
circumvent this problem, Reid, Tew, and Pulley suggested the use of another index, that is, the
one also used in Kallberg and Ziemba (1983):

CE(E*U) ()
CE(EU)

where C'E(-) is the certainty (or cash) equivalent of a risky portfolio that gives the investor the
same utility as holding such a portfolio, that is CE(-) = U Y(EU(")).

Also the measure C' € [0,1], and it is indeed invariant to affine transformations of the utility

C =

function. In our empirical investigations we report both.

3 The Data

In this analysis, I use monthly percentage returns of 119 Swedish stocks, ranging from February
1984 to December 1990, yielding a total of 83 monthly observations for each stock. Table 1

displays some statistics of the data sample.



Table 1: Sample statistics for return data. The entry marked with an asterisk corresponds to

the mean of the absolute values of the skewnesses.

Return Data Minimum Maximum  Mean
Means (%) -0.966 3.227 1.309
Variances (%) 0.066 2.306 0.935
Skewnesses -1.620 1.991 0.487"
Kurtoses 2.631 11.89 4.920

Clarifying whether normally distributed returns are the key to a potential success for the
mean-variance approximation is of great interest. A frequently used test is the sum of the
squares of the standardized sample skewness and kurtosis!, but it is unsuitable except in very
large samples. Instead, we use the omnibus test of Doornik and Hansen (1994) which can be
used in univariate and multivariate normality tests, and transforms the data to a y?-distributed
test statistic.

First, we test for univariate normality. In 50 cases (out of 119), normality cannot be rejected
at the 5% significance level. Further, we test if these 50 stocks are jointly normally distributed.
The null hypothesis of multivariate normality is strongly rejected with a p-value of 1.04 - 1073.
We cannot exclude the fact that subsamples are jointly normal, but it is unlikely that these

securities would be the only ones picked by our hypothetical investors?.

4 The Utility Functions

I use five utility functions for the empirical analyses, each with two different parameter sets,
giving a total of ten optimization problems. The utility functions, which all appear in Pratt
(1964), are listed in Table 2 together with some properties regarding the Arrow-Pratt absolute
and relative risk measures:

U"(w)
- U'(w)

U// (w)

Ry(w) = 07(w)

and Rp(w) = —w

()

where w =1+ ), x;7; denotes wealth.
In the right-hand column, ’Unclear’ means that the relative risk measure is not necessarily
strictly increasing or decreasing and that its properties must be determined on a case-by-case

basis. Not all utility functions are defined on w > 0. In all cases, the functions are defined

1Skewness is defined as the third central moment divided by the cube of the standard deviation. Kurtosis is

defined as the fourth central moment divided by the fourth power of the standard deviation.

2The securities of the solution portfolios, to appear later, were tested for joint normality. The null hypotheses

were strongly rejected in all cases, with p-values between 0 and 4.8-107 3.



Table 2: Utility functions and parameter sets. The properties of Ry(w) and Rp(w) are also
presented when w is within its respective definition range. The notion ’Unclear’ means that the

properties of the relative risk measure must be determined on a case-by-case basis.

U(w) Parameter values R, (w) Ry (w)
In(o + w) a=0 Decr. Incr. if >0
a=-05 Const. if a =0
Decr. if a < 0
—e "™ a>0 a=2 Const.  Incr.
a=35
(a+w)?,0<B<1 a=-08,8=0.1 Decr. Incr. if >0
a=-0508=02 Const. if a =0
Decr. if a < 0
In(8 + In(o + w)) a=05,8=07 Decr. Decr. if a <0
a=-03,8=15 Unclear if & > 0
—ae P — yeTtw, a=058=3,vy=1,6=5 Decr. Unclear

a>0,>0v>0,6>0 a=25p3=3,vy=3,=1.2

on w > max(0, —«), except U(w) = In(5 + In(ae + w)), the definition range of which is w >
max(0, —a + e ). Furthermore, the utility functions satisfy U*~1) > 0, and U®*) < 0,k =

1,2, ..., on the respective definition range.

5 Empirical Results

In the first section, I present the results from the case of no short-selling. The second section
treats a more aggressive holding strategy, where the portfolio weights are allowed to vary between
—0.5 and 1.5. Finally, in the last section, the effects of including synthetic options in the security

set are examined.

5.1 Portfolio Selection with No Short Sales

First, we trace out the efficient frontier by solving the optimization problem (2) for 600 points
between e ;, = 0.73% and e, = 3.22% giving a Ae of 0.0042%. For each utility function
and parameter set, we choose the frontier portfolio maximizing the expected utility. With
our historical return data, it takes the form of E*U = %Zt U(l + >, xfr,) with portfolio
weights xf. Then, we solve the ten maximization problems described by (1). Henceforth,
these solutions are denoted as optimal, as opposed to the former, which are referred to as
approzimative. Table 3 reports the means and variances of the solution portfolios together

with the maximum absolute distance of the two weight vectors. The means and variances of



Table 3: Means and variances of the approximative and optimal portfolio returns. The maximum
of the absolute distances between the corresponding weight vectors, and the properties of R4

and Ry implied by the parameter choices are also shown.

Approximative Optimal
U(w) E%) V(%) E%) V(%) Distance R, Ry,

1. In(w) 3.046 0.657 3.046 0.655 0.011 Decr. Const.

2. In(w — 0.5) 2.929 0.452 2931 0.456 0.041 Decr. Decr.

3. —e72 2.917 0.437 2918 0.440 0.010 Decr. Incr.

4. —e™B 2.674 0.288 2.685 0.295 0.026 Const.  Incr.

5. (w—0.8)%1 2.753  0.326 2.787 0.351  0.058  Decr.  Decr.

6. (w—0.5)"2 2967  0.504 2969 0.509  0.017  Decr. Decr.

7. In(0.7+ In(w+0.5))  3.009 0.576 3.002 0.565  0.022  Decr. Incr. if w < 2.57

Decr. if w > 2.57
8 In(1.5+In(w—0.3)) 2.896 0416 2.896 0.418 0.029  Decr. Decr.
9. —0.5e 73w — ¢5¥ 2.845 0.377 2.851 0.382 0.015 Decr.  Incr.
10. —2.5e73% — 3¢~ 2% 2946 0474 2.947 0.476 0.015 Decr.  Incr.

the approximative portfolio returns are almost identical to those of the optimal ones. The
distances between the corresponding portfolio weights are also very small, indicating that the
portfolios include almost the same securities. It should be noted that the approximative and
optimal portfolios only involve a small number of assets. The portfolios with the largest number
of securities (those with the lowest mean return) contain only nine securities (with portfolio
weights larger than 0.1%) out of 119, while those with the smallest number (those with the
highest mean) contain only four securities. This illustrates the effect of diversification; only a
few stocks is needed to yield a favorable risk-return relationship. In Table 3, it is also worth
noticing the properties of R4 and Ry implied by the parameter choices.

In the left-hand part of Figure 1, I plot the efficient frontier and the points corresponding
to the optimal portfolios. Because of the closeness in mean-variance space, the approximative
portfolios are only displayed in the magnified right-hand area. No points lie above the frontier as
must be the case, since it follows from (2) that the frontier portfolios have the lowest variances,
given their mean returns. Optimal portfolios far from the frontier would indicate other moments
besides the mean and variance to have a great impact on maximizing the expected utility, but
as can be seen in Figure 1, there is little support for this argument. The location of the naive
portfolio, with 1/nth invested in each security, is also plotted and is clearly inefficient.

Table 4 shows the evaluation indexes, C' and I, for the various utility functions. For the sake
of completeness, we also present EU, E*U and EnU. It can be noticed that C' and I are virtually
indistinguishable from 1, although the ranking of the ten comparisons of EU and E*U do not
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Figure 1: The efficient frontier and the location of the naive (+) portfolio, as well as the optimal
(z) and approximative (o) portfolios. From the right to the left, the 2’s and the o0’s correspond
to utility functions 1, 7, 6, 10, 2, 3, 8, 9, 5, and 4.

Table 4: Performance indexes, C' and I, in the case of no short selling. The expected utilities

of the optimal, the approximative, and the naive portfolios are denoted EU, E*U, and E\U,

respectively.
U(w) EU E'U E U c I
1. In(w) 0.027092  0.027091  0.011443 0.999949 0.999912
2. In(w — 0.5) -0.643952 -0.643984 -0.673708 0.999345 0.998943
3. —e 2V -0.128745 -0.128746 -0.132683  0.999996  0.999736
4. —e5v -0.006103 -0.006104 -0.006580 0.999967 0.997876
5. (w—0.8)°"t 0.859917  0.859859  0.851938 0.992906 0.992706
6. (w—0.5)°2 0.879439  0.879436  0.874175 0.999569 0.999287
7. In(0.7+In(w +0.5))  0.116111  0.116109  0.106897 0.999812  0.999681
8. In(15+In(w—03)) 0.162891  0.162863  0.144603 0.999006 0.998474
9. —0.5e 3% — e 5% -0.029345 -0.029347 -0.030867 0.999977 0.998465

10. —2.5¢73 —3e~12¥ 0991335 -0.991342 -1.012956 0.999995  0.999665




Table 5: The means, variances, skewnesses, and kurtoses of the optimal and approximative port-
folios in the case of limited short selling, together with the maximum of the absolute distances

between the corresponding weight vectors.

Approximative Optimal
U(w) E%) V(%) S K E%) V(&) S K  Distance
1. In(w) 43.77 1798 0.27 3.74 45.15 22.17 057 3.38 0.86
2. In(w — 0.5) 3823  9.10 025 3.52 4143 1471 080 3.71 0.80
3. —e v 36.62  7.29 027 3.43 37.96  9.33 098 4.94 0.67
4. —e5Y 29.72 234 032 3.32 3065 3.15 1.33 5.24 0.53
5. (w—0.8)°* 3299 420 0.33 3.36 36.90 859 094 4.07 0.84
6. (w—0.5)"2 39.66 10.96 0.26 3.60 4294 1747 069 3.36 1.04
7. In(0.7 + In(w 4+ 0.5))  42.64 15.70 0.27 3.67 4293 1665 051 3.55 0.35
8. In(1.54+In(w—0.3)) 36.03 6.69 028 3.39 38.82 10.58 0.85 3.88 0.67
9. —0.5e73Y — ¢ 3234  3.77 034 3.36 33.14 459 1.06 4.50 0.34
10. —2.5e73% —3e712* 3954 10.80 0.26 3.60 40.61 1295 0.86 4.53 0.63

coincide. The decrease in an investor’s cash equivalent from choosing an approximative portfolio
instead of the optimal one is, with the data and utility functions used here, totally negligible.
In other words, the level of certain income making the investor indifferent to investing in a
risky portfolio is the same notwithstanding if this is the optimal or the approximative portfolio.
The computationally easier [-measure, at least when U is not invertible, as is the case for
U(w) = —ae P — ye~®"  also underscores the adequacy of the mean-variance approximation.
It remains to be seen if this result still prevails when allowing for a more aggressive holding

strategy.

5.2 Portfolio Selection with Limited Short Sales

We now repeat the analysis for the case of limited short selling, that is, the weights in optimiza-
tion problems (1) and (2) are restricted to [—0.5, 1.5]. It must be emphasized that this is a very
aggressive investment strategy, which allows for considerably larger fluctuations in the portfolio
returns than previously. Once more, we derive the efficient frontier by solving (2) for 650 points
from e, ;, = 12.87% to ey, = 51.27% by steps of 0.060%, and choose the ten portfolio solutions
that maximizing the expected utilities. The maximum monthly portfolio return has increased
from 3% to 51%, and as such, it constitutes a greater challenge to the mean-variance approxi-
mation. The global maximization problems described by (1) are also solved. In contrast to the
former case, all assets are now included with absolute portfolio weights considerable larger than
0.1%.

Comparing Table 5 to Table 3, it appears that the approximate portfolios are far from as
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Figure 2: The efficient frontier and the location of the optimal (x) and approximative (o)
portfolios in the case of limited short selling. From right to left, the x’s correspond to utility
functions 1, 6, 7, 2, 10, 8, 3, 5, 9, and 4, and the 0’s correspond to utility functions 1, 7, 6, 10,
2,3,8,5,9, and 4.

close to the optimal ones as previously. For example, the variance of the optimal portfolio for
utility function 6 is 60% higher than the approximative, with a maximum (absolute) distance of
the portfolio weights of more than 100%. This can also be seen in Figure 2, where the locations
of the approximative and optimal portfolios are shown. The reason why an investor with, say,
utility function 6 chooses an approximative portfolio (the third ’o’ from the right) so far from
the optimal one (the second 'z’ from the right) is partly due to the fact that the definition
range for U(w) is restricted to w > 0.5. Mean-variance efficient portfolios, maximizing F*U =
%Zt U(l+ >, xfr,), closer to the optimal one are therefore not feasible. The approximative
portfolios for utility functions defined on w > 0 often lie closer to the optimal ones. It should
be noticed that it is the positive skewnesses of the optimal portfolios that make them preferable
to the approximative ones. The aversion to kurtosis is not as clear. Sometimes the optimal
portfolios have higher kurtosis than the approximative ones, sometimes not.

The result from the utility maximizations are presented in Table 6 together with the perfor-

mance indexes, C' and I. In the earlier case of non-negative portfolio weights, both measures

10



Table 6: Performance indexes, C' and I, in the case of limited short selling. The expected

utilities of the optimal and the approximative portfolios are denoted EU and E*U.

U(w) EU E*U c I
1. In(w) 0.319088  0.314200 0.982152 0.984112
2. In(w — 0.5) -0.177024  -0.196092 0.953154 0.961611
3. —e7?v -0.074045 -0.074712  0.996557  0.988631
4. —e75v -0.001929  -0.001997  0.994428  0.985302
5. (w—0.8)%* 0.933913  0.930595 0.942088  0.959526
6. (w—0.5)"2 0.969109  0.965186 0.951630 0.958677
7. In(0.7 +In(w +0.5)) 0275958  0.273954 0.986225 0.988144
8. In(1.5+In(w — 0.3))  0.415316  0.407329 0.961395 0.970493
9. —0.5e73% — 75 -0.012842 -0.013104 0.995133  0.985440

10. —2.5e 3% —3e 2% _0.660605 -0.665734 0.995602 0.985442

were very close to one, indicating a negligible welfare loss from using the approximative solutions.
This is no longer entirely true. The decrease in certain income now varies between 0.3% and
5.8% for investors with utility functions 3 and 5, respectively. It seems that the differences in
portfolio composition do not affect the expected utility to such an extent as would be expected.

As before, this is confirmed by the I-measure.

5.3 Portfolio Selection with Options Included

As shown above, it is mainly the preferences for skewness that explain the differences in compo-
sition of the approximative and optimal portfolios. Investigating how the inclusion of security
returns with very high levels of skewness (and kurtosis) influences the utility maximizations
might therefore be of interest. Highly realistic examples of such securities in portfolio selection
are options. I do not have access to real world option prices in this period, but to a stock index,
Afférsvirldens Generalindez?, from which synthetical options can be constructed. This is done
in the following way: We calculate the Black-Scholes prices of an at-the-money call and put
option with one month to maturity (c¢; and p,), using a yearly constant interest rate of 6% and
the historical 30 day standard deviation of the index as a volatility estimate. After one month,
when the options expire, we compute the returns and calculate new prices. The same roll-over
strategy is also performed for a call and a put option with a time to maturity of three months
(c3 and p3). Thus, we have 83 monthly returns of four synthetic options with the stock index

as the underlying asset.

8 Affarsvarldens Generalindex is a value weighted index of all stocks traded on the Stockholm Stock Exchange.
It is not a value weighted index of the 119 stocks used here, since we have only used those stocks that exist at

both the beginning and the end of the period.
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Table 7: The means, variances, skewnesses, and kurtoses of the four synthetical options. The

notion c,, is used for a call option with m months to maturity, and equivalently for a put option.
E%) V(%) S K
c, 75.05 4255 1.326 4.101
p, 53.43 1576  5.442 39.65
cy 8735 100.2 0.970 3.543
py 2442 9604 5.110 32.77

Table 8: The means, variances, skewnesses, and kurtoses of the optimal and approximative
portfolios when options are included, together with the maximum of the absolute distances

between the corresponding weight vectors.

Approximative Optimal
U(w) E%) V(%) S K E%) V(&) S K  Distance
1. In(w) 11.67  3.77 0.15 6.26 11.84 410 0.27 5.79 0.16
2. In(w — 0.5) 1030  2.39 1.10 5.23 10.37 249 1.16 5.30 0.11
3. —e v 1061  2.65 0.89 5.26 10.64 2.68 0.89 5.26 0.03
4, —e75Y 9.27 1.74 158 5.85 9.21 175 191 7.81 0.05
5. (w—0.8)°1 9.33 1.77 1.57 5.81 9.57 1.96 1.68 6.19 0.11
6. (w—0.5)°2 1048 254 0.98 5.23 10.66  2.78 1.03 5.28 0.13
7. In(0.7 + In(w 4+ 0.5)) 1127  3.29 042 5.74 11.38  3.49 0.46 5.55 0.16
8. In(1.54+In(w—0.3)) 10.02 2.18 1.27 5.33 10.08 224 132 545 0.07
9. —0.5e73Y — g% 9.70 198 1.43 554 9.64 1.96 163 6.45 0.03
10. —2.5¢73% —3e712* 1095 297 064 545 1099  3.02 068 5.41 0.06

The means, variances, skewnesses, and kurtoses of the option returns are presented in Table
7. As shown, all sample statistics are large. The mean returns of the put options are positive,
although the market rose heavily in this period. The reason is that the stock market experienced
some considerable declines, for example the October crash of 87, which compensated the holders
of puts. This is also seen in the highly asymmetric distributions of the put option returns.

We calculate 1000 mean-variance efficient portfolios by solving (2) from 2% to 15% in steps
of 0.013%, and choose the ten portfolios to compare to the optimal ones, given by solving (1).
Again, we restrict the stock weights to be non-negative, while we impose the restrictions that
the option weights are greater than -0.1, and sum to zero. The rationale behind this would be
an investor who has fully invested in stocks, but who is allowed to take suitable positions in the
option market, as long as these option positions are self financed and not too large.

In Table 8, I display the first four moments of the different solution portfolios. The options
are always included, while only 4 (utility function 1) to 12 (utility function 4) of the stocks

have weights > 0.1%. The expectations and the variances of the portfolio returns are much

12



Table 9: Performance indexes, C' and I, when options are included. The expected utilities of

the optimal and the approximative portfolios are denoted FU and E*U.

U(w) EU E*U c I
1. In(w) 0.094035  0.093450  0.993476  0.992909
2. In(w — 0.5) -0.536717  -0.537177  0.996826  0.996644
3. —e7?v -0.114872  -0.114878  0.999975  0.999651
4. —e75v -0.004958  -0.004973  0.999445  0.990987
5. (w—0.8)%* 0.877935  0.877580 0.984754  0.986341
6. (w—0.5)°2 0.899520  0.899360 0.994141  0.993719
7. In(0.7 + In(w 4+ 0.5))  0.153378  0.153249 0.997437  0.997231
8. In(1.5+1In(w —0.3)) 0223305 0.223007 0.996333  0.996221
9. —0.5e %% —e75v -0.024993  -0.025022  0.999676  0.995018

10. —2.5e73% — 3¢~ 2% 0.910028 -0.910166 0.999900 0.998662

higher than in the former case with non-negative stock weights only. The mean returns of the
approximative and optimal portfolios are quite close, and it seems as if, to some extent, the
investors are willing to trade some increase in variance for higher skewness. The skewnesses of
the optimal portfolios are all larger than those of the approximative ones, but the differences
are not astounding. Again, the aversion of kurtosis is not as obvious. Furthermore, it can be
seen that the maximum absolute distances of the portfolio weights range from 3% to 16% at the
most. This is clearly higher than when the security set only contained stocks, but it is much
lower than in the case of limited short selling of stocks.

Table 9 shows the performance indexes, C' and I, which are very close to unity*. The decrease
in certain income is limited to 1.5% at most for an investor characterized by utility function 5.

These results are supported by the less intuitive I-measure.

6 Summary and Conclusions

The conclusion, with the utility functions and the return data used here, is that an investor
wishing to maximize his expected utility, with small welfare losses, can choose a mean-variance
efficient portfolio instead of the portfolio actually solving his maximization problem. In the case
of non-negative portfolio weights, the decrease in utility is extremely small, much smaller than
the precision of the raw data. This result has also been well documented in portfolio selections
involving a small number of assets.

The main contribution is to show the validity of the mean-variance model in allocation

4The naive portfolio consists of 1/nth of each stock, and no options. The expected utilities of this portfolio

are therefore the same as in Table 4.
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problems comparable to the size examined here. My solution portfolios involve a few assets
only, as was the case in the earlier investigations where the security set consisted of 10-20 assets
only. Choosing five securities out of 120 is, however, quite a different maximization problem
than choosing five securities out of 20. Furthermore, I find that the validity of the mean-variance
model is not due to any normality properties of the return data.

When allowing the portfolio weights to vary between -0.5 and 1.5, the returns of the solu-
tion portfolios are considerably more variable. Furthermore, the portfolio compositions of the
approximative and exact portfolios differ to a much greater extent than in the former case. The
welfare losses, measured as the decreases in the cash equivalents, are limited to 6% at most,
however.

I further challenge the mean-variance approximation by incorporating synthetic options, with
high levels of skewness and kurtosis in the security set. This increases the portfolio variabilities
and the differences in asset allocations, but the decrease in certain income from choosing the
best mean-variance efficient portfolio instead of the optimal one is less than 1.5%.

My personal opinion is that these welfare losses are of less importance, especially considering
the fact that the hypothetical investors have been assumed to know their exact utility functions,
which is hardly likely.

If the utility function is known, however, or an investor wishes to monitor his portfolio
with different kinds of utility functions, the computational burden has been shown to be quite
reasonable, at least when choosing among some hundred securities.

It should be pointed out that these results apply to a single-period setting, or when investors
act myopically within a multiperiod framework. It remains to be settled if the excellency of the
mean-variance approximation holds in a general multiperiod setting, when returns might exhibit

serial dependences. This issue is left to future research.
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