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Risk Exchange as a Market or Production Game
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Abstract. Risk exchange is considered here as a cooperative game
with transferable utility. The set-up fits markets for insurance, securities and
contingent endowments. When convoluted payoff is concave at the aggregate
endowment, there is a price-supported core solution. Under variance aversion
the latter mirrors the two-fund separation in allocating to each agent some sure
holding plus a fraction of the aggregate.

Keywords: securities, mutual insurance, market or production games, trans-
ferable utility, extremal convolution, core solutions, variance or risk aversion,
two-fund separation, CAPM.

JEL Classification: C61, G11, G12, G13; Math. Subject Classification: 90C30,
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1. Introduction
Many economic agents face risky endowments or commitments. Then, to mitigate
ups and downs, it appears prudent to pool risks - often many and material in nature
- and share them thereafter. For its viability the sharing had better be contingent,
efficient and voluntary.
Along such lines, albeit in a purely pecuniary setting, Borch (1962) showed that

reinsurance contracts may mirror a competitive equilibrium of an exchange econ-
omy.1 By the first fundamental welfare theorem, given non-satiated consumers, any
equilibrium of that sort resides in the core. Indicated thus is an indirect connec-
tion between risk/security markets and cooperative games. Apart from [5], [7], [28]
direct connections have hardly been emphasized. In fact, even the most tractable
instances, featuring transferable utility (TU), have received almost no attention. Yet
such instances could serve a few good ends.
Accordingly, presuming TU, this paper probes beyond Pareto-optimality [1], [6],

[19], [20], [36], [37] by linking risk exchange directly to cooperative contracts. One
bonus comes by connecting reciprocal treaties closer to asset pricing theory [2], [14].
Another is to generate not only equilibrating prices but also slopes of the resulting
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1For related studies, see [11], [30], [31].

1



Risk Exchange as a Market or Production Game 2

curves. On a more technical note, no fixed point arguments are needed for existence
of a core solution. Instead it suffices that Lagrangian duality be attained with no
gap. This makes for easier analysis and computation. In addition, concerns about
existence of equilibrium prices become fully divorced from those regarding equilibrium
allocations.
To set the stage Section 2 introduces, by way of examples, a market game in order

to recall what is meant by a core solution. Section 3 identifies weak conditions under
which such solutions can be found merely in terms of shadow prices on the aggregate
endowment/risk. Section 4 elaborates on the nature and existence of shadow prices.
Section 5 digresses to supplement the market perspective by regarding cooperation
alternatively as a production game. After so much groundwork, Sections 6&7 address
pricing and sharing of risk. Some results align perfectly with the two-fund separation
that characterizes equilibrium in capital asset pricing models. Section 8 considers
the resulting price curves and tolerances for risk. Section 9 concludes with some
examples.
The paper addresses several types of readers. Included are actuaries, finance

analysts or general economists interested in risk exchange, but not quite knowing
how nicely Lagrangian duality produces explicit core outcomes. Also addressed are
mathematicians interested in optimization, but less informed as to how extremal
convolution relates to exchange markets.

2. The Game
Accommodated henceforth is a fixed, finite set I of economic agents. For background
and motivation consider two different settings.

Electricity generation: Plant i ∈ I has promised to deliver the energy amount ei(s)
in state or season s ∈ S. Since one plant uses hydro-power based on short term pre-
cipitation, its production capacity is highly variable. Because another hydro-based
plant merely draws melting water from under a glacier, it is practically non-operative
during cold winters - but well furnished in hot summers. A third supplier owns a
thermal station. By helping each other these plants may, in each state s, more easily
satisfy the total commitment eI(s) :=

P
i∈I ei(s). How should the overall load be

allocated? And what payments would induce voluntary cooperation?

Exchange of catch quotas: Fisherman i ∈ I is allowed to catch the amount eij(s)
of species j ∈ J in state or season s ∈ S. Since his gear selects merely one specific
species, he wants to exchange his allowances in other species for the one he wants.
When trade is mediated by money, what exchange rates are reasonable?

In short, we think of firms that must cope with uncertain product demand or random
factor supply. Firm or individual i ∈ I owns (commitment or) endowment ei. For
the sake of generality - and for simple presentation - ei is construed, until Section 6,
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simply as a vector in some real linear space X.2
Individual i has payoff function πi : X → R∪ {−∞}. The extreme value −∞

reports infinite loss, or total dissatisfaction, or violation of implicit constraints. This
device helps highlighting essential features and saves special mention of the effective
domain

domπi := {xi ∈ X : πi(xi) > −∞}
to which any feasible choice xi must belong. Until further notice, no sort of concavity,
differentiability or monotonicity is required of πi. Also, we impose no particular
functional form.3 We presume however, that individual payoff be metered in money
or some common unit of account. This feature is crucial for what follows in that
utility must be transferable.4

Now, rather than everybody contending with his own endowment, the parties
might agree upon some reallocation. In fact, the aggregate eI :=

P
i∈I ei can most

likely be split in ways that better suit the needs of everyone. So, we ask: can the
agents write an efficient, socially stable contract? And if so, what will be its nature?
For the argument, suppose the members of a coalition C ⊆ I be able to cooperate
among themselves. If endowments are perfectly divisible and freely transferable,5

that coalition could foresee overall payoff

πC(eC) := sup

(X
i∈C

πi(xi) :
X
i∈C

xi =
X
i∈C

ei =: eC

)
. (1)

Construction (1), called a sup-convolution, tacitly presumes that no member of C
misrepresents his payoff function or endowment to own advantage. Thus, strategic
communication is precluded. This assumption can be justified if the underlying data
are common knowledge, or readily observed, or honestly reported. Suppose henceforth
that πI(eI) is finite.
The potential advantages of enterprise (1) are evident and twofold. First, aggrega-

tion offers the agents increased leeway and better substitution possibilities. Second,
depending on the setting, it may facilitate transfers across time and contingencies.
So, a key issue is whether the grand coalition C = I can agree upon ways to share
the aggregate endowment. Plainly, formation of that coalition requires that proceeds
be distributed in ways not blocked by any subgroup. Reflecting on this concern, a
payoff distribution u = (ui) ∈ RI is declared a core solution iff it entails½

Pareto efficiency:
P

i∈I ui = πI(eI) and
stability:

P
i∈C ui ≥ πC(eC) for each coalition C ⊂ I.

2When J, S are finite sets, the above example of electricity generation gives ei ∈ X : = RS ,
whereas the fisheries example has ei ∈ X : = RJ×S .

3But clearly, objectives of ordinary or Choquet integral form are accommodated [13].
4At least two settings justify use of monetary payoff. In a first, i is a producer who obtains

pecuniary payoff πi(xi) from input bundle xi ∈ X. In another, i is a consumer who enjoys quasi-
linear utility πi(x

a
i , x
−a
i ) = xai + πai (x

−a
i ) from profile xi = (xai , x

−a
i ), the a-th component of which

refers to a common real-valued unit of account.
5Fixed factors are neither pooled nor exchanged.
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Stability is easily achieved. Simply let payments be so wonderfully large that
P

i∈C ui ≥
πC(eC),∀C ⊆ I. Thus, the essential difficulty hides in the requirement that total pay-
off be efficient and not handed out excessively.
The core as solution concept, although central to cooperative game theory, does

not figure prominently in the finance or insurance literature.6 Construction (1) mim-
ics the classical Shapley-Shubik (1969) analysis of market or production games. If all
πi are concave, the cooperative incentives become so strong and well distributed that
the grand coalition can safely form. To wit, the game - and every subgame - then
has non-empty core:

Proposition (Concave objectives make the game totally balanced).7 Suppose each
πi is concave and all values πC(eC), C ⊆ I, are finite. Then the TU cooperative game,
featuring characteristic function C ⊆ I 7→ πC(eC) is totally balanced. That is, each
subgame, restricted to any coalition C ⊆ I, has non-empty core. ¤

3. Price-Generated Core Solutions
The preceding proposition is less than satisfying on two accounts. First, one would
like to push beyond mere existence and seek some specific, computable core element.
Second, one wonders whether less concavity would suffice. For these purposes write
x = (xi) ∈ XI for the profile i 7→ xi. Further, let x∗ : X→ R be any linear functional,
and associate the standard Lagrangian

LC(x, x
∗) :=

X
i∈C

πi(xi) + x∗(
X
i∈C

ei −
X
i∈C

xi)

to problem (1). To simplify notation we henceforth write x∗x instead of x∗(x).

Definition (Shadow prices). Any linear λ : X→ R such that πI(eI) ≥ supx LI(x, λ)
will be named a Lagrange multiplier or shadow price. ¤

The next section discusses existence of shadow prices. Here we note that λ quali-
fies as shadow price iff πI(eI) is a saddle value of LI in that

πI(eI) = inf
x∗
sup
x

LI(x, x
∗) = sup

x
inf
x∗

LI(x, x
∗).

In fact, these equalities - as well as πI(eI) = supx LI(x, λ) - follow from

πI(eI) ≥ sup
x

LI(x, λ) ≥ inf
x∗
sup
x

LI(x, x
∗) ≥ sup

x
inf
x∗

LI(x, x
∗) ≥ πI(eI).

To better appreciate shadow prices let the convex function

f (∗)(x∗) := sup {f(x)− x∗x : x ∈ X} (2)

6Exceptions include [2], [5], [7], [27], [28].
7This result appears well known and is therefore stated without proof.
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denote a conjugate of f : X→ R∪ {−∞} .8 The last section provides some examples.
Conjugates are central in the following

Theorem (Shadow prices support core solutions). Let λ be a shadow price. Then
the payoff distribution that offers agent i the amount

ui(λ) := π
(∗)
i (λ) + λei (3)

constitutes a core solution.

Proof. The argument is surprisingly short and simple. It was already given in
[16] for cost sharing but is reproduced here for profit sharing - and for completeness.
Note that given any linear price x∗ : X→ R and coalition C ⊆ I it holds

sup
x

LC(x, x
∗) =

X
i∈C

ui(x
∗).

Thus, social stability obtains for arbitrary x∗ because coalition C receivesX
i∈C

ui(x
∗) = sup

x
LC(x, x

∗) ≥ inf
x∗
sup
x

LC(x, x
∗) ≥ sup

x
inf
x∗

LC(x, x
∗) = πC(eC).

The very last inequality, which holds without any qualifications, is often referred to
as weak duality.9 In particular,

P
i∈I ui(λ) ≥ πI(eI). The hypothesis on λ ensures

the reverse inequality - commonly called strong duality. Thereby Pareto efficiency
obtains as well:

P
i∈I ui(λ) = πI(eI). ¤

The above result, while adding to [8], [34], [36], can serve as spring-board for several
extensions; see [16] and references therein.
For interpretation, if λ prices ”input” xi, and agent i acts as price-taker in factor

markets, core solution (3) offers him profit π(∗)i (λ) plus payment λei for his endow-
ment. As customary, a price λ should equal marginal payoffs. That feature is explored
next.

8In terms of the Fenchel conjugate f∗(x∗) := supx {x∗x− f(x)} , one has f (∗)(x∗) = (−f)∗(−x∗);
see [33]. Definition (2) suits here because it reflects price-taking in factor markets and the pursuit
of profit. Specifically, if input x ∈ X comes at linear cost x∗x, and yields revenue f(x), then
the maximal economic rent is f (∗)(x∗). If X is locally convex topological, and f is proper, upper
semicontinuous, concave, then f(x) = inf

©
f (∗)(x∗) + x∗x : x∗ continuous linear

ª
.

9Note that supx LC(x, x
∗) ≥ πC(eC) holds for any functional x∗ : X→ R that satisfies x∗(0) ≥ 0.

If moreover, x∗ is additive, then
P

i∈C ui(x
∗) = supx LC(x, x

∗). Also, if for some class X∗ of
functionals x∗ : X→ R it holds

inf {x∗x : x∗ ∈ X∗} =
½

0 for x = 0
−∞ otherwise,

then supx infx∗∈X∗ LC(x, x
∗) = πC(eC).
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4. The Nature and Existence of Shadow Prices
Our approachmakes room for non-smooth functions, several goods, constrained choice
- and for preferences that need not be of the expected utility format. These feature
notwithstanding, we want to regard shadow prices as marginal payoffs - that is, as
derivatives, possibly generalized. For the statement, denote by ∂ the superdifferential
of convex analysis [33]. That is, given any proper function f : X→ R∪ {−∞} , a
linear mapping x∗ : X→ R is called a supergradient of f at x, and we write x∗ ∈
∂f(x), iff

f(x̂) ≤ f(x) + x∗(x̂− x) ∀x̂ ∈ X.
Thus, x∗ ∈ ∂f(x) iff the affine function f(x) + x∗(· − x) globally overestimates
f(·) but with no discrepancy at x. What comes next is a crucial characteriza-
tion of shadow prices. For brevity declare x = (xi) ∈ XI an optimal allocation
iff
P

i∈I [xi, πi(xi)] = [eI , πI(eI)] .

Theorem (Shadow prices as supergradients).
• λ is a shadow price iff λ ∈ ∂πI(eI). Thus, given the payoff functions, a shadow
price depends only on the aggregate endowment eI .
• For any λ ∈ ∂πI(eI) and any optimal allocation (xi) we have λ ∈ ∂πi(xi) for all
i. Conversely, if some λ belongs to all ∂πi(xi) and

P
i xi = eI , then λ is a shadow

price, and allocation (xi) is optimal.
• Suppose some πi is monotone at a point xi with respect to a cone Xi ⊆ X in that
π(xi +Xi) ≥ πi(xi) > −∞. Then λXi ≥ 0 for each shadow price λ.

Proof. These assertions are well known when all πi are concave; see e.g. the nice
presentation is [25]. Here, however, concavity is not presumed. So, some extra
work is needed. For simplicity define the ”death” penalty δ(·) on X by δ(x) = +∞
when x 6= 0 and δ(0) = 0. Note that this function has Fenchel conjugate δ∗(x∗) :=
supx {x∗x− δ(x)} ≡ 0. Now, λ ∈ ∂πI(eI)

⇔
X
i∈I

πi(xi)− δ(
X
i∈I

xi − x) ≤ πI(x) ≤ πI(eI) + λ(x− eI) ∀x ∈ X,∀(xi) ∈ XI

⇔
X
i∈I

πi(xi) +
X
i∈I

λ(ei − xi) + λ(
X
i∈I

xi − x)− δ(
X
i∈I

xi − x) ≤ πI(eI) ∀x, ∀(xi)

⇔
X
i∈I
{πi(xi) + λ(ei − xi)}+ δ∗(λ) ≤ πI(eI) ∀(xi) ∈ XI (*)

⇔ sup
x

LI(x, λ) ≤ πI(eI).

This proves the first bullet. For the second let (x̃i) be any optimal allocation. In the
above string of equivalences (*) says

λ ∈ ∂πI(eI)⇔
X
i∈I

πi(xi) ≤
X
i

{πi(x̃i) + λ(xi − x̃i)} ∀(xi) ∈ XI

⇔ πi(xi) ≤ πi(x̃i) + λ(xi − x̃i) ∀xi ∈ X,∀i⇔ λ ∈ ∂πi(x̃i) ∀i.
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For the last bullet, if λx̂i < 0 at some x̂i ∈ Xi, then

π
(∗)
i (λ) ≥ sup

r>0
{πi(xi + rx̂i)− λ(xi + rx̂i)} = +∞, (4)

which is impossible. ¤

The instance with all πi concave stands out, making πI concave. Then, provided
some term πi be strictly concave, the optimal xi, if any, must be unique. Moreover,
if that same πi is differentiable at xi, the shadow price becomes unique as well. Gen-
erally, for any shadow price λ and optimal allocation (xi), we get xi ∈ ∂(−π(∗)i )(λ)

and eI ∈ ∂(−π(∗)I )(λ).
We emphasize that concavity of πi or πI is not essential. What imports is rather

to have global support of πI from above at eI by some affine function. Such support
cannot come about unless every optimal allocation (xi) entails quite similar support
of πi at xi. Thus, no agent having strictly convex payoff πi could be admitted here. In
fact, if πi is supported from above as just described, it could not be globally convex
unless affine with slope λ. These observations beg questions as to whether and when
shadow prices do exist:

Proposition (Existence of shadow prices). Let X be a locally convex Hausdorff topo-
logical vector space. Denote by π̂I : X → R∪ {−∞} the smallest concave function
that dominates πI from above. Suppose

π̂I(·) is finite-valued, bounded below near eI . (5)

Also suppose that the convoluted preference is convex at eI , meaning that π̂I(eI) =
πI(eI). Then there exists at least one shadow price shadow price. Moreover that price
is continuous.

Proof. Qualification (5) ensures that the concave function π̂I(·) is super-differentiable
at eI . That is, ∂π̂I(eI) is non-empty, and it can be taken to consists of only continu-
ous linear functionals x∗ : X→ R; see [15]. Now, π̂I ≥ πI and π̂I(eI) = πI(eI) implies
∂π̂I(eI) ⊆ ∂πI(eI). The desired conclusion follows straightforwardly by noting that
any supergradient λ ∈ ∂πI(eI) is a shadow price - as pointed out in the preceding
theorem. ¤

Thus arbitrage-free pricing obtains if an affine function supports the convoluted payoff
from above at that the aggregate endowment. Assumption (5) clarifies that individ-
ual payoffs really need not be convex. Rather, it suffices that πI has appropriate
curvature with respect to eI . Like in [35] aggregative convexity is what counts in
preferences - albeit here only at eI . This point bears on the qualitative fact that hav-
ing many and small agents may mitigate adverse effects of non-convex preferences
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[3], [16], [18]. As in [23] heterogeneity can also help.10

When will no shadow price exist? Plainly, as brought out in the last theorem,
none is available if infx∗ supx LI(x, x

∗) > πI(eI). Then, the duality gap

∆ := inf
x∗
sup
x

LI(x, x
∗)− πI(eI)

equals the smallest overall budgetary deficit - or the minimal overspending - that
could possibly emerge by paying players according to formula (3). A positive gap
might stem from some payoff function not being concave. Present many small play-
ers, each preferably having a smooth payoff functions, one may show that ∆ becomes
relatively small; see [3], [16], [18]. In any case, apart from existence of shadow prices,
it is natural to wonder whether an optimal allocation (xi) is available for the grand
coalition C = I.

Proposition (Existence of optimal allocations). Let X be a reflexive Banach space.
Suppose the upper-level set

U(r) :=

(
x = (xi) ∈ XI :

X
i∈I

πi(xi) ≥ r,
X
i∈I

xi = eI

)

is bounded and weakly closed for every real r < πI(eI). Then there exists an optimal
allocation. In particular, if (xi) 7→

P
i πi(xi) is quasi-concave upper semi-continuous,

it suffices that each set U(r) be bounded.

Proof. The closed convex hull of U(r) is bounded whence weakly compact for
r < πI(eI). Then, by reflexivity, U(r) itself is weakly compact. It follows that
∩r {U(r) : r < πI(eI)} must be non-empty. Any element x in that intersection solves
problem (1) for the grand coalition.When (xi) 7→

P
i∈I πi(xi) is quasi-concave upper

semi-continuous, U(r) becomes closed convex whence weakly closed. ¤

Clearly, optimal allocations do not depend on the endowment distribution.

5. Production Games
This section offers a brief - and dispensable - digression, meant to emphasize three
features:
• first, sharing of production and profit also fits format (1);
• second, (1) might emerge as a reduced model; and
• third, it is often convenient to keep original data pretty much in original, raw form.
For these purposes regard each agent i ∈ I here as a producer who obtains profit

fi(zi) from plan zi ∈ Zi provided gi(zi) ≤ ei. The set Zi may lack exploitable structure,
and gi : Zi → X accounts for technological restrictions or material bounds. The linear
10For instance, let πi be ”concave” but defined on a disconnected domain Di. Specifically, take

I = {0, 1}, D0 = {0} ∪ [1/2, 1] , and D1 = [0, 1/2] ∪ {1} . Then πI is concave on its domain [0, 2] .
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space X is now ordered by a convex cone X+ ⊂ X in that x ≤ x0 ⇔ x0 − x ∈ X+.
Corresponding to (1) consider the planning problem

πC(eC) := sup

(X
i∈C

fi(zi) : zi ∈ Zi and
X
i∈C

gi(zi) ≤
X
i∈C

ei

)
(6)

of coalition C ⊆ I. Its members share not only resources, but technologies as well.
Upon setting πi(xi) := sup {fi(zi) : zi ∈ Zi and gi(zi) ≤ xi} , format (1) comes up
again as a reduced model. There is no need however, to synthesize the characteristic
function C 7→ πC(eC). Computation could merely revolve around πI(eI) - with all
data kept in original form. This is seen next.
When zi ∈ Zi, and the linear functional x∗ : X→ R is non-negative on X+, let

z = (zi), and associate to (6) the Lagrangian

LC(z, x
∗) :=

X
i∈C

{fi(zi) + x∗ [ei − gi(zi)]} .

Write here
ui(x

∗) := sup {fi(zi)− x∗gi(zi) : zi ∈ Zi}+ x∗ei (7)

and note that supz LC(z, x
∗) =

P
i∈C ui(x

∗). Arguing verbatim as for the first theo-
rem we get

Proposition (Shadow prices support core solutions in production games). Let λ
be a shadow price in that πI(eI) ≥ supz LI(z, λ). Then, paying agent i the amount
(7) constitutes a core solution of the TU game that has (6) as characteristic function.
¤

6. Arbitrage-free, Risk-neutral Pricing

It is time now to specify a more detailed setting and seek some structure in optimal
allocations. More details are available in two ways. First, the space X should be
specified more closely; second, one might reasonable suppose some separability in the
objectives across stages or states.
We begin with X. Fix hereafter a non-empty state space S, equipped with a

complete sigma-field F and a finite non-negative measure μ.11 From here on each
x ∈ X is at least a F-measurable mapping from S into a finite-dimensional Euclidean
space E. The latter is endowed with inner product e · e0, associated norm |·|, and the
Borel sigma-field in E is generated by the open sets.12 Fix some number p ∈ [1,+∞)
and suppose

kxk :=
µZ

|x(s)|p μ(ds)
¶1/p

< +∞

11When computation is a main concern, one would typically choose S finite, let σ contain all
subsets of S, and have μ(s) > 0 ∀s. Some convenience or flexibility comes with not insisting on
μ(S) = 1.
12More generally, E could be a separable Hilbert space.



Risk Exchange as a Market or Production Game 10

for all x ∈ X. Thus X is contained in the space Lp of all F-measurable, p-integrable
x : S → E. Risk or security markets are chief cases - and often incomplete. X may
therefore be a strict, but presumably closed subset of Lp.
Define the conjugate exponent p∗ ∈ [1,+∞] implicitly by 1

p
+ 1

p∗ = 1. A theorem
of Riez says that any continuous linear functional x∗ on X admits a representation

x 7→ x∗x :=

Z
x∗(s) · x(s)μ(ds) (8)

for an (almost surely) unique x∗ ∈ X∗ ⊇ Lp∗. It is convenient to identify any such
functional x∗ with its Riez representation. The instance p = 2 stands out with p∗ = 2
because X = X∗ becomes Hilbert with inner product (8).13
The present setting may naturally be construed as reflecting uncertainty about

the true state s ∈ S, known ex ante only up to a probability measure μ on F . Any
x ∈ X is then a random vector x(·) ∈ E and accordingly referred to as a risk.14
As said, X should contain the already given endowments ei, i ∈ I, and might - as
a minimal requirement - even be spanned by these. Whilst insurance theory often
assumes independent or weakly associated risks, no such assumption is made here.15

Recall that a shadow price λ is a linear functional from X into R. While endoge-
nous to the game, it helps players to evaluate various risks and securities. Clearly,
unless λ blocks arbitrage it can’t apply as price regime. That issue is briefly explored
next.
For the statement, a cone Xi(xi) ⊂ X is said to comprise the preferable direc-

tions of agent i at xi ∈ X if πi(xi + Xi(xi)) ≥ πi(xi) > −∞. As usual, a linear
price x∗ : X→ R is declared arbitrage-free iff no agent i has a preferable direction
di ∈ Xi(xi) at any xi ∈ domπi such that x∗di < 0. Arguing as around (4) we may
state forthwith:

Proposition (Shadow prices are arbitrage-free). Given cones Xi(xi), i ∈ I, of prefer-
able directions, each shadow price λ must satisfy

λ(∪i∈I ∪xi∈domπi Xi(xi)) ≥ 0.

In particular, if domπi itself is a cone Xi, and πi(xi +Xi) ≥ πi(xi) at each xi ∈ Xi,
then λ(∪i∈IXi) ≥ 0. ¤

Arbitrage is a utility-free, more primitive concept than economic equilibrium. Typi-
cally, it is described in terms of a common family of financial instruments, monotone

13In particular, the conjugate pair (p, p∗) = (1,+∞) is possible, kxk then being the essential
supremum of s 7→ |x(s)| . However, unless σ is finite, the ”reciprocal” pair (p, p∗) = (+∞, 1) needs
special care, and is not discussed here; see [17].
14Risks - alias random variables - are chief objects here. Our results extend however, to other

contingent items.
15Consequently, we shall invoke no law of large numbers or central limit theorem. In fact, our

analysis is applicable for major events, say catastrophes, inflicting severe and highly correlated losses.
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preferences, and one punctuated convex coneX+Â {0} ⊂ X, composed of free lunches.
A theorem of alternatives then decides whether arbitrage is possible or not. Given a
shadow price that decision is straightforward:

Proposition (Shadow prices preclude free lunches). Let xi ∈ X iff xi = ei +Wzi
for some ”portfolio” zi in a real vector space Z, with W : Z→ X linear. Suppose at
least one agent i has differentiable and strictly monotone preferences:

x̂i − xi ∈ X+Â {0}⇒ πi(x̂i) > πi(xi).

Then, existence of a shadow price λ, together with an optimal xi, ensures that
λ [X+Â {0}] > 0, λW = 0, and there is no z ∈ Z such that Wz ∈ X+Â {0} with
limr>0 πi(ei + rWz) = +∞.

Proof. Let xi = ei + Wzi be optimal for the agent who has strictly monotone,
smooth preferences. Since λ is a shadow price, the chain rule gives

0 =
∂

∂zi
πi(ei +Wzi) = λW.

Further, suppose a ticket z ∈ Z is variable for a free lunch Wz ∈ X+Â {0}, dur-
ing which agent i is never satiated: limr>0 πi(ei + rWz) = +∞. This implies the
contradiction

π
(∗)
i (λ) ≥ sup

r>0
{πi(ei +Wz)− λ(ei +Wz)} = +∞. ¤

Example: A two-stage security market. Let W =

∙
−z∗
D

¸
where the price

vector z∗ = (z∗j ) ∈ RJ accounts for the up-front purchase cost of various papers
j ∈ J , and the S × J matrix D = [Dj(s)] reports future dividends. With Z = RJ ,
equation λW = 0 and λ > 0 amount to the price rule

z∗j = δ

Z
Dj(s)p(ds) ∀j, (9)

featuring a deflator δ > 0 alongside a risk-neutral probability measure p over F ; see
[29] for S finite. The nature of rule (9) is best appreciated when uncertainty resolves
over several stages. We turn to such instances next. ¤

Quite often, identification of the true state s isn’t immediate. At time t ∈ {0, 1, .., T}
agent i can only ascertain for each event in a sigma-field Ft ⊆ F whether it has
happened or not. His decision xit, made then, must therefore be Ft-measurable. In
that case X = X0 × · · · ×XT where Xt is a space of Ft-measurable mappings from S
into a Euclidean space Et. Typically, the inclusions

{∅, S} = F0 ⊆ F1 ⊆ · · · ⊆ FT = F (10)
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hold; they represent progressive acquisition of knowledge.

Example: A multi-stage security market. Suppose S is finite, and let each
field Ft be generated by a partition Pt of S. Then xt : S → Et is Ft-measurable iff
constant on each part Pt ∈ Pt. Posit P0 = {S} and PT = {{s} : s ∈ S}. Regard
Pt ∈ Pt as a node nt ∈ Nt (at height t) in a tree, and draw a directed branch from nt
to its child node nt+1 iff nt = Pt ⊆ Pt+1 = nt+1. Write nt ∈ A(nt+1) and nt+1 ∈ C(nt)
to signal that the first node is an ancestor and the latter a child. Node n0 is named
the root, and each terminal node - having maximal height T - is called a leaf ; see
figure below.

root n0 =

⎡⎣ s
s0

s00

⎤⎦ %

&

∙
s
s0

¸
[s00]

%
→
→

[s]
[s0]
[s00]

⎫⎬⎭ leafs

Legend: A tree with 3 partitions/stages/states/scenarios and 6 nodes.

Denote by zjn ∈ R the number of shares an investor holds in paper j ∈ J upon
leaving node n. Suppose he buys (outgoing) portfolio zn := (zjn) ∈ RJ at node
n 6= n0 and liquidates there the (incoming) portfolio zA(n) bought at the ancestor
node. Absent transaction costs, those operations bring him nominal, current gain
Gn(z) := z∗n ·

£
zA(n) − zn

¤
. (The dot denotes the standard inner product.) At the root

node n0 naturally let Gn0(z) := −z∗n0 · zn0 . This stylized market allows arbitrage iff
the system

Gn(z) ≥ 0 for all n and z∗n · zn ≥ 0 for each leaf , (11)

admits a solution z = (zn) with at least one strict inequality. Suppose some paper
(say a bond) b ∈ J commands strictly positive price z∗nb at each node n. In terms of
that paper define discount factors δn := z∗n0b/z

∗
nb. Let N := ∪tNt denote the node set.

Proposition (Shadow prices and risk-neutral probabilities). The described market,
featuring many stages, is arbitrage-free iff there exists a strictly positive probability
measure p across the leafs such that the transition probabilities, induced by p on the
entire node set, satisfy the martingale condition

δnz
∗
n = Eμ [δcz

∗
c |n] =

X
c∈C(n)

δcz
∗
cp(c |n) for all non-terminal n. (12)

Under the hypotheses of the preceding proposition any shadow price ensures absence
of arbitrage.

Proof. The first part is well known but proven for completeness. Fix any non-
degenerate probability measure m > 0 across the leafs, and use the induced proba-
bilities mn at non-terminal nodes n. Consider the homogeneous linear program

max
z

X
n

δnmnGn(z) +
X
n∈NT

δnmnz
∗
n · zn s.t. (11). (13)
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Clearly, the market is arbitrage-free iff the optimal value of (13) is 0. Associate mul-
tiplier δnyn ≥ 0 to inequality Gn(z) ≥ 0, and δnYn ≥ 0 to leaf constraint z∗n · zn ≥ 0.
Maximizing the resulting LagrangianX

n

δn(mn + yn)Gn(z) +
X
n∈NT

δn(mn + Yn)z
∗
n · zn =

X
n/∈NT

⎡⎣X
c∈C(n)

δc(mc + yc)z
∗
c − δn(mn + yn)z

∗
n

⎤⎦ · zn + X
n∈NT

δn(Yn − yn)z
∗
n · zn (14)

with respect to the free variable z we see that the dual of (13) amounts to solve

δn(mn + yn)z
∗
n =

X
c∈C(n)

δc(mc + yc)z
∗
c for all n /∈ NT with y ≥ 0.

Suppose the latter system is indeed solvable. In that case, by LP duality, problem
(13) has 0 as optimal value, and there are no arbitrage opportunities. Then consider
component b of the last equation to get mn + yn =

P
c∈C(n)(mc + yc). Therefore

m(c |n) := (mc + yc)/(mn + yn) defines strictly positive transition probabilities that
satisfy (12).
Conversely, suppose some strictly positive measure m on NT suits (12). In (14)

let m = p and each yn, Yn = 0 to get

X
n

δnGn(z)pn +
X
n∈NT

δnz
∗
n · znpn =

X
n/∈NT

⎡⎣X
c∈C(n)

δcpcz
∗
c − δnpnz

∗
n

⎤⎦ · zn = 0
for all z. Thus arbitrage is impossible.
For the final assertion, let X = RN×RNT with the customary non-negative orthant

X+. Posit Z := RJ×N , and define the linear operator W : Z→ X by

Wz =
£
[Gn(z)]n∈N , [z∗nzn]n∈NT

¤
.

Absence of arbitrage means that no z ∈ Z yields Wz ∈ X+Â0. By the preceding
proposition there exists a positive λ such that λW = 0. Choose yn ≥ 0 to have
λn = δn(μn + yn) for n ∈ N and posit Yn = yn at leaf n. Consequently, (14) becomes
feasible. ¤

Example: Two-stage risk-neutral pricing. If available up front, how much
is the risk-free asset worth that offers guaranteed future dividend 1? As seen next λ
complies with the well known risk-neutral, arbitrage-free evaluation:
Suppose there are merely two stages with {∅, S} = F0 ⊂ F1 = F and only one

commodity (E = R). Given a shadow price λ ª 0 a.s., suppose the system

b := (b0, b1) = (−δ, 1) and λb = 0,
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is solvable for some riskless bond b ∈ X together with a unique discount factor δ > 0.
Then, δ =

R
S λ(s)μ(ds)/λ(0), and the measure

p(A) :=

Z
A

λ(s)μ(ds)/

Z
S

λ(s)μ(ds)

defines a risk-neutral probability p over F that satisfies −x(0) = δ
R
S
x(s)p(ds) for

each x ∈ X such that λx = 0.

7. Risk Sharing
We stress that states can sometimes be seen not as ”events” but alternatively as
”stages” or decision epochs.16 The measure μ then discounts the future. More gen-
erally, the description of any specific state refers to the circumstances that defines
its appearance. This more broad perspective justifies speaking of any x ∈ X as a
contingent commodity bundle in E.
In either set-up sharing, as captured by (1), takes the form of a contract, specifying

agent i’s part xi(s) of eI(s), and his payment, in state s. A natural question is whether
and when the concerned parties think the writing of such contracts worth their while.
Instead of committing to a promise or policy right away, why not just wait and see?
Clearly, what explains and justifies the existence of insurance institutions is the

temporal resolution of uncertainty - and the time windows that affect some decisions.
Intuitively, if the restriction x ∈ X does not preclude that x(s) be fully adapted to the
realized state s ex post - and moreover, agents agree on probabilities - then contracts
seem superfluous. This exceptional setting is briefly explored next.
Following [33] declare X decomposable iff for each x ∈ X the modified mapping

1Bβ + 1SÂBx :=

½
β if s ∈ B
x otherwise

belongs to X whenever the bounded β : S → E is measurable, and B ∈ F . Further,
call an integrand Π : S × E→ R∪ {−∞} normal if the point-to-set correspondence
s 7→ {(e, r) ∈ E×R : Π(s, e) ≥ r} is measurable [33].
Decomposability is demanding. For instance, when S is finite, and F contains all

singletons, a decomposable Xmust generate a complete market space. That is, seen as
space of marketable assets, a decomposable X contains all elementary Arrow-Debreu
securities. Also, if Ft ( F for some t < T in (10), choose a bounded F-measurable
βt : S → Et which is not Ft-measurable. Posit βτ ≡ 0 for τ 6= t, and B = S to have
1Bβ + 1SÂBx = β /∈ X.
In short, decomposability doesn’t fit settings where information unfolds gradually.

Despite their lack of realism, the extreme properties of decomposable instances shed
some light on insurance:

16Examples include exchange of time-dependent property rights, say fish quotas or pollution per-
mits.
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Proposition (Sharing ex post, on the spot). Suppose X is decomposable. For each
i ∈ I, let

πi(xi) =

Z
Πi(s, xi(s))μ(ds), (15)

featuring a normal integrand Πi : S × E→ R∪ {−∞} and a common measure μ. If
λ is a shadow price for the overall game, then almost surely so is λ(s) for the ex post,
contingent game that emerges in state s, with characteristic function

C 7→ ΠC(s, eC(s)) := sup

(X
i∈C

Πi(s, xi(s)) :
X
i∈C

xi(s) = eC(s)

)
.

Invoking the contingent conjugate Π
(∗)
i (s, ·), that ex post game admits a payoff distri-

bution
i 7→ Ui(s, λ(s)) := Π

(∗)
i (s, λ(s)) + λ(s) · ei(s)

which belongs to its core. Further,

i 7→ ui(λ) =

Z
Ui(s, λ(s))μ(ds) =

Z n
Π
(∗)
i (s, λ(s)) + λ(s) · ei(s)

o
μ(ds).

belongs to the ex ante core.

Proof. Since objectives are separable across states, for any χ = (χi) ∈ EI and
χ∗ ∈ E coalition C has ex post Lagrangian

LC(s,χ, χ
∗) :=

X
i∈C

Πi(s, χi) + χ∗ ·
"X
i∈C

ei(s)−
X
i∈C

χi

#

in state s. Ex ante it holds LC(x, x
∗) =

R
LC(s, x(s), x

∗(s))μ(ds). Now, by decompo-
sition,

πI(eI) = sup
x

LI(x, λ) ⇐⇒ ΠI(s, eI(s)) = sup
x(s)

LI(s, x(s), λ(s)) almost surely;

see [33]; Theorem 11.40. Thus λ is a shadow price iff almost surely ΠI(s, eI(s)) equals
supx(s) LI(s, x(s), λ(s)). Hence it equals the saddle value of LI(s, ·, ·). From here on
the argument goes as before. ¤

Granted a decomposable space X and normal format (15), sharing may almost surely
be done ex post. If moreover, the integrands are state-independent of the form
Πi : E → R ∪ {−∞}, the state-s shadow price λ(s) depends only on the realized
aggregate eI(s).
As said, the preceding proposition should not lure one into thinking that ex ante

contracts are superfluous. Casual observation indicates the opposite. So, decom-
posability is a rare property. Most often some component of xi must be decided
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before uncertainty resolves - and stays non-maleable ex post. A simple example is
fire insurance: The premium paid up front cannot be altered after the event.17

It may happen of course, that there is only one stage. Such a setting allows us to
consider instances where players perceive uncertainty diversely. Often probability as-
sessments differ across agents - and typically much on exceptionally important states,
occurring with very low frequencies. Nonetheless, there are prospects for risk sharing
- implemented by contracts signed ex ante. Arguing as in the preceding proposition
we get:

Corollary (Diverse probability assessments). For each i ∈ I, suppose πi(xi) =R
Πi(s, xi(s))μi(ds) where Πi is a normal integrand, μi is absolutely continuous with

respect to μ, and X is decomposable. Let ϕi =
d
dμ
μi be the corresponding density.

Then, λ is shadow price iff almost surely

sup
(χi)

(X
i∈I

Πi(s, χi)ϕi(s) :
X
i∈I

χi = eI(s)

)
≥
X
i∈I

Ui(s, λ(s)) (16)

where

Ui(s, λ(s)) := ϕi(s)Π
(∗)
i (s,

λ(s)

ϕi(s)
) + λ(s) · ei(s)and ui(λ) =

Z
Ui(s, λ(s))μ(ds).

In case allocation (xi) is optimal, λ(·) is a shadow price iff, for each i,

λ(s) ∈ ∂

∂χi
Πi(s, xi(s))ϕi(s) a.s. ¤ (17)

(17) dates back to [8], [36]. The Corollary shows that players who hold different
(but absolutely continuous) beliefs cannot implement the overall contract ex post
unless their realized payoffs be scaled by respective densities. If someone believes a
particular state more likely, its realization should benefit him ex post. The rarity or
non-practicality of decomposable spaces, indicates that one hardly have a realistic
theory of syndicates unless members commit themselves up front.
In general, shadow prices depend on all underlying data. Also, by belonging to X,

any shadow price is a mapping s ∈ S 7−→ λ(s) ∈ E. This raises the question whether
s affects λ(s) merely via eI(s)? If so, λ(·) should be measurable with respect to the
sigma-field F(eI) generated by eI .18 In that case, for simplicity, declare λ adapted.
At this juncture the implicit function theorem immediately yields:

Proposition (Dependence on the aggregate endowment). Let (x̂i) be an optimal
allocation for some aggregate endowment êI. Suppose each πi is twice continuously

17Along the same line, if knowledge is asymmetric, players may, for the sake of verifiability and
ex post implementation, have to contend with contracts that differ in measurability; see [24].
18σ(eI) is the smallest sigma-field with respect to which eI is measurable.
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differentiable near x̂i with π
00
i (x̂i) non-singular. Then, in some neighborhood of êI ,

the system
π0i(xi) = λ for all i ∈ I and

X
i∈I

xi = eI

admits continuous solutions eI 7→ xi(eI) ∈ X, i ∈ I, and eI 7→ λ(eI) ∈ X. In particu-
lar, if πi(xi) =

R
Πi(xi(s))μ(ds) with Πi twice continuously differentiable near x̂i(s)

and Π
00
i (x̂i(s)) non-singular, then, in some neighborhood of êI(s), the system

Π0i(xi) = λ for all i ∈ I and
X
i∈I

xi = eI(s)

admits continuous solutions eI(s) 7→ xi(eI(s)) ∈ E, i ∈ I, and eI(s) 7→ λ(eI(s)) ∈ E
becomes adapted. ¤

Since individual payoffs need not be concave, parts of the analysis proceeds with-
out assuming risk aversion. To illustrate, we emphasize next one advantage and
consequence of having adapted shadow prices. When μ is a probability measure,
write E for the expectation operator.

Proposition. (Mean-preserving shifts are undesirable). Let μ here be a probability
measure. Suppose shadow price λ is adapted and allocation (xi) is optimal.
• If ∆eI ∈ X, satisfying E [∆eI | eI ] = 0, is added to eI , then πI(eI +∆eI) ≤ πI(eI).
• Similarly, if ∆xi ∈ X with E [∆xi| eI ] = 0 be added to xi, then πi(xi+∆xi) ≤ πi(xi).

Proof. The subgradient inequality yields πI(eI +∆eI) ≤ πI(eI) + λ∆eI . However,
since λ depends merely on eI ,

λ∆eI = E(λ ·∆eI) = E(E [λ ·∆eI |eI ]) = E(λ · E [∆eI |eI ]) = 0.

The second assertion is proven in the same manner. ¤

The last two bullets required no risk aversion, only the availability of an adapted
shadow price. Also note that, so far, no properties were required of πi. We still want
to avoid separability, be it over time or events.19 On that account, with X Hilbert, it
turns out that a generalized form of variance aversion is expedient.

19The finance/insurance literature mostly considers additive, concave, state-independent, smooth
payoff functions of the customary von Neumann-Morgenstern sort. That optic - apart from smooth-
ness - appears reasonable for low-consequence, conventional risks such as minor damage on cars or
theft of bicycles. It need not, however, fit major events like severe illness or catastrophes. Ad-
mittedly, the use of expected payoffs is best justified under repeated realizations, these allowing
probabilities to be estimated from observed data. Nothing precludes though, that mutual insurance
company be set up to protect its members against rare events the ”statistics” of which merely reflect
expert judgements.
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Lemma (Generalized variance aversion). Consider any inner product xx0 on a Hilbert
space X with associated norm k·k . Suppose a function f : X→ R∪ {−∞} and a sub-
set X∗ ⊂ X are such that

x∗x̃ = x∗x ∀x∗ ∈ X∗and kx̃k < kxk implies f(x+r(x̃−x)) > f(x) for some real r.

Then, any solution x to (2) belongs to the closed linear subspace of X spanned by λ
and X∗.

Proof. Let x̃ denote the orthogonal projection of x onto the said subspace. Thus
x∗x̃ = x∗x for all x∗ ∈ X∗. Suppose x̃ 6= x. Then, because x̃(x − x̃) = 0 and
kx− x̃k2 > 0,

kxk2 = kx̃+ x− x̃k2 = kx̃k2 + 2x̃(x− x̃) + kx− x̃k2 > kx̃k2 ;

that is, kx̃k < kxk and thereby f(x̂) > f(x) with x̂ := x+ r(x̃− x) for some real r.
However, because λx̂ = λx, it holds

f(x̂)− λx̂ > f(x)− hλ, xi ,

an inequality which contradicts the maximality of x in (2). The upshot is that x̃ = x,
and the conclusion follows. ¤

Proposition (Variance aversion). Let the commodity space E be RG for a finite set
G of economic goods. Suppose each vector 1g ∈ RG, g ∈ G, having 1 in component g
and 0 elsewhere, belongs to X ⊆ L2. Also suppose a function f : X→ R∪ {−∞} is
such that

E x̃ = Ex and var(x̃) < var(x) implies f(x+ r(x̃− x)) > f(x) for some real r.

Then, any solution x to (2) belongs to the linear subspace of X spanned by λ and
{1g : g ∈ G} .

Proof. Use inner product (8). Further, letting X∗ := {1g : g ∈ G} one sees that
E x̃ = Ex ⇔ x∗x̃ = x∗x ∀x∗ ∈ X∗. Clearly, when E x̃ = Ex, it holds var(x̃) <
var(x)⇔ kx̃k < kxk . Now invoke the preceding lemma to conclude. ¤

As above, declare x ∈ X adapted if measurable with respect to the sigma-field F(eI)
generated by eI .

Proposition (Variance aversion and two-fund separation). Suppose there exists a
shadow price and that eI is not constant. Let the commodity space E be RG for a
finite set G of economic goods. Suppose each 1g ∈ X ⊆ L2 and that every payoff
function πi : X→ R∪ {−∞} satisfies

E x̃ = Ex and var(x̃) < var(x) implies πi(x+ r(x̃− x)) > πi(x) for some real r.
(18)
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Then, any optimal allocation (xi) to game (1) is adapted and of the form

xi = ri + εieI

with unique non-random vectors ri ∈ RG and coefficients εi that satisfy
P

i∈I ri = 0
and

P
i∈I εi = 1.

Proof. Fix any shadow price λ. From the preceding proposition xi ∈ V := span
©
RG, λ

ª
hence eI =

P
i∈I xi ∈ V. Because eI isn’t constant, V = span

©
RG, eI

ª
, and the vec-

tors 1g, g ∈ G, eI form a basis of V. The conclusion is now immediate. ¤

Proposition (Risk aversion and contingent two-fund separation). Suppose X ⊆ L2.
Let a core allocation (xi) be supported by a shadow price and suppose agent i has
payoff of the form πi(xi) = EΠi(xi) with concave integrands Πi : E→ R ∪ {−∞}.
Then we may assume xi adapted and there exist adapted ri ∈ X and εi ∈ R such that

xi = ri + εieI , ri(s) · eI(s) = 0 a.s.

If all agents are of the described sort,
P

i∈I ri = 0, and
P

i∈I εi = 1.

Proof. Denote by λ a shadow price that supports core allocation (xi). Introduce the
conditional expectation x̃i := E [xi |eI ] to have x̃i adapted. Since λ is adapted, we get
λxi = λx̃i. Finally, Jensen’s inequality yields πi(xi) ≤ πi(x̃i). This takes care of the
first assertion. Further, on any atom in F(eI) project xi orthogonally onto ReI to get
a unique component εieI along that line, and let ri be the residual. Since

P
i xi = eI ,

the conclusion follows. ¤

8. Price Curves and Risk Tolerance
The correspondence eI 7→ λ(eI) from aggregate endowment to shadow price may nat-
urally be seen as a price curve. As such its should ”slope downwards”:

Proposition (The law of demand). Shadow prices comply with the law of demand
in that

(λ− λ̂)(e− ê) ≤ 0 (19)

whenever λ ∈ ∂πI(e) and λ̂ ∈ ∂πI(ê).

Proof. λ ∈ ∂πI(e) implies πI(ê) ≤ πI(e) + λ(ê − e). Similarly, λ̂ ∈ ∂πI(e) im-
plies πI(e) ≤ πI(ê) + λ̂(e− ê). Addition of the last two inequalities gives (19). ¤

As customary, given a price curve, its slope is of chief importance.

Proposition (The slope of the price curve). Let (xi) be an optimal allocation sup-
ported by a shadow price λ. For each i, suppose πi is concave with a second Fréchet
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derivative near xi which is continuous and non-singular at xi.Then π
(∗)
I is twice

Fréchet differentiable at λ with

π
(∗)
I
00(λ) = −

X
i∈I

π00i (xi)
−1. (20)

In addition, if for each i, π00i is continuous near xi, then (π
(∗)
I )

00 is continuous near
λ. If moreover, (π∗I)

00 is non-singular at λ, the market curve has slope

λ0(eI) = πI
00(
X
i∈I

xi) =

"X
i∈I

π00i (xi)
−1

#−1
. (21)

Under these conditions individual demand xi = xi(eI) is differentiable and

x0i = π00i (xi)
−1πI

00(xI) where xI :=
X
i∈I

xi (22)

Proof. We use the following result on inversion [12]: If x∗ = f 0(x) with f concave,
twice Fréchet differentiable near x and f 00(x) non-singular, it holds

f (∗)00(x∗) = −f 00(x)−1

with f (∗)00 continuous near x∗ when f 00 is continuous near x. Here, since π
(∗)
I =P

i∈I π
(∗)
i , we get π(∗)00I =

P
i∈I π

(∗)00
i whenever the last sum is well defined. Thus (20)

follows. Invoking the above inversion result once again, π(∗)I
00(λ) = −π00I(eI)−1 and

(21) obtains. Finally, (22) is a direct consequence of differentiating π0i(xi) = π0I(eI).
¤

For a function π : R→ R Pratt [32] described risk aversion as twice the premium per
unit of infinitesimal variance. Provided π be sufficiently smooth at x, with π0(x) 6= 0,
the said premium Aπ(x) := −π00(x)/π0(x) is called the absolute risk aversion at x.
The reciprocal entity Tπ(x) := −π00(x)−1π0(x), called risk tolerance, is thus half the
tolerable variance per unit of compensating premium [36]. The latter entity is often
more amenable to handle. Here however, payoff functions may be defined on higher-
dimensional spaces. Accordingly, a multi-dimensional version of risk tolerance.
When there is only one good (E = R), differential equation (22) amounts to

x0i = Ti(xi)/TI(xI) (23)

where Ti := Tπi and TI := TπI . Solutions to (23) have been studied in [9], [10], [26],
[37].

Definition (Risk tolerance). For any function f, mapping E or X into R ∪ {−∞}
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that has a non-singular second Fréchet derivative at x, define its risk tolerance at
x as

Tf(x) := − [f 00(x)]−1 f 0(x).
Corollary (Aggregate and individual risk tolerances). Under the conditions of the
preceding proposition,

TπI (
X
i∈I

xi) =
X
i∈I

Tπi(xi).

Similarly, if for each i, πi(xi) =
R
Πi(xi(s))μ(ds) with state-independent integrand

Πi : E→ R∪ {−∞} and a measure μ > 0,

TΠI (
X
i∈I

χi) =
X
i∈I

TΠi(χi).

Proof. From (21) follows [πI 00(eI)]
−1 =

P
i∈I π

00
i (xi)

−1. Apply the left hand operator
on the antigradient a := −π0I(eI) to get TπI (eI). Apply the right operator on the same
object a = −π0i(xi) to conclude. ¤

9. Examples
This section provides a set of examples. Since conjugate functions are central, we first
sample a few of them, emphasizing for each function f its effective domain f−1(R),
denoted domf. The second part of the section displays some games.

Conjugate functions: Note that if f(x) = ϕ(c0(x − x0)) + lx + c1, with ϕ :
X→ R∪ {−∞}, a linear l : X→ R, a fixed vector x0 ∈ X, and real constants
c0 6= 0, c1, then

f (∗)(x∗) = ϕ(∗)(c−10 (x
∗ − l)) + (l − x∗)x0 + c1.

Thus, one may easily account for the effect of scaling, adding affine functions, or
translating the space.

Examples of uni-variate conjugate functions f : R→ R∪ {−∞} : For any
number p > 0 define its conjugate number p∗ by 1

p
+ 1

p∗ = 1.

function f(x) domf conjugate function f (∗)(x∗) domf (∗)

− |x|p /p, p > 1 R |x∗|p∗ /p∗ R
− |x|p /p, p > 1 R+ |max {0,−x∗}|p∗ /p∗ R
|x|p /p, 0 < p < 1 R+ −(x∗)p∗/p∗ R++
−
√
1 + x2 R −

p
1− (x∗)2 [−1, 1]

log x R++ −1− log x∗ R++
− exp(−x) R

½
x∗ log x∗ − x∗ when x∗ > 0
0 when x∗ = 0

R+
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Associated prices and choices:

payoff π λ = π0(x) = x = −π(∗)0(λ) =

− |x|p /p, p > 1, x ∈ R − |x|p/p∗ − |λ|p∗/p

− |x|p /p, p > 1, x ≥ 0 − |x|p/p∗
½

λp
∗/p when λ < 0

0 otherwise
|x|p /p, 0 < p < 1, x ≥ 0 xp/p

∗ −λp∗/p, λ > 0.

−
√
1 + x2 −x/

√
1 + x2 λ/

p
1− λ2

log x, x > 0 1/x 1/λ
− exp(−x), x ∈ R e−x − log λ

Piecewise linear concave functions: Any proper, upper semicontinuous, concave
function f : X→ R∪ {−∞} equals the pointwise infimum of a family of affine func-
tions. In computation - or for practical purposes - important instances have the
said family finite. So, consider a finite set J of linear functionals x∗j : X→ R, and
constants rj ∈ R, and let

f(x) := min
©
x∗jx+ rj : j ∈ J

ª
. (24)

Proposition (The conjugate of a piecewise linear concave function). Suppose the
real-valued function f is piece-wise linear on a reflexive Banach space X - and given
by formula (24). Then

f (∗)(x∗) = inf

(X
j∈J

r∗jrj : r
∗
j ≥ 0,

X
j∈J

r∗j = 1,
X
j∈J

r∗jx
∗
j = x∗

)
,

with the understanding that inf ∅ = +∞.Thus, f (∗)(x∗) = +∞ iff x∗ /∈ conv
©
x∗j : j ∈ J

ª
.

When X is finite-dimensional, it suffices to have at most dimX+1 coefficients r∗j > 0.

Proof. Recall that for any finite set
©
ρj : j ∈ J

ª
⊂ R it holds

min
©
ρj : j ∈ J

ª
= min

(X
j∈J

r∗jρj : r
∗
j ≥ 0,

X
j∈J

r∗j = 1

)
.
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Consequently,

f (∗)(x∗) = sup
ρ≥0

sup
kxk≤ρ

½
min
j∈J
(x∗jx+ rj)− x∗x

¾
= sup

ρ≥0
sup
kxk≤ρ

(
min

(
(
X
j∈J

r∗jx
∗
j − x∗)x+

X
j∈J

r∗jrj : r
∗
j ≥ 0,

X
j∈J

r∗j = 1

))

= sup
ρ≥0

min
r∗

sup
kxk≤ρ

(
(
X
j∈J

r∗jx
∗
j − x∗)x+

X
j∈J

r∗j rj : r
∗
j ≥ 0,

X
j∈J

r∗j = 1

)

= sup
ρ≥0

min
r∗

(°°°°°X
j∈J

r∗jx
∗
j − x∗

°°°°° ρ+X
j∈J

r∗jrj : r
∗
j ≥ 0,

X
j∈J

r∗j = 1

)

= inf

(X
j∈J

r∗j rj : r
∗
j ≥ 0,

X
j∈J

r∗j = 1,
X
j∈J

r∗jx
∗
j = x∗

)
. ¤

For example, when J = {1, 2} and f(x) := min {x∗1x+ r1, x
∗
2x+ r2} , we get

f (∗)(x∗) = inf {r∗1r1 + r∗2r2 : r
∗
1, r

∗
2 ≥ 0, r∗1 + r∗2 = 1, r∗1x

∗
1 + r∗2x

∗
2 = x∗} .

The particular instance X = R and f(x) = − |x| = min {−x,+x} gives f (∗)(x∗) = 0
if x∗ ∈ [−1,+1] and f (∗)(x∗) = +∞ otherwise.

Linear-quadratic functions: Let X be a Hilbert space with inner product h·, ·i
and posit f(x) = − hx,Axi /2 with A symmetric and positive semidefinite. If A is
non-singular surjective, then

f (∗)(x∗) =
1

2


x∗, A−1x∗

®
.

More generally, suppose the range of A is closed. Then

f (∗)(x∗) =

½
1
2
hx∗, xi when x∗ ∈ rangeA and x ∈ A−1x∗

+∞ otherwise.

Extending to the linear-quadratic case f(x) = − hx,Axi /2+ ha, xi+α, with rangeA
closed, we obtain

f (∗)(x∗) =

½
1
2
hx∗ − a, xi+ α when x ∈ A−1(x∗ − a)
+∞ when x∗ − a /∈ rangeA.

Letting A† denote the pseudo-inverse of A we get f (∗)(x∗) = 1
2


x∗ − a,A†(x∗ − a)

®
+α

when x∗ − a ∈ RangeA, and f (∗)(x∗) = +∞ otherwise; see [4] or [33].
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A multi-stage, stochastic, production game: Agent i ∈ I must make a Ft-
measurable decision zit ∈ Zit at time t = 0, ..., T . The production plan zi = (zit)
gives him payoff fi(zi) subject to

gi(zi) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
gi0(zi0)
gi1(zi0, zi1)
...
giT (zi0, ..., ziT )

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ei0
ei1
...
eiT

Here git(zi0, ..., zit) ≤ eit is shorthand for inequality git(s, zi0(s), ..., zit(s)) ≤ eit(s) ∈
Et holding almost surely, with git(s, zi0(s), ..., zit(s)) presumed Ft-measurable.
In condensed form, i faces the problem to maximize fi(zi) s.t. gi(zi) ≤ ei. Thus

game format (6) emerges again. Note that a shadow price λ assumes the form
(λ0, ..., λT ), its time-t component λt being a Ft-measurable function s ∈ S 7→ λt(s)
with values in the non-negative cone (Et)+.

Linear, stochastic production games: Specializing on the stochastic production
game just outlined, let μ be a probability measure and

fi(zi) := z∗i zi := E(z∗i · zi) = E
TX
t=0

z∗it · zit,

zit belonging to the non-negative cone Zit in some Euclidean space Zit. The random
evaluation vector z∗it ∈ Zit is Ft-measurable. Posit

git(zi0, ..., zit) :=
tX

τ=0

Aiτtziτ

for Fτ -measurable matrices Aiτt of appropriate size. Then gi(zi) ≤ ei iff Aizi ≤ ei
where the block matrix

Ai :=

⎡⎢⎢⎣
Ai00 0 0 ...
Ai01 Ai11 0 ...
Ai02 Ai12 Ai22 0
... ... ... ...

⎤⎥⎥⎦
has transpose A∗i . Now (6) amounts to

πC(eC) := max

(X
i∈C

z∗i zi :
X
i∈C

Aizi ≤ eC with Ft-measurable zit ≥ 0
)
. (25)

λ is a shadow price iff it solves the grand dual problem:

max λeI s.t. A∗iλ ≥ z∗i for each i and λ ≥ 0.
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In the corresponding core solution agent i receives payment ui = λei only for his
endowment.

Linear-quadratic market games: Posit πi(xi) = −12 hxi, Aixii + hai, xii with
ai ∈ X, and a symmetric, positive definite matrix Ai that defines a linear auto-
transformation on X. Thus, with πi strictly concave, agent i is strictly risk averse.
Choose C = I and take supremum in (1) to have xi = A−1i (ai − λ). So, summing
across the agents,

λ =

"X
i∈I

A−1i

#−1X
i∈I

©
A−1i ai − ei

ª
.

Consequently, two-fund separation and linear sharing obtain in that

xi = ai + bi where

ai := A−1i

½
ai −

hP
j A

−1
j

i−1P
j A

−1
j aj

¾
and

bi := A−1i
£P

i∈I A
−1
i

¤−1
eI

with
P

i∈I ai = 0,
P

i∈I bi = eI . If each ai is constant, then that ai is risk-free whereas
bi equals a share of the aggregate risk; the ”larger” Ai the smaller bi. ¤
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