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Abstract

This paper introduces a new non-parametric approach to integrate empirical

probability functions of the real return for different investment horizons for five

portfolios of Swedish stocks and bonds. In our setting the problem reduces to

generating new generalizations from a known empirical Markov chain. We find

that the stocks yield a real return of about 7.5% and bonds about 3.0%. Our

results suggest that an investor ought to avoid bonds in the long run. Finally if the

investors goal is to minimize the risk of capital destruction the preferable long-run

passive portfolio is a mix of bonds and stocks.
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1 Introduction

The most important issue when investing is the concern of what real value growth one is

likely to receive. Or as important, what are the odds the investment falls in real wealth

when investing? Today almost eight out of ten Swedes invest in the stock market.1 The

number of shareholders and investments in mutual funds have increased dramatically

during the last decade. In 2000 the Swedish government floated a new public pension

system, the premium pension, in which the individual decides how 10 percent of her

retirement funds should be invested in a selection of about 450 mutual funds.2 Altogether

this underlines the importance of what real return an investor can expect to receive when

investing in Swedish stocks and bonds.

The purpose of this paper is to study the empirical distributions of annualized real

return from Swedish stock and bond portfolios for different investment horizons. Jones and

Wilson (1999) studied the annualized real returns from different portfolios of US stocks

and bonds for different horizons by fitting theoretical lognormal distributions. In their

approach they make the assumption that returns actually are lognormal distributed and

discard the fact that empirical research have found that the real world is more complex as

financial assets often exhibit fat tail distributions and skewness (see Sweden: Frennberg

and Hansson (1993) and US: Ibbotson and Singuefield (1976)).

The issue in this paper is to find the distribution of the annualized real return, F (x),

for different investment horizons. However the distribution F (x) is generally unknown.

In this paper we introduce a new Markovian moving block bootstrap methodology that

enables us to replace the unknown distribution F (x) by its empirical distribution Fn(x).

This approach have several advantages as it enables us to capture possible fat tails and

skewness of the returns. Our contribution is that we introduce a kernel that governs the

transition probabilities in the Markov chain. The idea being similar to the recent research

by Carlstein, Do, Hall, Hesterberg and Kunsch (1998) and Paparoditis and Politis (2001a,

2001b). In the empirical part of the paper states, or blocks of return, with similar variance

have a higher resampling probability. This is analogous to the well-known time varying

volatility often found in financial time series (for Sweden see Hansson and Hördahl (1997)).

The economic contribution is that we analyze the empirical probability distributions

1According to Temo-Aktiespararnas förening January 21th 2002. see Dagens Industri.
2The Swedish public pension funds have today an inflow of about 18.5 percent of the individuals

annual taxable income. 16 percent is managed by the authorities in income retirement funds, allmäna
pensionsfonderna. The remaining 2.5 percent are invested according to the individuals choice of a selection
of about 450 mutual funds. See also www.PPM.nu.
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of the annualized real return for different investment horizons for five mixed portfolios

of Swedish stocks and bonds. Hence we are able to find the probability of actually re-

ceiving a specific return or more. Further, under the assumption that an investor prefers

more wealth to less wealth we can rank our portfolios according to first-degree stochastic

dominance.

We find that the most likely real return from stocks is around 7.4 percent to 8.2

percent and the real bond returns varies between 2.5 percent and 3.0 percent. Further,

the best solution to avoid capital erosion for a passive long-term investor is to diversify

into mixed stock-bond portfolios. Notable is that for a long-run investment horizon the

bond portfolio has about 10 percent probability of falling in real value. This is significantly

higher compared to the other portfolios in the study.

The outline of the paper is as follows. Section 2 specifies the data. The computation of

returns are presented in section 3. The methodology are thoroughly described in section

4 along with the Markovian bootstrap framework. Risk and stochastic dominance are

discussed in section 5. The results and the empirical evidence are presented in section

6 and section 7 concludes the paper. The resampling methodology is presented in the

appendix.

2 Description of Data

The data consists of monthly consumer price index, CPI, and nominal price series of

Swedish bonds and the Swedish stock market portfolio, including dividends, Pt. All data

are from the Frennberg and Hansson database (see Frennberg and Hansson (1992)). Our

sample covers the period January 1919 — December 1999. A total of 80 years of monthly

observations. Some descriptive statistics of the monthly real return is presented in Table

1. The null hypothesis of normal distribution is rejected and the explanation is the very

high kurtosis in the data. This also verifies that fitting a normal distribution to the data

is not the correct approach.

Table 1
Descriptive statistics of monthly real return from Swedish stocks and bonds

1920-1999.
Asset Mean Median

Standard-
deviation

Skewness Kurtosis
Doornik-
Hansen test

P-value of
DH-test

Bonds 0.28 0.12 2.20 0.45 13.40 875.82 0.00
Stocks 0.72 0.73 4.71 0.02 6.89 283.77 0.00

3



3 Returns

The monthly real return of the original data, x, is computed as:

xt =
Pt
Pt−1

− CPIt
CPIt−1

(1)

From the monthly bond and stock returns we construct the following five portfolios; all

equity, sixty percent equity forty percent bonds, fifty-fifty equities and bonds, forty percent

equity sixty percent bonds and all bond. We will compute non-overlapping annualized

real returns, as overlapping returns will exhibit a strong autocorrelation with increasing

investment horizon. This will produce n = bT
q
c numbers of non-overlapping returns for

investment horizon q. The drawback is obvious as q, the investment horizon in months

increases, the number of observed returns, n, decreases, and for long investment horizons

we will have too few returns in order to make statistical inference. A solution is to resample

the portfolios on the original data, x, in order to generate new vectors of resampled return

r∗, and from these construct new asset price paths, P ∗, of the portfolios as:

P ∗t = P
∗
t−1 (1 + rt) =

tY
i=1

(1 + r∗t ) (2)

Now we can compute a new set of non-overlapping annualized q-month returns for

each new asset price path, P ∗, as:

r∗mq =
µ³

P ∗mq−P∗mq−q
P ∗mq−q

+ 1
´ 12

q − 1
¶
· 100 for m = 1, ..., n (3)

This results in N × n number of returns for investment horizon q and the returns will
converge to the empirical distribution when repeated N number of times and as N →∞.
The real returns of the portfolios are computed for eight different investment horizons, q,

of one, two, three, five, ten, fifteen, twenty, and twenty-five years.

4 Markov Chain Monte Carlo Methodology

Resampling time series with serial dependence raises the question of how to keep these

properties, as ordinary wild bootstrap would destroy this dependence.3 One solution is

3An excellent description of resampling techniques can be found in Hjort (1994) ”Computer Intensive
Statistical Methods”; Shao Jun and Dongsheng Tu (1995) ”The Jackknife and Bootstrap ,” and Davidson
A.C. and D.V. Hinkley (1998) ”Bootstrap Methods and Their Application”.
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to bootstrap blocks of the original data as first suggested by Carlstein (1986) or utilize

a moving block bootstrap, see Kunsch (1989), and resample overlapping blocks of data.4

However, both approaches have later been criticized by Carlstein et al (1996) as the

dependence between the generated blocks is ignored. Here we suggest an improvement in

line with the ideas presented by Carlstein et al (1996) and Paparoditis and Politis (2001a,

2001b), and construct an empirical Markov chain in which transition probabilities depend

on the data.

4.1 States

We define a state Si as a set, or a block of b number of observations Si = {ri, ..., ri+b}.
The total number of states is k = T − b, where b is the block length and T is the sample
size. This is a first order Markov Chain by construction as a random state, Si, conditional

upon all of the past events only depend on the previous state Si−1.

4.2 Block length

We do not address the question of an optimal block length. However we conclude that one

should be cautious of using block lengths exceeding the shortest investment horizon as this

introduces a discretization of the non-overlapping returns. Notable is that the problem

becomes more severe as the block length increases. A discussion of this statement is

given in appendix 2.5 Therefore we utilize a block length of six months b = 6 as this is

long enough to preserve some of the serial dependence and yet shorter than the shortest

investment horizon.

4.3 Transition kernel

The idea behind the transition kernel is to match states with similar information and

rule out the possibilities of moving between the extreme states. Our transition kernel

have two advantages. First, the information set y, that governs the transition probability,

can easily be modified to account for dependence between the states, such as return or

variance. In this kernel, the probability that the next random generated state Si+1 is Sj
depends on how close the information yj is to the information in the current generated

4See also Davidson and Hinkley (1998) Ch. 8.2.3.
5We have also done estimations with block lengths ranging up to 120 months. The results are available

upon request.
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state yi. The closer yj to yi the higher the resampling probability (see also Carlstein et

al (1996) and Paparoditis and Politis (2001a, 2001b)). Second, the strength of our beliefs

in the information, y, is determined by a measure raised to the power, z. If we question

the non-equal dependence between the states, then z is set to zero and all the transition

probabilities of the Markov chain is equal. This special case is the moving block bootstrap

introduced by Kunch (1989). Further, our transition kernel is that of an ordinary, wild,

bootstrap if we set z to zero and the number of observation in each state to one, b = 1.

The transition kernel describes the probability to move from a given state Si to a

given state Sj conditional upon an information criteria y in the states. vij, denotes the

resampling probability of moving to a given state Sj conditional upon the current state

Si.

vij =

Ã
1−

¯̄
yi,b − yj,1

¯̄
|ymax − ymin|

!z
(4)

The suffix i, b denotes the last observation of the information set, y, in state i, and j, 1

denotes the first observation of the information set in state j. The factor z determines the

probability of moving to states with a different value of y. The measure, vij, can easily

be modified to account for time variations in volatility and variance, where
Pb

l=1
r2il
b
can

be employed to proxy variance, σ2i , at state, Si, of block length b. In this case each state

is associated with a single value of variance and the subscript denotes the state.

vij =

Ã
1−

¯̄
σ2i − σ2j

¯̄
|σ2max − σ2min|

!z
(5)

4.4 Transition probabilities

The transition probabilities pij, i.e. the probability of moving from one state Si, to another

state Sj, is gathered in a k× k transition matrix P. The transition probabilities in a row
vector of the transition matrix P always sum to unity. Each state is represented by row

vector of transition probabilities for the Markov chain to move to another state. Given

the fact that each realization of a bootstrap is a state in a Markov chain and vij, denotes

the strength of moving to a given state j conditional upon the previous state i, we can

compute the transition probabilities, pij, in this k-state Markov chain as:

pij =
vijPk
j=1 vij

, i, j = 1, ...k (6)
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kX
j=1

pij = 1 (7)

It can easily be seen that this is a Markov chain with no absorbing states as: pii < 1.

4.5 Generation via accept-rejection method

According to Robert et al (1999) an ideal accept/reject density g(x), is a density such

that h(x) ≤ Mg(x) for all x and for which the ratio h(x)/Mg(x) is relatively constant
over the range of x where h(x) has most of its mass, and where M is a scaling factor.

We let g(x) be a uniform density, U(0, 1), M = 1 and h(x) is a density describing the

strength, vij, of moving from a given state, Si to a given state, Sj. Note that each and

every, vij, is bounded by the closed unit interval.

Let r denote the vector of the originally 1-month return series. Determine the block

length b and compute the number of states, i.e. blocks, n = bT
b
c, that will fit in the

original return series.

Step 1: Set N = 1
Step 2: Set a = 1 and the first random state as i.
Step 3: Draw a random number from U(1, k)

and pick the corresponding candidate block j of returns.
Compute vij and draw a random number c ∼ U(0, 1).

vij =

µ
1− |σ2i−σ2j |

|σ2max−σ2min|
¶
, c ∼ U(0, 1).

accept if; c < vij,
and set a = a+ 1,
else generate a candidate, j.
Repeat until a = n. and create a vector r∗N of returns.

Step 4: Compute a price series P ∗N from the resampled r∗N.
Step 5: Compute the non-overlapping returns r∗q ∀ q and set N = N + 1;
Step 6: Go to step 2. Repeat until say, N=20.000.

The non-overlapping q-horizon returns will converge to their empirical distributions if

this is repeated a large number of times. In our case N is set to 20.000 and we compute

N × n number of returns for each investment horizon q.

5 Risk and First Order Stochastic Dominance

It is reasonable to assume that investors always prefer more wealth to less wealth. Thus

investors have non-decreasing utility functions with respect to wealth. A portfolio decision
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rule corresponding to the information of non-decreasing utility in wealth is the first degree

stochastic dominance, FSD, see Levy (1998). As we are able to compute the numerical

integrals of the empirical cumulative density functions we can rank the portfolios according

to the FSD.

Let F and G be two cumulative probability densities such that F (r) ≤ G (r) for all
returns r. It the follows:

F (r) ≤ G (r)⇐⇒ EFU (r) ≥ EGU (r) (8)

The condition of FSD of F over G is that the difference between G (r) − F (r) =
I (r) ;≥ 0 for all r and G (r∗)−F (r∗) = I (r∗) ;> 0 for some r∗. In other words portfolios
with more probability mass to the right of origo, i.e. positive returns, dominate portfolios

with more probability mass on the negative returns. If an investor expects the investment

to yield a certain real return, target return, then risk can be stated as the probability of

receiving a return below target, τ . This is referred to as downside risk in the literature (see

Fishburn (1977)). We also refer to capital erosion as the probability that the investment

yields a negative real return. The probability of receiving at least specified return level

τ , P (r ≥ τ) is computed as:

P (r ≥ τ ) =
# {ri ≥ τ}

n
(9)

A portfolio F first order stochastically dominates G if and only if:

PF (r ≥ τ ) ≥ PG (r ≥ τ ) ∀r and PF (r∗ ≥ τ) > PG (r∗ ≥ τ ) (10)

This should be read as given that portfolio F and G have the same probability of

achieving all the specified target returns. Then F dominates G and is the preferred

choice of the investor if there exist at least one target return for which portfolio F have

a higher probability than G.

6 Results

6.1 Rejections from the Accept-Reject method

We generate a total of 20.000 monthly return series from which we construct 20.000 asset

price paths. From these asset price paths we calculate annualized non-overlapping returns
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for each of the eight investment horizons. This procedure is then repeated for each of the

five portfolios.

The accept-rejection methodology has been criticized as being computational ineffi-

cient as samples are being rejected and does not contribute with information.

The bond portfolio has the highest number of accepted candidates and the stock

portfolio the highest number of rejected candidates. The rejections are presented in Table

2. The accept-rejection algorithm rejects between 3.48 percent and 5.40 percent of the

proposed blocks. In our case this is not a problem as the numbers of rejections are quite

low and tolerable. This suggests that the algorithm is efficient.

Table 2
Rejected blocks in number and percent.

Asset mix Stocks 60-40 50-50 40-60 Bonds
# of rejections 175078 127100 118281 111353 109254
Rejections in % 5.40 3.92 3.65 3.44 3.42
Note: In our case the number of accepted blocks is always 3.200.000.

6.2 The empirical distributions of the real return

For each of the investment horizons we compute the empirical probability density functions

and the empirical cumulative density functions. In fact this is a method of numerical

integration that enables us to compute not only the integral of the distribution but also

the probability density surface, in other words the probability density as a function of

both investment horizon and return.

Figure 2 presents the probability density surface of the real return for the Swedish

stock market for investment horizons up to 25 years. It clearly shows how the probability

mass is more and more centered, or peaked with increasing investment horizon, see also

Table 4 to Table 8.

The empirical PDF’s for stocks and bonds are presented in Figure 3 and Figure 4.

Stocks have dispersed distributions and bonds more peaked distributions which are slightly

skewed to the left. Again we can see how the distributions are more peaked with increasing

investment horizon. Notice that stocks, see Figure 3, have more probability mass for the

positive returns for the 20-year and 25-year horizons compared to bonds, Figure 4.

Table 3 presents the mean annualized real return along with the 2.5 upper and lower

percentiles for the five analyzed portfolios and the eight investment horizons. This presents

us with some interesting results. Stocks yield the highest average real return, between
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7.40 percent and 8.17 percent, and bonds the lowest, between 2.48 percent and 3.04

percent. Jones and Wilson (1999) find that US stocks yielded an annualized real return

of approximately 7.49 % and bonds 2.68 %. We find that the mean annualized real return

from Swedish stocks and bonds are roughly the same. Notable in Table 3 is the 2.5 lower

percentile for the mixed stock bond portfolios, when compared to the stocks and bonds.

For investment horizons exceeding two years the return is higher, less negative, for the

mixed portfolios and at 25 year horizon the lower percentile is a positive return whereas

both stocks and bonds have a negative return. This is the effect of diversification between

stocks and bonds.

Table 3
Mean annualized real return for the investigated portfolios and investment

horizons
Stocks 60/40 Stocks/Bonds 50/50 Stocks/Bonds 40/60 Stocks/Bonds Bonds

1-Year 8.17
[−27.07, 51.75]

6.25
[−19.35, 36.79]

5.68
[−17.80, 33.95]

5.04
[−16.66, 31.73]

2.48
[−17.15, 31.17]

2-Year 7.79
[−17.61, 37.44]

6.14
[−12.21, 26.68]

5.66
[−11.36, 24.53]

5.16
[−10.90, 22.84]

2.86
[−12.53, 20.92]

3-Year 7.62
[−13.29, 31.29]

6.09
[−9.00, 22.52]

5.66
[−8.36, 20.67]

5.17
[−8.03, 19.24]

2.96
[−9.73, 17.19]

5-Year 7.51
[−8.89, 25.59]

6.04
[−5.70, 18.57]

5.61
[−5.30, 17.11]

5.16
[−5.12, 15.90]

3.03
[−6.79, 13.65]

10-Year 7.44
[−4.28, 20.03]

6.00
[−2.34, 14.76]

5.59
[−2.17, 13.59]

5.15
[−2.12, 12.62]

3.04
[−3.94, 10.41]

15-Year 7.42
[−2.20, 17.70]

5.99
[−0.83, 13.06]

5.59
[−0.77,12.03]

5.14
[−0.78, 11.21]

3.04
[−2.64, 8.99]

20-Year 7.39
[−0.93, 16.23]

5.98
[0.02, 12.13]

5.58
[0.07, 11.19]

5.12
[−0.06, 10.38]

3.04
[−1.88, 8.14]

25-Year 7.40
[−0.12, 15.27]

5.98
[0.68, 11.51]

5.58
[0.68, 10.57]

5.12
[0.50, 9.82]

3.04
[−1.35, 7.55]

Note: 2.5 and 97.5 percentiles within brackets

6.3 Target returns and first order stochastic dominance

Table 4 to Table 8 presents specified target returns along with the probabilities of achieving

the specified target returns or more for each of the investment horizons. The probability

that the investment yields at least the money back, P (r ≥ 0), is of special economic
importance as probability mass below this return is associated with capital erosion.

Stocks have the highest probability of rendering a high return for all investment hori-

zons in comparison to the other investigated portfolios. Stocks also stand the highest

probability of capital erosion for investment horizons up to 10 years. However for the

long investment horizons, more than 15 years, bonds is the riskiest asset in this aspect.

The later is a somewhat surprising result. Moreover from Table 4 to Table 8 the diversifi-

cation effect between stocks and bonds is evident as the mixed 40-60 stock/bond portfolio
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dominates the bond portfolio even at short horizons. As the investment horizon increases

all stock/bond portfolios dominate the bond portfolio and at long investment horizons

also the stock portfolio dominates the bond portfolio. It is interesting to note that at a

25 year investment horizon the bond portfolio just stand a 91.4 percent chance of yielding

any annual value growth whereas stocks have a 97.5 percent probability of value growth.
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Table 4: Probability of achieving at least Specified Stock Market Return.

Return in % 1-Year 2-Year 3-Year 5-Year 10-Year 15-Year 20-Year 25-Year
≥ 100 0.001 0 0 0 0 0 0 0
≥ 95 0.002 0 0 0 0 0 0 0
≥ 90 0.002 0 0 0 0 0 0 0
≥ 85 0.003 0 0 0 0 0 0 0
≥ 80 0.004 0 0 0 0 0 0 0
≥ 75 0.006 0 0 0 0 0 0 0
≥ 70 0.008 0 0 0 0 0 0 0
≥ 65 0.010 0.001 0 0 0 0 0 0
≥ 60 0.014 0.002 0 0 0 0 0 0
≥ 55 0.020 0.003 0 0 0 0 0 0
≥ 50 0.028 0.005 0.001 0 0 0 0 0
≥ 45 0.041 0.010 0.002 0 0 0 0 0
≥ 40 0.059 0.018 0.006 0.001 0 0 0 0
≥ 35 0.086 0.033 0.014 0.003 0 0 0 0
≥ 30 0.124 0.060 0.032 0.009 0.001 0 0 0
≥ 25 0.180 0.108 0.068 0.029 0.004 0.001 0 0
≥ 20 0.254 0.183 0.137 0.082 0.025 0.008 0.003 0.001
≥ 19 0.271 0.202 0.156 0.099 0.035 0.014 0.006 0.002
≥ 18 0.290 0.223 0.177 0.119 0.048 0.021 0.010 0.004
≥ 17 0.309 0.244 0.200 0.142 0.066 0.032 0.016 0.009
≥ 16 0.328 0.268 0.225 0.167 0.087 0.048 0.028 0.017
≥ 15 0.349 0.293 0.252 0.196 0.114 0.070 0.045 0.029
≥ 14 0.370 0.319 0.281 0.229 0.147 0.099 0.068 0.049
≥ 13 0.391 0.346 0.312 0.264 0.186 0.137 0.103 0.079
≥ 12 0.413 0.374 0.345 0.302 0.231 0.183 0.149 0.120
≥ 11 0.436 0.403 0.379 0.343 0.282 0.240 0.208 0.179
≥ 10 0.458 0.432 0.414 0.386 0.339 0.306 0.279 0.253
≥ 9 0.481 0.463 0.450 0.431 0.400 0.378 0.358 0.341
≥ 8 0.504 0.493 0.486 0.478 0.464 0.455 0.444 0.439
≥ 7 0.527 0.524 0.523 0.524 0.529 0.533 0.536 0.542
≥ 6 0.550 0.555 0.559 0.570 0.594 0.611 0.626 0.641
≥ 5 0.573 0.585 0.596 0.616 0.656 0.685 0.709 0.732
≥ 4 0.596 0.615 0.631 0.660 0.715 0.752 0.784 0.808
≥ 3 0.618 0.644 0.666 0.703 0.768 0.812 0.845 0.870
≥ 2 0.640 0.672 0.699 0.742 0.816 0.861 0.894 0.918
≥ 1 0.661 0.699 0.730 0.779 0.857 0.901 0.931 0.950
≥≥≥≥ 0 0.682 0.726 0.760 0.813 0.891 0.933 0.957 0.972

 ≥ -1 0.702 0.751 0.788 0.843 0.919 0.955 0.975 0.986
 ≥ -2 0.722 0.775 0.814 0.870 0.941 0.971 0.986 0.993
 ≥ -3 0.741 0.797 0.838 0.894 0.958 0.983 0.993 0.997
≥ -4 0.759 0.818 0.860 0.914 0.971 0.990 0.996 0.999
≥ -5 0.776 0.837 0.880 0.931 0.980 0.994 0.998 0.999
≥ -6 0.793 0.855 0.898 0.946 0.987 0.997 0.999 1
≥ -7 0.809 0.872 0.914 0.958 0.992 0.998 1 1
≥ -8 0.824 0.887 0.928 0.968 0.995 0.999 1 1
≥ -9 0.838 0.901 0.940 0.975 0.997 1 1 1

≥ -10 0.851 0.914 0.950 0.981 0.998 1 1 1
≥ -11 0.863 0.925 0.959 0.986 0.999 1 1 1
≥ -12 0.875 0.936 0.967 0.990 0.999 1 1 1
≥ -13 0.886 0.945 0.973 0.993 1 1 1 1
≥ -14 0.896 0.953 0.978 0.995 1 1 1 1
≥ -15 0.905 0.960 0.983 0.996 1 1 1 1
≥ -16 0.914 0.967 0.987 0.998 1 1 1 1
≥ -17 0.922 0.972 0.990 0.998 1 1 1 1
≥ -18 0.929 0.977 0.992 0.999 1 1 1 1
≥ -19 0.936 0.981 0.994 0.999 1 1 1 1
≥ -20 0.942 0.984 0.995 1 1 1 1 1
≥ -25 0.967 0.995 0.999 1 1 1 1 1
≥ -30 0.983 0.999 1 1 1 1 1 1
≥ -35 0.993 1 1 1 1 1 1 1
≥ -40 0.997 1 1 1 1 1 1 1
≥ -45 0.999 1 1 1 1 1 1 1
≥ -50 1 1 1 1 1 1 1 1
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Table 5: Probability of achieving at least specified five-year bond returns.

Return in % 1-Year 2-Year 3-Year 5-Year 10-Year 15-Year 20-Year 25-Year
≥ 100 0 0 0 0 0 0 0 0
≥ 95 0 0 0 0 0 0 0 0
≥ 90 0 0 0 0 0 0 0 0
≥ 85 0 0 0 0 0 0 0 0
≥ 80 0 0 0 0 0 0 0 0
≥ 75 0 0 0 0 0 0 0 0
≥ 70 0 0 0 0 0 0 0 0
≥ 65 0 0 0 0 0 0 0 0
≥ 60 0.001 0 0 0 0 0 0 0
≥ 55 0.001 0 0 0 0 0 0 0
≥ 50 0.002 0 0 0 0 0 0 0
≥ 45 0.005 0 0 0 0 0 0 0
≥ 40 0.009 0 0 0 0 0 0 0
≥ 35 0.016 0.001 0 0 0 0 0 0
≥ 30 0.028 0.004 0.001 0 0 0 0 0
≥ 25 0.044 0.011 0.003 0 0 0 0 0
≥ 20 0.073 0.030 0.012 0.002 0 0 0 0
≥ 19 0.082 0.036 0.015 0.003 0 0 0 0
≥ 18 0.091 0.044 0.020 0.005 0 0 0 0
≥ 17 0.101 0.053 0.026 0.007 0 0 0 0
≥ 16 0.112 0.063 0.034 0.010 0 0 0 0
≥ 15 0.126 0.075 0.043 0.015 0.001 0 0 0
≥ 14 0.142 0.089 0.055 0.021 0.002 0 0 0
≥ 13 0.159 0.106 0.070 0.031 0.005 0.001 0 0
≥ 12 0.179 0.126 0.088 0.045 0.009 0.002 0 0
≥ 11 0.201 0.149 0.111 0.063 0.017 0.005 0.002 0.001
≥ 10 0.226 0.176 0.139 0.088 0.031 0.011 0.004 0.002
≥ 9 0.254 0.207 0.172 0.119 0.053 0.024 0.011 0.006
≥ 8 0.284 0.242 0.211 0.160 0.085 0.048 0.027 0.016
≥ 7 0.317 0.283 0.256 0.209 0.134 0.089 0.060 0.042
≥ 6 0.352 0.329 0.308 0.270 0.202 0.155 0.122 0.096
≥ 5 0.391 0.379 0.366 0.340 0.288 0.248 0.220 0.192
≥ 4 0.432 0.434 0.430 0.419 0.392 0.369 0.351 0.334
≥ 3 0.475 0.492 0.497 0.502 0.505 0.505 0.506 0.506
≥ 2 0.523 0.552 0.566 0.588 0.619 0.641 0.663 0.680
≥ 1 0.571 0.612 0.636 0.670 0.724 0.765 0.795 0.819
≥≥≥≥ 0 0.621 0.670 0.701 0.743 0.811 0.859 0.889 0.912

 ≥ -1 0.669 0.725 0.759 0.807 0.879 0.922 0.947 0.964
 ≥ -2 0.716 0.775 0.811 0.858 0.927 0.960 0.977 0.988
 ≥ -3 0.758 0.818 0.853 0.898 0.957 0.981 0.991 0.996
≥ -4 0.796 0.854 0.887 0.928 0.977 0.992 0.997 0.999
≥ -5 0.829 0.884 0.914 0.950 0.988 0.997 0.999 1
≥ -6 0.857 0.907 0.934 0.966 0.994 0.999 1 1
≥ -7 0.881 0.926 0.949 0.977 0.997 1 1 1
≥ -8 0.901 0.940 0.960 0.984 0.999 1 1 1
≥ -9 0.917 0.951 0.969 0.990 0.999 1 1 1

≥ -10 0.930 0.960 0.976 0.994 1 1 1 1
≥ -11 0.941 0.967 0.982 0.996 1 1 1 1
≥ -12 0.950 0.972 0.987 0.998 1 1 1 1
≥ -13 0.957 0.977 0.990 0.999 1 1 1 1
≥ -14 0.962 0.980 0.993 0.999 1 1 1 1
≥ -15 0.967 0.984 0.995 0.999 1 1 1 1
≥ -16 0.971 0.987 0.997 1 1 1 1 1
≥ -17 0.975 0.990 0.998 1 1 1 1 1
≥ -18 0.977 0.992 0.998 1 1 1 1 1
≥ -19 0.979 0.994 0.999 1 1 1 1 1
≥ -20 0.981 0.996 0.999 1 1 1 1 1
≥ -25 0.988 0.999 1 1 1 1 1 1
≥ -30 0.993 1 1 1 1 1 1 1
≥ -35 0.998 1 1 1 1 1 1 1
≥ -40 1 1 1 1 1 1 1 1
≥ -45 1 1 1 1 1 1 1 1
≥ -50 1 1 1 1 1 1 1 1
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Table 6: Probability of achieving at least specified portfolio return, 60-40
percent.

Return in % 1-Year 2-Year 3-Year 5-Year 10-Year 15-Year 20-Year 25-Year
≥ 100 0 0 0 0 0 0 0 0
≥ 95 0 0 0 0 0 0 0 0
≥ 90 0 0 0 0 0 0 0 0
≥ 85 0 0 0 0 0 0 0 0
≥ 80 0 0 0 0 0 0 0 0
≥ 75 0 0 0 0 0 0 0 0
≥ 70 0.001 0 0 0 0 0 0 0
≥ 65 0.001 0 0 0 0 0 0 0
≥ 60 0.002 0 0 0 0 0 0 0
≥ 55 0.003 0 0 0 0 0 0 0
≥ 50 0.006 0 0 0 0 0 0 0
≥ 45 0.011 0.001 0 0 0 0 0 0
≥ 40 0.018 0.002 0 0 0 0 0 0
≥ 35 0.030 0.005 0.001 0 0 0 0 0
≥ 30 0.051 0.013 0.004 0 0 0 0 0
≥ 25 0.085 0.034 0.013 0.002 0 0 0 0
≥ 20 0.146 0.079 0.045 0.015 0.001 0 0 0
≥ 19 0.162 0.093 0.056 0.021 0.002 0 0 0
≥ 18 0.179 0.110 0.070 0.030 0.004 0.001 0 0
≥ 17 0.198 0.129 0.087 0.041 0.007 0.001 0 0
≥ 16 0.219 0.150 0.106 0.056 0.013 0.003 0.001 0
≥ 15 0.242 0.174 0.130 0.076 0.022 0.007 0.002 0.001
≥ 14 0.266 0.201 0.157 0.100 0.036 0.014 0.005 0.002
≥ 13 0.292 0.231 0.187 0.130 0.057 0.027 0.012 0.006
≥ 12 0.319 0.263 0.222 0.165 0.086 0.047 0.027 0.015
≥ 11 0.348 0.298 0.262 0.208 0.126 0.081 0.053 0.035
≥ 10 0.378 0.336 0.304 0.257 0.179 0.131 0.098 0.074
≥ 9 0.409 0.376 0.351 0.312 0.245 0.198 0.166 0.137
≥ 8 0.442 0.419 0.401 0.372 0.323 0.284 0.255 0.232
≥ 7 0.475 0.462 0.452 0.436 0.409 0.387 0.369 0.356
≥ 6 0.509 0.506 0.504 0.503 0.500 0.499 0.498 0.497
≥ 5 0.542 0.551 0.557 0.569 0.592 0.613 0.627 0.641
≥ 4 0.576 0.595 0.609 0.634 0.680 0.715 0.743 0.765
≥ 3 0.609 0.637 0.659 0.696 0.759 0.803 0.835 0.862
≥ 2 0.641 0.678 0.707 0.752 0.826 0.873 0.905 0.927
≥ 1 0.673 0.717 0.751 0.802 0.879 0.924 0.950 0.966
≥≥≥≥ 0 0.702 0.753 0.791 0.845 0.920 0.956 0.975 0.986

 ≥ -1 0.731 0.787 0.826 0.882 0.950 0.977 0.989 0.996
 ≥ -2 0.758 0.817 0.858 0.911 0.970 0.989 0.996 0.998
 ≥ -3 0.782 0.844 0.886 0.935 0.982 0.995 0.999 1
≥ -4 0.806 0.868 0.908 0.954 0.990 0.998 1 1
≥ -5 0.828 0.890 0.928 0.967 0.995 0.999 1 1
≥ -6 0.847 0.908 0.944 0.977 0.998 1 1 1
≥ -7 0.864 0.924 0.957 0.985 0.999 1 1 1
≥ -8 0.880 0.938 0.967 0.990 0.999 1 1 1
≥ -9 0.894 0.949 0.975 0.994 1 1 1 1

≥ -10 0.907 0.959 0.982 0.996 1 1 1 1
≥ -11 0.919 0.967 0.987 0.998 1 1 1 1
≥ -12 0.929 0.974 0.990 0.999 1 1 1 1
≥ -13 0.938 0.979 0.993 0.999 1 1 1 1
≥ -14 0.945 0.984 0.995 0.999 1 1 1 1
≥ -15 0.952 0.987 0.997 1 1 1 1 1
≥ -16 0.959 0.990 0.998 1 1 1 1 1
≥ -17 0.964 0.993 0.998 1 1 1 1 1
≥ -18 0.969 0.994 0.999 1 1 1 1 1
≥ -19 0.974 0.996 0.999 1 1 1 1 1
≥ -20 0.977 0.997 1 1 1 1 1 1
≥ -25 0.990 0.999 1 1 1 1 1 1
≥ -30 0.996 1 1 1 1 1 1 1
≥ -35 0.999 1 1 1 1 1 1 1
≥ -40 1 1 1 1 1 1 1 1
≥ -45 1 1 1 1 1 1 1 1
≥ -50 1 1 1 1 1 1 1 1
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Table 7: Probability of achieving at least specified portfolio return, 50-50
percent.

Return in % 1-Year 2-Year 3-Year 5-Year 10-Year 15-Year 20-Year 25-Year
≥ 100 0 0 0 0 0 0 0 0
≥ 95 0 0 0 0 0 0 0 0
≥ 90 0 0 0 0 0 0 0 0
≥ 85 0 0 0 0 0 0 0 0
≥ 80 0 0 0 0 0 0 0 0
≥ 75 0 0 0 0 0 0 0 0
≥ 70 0 0 0 0 0 0 0 0
≥ 65 0 0 0 0 0 0 0 0
≥ 60 0.001 0 0 0 0 0 0 0
≥ 55 0.002 0 0 0 0 0 0 0
≥ 50 0.003 0 0 0 0 0 0 0
≥ 45 0.006 0 0 0 0 0 0 0
≥ 40 0.012 0.001 0 0 0 0 0 0
≥ 35 0.022 0.003 0 0 0 0 0 0
≥ 30 0.039 0.008 0.002 0 0 0 0 0
≥ 25 0.069 0.023 0.008 0.001 0 0 0 0
≥ 20 0.123 0.060 0.031 0.008 0 0 0 0
≥ 19 0.138 0.072 0.040 0.012 0.001 0 0 0
≥ 18 0.154 0.086 0.050 0.018 0.002 0 0 0
≥ 17 0.172 0.103 0.064 0.026 0.003 0 0 0
≥ 16 0.192 0.123 0.081 0.037 0.006 0.001 0 0
≥ 15 0.213 0.145 0.101 0.053 0.012 0.003 0.001 0
≥ 14 0.237 0.170 0.126 0.073 0.021 0.006 0.002 0.001
≥ 13 0.262 0.198 0.155 0.098 0.035 0.014 0.005 0.002
≥ 12 0.289 0.230 0.188 0.130 0.057 0.027 0.013 0.006
≥ 11 0.319 0.265 0.226 0.169 0.090 0.051 0.030 0.017
≥ 10 0.350 0.304 0.270 0.217 0.136 0.090 0.061 0.042
≥ 9 0.382 0.346 0.317 0.271 0.197 0.149 0.114 0.089
≥ 8 0.416 0.390 0.369 0.334 0.272 0.229 0.195 0.168
≥ 7 0.452 0.436 0.424 0.401 0.360 0.331 0.306 0.288
≥ 6 0.488 0.484 0.480 0.471 0.459 0.448 0.441 0.435
≥ 5 0.525 0.532 0.538 0.545 0.560 0.573 0.581 0.591
≥ 4 0.562 0.581 0.595 0.616 0.658 0.688 0.712 0.735
≥ 3 0.598 0.628 0.650 0.685 0.745 0.789 0.820 0.847
≥ 2 0.634 0.674 0.702 0.747 0.820 0.866 0.898 0.923
≥ 1 0.669 0.717 0.750 0.802 0.879 0.922 0.948 0.966
≥≥≥≥ 0 0.703 0.757 0.794 0.848 0.922 0.957 0.977 0.987

 ≥ -1 0.735 0.793 0.832 0.887 0.952 0.979 0.990 0.995
 ≥ -2 0.764 0.826 0.865 0.917 0.972 0.990 0.997 0.999
 ≥ -3 0.792 0.854 0.893 0.941 0.985 0.996 0.999 1
≥ -4 0.817 0.879 0.917 0.959 0.992 0.998 1 1
≥ -5 0.840 0.900 0.936 0.972 0.996 0.999 1 1
≥ -6 0.860 0.919 0.951 0.981 0.998 1 1 1
≥ -7 0.878 0.934 0.963 0.988 0.999 1 1 1
≥ -8 0.894 0.947 0.972 0.992 1 1 1 1
≥ -9 0.908 0.957 0.979 0.995 1 1 1 1

≥ -10 0.920 0.966 0.985 0.997 1 1 1 1
≥ -11 0.931 0.973 0.989 0.998 1 1 1 1
≥ -12 0.940 0.979 0.992 0.999 1 1 1 1
≥ -13 0.948 0.983 0.995 0.999 1 1 1 1
≥ -14 0.955 0.987 0.996 1 1 1 1 1
≥ -15 0.961 0.990 0.997 1 1 1 1 1
≥ -16 0.967 0.992 0.998 1 1 1 1 1
≥ -17 0.972 0.994 0.999 1 1 1 1 1
≥ -18 0.976 0.996 0.999 1 1 1 1 1
≥ -19 0.979 0.997 1 1 1 1 1 1
≥ -20 0.982 0.998 1 1 1 1 1 1
≥ -25 0.992 1 1 1 1 1 1 1
≥ -30 0.996 1 1 1 1 1 1 1
≥ -35 0.999 1 1 1 1 1 1 1
≥ -40 1 1 1 1 1 1 1 1
≥ -45 1 1 1 1 1 1 1 1
≥ -50 1 1 1 1 1 1 1 1
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Table 8: Probability of achieving at least specified portfolio return, 40-60
percent.

Return in % 1-Year 2-Year 3-Year 5-Year 10-Year 15-Year 20-Year 25-Year
≥ 100 0 0 0 0 0 0 0 0
≥ 95 0 0 0 0 0 0 0 0
≥ 90 0 0 0 0 0 0 0 0
≥ 85 0 0 0 0 0 0 0 0
≥ 80 0 0 0 0 0 0 0 0
≥ 75 0 0 0 0 0 0 0 0
≥ 70 0 0 0 0 0 0 0 0
≥ 65 0 0 0 0 0 0 0 0
≥ 60 0 0 0 0 0 0 0 0
≥ 55 0.001 0 0 0 0 0 0 0
≥ 50 0.002 0 0 0 0 0 0 0
≥ 45 0.004 0 0 0 0 0 0 0
≥ 40 0.008 0 0 0 0 0 0 0
≥ 35 0.016 0.001 0 0 0 0 0 0
≥ 30 0.031 0.005 0.001 0 0 0 0 0
≥ 25 0.058 0.015 0.004 0 0 0 0 0
≥ 20 0.105 0.045 0.020 0.004 0 0 0 0
≥ 19 0.118 0.055 0.027 0.007 0 0 0 0
≥ 18 0.132 0.068 0.035 0.011 0.001 0 0 0
≥ 17 0.148 0.082 0.046 0.016 0.001 0 0 0
≥ 16 0.166 0.099 0.060 0.024 0.003 0 0 0
≥ 15 0.186 0.119 0.078 0.035 0.006 0.001 0 0
≥ 14 0.208 0.142 0.099 0.051 0.011 0.002 0.001 0
≥ 13 0.232 0.168 0.125 0.071 0.020 0.006 0.002 0.001
≥ 12 0.258 0.198 0.155 0.098 0.036 0.014 0.005 0.002
≥ 11 0.287 0.233 0.191 0.134 0.061 0.029 0.015 0.007
≥ 10 0.318 0.271 0.233 0.177 0.098 0.056 0.034 0.020
≥ 9 0.351 0.312 0.280 0.230 0.151 0.102 0.072 0.050
≥ 8 0.386 0.357 0.332 0.291 0.221 0.174 0.139 0.111
≥ 7 0.423 0.406 0.389 0.360 0.308 0.270 0.239 0.211
≥ 6 0.462 0.456 0.448 0.434 0.408 0.387 0.369 0.355
≥ 5 0.502 0.509 0.511 0.513 0.516 0.519 0.518 0.521
≥ 4 0.542 0.561 0.573 0.590 0.622 0.647 0.666 0.683
≥ 3 0.583 0.613 0.635 0.666 0.720 0.761 0.791 0.817
≥ 2 0.623 0.664 0.692 0.734 0.803 0.850 0.883 0.907
≥ 1 0.663 0.711 0.746 0.795 0.869 0.913 0.942 0.959
≥≥≥≥ 0 0.700 0.755 0.793 0.846 0.917 0.954 0.973 0.984

 ≥ -1 0.735 0.795 0.834 0.886 0.951 0.978 0.989 0.995
 ≥ -2 0.768 0.830 0.870 0.919 0.972 0.990 0.996 0.998
 ≥ -3 0.799 0.861 0.898 0.943 0.985 0.996 0.999 1
≥ -4 0.826 0.886 0.922 0.961 0.992 0.998 1 1
≥ -5 0.850 0.908 0.940 0.974 0.996 0.999 1 1
≥ -6 0.872 0.926 0.955 0.983 0.998 1 1 1
≥ -7 0.890 0.940 0.966 0.989 0.999 1 1 1
≥ -8 0.906 0.952 0.975 0.993 1 1 1 1
≥ -9 0.919 0.962 0.982 0.996 1 1 1 1

≥ -10 0.931 0.970 0.987 0.997 1 1 1 1
≥ -11 0.941 0.976 0.990 0.999 1 1 1 1
≥ -12 0.950 0.981 0.993 0.999 1 1 1 1
≥ -13 0.957 0.985 0.995 1 1 1 1 1
≥ -14 0.963 0.988 0.997 1 1 1 1 1
≥ -15 0.968 0.991 0.998 1 1 1 1 1
≥ -16 0.972 0.993 0.999 1 1 1 1 1
≥ -17 0.976 0.995 0.999 1 1 1 1 1
≥ -18 0.979 0.996 0.999 1 1 1 1 1
≥ -19 0.982 0.997 1 1 1 1 1 1
≥ -20 0.985 0.998 1 1 1 1 1 1
≥ -25 0.992 1 1 1 1 1 1 1
≥ -30 0.996 1 1 1 1 1 1 1
≥ -35 0.999 1 1 1 1 1 1 1
≥ -40 1 1 1 1 1 1 1 1
≥ -45 1 1 1 1 1 1 1 1
≥ -50 1 1 1 1 1 1 1 1

We can summarize the result of the empirical analysis as follows:

• For investment horizons exceeding two years we find that a mixed bond/stock port-
folio have higher probability of yielding a positive value growth than the bond

portfolio
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• Our results clearly suggests that a passive investor should avoid bonds in the long
run and ought to avoid them even at moderate investments horizons.

• However, the bond portfolio is the less risky portfolio for horizons less than two
years.

• The stock- and diversified portfolios dominate the bond portfolio for long investment
horizons by the first order stochastic dominance criteria.

• The potential gains in the long run of the stock portfolio far exceeds the mixed
portfolios at the cost of slightly higher probability of capital erosion.

7 Conclusion

This paper examines the empirical distributions of the real return from a number of port-

folios of Swedish stocks and bonds. The contribution of this paper is twofold. First, we

are able to answer the question of what real return an investor can expect to receive if

investing in Swedish stocks and bonds. Further we are able to find the probability of

actually receiving a specific return, which makes our approach applicable in risk manage-

ment. Second we propose an improvement to the moving block bootstrap methodology by

introducing a new Markov chain Monte Carlo method based on the empirical properties

of the data for generating samples.

We find the most likely real return from stocks to be around 7.4 percent to 8.2 percent

depending on the investment horizon and the real bond returns vary between 2.5 percent

and 3.0 percent.

It is interesting to note that at a 25-year investment horizon, the bond portfolio stand

a 91.2 percent chance of yielding positive annual value growth whereas stocks have a 97.2

percent probability. The effect of diversification is evident as our 60-40, 50-50 and 40-60

stock/bond portfolios have a higher probability of yielding a positive value growth than

the bond portfolio. The overall conclusion is that when investing in a long-run passive

portfolio a mix of bonds and stocks is important if ones goal is to minimize the risk of

capital destruction.
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Appendix

A1 Generation via random numbers

Another approach to generate samples from a Markov Chain is to first construct the

transition matrix P. Given the state Si the move to state Sj is determined by comparing

a random draw against the cumulative probability distribution of the ith row in the

transition matrix such that:

u ∼ U (0, 1)

Sj := min

(
j :

jX
l=1

pil ≥ u
)

(A1)

This approach have the advantage that all generations are accepted. Hence this is a

less computer intensive approach than the accept-reject method.

A2 Block length

The idea behind block bootstrap is to keep the (time) serial properties of the original

sample in the generated series. A long block length assures that a large fraction of the

serial properties is kept within the generated series. However, long block lengths keep the

serial properties at a cost of less possible outcomes of the generated series. One can think

of the extreme case application of a block length equal to the original sample that would

render the same sample. In the approach of this paper the bootstrapped monthly return

series is utilized to construct price paths. Thus, the total number of possible outcomes

or price series, Pb, from a moving block bootstrap is a function of the total number of

observations, T , and the block length, b.

Pb = (T − b)
T
b (A2)
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Figure 6: A visualization of the discretization of the empirical distributions of real
stock returns for investment horizons shorter than the block length, 60 months.

This discretization occurs for investment horizons shorter that the block length, see

Figure 6. The number of possible non-overlapping q month returns, nq, for block lengths,

b, longer than investment horizon, q, is given by:

nq =
b

q
(T − b) for b ≥ q (A3)

To avoid the discretization of the generated series block lengths should be shorter than

the investment horizon. This increase the number of possible outcomes, n∗q as:

n∗q = (T − b)
q
b for b ≤ q (A4)

Below we compare the possible outcomes for a long block, b = 60, versus short block,

b = 6.

Example 1: If we have 600 observations and a block length of 60 months the number of

possible trajectories are P60 = 540
10 = 2.10 ·1027. The number of possible 60-month

returns are 540 and the number of possible 12 month return are 5 · 540 = 2700.

Example 2: If we have 600 observation and a shorter block length of 6 months the number

of possible trajectories are P12 = 594
100 = 2.39 · 10277. The number of possible 60-
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month returns increases to n∗60 = 594
10 = 5.46 ·1027 and 12-months returns increases

to n∗12 = 5942 = 352836.
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Figure 1: Logarithm of resampled real stock price paths vs. Swedish stock market

index. Note: The time scale refers to the Swedish stock market index in real prices, thick line.
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Figure 2: Probability density surface of annualized real return versus investment
horizon for Swedish stocks
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Figure 3: Empirical probability distributions of annualized real stock returns.
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Figure 4: Empirical probability distributions of annualized real bond returns.
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Figure 5: Cumulative distributions of the investigated portfolios. (a) 1-year horizon,
(b) 10-year horizon, (c) 25-year horizon.
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