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ARE CRIME RATES REALLY STATIONARY?*

Joakim Westerlund? Johan Blomquist
University of Gothenburg Lund University
Sweden Sweden
December 21, 2009
Abstract

Many empirical studies of the economics of crime focus solely on the determinants
thereof, and do not consider the dynamic and cross-sectional properties of their data.
As a response to this, the current paper offers an in-depth analysis of this issue using
data covering 21 Swedish counties from 1975 to 2008. The results suggest that the four
crime types considered are non-stationary, and that this cannot be attributed to county
specific disparities, but rather that it is due to a small number of common stochastic
trends to which groups of counties tend to revert. The results further suggest that these
trends can be given a macroeconomic interpretation. Our findings are consistent with
recent theoretical models predicting that crime should be dependent across both time

and counties.

JEL Classification: C32; C33; E20; K40.

Keywords: Crime; Non-stationary data; Panel unit root tests; Common factor.

1 Introduction

Crime rates usually exhibit substantial variation across time. Indeed, the total number of
offences recorded by the Swedish police per 100,000 of the population has gone from 9,223
in 1975 to 14,112 in 2007, an increase by more than 50%. But there is not only the time

*Previous versions of this paper were presented at the 5t Nordic Econometric Meeting in Lund and at a
seminar at Lund University. The authors would like to thank seminar participants and in particular David
Edgerton, Randi Hjalmarsson, Matthew Lindquist, Peter Lindstrom, Hashem Pesaran and three anonymous
referees for may valuable comments and suggestions. The authors gratefully acknowledge financial support
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series variation, there is also the cross-sectional variation, which is just as pronounced. For
example, in 2001 the number of thefts and robberies per capita reported in the capital of
Stockholm was 0.09, which is almost two times as many as in the rural southern county of
Blekinge. The most northern county of Norrbotten has a similar, low, crime rate of 0.05,
whereas in Skane, which is a neighboring county of Blekinge, the crime rate is almost as
high as in Stockholm.

A common explanation for this variation is that it is due to differing economic conditions.
But these differences are usually not nearly enough to account for the full extent of the cross-
sectional variation. For example, in 2001 the unemployment rate in Stockholm was 2.68%,
which is low when compared to 4.44% in Blekinge and 5.26% in Skédne. The relatively high
crime rates in Stockholm and Skane also coexisted with much higher income levels when
compared to Blekinge and Norrbotten.!

As a response to this, a new class of models that stresses the importance of social inter-
actions has emerged, see for example Sah (1991) and Glaeser et al. (1996). The main lesson
being that static models are not enough to capture the behavior of crime. These models
therefore predict that crime should be persistent over time, and some are even admitting to

the possibility that crime may be non-stationary.

1.1 Limitations of earlier studies

Although theory tells us that crime should be persistent, this lesson is only rarely taken into
consideration when conducting empirical work. In fact, even the most recent research tend
to focus on static regressions, which is problematic for at least two reasons.

Firstly, the dynamics of crime can have implications for policy that are neglected when
using static regressions. Suppose for example that there is a temporary policy shock in the
rate of unemployment that rises the number of crimes committed. If crime is persistent then
this shock will be carried forward into the future. By using static regressions we ignore this
possibility, which may well lead to a misstatement of the effect of policy actions on current
and future crime rates.

Secondly, the presence of unattended dynamics may compromise inference, and in the

extreme case when crime is non-stationary inference may even be spurious. Take for exam-

IThe fact that only a small fraction of the cross-regional crime variation can be explained by differences in
economic conditions can also be observed in data for the United States, see Glaeser et al. (1996).



ple the study of Edmark (2005) who uses Swedish county-level data between 1988 and 1999
to estimate the relationship between unemployment and property crime. Although many
of her panel regressions have R? statistics that are very close to unity, a well-known sign of
spuriousness, the unit root hypothesis is never tested.

Of course, these problems of neglected dynamics are not unique to panel data. But if
one admits to the possibility of an heterogeneous data generating process with different
dynamics for each unit, then there is not just one potential error to be made but as many as
there are units in the panel. The effect of omitted dynamics is therefore likely to increase,
and to become even more severe as the cross-sectional dimension of the panel increases.

There are of course studies that do allow for dynamics and even unit roots. But these are
almost exclusively based on aggregated time series data, usually at the country level, which
means that the cross-sectional variation is effectively ignored.? Similarly, while there have
been attempts to allow for dynamics in panels of disaggregated crime data, in these studies
there is usually no room for any interactions between the panel members, which is just as
problematic as when ignoring the dynamics.? In fact, most theoretical models predicting that
crime should be persistent also predict that there should be at least some form of interaction
across the cross-sectional units, see Sah (1991).*

Other studies use static regressions that are augmented with a linear time trend to ac-
count for the fact that crime is usually trending, see for example Gould et al. (2002) and
Raphael and Winter-Ebmer (2001), who document a positive relationship between unem-
ployment and property crime. Apart from the cross-sectional independence assumption,

which is almost always there, the main problem here is that the trend is assumed to be de-

2There is also the issue of aggregation. When studying time series properties of crime, researchers typically
rely on national crime rate data, see for example Hale (1998), Fajnzylber et al. (2002), and Funk and Kugler (2003).
The question is of how well the behavior of crime at the aggregate country level approximates the properties of
the individual regions? This question cannot be examined when only aggregate data are available. However,
when data are available at a disaggregate level, it is quite well known that the regional features may not be
preserved at the country level, and a crucial role is played by the degree of heterogeneity amongst the regions.
In fact, as Forni and Lippi (1997) show, irrespective of the approach one chooses for the aggregate analysis, when
heterogeneity is allowed, the dynamic properties of the aggregated data differ from those of the disaggregated
data, thereby leading to substantially different interpretations.

3Take as an example the study of Fajnzylber et al. (2002), in which a dynamic panel regression is fitted to
country-level data. Although the results indicate that there is a link between violent crimes and economic growth
and income inequality, since the countries are assumed to be independent, there is no way of knowing whether
this link represents a true casual relationship or if it is just an artifact of omitted cross-country interdependencies.

4Using city-level data for the United States between 1960 and 2004, McDowall and Loftin (2009) find that
nationwide factors accounted for more than 20% of the total variation in their data.



terministic. In other words, while recognizing the presence of a trend, these studies do not

allow for the possibility that it might be stochastic.

1.2 Recent developments and the main results of this study

As the above discussion makes clear, while reasonable and potentially appealing, most of
the earlier empirical approaches have been inadequate and not very convincing, and this
paper therefore proposes an alternative approach. The idea is that to be able to provide any
reliable evidence on the behavior of crime one needs to consider not the time series and
cross-sectional variation separately but simultaneously.

This idea is not completely new, of course. The first attempt to combine the two sources
of variation that we can find appears in Witt et al. (1998). The motivation for their paper is
that if regional crime rates are non-stationary, then there is also a possibility that they might
be cointegrated with each other, a situation very much related to what is commonly referred
to in the growth literature as club convergence.5 That is, although individually diverging,
there might still be clubs of regions that are converging along a common stochastic trend.
Using data that cover four English regions between 1975 and 1996, the authors find evidence
of such a trend, suggesting the existence of a unique long-run relationship between the four
regions.

The problem is that the econometric approach is a multivariate one, which cannot handle
panels unless the cross-sectional dimension N very small. In fact, for this approach to work
properly, not only must N be small enough, the time series dimension T has to be substantial,
a condition that is rarely fulfilled in practice. Thus, what is really needed here is a panel
approach that is applicable even in situations when N is large, and the current paper can be
seen as an attempt in this direction. Another problem with the Witt et al. (1998) study is that
it does not provide any insight as to what the common stochastic trend actually represents.
Is it for example due to common business cycle variations or it is maybe due some policy
shock?

Our starting point is the panel analysis of non-stationary idiosyncratic and common com-
ponents, or PANIC, method of Bai and Ng (2004). The idea is to first decompose the observed

data into two components, one that is common to all regions and one that is idiosyncratic or

5 Actually, cross-region cointegration is just a necessary condition for club convergence, see Section 4.3 for a
discussion.



region-specific. The objective of PANIC is then to infer the order of integration of the data
by testing for unit roots in each component separately. The main advantage of this approach
in comparison to the one used by Witt et al. (1998) is that here N does not have to be small.

There are of course other panel unit root tests around that allow for cross-section depen-
dence in a large N environment, see Breitung and Pesaran (2008) for a recent survey of the
literature. However, PANIC has a number of distinct features that makes it more suitable for
our purposes. The main advantage is that in contrast to most, if not all, other tests around,
in PANIC the common and idiosyncratic components are not restricted to have the same
order of integration. This is an important merit in our application since previous research
emphasizes that regional crime rates are influenced both by nationwide and region-specific
factors, see for example McDowall and Loftin (2009). The PANIC procedure allows us to test
for unit roots in both components separately without any a priori knowledge about the inte-
gratedness of the data. Another advantage is that in PANIC the cross-section dependence is
not treated as nuisance, but rather as an object of interest. This is especially valuable in cases
such as this when the forces driving the common variation could provide useful information
for policy. PANIC is also very simple to implement and it has been shown to perform well
in samples as small as ours, see for example Gutierrez (2006).

One problem with PANIC is that it is not equipped to handle cases when there is uncer-
tainty over the presence of the deterministic time trend, which is of course always the case
in practice. Therefore, in order to account for this uncertainty, a sequential test procedure is
proposed to determine the extent of both the trend and the non-stationarity of the panel.

The data that we use cover 21 Swedish counties between 1975 and 2008, which means
that there are 714 observations available for each of the four crimes considered, burglary,
theft, robbery and homicide. The results suggest that all four crimes are non-stationary, and
that this cannot be attributed to county specific disparities but rather that it is due to the
presence of common stochastic trends. We also find that these stochastic trends are driven
in part by macroeconomic conditions.

The rest of the paper is organized as follows. In section 2 we briefly discuss the theoretical
motivation for the PANIC approach. Section 3 describes the methodology in detail. Section 4
then presents the data that are used and reports the results of the empirical analysis. Section

5 concludes.



2 Theoretical considerations

In his seminal paper, Becker (1968) develops the basic elements of a deterrence model,
wherein the choice of the individual of whether to engage in crime or not is viewed as a
function of the relationship between the expected benefits of crime and the expected costs
of punishment. The model predicts how exogenous changes in the probability of arrest may
affect expected payoffs, and thus the supply of crime. The logic is disarmingly simple. By
setting the expected cost high enough to dissuade the individual from choosing to commit
illegal acts, deterrence should reduce crime.

But as Sah (1991) points out in general things are not so simple. He questions the prefer-
ence of Becker (1968) to treat the expected cost of punishment as exogenous, which implies
that crime should be completely static. Sah (1991) therefore endogenizes the expected cost
of punishment, and in the process of doing so, he develops a model in which the expected
cost, and therefore also crime itself, is time-varying. The basic idea is that if the probability
of arrest has to be learned from others or through experience, the effects of policy will take
time to materialize. Murphy et al. (1993) and Glaeser et al. (1996) further show how social
interactions between criminals can make the effects of policy even more persistent.

A key insight from these models is therefore that crime should be persistent, with tem-
porary shocks having long-lasting effects. The extreme case is that of a unit root, which
would entail permanent effects. But this is not the only insight. Indeed, as Sah (1991) points
out, if counties are highly segregated, then county-level crime rates are expected to differ
significantly, whereas if there is some intercounty interaction, then criminality is expected to
spill over across counties. A common rationale for this interaction among counties is that it
represents factors such as common business cycle fluctuations, demographic composition,
and common crime-fighting policies, see Hale (1998), Levitt (1999), and Funk and Kugler
(2003), among others. In other words, crime should not only be dependent across time but

potentially also across counties.

3 Econometric methodology

3.1 PANIC

Consider the crime rate Xj;, observable for i = 1,..., N counties and t = 1, ..., T years. The

preceding discussion suggests that the possible non-stationarity of X;; can originate from



two sources, one that is common across counties and one that is idiosyncratic. This is also

the starting point of PANIC. Let us therefore decompose X;; as
Xit = Dit+ AR +eit, (1)

where D;; represents the deterministic component of crime, whose specification is going to
turn out to be very important later on. Typically D;; is just an intercept but in this paper we

set
D = ¢+ Bit, ()

thereby admitting to the possibility that X;; might be trending deterministically.
The common factor F; and loading A; together represent the common component of X,
where the jth element of the r-dimensional vector F; is assumed to follow a first-order au-

toregressive process with a possibly serially correlated error term 7,
Fie = ajFj 41 3)

As for the county-specific, or idiosyncratic, component e;;, we make a similar assumption.

In particular, we assume that
eir = dieji—1 + €, 4)

where €; may be correlated across t but not across i, which is the same as saying that any
dependence is captured by the common component.® The type of serial correlation that can
be permitted is very general, and include for example the broad class of stationary autore-
gressive moving average models.” The errors €;; and 17jt, which are mutually independent
for all i, j and t, are homoskedastic in ¢ but not necessarily in i and j.

As a response to the poor precision and power of conventional time series unit root tests,
Moody and Marvell (2005), and Phillips (2006) apply a battery of so-called first generation
panel unit root tests, with which they are able to reject the presence of unit roots in crime

rates for the United States. Unfortunately, these tests are only appropriate if the states are

The assumption that €;; is cross-sectionally independent is actually only for simplicity and can be relaxed at
the cost of some extra moment conditions to allow for weak cross-sectional dependence, see Appendix A for a
detailed discussion.

7In fact, the only restriction is that the partial sum processes of €;; and 7 it satisfy a functional central limit
theorem, see Appendix A.



uncorrelated, and hence cannot be used for analyzing more complex issues of interstate de-
pendency, such as cross-sectional cointegration. In terms of the model in (1) to (4), the first
generation tests assume that there is no common component, and hence that X;; is com-
pletely idiosyncratic. It also implies that e;; is the only source of potential non-stationarity.
Our model is more general, and allows for cross-county dependence, as well as an additional
source of stationarity, F;. Thus, in this model, the possible non-stationarity of X;; can origi-
nate from F; or e;;, or both. We also allow the autoregressive behavior to differ across both
factors and counties, so that for example some of the factors may be non-stationary while
other are not.

Whether these components actually are stationary or not is an empirical matter. The
problem is that F; and e;; are unobserved, which of course makes all forms of unit root testing
impossible. The first step in PANIC is therefore to try to estimate these components, which
can be done by using the method of principal components. However, since in this paper
crime may be non-stationary this method cannot be applied to the level data, as this might
result in factor estimates that are non-stationary even though the true factors are stationary.

We therefore consider the first-differenced data,
AXj; = ADj; + AMAF; + Aeyy, (5)

which are mean zero and stationary as long as D;; does not contain a trend.? To eliminate

the nonzero mean in case of a trend we further demean AXj;, giving
AXit_ﬁi = )\;(AF,}—E)—FAC”—KQ{, (6)

where AX; = 17 Y[, AX; with an obvious definition of AF and Ae;. By applying the
principal components method to either AX;; or AX;; — AX; we obtain estimates of the com-
ponents in first differences, denoted AF; and Aé;;, which can then be accumulated to obtain
the corresponding level estimates, henceforth denoted F; and é;;, respectively.

Having obtained F; and é;, PANIC then proceeds to test the two components for unit
roots, thereby making it possible to disentangle the sources of potential non-stationarity
in X;;. If the non-stationary is due to F;, then Xj; is diverging along a common stochastic
trend, while if the non-stationary is due to é;;, then the divergence is due to county specific

sources. If F; is non-stationary, while if é; is stationary, crime is cointegrated across counties,

8Note that since F; and e;j; are assumed to be integrated of at most order one, AX;; must be stationary.



permitting for the possibility of different convergence clubs. Finally, if F; and &; are both
non-stationary, then the divergence has two sources, one that is common and one that is
idiosyncratic.

The justification for testing in this particular way is that the unit root test of é;; is asymp-
totically equivalent to that of e;;. Similarly, knowing £ is as good as knowing HF;, in the
sense that testing £; is asymptotically equivalent to testing HF;, where H is an r X r rotation
matrix of full rank that accounts for the fact that A; and F; are not separately identifiable.’

One implication of this is that since ¢; is asymptotically independent of F;, there is no
need for a joint test, which of course makes the testing very simple. Moreover, because é;;
is consistent for e;;, which in turn is independent across i, the testing of é;; can be conducted
by using any conventional first generation panel unit root test, and so there is no need for a
special test. Bai and Ng (2004) recommend using the meta approach of Choi (2001), which is
based on combining the p-values from the well-known augmented Dickey and Fuller (1979)
test, henceforth denoted ADF, when applied to each county. The resulting panel test, hence-
forth denoted P, has been shown to work very well, even in small samples such as ours, and
will therefore be used also in this paper. For testing the common component, Bai and Ng

(2004) propose using the ADF test.

3.2 Testing for the presence of a trend

Although very general when it comes to the allowable forms of serial and cross-sectional
correlation, the standard PANIC procedure as proposed by Bai and Ng (2004) is still rather
restrictive in the sense that it assumes that the researcher knows with full certainty whether
or not the trend should be included in D;;, which is of course never the case in practice. This
is problematic for at least two reasons.

The first problem is how to deal with this uncertainty in practice. In the time series
literature unit root tests are often conducted after at least some form of pre-testing for the
trend, taking the constant term as given. Most of the time these pre-tests are rather informal,
involving for example inspection of plots of the data and significance tests of the trend slope
in the fitted test regression. Regardless of whether such pre-tests are employed or not, it is

very common to implement the unit root test both with and without the trend, oftentimes

9 As is well known, the factor model in (5) is fundamentally unidentified because /\QH HIE = A;Ft for any
invertible matrix H. However, in our case exact identification of the true factors F; is not necessary as the
cointegrating rank of F; is the same as the cointegrating rank of HF;.



with conflicting results. Indeed, most empirical work tend to suggest that test results can be
highly sensitive to the treatment of the trend.

In panels, the decision of whether to include the trend or not is even more complex,
especially if one admits to the possibility of unit-specific trend slopes, in which case the
choice must be made not just once but N times, at least in principle. The sensitivity to the
treatment of the trend is therefore usually much higher in panels than in single time series.
In spite of this, researchers that work with panels tend to use much less pre-testing than
researchers that work with time series. A common response to the greater uncertainty over
the trend component is therefore to simply ignore it.

The second problem is more theoretical in nature and refers to the statistical properties
of the PANIC procedure when it is not certain whether the trend should be included. To
appreciate the issues involved Table 1 reports some results of the size and power of the ADF
and P tests when the significance level is 5%. For simplicity, the data are generated from (1)
to (4) with r = 1 and A; ~ N(1, 1) but otherwise equal coefficients for all i. In particular, the
deterministic component in (2) is specified with ¢; = 1 and B; = B. The errors in (3) and (4)
are both drawn from the standard normal distribution.

In agreement with the theoretical prediction on this issue we see that both tests are biased
towards the null if the regression is fitted with an intercept but the data are generated with
both a constant and trend. In other words, the trend can be mistaken for a unit root, which
is also the reason for why one cannot run trend augmented regressions without first testing
whether the observed trend is truly deterministic, as in for example Gould et al. (2002)
and Raphael and Winter-Ebmer (2001). On the other hand, if the data are generated with
a constant, then we see that the inclusion of a trend leads to a loss of power, which can
sometimes be substantial, especially when N and T are small. Only if the deterministic
component is specified correctly do the tests enjoy both high power and good size accuracy.

In order to eliminate these adverse effects we look for a procedure that can be used to
test for the presence of a trend, and that does not suffer too much from the uncertainty about
the integratedness of the data. This is not easy because unlike in the conventional testing
situation here we have two potential unit root sources, and so it is not even certain from

where any non-stationarity originates. One implication of this is that we have to decide

19We use 5,000 replications with 100 startup values for each unit throughout. All initial conditions are set to
Zero.
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upon the presence of the trend already before the two components are estimated. If there
is no trend then the principal components method is applied to AX;;, whereas if there is a
trend then it is applied to AX;; — AX;. Moreover, once the trend has been removed it is no
longer possible to test for its presence by using the estimated components.

Our solution to this problem is very simple and starts with the regression in (5), which

in the case of a trend is given by
AXiy = Bi+ AAF; + Aey.
Letting AX; = & YN, AX;; with a similar definition of B, A and Ae;, by averaging across i,
AX; = B+ X,AB + Aey (7)
and by further averaging across ¢,

AX = B+ANAF+Ae @®

~—~

with an obvious definition of AX, AF and Ae.

The null hypothesis of interest is that of no trend, that is, B; = 0 for all i. Let § = A

denote the first difference estimator of B, and let

~2 1 Lo H\2 2 & S BY(AX 3
@ = w1 Y (AKX =P+ =7 ) K(s) ) (AX, = B)(AXi s — B)
=2 s=1 t=s+1

be the conventional Newey and West (1994) estimator of the so-called long-run variance
of AX;, where K(s) = 1 — 3 is the Bartlett kernel and M is the bandwidth parameter that
determines how many autocovariances to include in the estimation. In Appendix A we show

that as long as the number of unit roots in F;, henceforth denoted 7y, is not zero,

ty = \/T(/i_ A) —4 N(0,1) )

A,

as M, N, T — co with M/ min{N, v/T} — 0. Note in particular that under the null hypoth-
VTh

esis of no trend, tg = ~;

—4 N(0,1), suggesting that |t4| can be used to determine whether
the trend should be included or not.

The working behind the result in (9) is the following. Note first that since AF; and Ae;;
are mean zero, E(AX) = B, showing that AX is an unbiased estimator of B. In fact, since Ae;;

is independent across i, we even have
AX; = B+ AAF +0,(1),

11



suggesting that asymptotically AX; is just a linear combination of the elements of AF;, which
is where the asymptotic distribution of t5 comes from.!! This is basically the same trick
underlying the proposal of Pesaran (2006, 2007a), which in the current context involves using
AX; to approximate the common factors in AF;. A possible alternative to using the method
of principal components to estimate the factors in the unit root test is therefore to use the
cross-sectional averages. At this point, however, we are only interested in making inference
about B, and for this purpose we can make use of the fact that as long as F; has at least one

unit root, then AF = O,(v/T), implying
VT(AX —B) = AVTAE++VThAe = 0,(1).

In Appendix A we show that the O, (1) term is actually normal, and this is the main insight
behind (9).

In order to evaluate the extent to which this asymptotic result applies in small samples
we again use simulations. Table 2 reports some results from the size of a double-sided 5%
level test when the data are generated as before but now with » = 5 and the null of a zero
trend slope imposed. To evaluate the effect of serial correlation in the error driving Fj; we set
it = P1jt—1 + vjt, where vjy ~ N (0,1). Three different rules for the choice of the bandwidth
M are considered. The first is the data dependent rule of Newey and West (1994), while the
remaining two rules are deterministic, and involve setting M either equal to 4(T/100)?/° as
suggested by Newey and West (1994) or equal to zero as when ignoring the effect of serial
correlation.

As expected we see that the test performs well when p = 0 with good size accuracy
for all combinations of N and T. The only exception is when r; = 3, in which case there
is a tendency for the test to become undersized. The reason for this lies with the rate of
consistency of &?, which goes from M/ min{N, VT } whenry = rto1l/M whenr < r,
see Appendix A. Thus, as expected given the requirement that M — oo, setting M to a
small number is not expected to work, and therefore M = 0 is not expected to work at

all.!? The fact that the size distortions go in the opposite direction when p = 0.3 is also

UFor any real r, ay = Op(T") will henceforth be used to indicate that ar is at most of order T" in probability,
meaning means that ar /T converges in distribution as T grows, while at = 0,(T") will be used in case ar is of
smaller order in probability than T".

12The condition that M should go to infinity with the sample size is standard even in the time series literature.
The reason for this is the presence of bias, whose elimination requires letting M to infinity, but at a slower rate
than v/T. The condition that M/ min{N, VT } = 0as M, N, T — oo can be seen as a panel version of this

12



partly expected given the well-documented effects of positive serial correlation, and so is
their relative magnitude when M = 0. The overall best performance is obtained by using

the data dependent bandwidth rule.'®

Figure 1: Power for different values of T.
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Next, we consider some results from the power of the test, which are summarized in
Figures 1 to 3. In Figure 1, we plot the power as a function of g while varying T, whereas
in Figures 2 and 3, we keep T fixed and instead consider varying r and rq. For simplicity,
N = 20 is kept fixed and p is set to zero. The bandwidth is set according to the Newey
and West (1994) data dependent rule. As expected, we see that the power is increasing in
T and in the distance from the null, as measured by |B|. The best power is obtained when
r = r1 = 1, which is to be expected because as long as r; > 1 the test does not make use
of the fact that there may be more than one unit root. In addition, we see that the rate of
consistency of @? is not only affecting the size of the test but also the power, especially when

B is close to its hypothesized value under the null. In particular, we see that the power of

requirement. The relatively high rate of consistency in N is due to the fact that the estimation is based on the
cross-sectional averages X; rather than X;; itself.

13Unreported simulation results show that the test tends to be severely undersized when r; = 0, which con-
firms our theoretical results.
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Figure 2: Power when T = 50.
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the test based on five factors drops substantially as the number of unit roots goes from five
to one. As T increases, however, the difference gradually disappears.

In summarizing this section we find that the new test has a number of distinct features
that makes it very attractive from both an applied and a theoretical point of view. Firstly,
the test can be applied with little prior knowledge regarding the degree of integration of the
common and idiosyncratic components. The only restriction is that there must be at least one
unit root factor present, which is of course a testable restriction. Secondly, the test is robust
against quite general forms of serial and cross-sectional dependence, and still it requires
only minimal corrections. In fact, as for the cross-sectional dependence, as long as it has a
common factor structure with at least one unit root, then there is no need for any correction
at all. Thirdly, the test has good finite sample properties with small size distortions and high

power even when N is as small as 20 and T is as small as 50.!*

3.3 A sequential PANIC procedure

The above discussion suggests that if the data contain a constant, as is usually the case, but

there is uncertainty about the trend, then the following sequential procedure can be used.'

1. Obtain F; and ¢;; by applying the principal components method to AX;; — AX;.

2. Test for unit roots in F; using the ADF test.!®

3. If the null of a unit root is rejected for all the elements of £ at Step 2, we conclude that

F; is stationary and continue to test for unit roots in é;; using the P test.

a. If the null of a unit root is rejected, we conclude that ¢;;, and therefore also Xj, is
stationary, and proceed no further. The significance of the trend can now be tested

by using standard techniques for stationary data.

b. However, if the null is accepted, then we conclude that e;; has at least one unit

root and therefore so must Xj;, and so the procedure is stopped.

14We also ran some simulations with N = 21 and T = 31, which is the sample size considered here, but with
no major changes to the results.

15Gee Ayat and Burridge (2000) for a similar procedure in the pure time series context.

160ne way to control the overall significance level at Step 2 in case of multiple factors is to use a multivariate
rank test, such as the trace test of Johansen (1995) or the MQ tests of Bai and Ng (2004). However, unreported
simulation results suggest that the choice of test at this step has little or no effect on the performance of the
sequential PANIC procedure. In fact, in samples of the same size as the one considered here, the ADF test
actually performed best.
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4. If the null is accepted for at least one of the elements of F; at Step 2, then we proceed to

test for the significance of the trend using the tp test.

5. If the null of no trend is rejected at Step 4, then é;; is tested for unit roots, again using

the P test.

a. If the unit root null is rejected, we conclude that the non-stationarity of Xj; is due

to the common component, and stop the procedure.

b. On the other hand, if the null is accepted, then we conclude that the non-stationarity

of Xj is due to both components, and stop the procedure.

6. If the null of no trend is accepted at Step 4, F; and e;; reestimated by applying the

principal components method to AXj;.

7. The estimated components from Step 6 are tested for unit roots using the standard

PANIC approach in the absence of a trend.

As pointed out earlier the main dilemma here is that while we would like to be able to
increase the power of the unit root tests by removing the trend, by doing so we run the risk
of obtaining biased results that will make it difficult to reject the unit root null even when it
is false. The above procedure is designed to minimize the risk of such bias.

As with all other sequential unit root tests with a possible trend, the behavior of the above
PANIC procedure reflects the interplay between test power and size at each step (Ayat and
Burridge, 2000). Consider for example a situation in which the ADF test in Step 2 is correctly
sized but has low power. If the null of a unit root is rejected, then we are confident that
there is no lack of power, and so the inclusion of the potentially superfluous trend is not a
problem. There is therefore no need to apply the 4 test, which we know is invalid when
all the factors are stationary. On the other hand, if the unit root null is not rejected, then we
do not know if this is due to genuine non-stationarity, or simply the poor power of the test.
Since the latter is going to make the ¢ test in Step 4 biased towards the null of no trend, the
probability of correctly identifying trend-stationary common factors is reduced. Similarly, if
the ADF test in Step 2 is oversized, then the likelihood is that the procedure is going to label
the factors as stationary when in fact they are non-stationary.

Fortunately, the simulation evidence suggests that our procedure is not seriously affected

by these problems. This is shown in Table 3, where we report the 5% size and power of the
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sequential factor and idiosyncratic unit root tests. For simplicity we use the same simulation
design as in Table 1. In particular, because the results for the case with r > 2 were basically
the same, we assume that there is a single factor, and to be able to isolate the effect of the
trend test, we further assume that there is no serial correlation. As in Table 2, the bandwidth
is set using the Newey and West (1994) rule.

Two values for the assumed homogenous trend slope B are considered, zero and one.
However, the procedure was almost always able to detect the trend when present in the
non-stationary factor case, and in the stationary factor case the ADF test rejected, causing
the procedure to stop in the trend model. The results for the case when B = 1 were therefore
almost identical to those reported in Table 1 based on taking the trend as given. For this
reason, in Table 3 we only report the results for the case when g = 0. Because the constant-
only tests are now correct while the trend tests include a superfluous deterministic regressor,
the former is expected to perform best, with the sequential tests lying somewhere in between.
In fact, this is exactly what we see in the table. Note in particular how the performance of
the constant-only tests is only slightly better than that of the sequential tests, suggesting that

the tg test is performing well.

4 Empirical Results
4.1 Data

The data we use are annual and cover the 21 Swedish counties between 1975 and 2008. The
crime rates are defined as the number of reported offences to the police per 100,000 of the
population.'” Two crime categories are considered, property and violent crimes. We will
focus on two of the most common property crimes, burglary and theft. Regarding violent
crimes, most of the previous studies have considered robbery and homicide, and therefore

so do we.!® A more detailed description of the data and our sources is given in Appendix B.

7While we would like to use data on crimes actually committed, there are good reasons for why the number of
reported offences to the police is a good measure of this. For example, consider property crimes. Since reporting
the crime is necessary for receiving insurance compensation, the error incurred when replacing actual offences
by reported offences is likely to be small.

18 Although there is no consensus about this, in the present study we regard robbery as a violent crime.
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4.2 Preliminary evidence

In order to get a feeling for the persistence and cross-correlation of the different crimes, we
begin with a graphical inspection of the data. Figures 4 through 7 plot the cross-regional
mean, range and normal 95% confidence bands for each of the four crime types. In Section
3.2 we illustrated how AX; can be used to approximate AF;. A similar result holds for X;. In

particular,
X; = Dy +X/Ft +e = Dy +X/Ft +0,(1),

suggesting that X; can be regarded as a measure of the common component of crime, which
should not have unit roots if the regional crime rates are stationary. However, the figures
show no evidence of mean reversion, suggesting that the common components of all four
crimes are non-stationary. Hence, we cannot rule out the possibility that crime rates may be

cointegrated across counties.

Figure 4: Cross-regional mean, range and confidence bands of burglary.
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We also see that the mean is able to explain a large part of the overall variation in the

data. To take one example, if we look at theft in Figure 5 there is an upward trend during the
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Figure 7: Cross-regional mean, range and confidence bands of homicide.
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whole period except in the early 1990’s when theft declined. However, while trending, the
series do not drift far apart. Thus, the common component to theft seem to be rather strong.

Of course, although useful for developing a feeling for the degree of mean reversion,
graphical evidence of this sort does not provide any statistical evidence of whether the
county-level crime rates are actually stationary or not. This is where the PANIC method
comes in, the results of which are reported in section 4.3.

In order to infer the statistical significance of the cross-correlations, we compute the pair-
wise cross-county correlation coefficients of each of the first differenced crime variables. The
simple average of these correlation coefficients across all the 210 county pairs, together with
the associated CD test discussed in Pesaran et al. (2008), are given in Table 4. The average
correlation coefficients are very high, between 0.85 and 0.99, and the CD statistics are highly
significant, which obviously strengthens the case against independence. Thus, as expected,
crime rates across counties are not independent of each other. One implication of this is that
the first generation of panel unit root tests used by for example in Moody and Marvell (2005)
and Phillips (2006) are likely to be deceptive, and that the use of PANIC is more appropriate.
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4.3 PANIC

The preliminary results reported so far indicate that at least some of the crime rates may be
non-stationary. To investigate the statistical significance of these results, we now proceed to
discuss the results from the sequential PANIC procedure of Section 3.3. We begin by looking
at the results from the estimation and testing of F;, which are then used in determining the
significance of the trend. Finally, we take a look at the results for the estimated idiosyncratic
component.

Following the recommendation of Bai and Ng (2002), the number of factors is determined
using the IC, information criterion. The maximum number of factors is set to six.'? For
robbery and theft we end up with five and two factors, respectively, while for burglary and
homicide we estimate one factor.

Table 5 reports the ADF test results for each of the factors, where the lag length has been
determined using the Schwarz Bayesian information criterion. The first thing to notice is
that the results differ depending on whether there is a constant or a constant and trend in
the model. Thus, just as discussed in Section 3.3 the decision of whether to include the trend
or not is going to play an important role here. Of course, at this stage we do not know if the
trend can be safely removed and so we look at the results with the trend included. The 5%
critical value for the ADF test is —3.41, which leads to at least one acceptance for each crime,
suggesting that the common components of all four crimes are non-stationary.

We also see that the estimated factors account for a large fraction of the variance in the
panel, with the first factor accounting for between 20% and 35% of the total variation.’
Together the five factors of robbery account for more that 75% of the total variation, which
represents the largest common component. Homicide have the smallest common component
with only one factor that accounts for about 20% of the total variation.

The results obtained from applying the trend test are reported in Table 6. We see that the
slope coefficients for theft, robbery and homicide are significant at the 5% level suggesting
that for these crimes we should keep the trend in the model. Thus, looking again at Table

5, and the trend results reported therein, we see that among the five factors of robbery there

PSince our panel is quite small, we do not consider more than six factors, as this will only lead to imprecise
factor estimates.

20The first factor explains the largest fraction of the total variation in the panel, while the second factor explains
the largest fraction of the variation controlling for the first factor, and so on. The estimated factors are mutually
orthogonal by construction.

21



are four instances where the null of a unit root cannot be rejected at the 5% level. Regarding
theft and homicide, all factors are non-stationary. In other words, for these crimes there is
evidence not only of deterministic trends but also of common stochastic trends.

For burglary, however, the trend is insignificant and can therefore be removed. The ADF
test results in Table 5 for the case with a constant but no trend shows that the null of a unit
root cannot be rejected at the 5% level, which is in agreement with the result for the trend
case. It follows that the common components of all four crimes are non-stationary. Moreover,
while theft, robbery and homicide are trending deterministically, burglary is not.

With this in mind we now proceed to test for unit roots among the estimated idiosyncratic
components. The results from the Bai and Ng (2004) P; test are reported in Table 7, where
we have again made use of the Schwarz Bayesian criterion for determining the order of the
lag augmentation. It is seen that the evidence is uniformly against the unit root null, and we
therefore conclude that the idiosyncratic component of each crime category is stationary for

the panel as a whole.

Figure 8: County-specific unit root test p-values.
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Of course, the fact that the panel test rejects does not mean that the crime rate of each
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individual county is stationary.?! This is seen in Figure 8, which plots the p-values obtained
by applying the ADF test to each county. Looking at the 10% level, we see that the null
is rejected 20 times for homicide, 12 times for robbery, 10 times for theft and six times for
burglary. In other words, while still rather strong, as expected the evidence of stationarity
at the individual county-level is weaker than at the aggregate panel level. In any case, since
we cannot reject the presence of a unit root in the common components, all four crimes
must be considered as non-stationary. The presence of non-stationary factors and stationary
idiosyncratic components means that crime rates are cointegrated across counties.

As mentioned in Section 3.1 cross-county cointegration is similar to the concept of club
convergence, see for example Bernard and Durlauf (1995, 1996) for a formal definition. But
actually cross-county cointegration is just a necessary condition for club convergence. To
appreciate this, suppose that F; is non-stationary and that ¢; is stationary. According to the
definition of Bernard and Durlauf (1995, 1996), X;; and Xj; form a convergence club if their

difference is stationary. But
Xit — Xj = Dit — Djt + (A — Aj)'Fe +ei — e,

suggesting that for X;; — Xj; to be stationary we also require A; = A; for all i and j. Cross-
county cointegration alone is therefore not enough for convergence.

Of course, this paper is not about convergence, and it is not our intention here to sort
out how and why some counties are convergent while others are not. Nevertheless, to get a
feeling for how reasonable the convergence restriction of equal loadings is, we estimated by
least squares a pooled regression of AX;; — AXj; on a constant and AFE,. If the loadings are
equal R? should be close to zero and the factors should be insignificant.?? In agreement with
this, we find that the R? statistics from the four regressions lie between zero and 0.04, and
the F-test for the exclusion restriction of all the factors results in two non-rejections at the 1%
significance level.

Similar conclusions can be reached by looking at Figure 9, which plots the cross-county
standard deviation for each crime after detrending, which is a common measure of con-

vergence. As pointed out by Pesaran (2007b), if the loadings are equal, then this measure

21Gtrictly speaking, for P; to end up in a rejection of the null of a unit root in the idiosyncratic component of
all 21 counties it is enough that the idiosyncratic component of one of the counties is stationary.

22Gee Section 4.4 for a theoretical motivation of this regression, which uses the estimated factors as generated
regressors.
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Figure 9: Crime cross-county standard deviations after detrending.
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should not have a unit root or be trending. The obvious mean-reversion of all four series is

supported by the ADF test.??

44 The importance and interpretation of the factors

As an illustration of how the importance of the factors has changed over time, Figure 10 plots
the fraction of the total variation in the data that can be explained by the estimated common

c:ornponem’c.24

The first thing to notice is the similarity with which the common components
have developed over time. The importance of the common shocks changed dramatically
during the first half of the sample, a period largely consistent with the turbulence of the late
1980’s, and the overheating of the Swedish economy. The importance of the common shocks
then starts to stabilize, levelling off in the end of the sample, which is also something that

is reflected in the macroeconomic data. The deep recession that followed the overheating

23The results look different when the data are not detrended, which is not totally unexpected given that we
have already established that theft, robbery and homicide contain trends. Thus, although X;; and X; seem to be
cointegrated, they may not be cotrending. On the other hand, the estimated intercepts in our pooled regressions
are insignificant, suggesting that both types of trends cancel out in the pair-wise crime differences.

2710 guard against spurious effects, the variance is calculated from the first-differenced data.
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of the late 1980’s persisted for quite a while but then it started to fade out. In terms of
real output the recovery was quick, but the unemployment rate remained high until the
late 1990’s. In agreement with the results of Table 4 we also see that the importance of the

common component is largest with robbery, and that it is smallest with homicide.

Figure 10: The fraction of the total variance explained by the estimated common component.
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Given the importance common components, it is interesting to consider the driving
forces behind the estimated factors. The results of the previous literature suggest that crime
is driven by factors such as unemployment and income. In this section we therefore make
an attempt to label the estimated factors according to their relationship with macroeconomic
variables.

This is done by regressing each of the factors onto a small set of macroeconomic country-
level variables, including unemployment, per-capita private consumption and per-capita
gross domestic product (GDP).” The ADF test indicate that the unit root null is accepted
at the 5% level for all three variables. Therefore, since both the factors and explanatory
variables seem to be contaminated with unit roots, in order to minimize the risk of obtaining

spurious regression results, we work with first differences rather than levels. Lagged values

25Gee Appendix B for a more detailed description of the data.
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of both the first-differenced factors and regressors were included if it improved the fit if the
regression, as measured by the Schwarz Bayesian criterion.

It should be noted that the dependent variable here is AFE,;, which is an estimate of AF;.
Thus, since we are dealing with a generated dependent variable, one might inquire as to the

validity of the resulting regression. The following argument can be used. Write
AFt = AZf + Uy,

where Z; is the vector of contemporaneous and possibly also lagged explanatory variables,
A is a matrix of slope coefficients and u; is a mean zero stationary error term. Hence, by
pre-multiplication of the rotation matrix H, HAF;, = HAZ; + Hu;, and then adding and
subtracting AL,

AF; = HAZ; + Hu; + (AF, — HAF,) = BZ; + w;.

It follows that
T

1

T

B