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Abstract

Many empirical studies of the economics of crime focus solely on the determinants

thereof, and do not consider the dynamic and cross-sectional properties of their data.

As a response to this, the current paper offers an in-depth analysis of this issue using

data covering 21 Swedish counties from 1975 to 2008. The results suggest that the four

crime types considered are non-stationary, and that this cannot be attributed to county

specific disparities, but rather that it is due to a small number of common stochastic

trends to which groups of counties tend to revert. The results further suggest that these

trends can be given a macroeconomic interpretation. Our findings are consistent with

recent theoretical models predicting that crime should be dependent across both time

and counties.

JEL Classification: C32; C33; E20; K40.

Keywords: Crime; Non-stationary data; Panel unit root tests; Common factor.

1 Introduction

Crime rates usually exhibit substantial variation across time. Indeed, the total number of

offences recorded by the Swedish police per 100,000 of the population has gone from 9,223

in 1975 to 14,112 in 2007, an increase by more than 50%. But there is not only the time
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series variation, there is also the cross-sectional variation, which is just as pronounced. For

example, in 2001 the number of thefts and robberies per capita reported in the capital of

Stockholm was 0.09, which is almost two times as many as in the rural southern county of

Blekinge. The most northern county of Norrbotten has a similar, low, crime rate of 0.05,

whereas in Skåne, which is a neighboring county of Blekinge, the crime rate is almost as

high as in Stockholm.

A common explanation for this variation is that it is due to differing economic conditions.

But these differences are usually not nearly enough to account for the full extent of the cross-

sectional variation. For example, in 2001 the unemployment rate in Stockholm was 2.68%,

which is low when compared to 4.44% in Blekinge and 5.26% in Skåne. The relatively high

crime rates in Stockholm and Skåne also coexisted with much higher income levels when

compared to Blekinge and Norrbotten.1

As a response to this, a new class of models that stresses the importance of social inter-

actions has emerged, see for example Sah (1991) and Glaeser et al. (1996). The main lesson

being that static models are not enough to capture the behavior of crime. These models

therefore predict that crime should be persistent over time, and some are even admitting to

the possibility that crime may be non-stationary.

1.1 Limitations of earlier studies

Although theory tells us that crime should be persistent, this lesson is only rarely taken into

consideration when conducting empirical work. In fact, even the most recent research tend

to focus on static regressions, which is problematic for at least two reasons.

Firstly, the dynamics of crime can have implications for policy that are neglected when

using static regressions. Suppose for example that there is a temporary policy shock in the

rate of unemployment that rises the number of crimes committed. If crime is persistent then

this shock will be carried forward into the future. By using static regressions we ignore this

possibility, which may well lead to a misstatement of the effect of policy actions on current

and future crime rates.

Secondly, the presence of unattended dynamics may compromise inference, and in the

extreme case when crime is non-stationary inference may even be spurious. Take for exam-

1The fact that only a small fraction of the cross-regional crime variation can be explained by differences in
economic conditions can also be observed in data for the United States, see Glaeser et al. (1996).
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ple the study of Edmark (2005) who uses Swedish county-level data between 1988 and 1999

to estimate the relationship between unemployment and property crime. Although many

of her panel regressions have R2 statistics that are very close to unity, a well-known sign of

spuriousness, the unit root hypothesis is never tested.

Of course, these problems of neglected dynamics are not unique to panel data. But if

one admits to the possibility of an heterogeneous data generating process with different

dynamics for each unit, then there is not just one potential error to be made but as many as

there are units in the panel. The effect of omitted dynamics is therefore likely to increase,

and to become even more severe as the cross-sectional dimension of the panel increases.

There are of course studies that do allow for dynamics and even unit roots. But these are

almost exclusively based on aggregated time series data, usually at the country level, which

means that the cross-sectional variation is effectively ignored.2 Similarly, while there have

been attempts to allow for dynamics in panels of disaggregated crime data, in these studies

there is usually no room for any interactions between the panel members, which is just as

problematic as when ignoring the dynamics.3 In fact, most theoretical models predicting that

crime should be persistent also predict that there should be at least some form of interaction

across the cross-sectional units, see Sah (1991).4

Other studies use static regressions that are augmented with a linear time trend to ac-

count for the fact that crime is usually trending, see for example Gould et al. (2002) and

Raphael and Winter-Ebmer (2001), who document a positive relationship between unem-

ployment and property crime. Apart from the cross-sectional independence assumption,

which is almost always there, the main problem here is that the trend is assumed to be de-

2There is also the issue of aggregation. When studying time series properties of crime, researchers typically
rely on national crime rate data, see for example Hale (1998), Fajnzylber et al. (2002), and Funk and Kugler (2003).
The question is of how well the behavior of crime at the aggregate country level approximates the properties of
the individual regions? This question cannot be examined when only aggregate data are available. However,
when data are available at a disaggregate level, it is quite well known that the regional features may not be
preserved at the country level, and a crucial role is played by the degree of heterogeneity amongst the regions.
In fact, as Forni and Lippi (1997) show, irrespective of the approach one chooses for the aggregate analysis, when
heterogeneity is allowed, the dynamic properties of the aggregated data differ from those of the disaggregated
data, thereby leading to substantially different interpretations.

3Take as an example the study of Fajnzylber et al. (2002), in which a dynamic panel regression is fitted to
country-level data. Although the results indicate that there is a link between violent crimes and economic growth
and income inequality, since the countries are assumed to be independent, there is no way of knowing whether
this link represents a true casual relationship or if it is just an artifact of omitted cross-country interdependencies.

4Using city-level data for the United States between 1960 and 2004, McDowall and Loftin (2009) find that
nationwide factors accounted for more than 20% of the total variation in their data.
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terministic. In other words, while recognizing the presence of a trend, these studies do not

allow for the possibility that it might be stochastic.

1.2 Recent developments and the main results of this study

As the above discussion makes clear, while reasonable and potentially appealing, most of

the earlier empirical approaches have been inadequate and not very convincing, and this

paper therefore proposes an alternative approach. The idea is that to be able to provide any

reliable evidence on the behavior of crime one needs to consider not the time series and

cross-sectional variation separately but simultaneously.

This idea is not completely new, of course. The first attempt to combine the two sources

of variation that we can find appears in Witt et al. (1998). The motivation for their paper is

that if regional crime rates are non-stationary, then there is also a possibility that they might

be cointegrated with each other, a situation very much related to what is commonly referred

to in the growth literature as club convergence.5 That is, although individually diverging,

there might still be clubs of regions that are converging along a common stochastic trend.

Using data that cover four English regions between 1975 and 1996, the authors find evidence

of such a trend, suggesting the existence of a unique long-run relationship between the four

regions.

The problem is that the econometric approach is a multivariate one, which cannot handle

panels unless the cross-sectional dimension N very small. In fact, for this approach to work

properly, not only must N be small enough, the time series dimension T has to be substantial,

a condition that is rarely fulfilled in practice. Thus, what is really needed here is a panel

approach that is applicable even in situations when N is large, and the current paper can be

seen as an attempt in this direction. Another problem with the Witt et al. (1998) study is that

it does not provide any insight as to what the common stochastic trend actually represents.

Is it for example due to common business cycle variations or it is maybe due some policy

shock?

Our starting point is the panel analysis of non-stationary idiosyncratic and common com-

ponents, or PANIC, method of Bai and Ng (2004). The idea is to first decompose the observed

data into two components, one that is common to all regions and one that is idiosyncratic or

5Actually, cross-region cointegration is just a necessary condition for club convergence, see Section 4.3 for a
discussion.
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region-specific. The objective of PANIC is then to infer the order of integration of the data

by testing for unit roots in each component separately. The main advantage of this approach

in comparison to the one used by Witt et al. (1998) is that here N does not have to be small.

There are of course other panel unit root tests around that allow for cross-section depen-

dence in a large N environment, see Breitung and Pesaran (2008) for a recent survey of the

literature. However, PANIC has a number of distinct features that makes it more suitable for

our purposes. The main advantage is that in contrast to most, if not all, other tests around,

in PANIC the common and idiosyncratic components are not restricted to have the same

order of integration. This is an important merit in our application since previous research

emphasizes that regional crime rates are influenced both by nationwide and region-specific

factors, see for example McDowall and Loftin (2009). The PANIC procedure allows us to test

for unit roots in both components separately without any a priori knowledge about the inte-

gratedness of the data. Another advantage is that in PANIC the cross-section dependence is

not treated as nuisance, but rather as an object of interest. This is especially valuable in cases

such as this when the forces driving the common variation could provide useful information

for policy. PANIC is also very simple to implement and it has been shown to perform well

in samples as small as ours, see for example Gutierrez (2006).

One problem with PANIC is that it is not equipped to handle cases when there is uncer-

tainty over the presence of the deterministic time trend, which is of course always the case

in practice. Therefore, in order to account for this uncertainty, a sequential test procedure is

proposed to determine the extent of both the trend and the non-stationarity of the panel.

The data that we use cover 21 Swedish counties between 1975 and 2008, which means

that there are 714 observations available for each of the four crimes considered, burglary,

theft, robbery and homicide. The results suggest that all four crimes are non-stationary, and

that this cannot be attributed to county specific disparities but rather that it is due to the

presence of common stochastic trends. We also find that these stochastic trends are driven

in part by macroeconomic conditions.

The rest of the paper is organized as follows. In section 2 we briefly discuss the theoretical

motivation for the PANIC approach. Section 3 describes the methodology in detail. Section 4

then presents the data that are used and reports the results of the empirical analysis. Section

5 concludes.
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2 Theoretical considerations

In his seminal paper, Becker (1968) develops the basic elements of a deterrence model,

wherein the choice of the individual of whether to engage in crime or not is viewed as a

function of the relationship between the expected benefits of crime and the expected costs

of punishment. The model predicts how exogenous changes in the probability of arrest may

affect expected payoffs, and thus the supply of crime. The logic is disarmingly simple. By

setting the expected cost high enough to dissuade the individual from choosing to commit

illegal acts, deterrence should reduce crime.

But as Sah (1991) points out in general things are not so simple. He questions the prefer-

ence of Becker (1968) to treat the expected cost of punishment as exogenous, which implies

that crime should be completely static. Sah (1991) therefore endogenizes the expected cost

of punishment, and in the process of doing so, he develops a model in which the expected

cost, and therefore also crime itself, is time-varying. The basic idea is that if the probability

of arrest has to be learned from others or through experience, the effects of policy will take

time to materialize. Murphy et al. (1993) and Glaeser et al. (1996) further show how social

interactions between criminals can make the effects of policy even more persistent.

A key insight from these models is therefore that crime should be persistent, with tem-

porary shocks having long-lasting effects. The extreme case is that of a unit root, which

would entail permanent effects. But this is not the only insight. Indeed, as Sah (1991) points

out, if counties are highly segregated, then county-level crime rates are expected to differ

significantly, whereas if there is some intercounty interaction, then criminality is expected to

spill over across counties. A common rationale for this interaction among counties is that it

represents factors such as common business cycle fluctuations, demographic composition,

and common crime-fighting policies, see Hale (1998), Levitt (1999), and Funk and Kugler

(2003), among others. In other words, crime should not only be dependent across time but

potentially also across counties.

3 Econometric methodology

3.1 PANIC

Consider the crime rate Xit, observable for i = 1, ..., N counties and t = 1, ..., T years. The

preceding discussion suggests that the possible non-stationarity of Xit can originate from
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two sources, one that is common across counties and one that is idiosyncratic. This is also

the starting point of PANIC. Let us therefore decompose Xit as

Xit = Dit + λ′
iFt + eit, (1)

where Dit represents the deterministic component of crime, whose specification is going to

turn out to be very important later on. Typically Dit is just an intercept but in this paper we

set

Dit = ci + βit, (2)

thereby admitting to the possibility that Xit might be trending deterministically.

The common factor Ft and loading λi together represent the common component of Xit,

where the jth element of the r-dimensional vector Ft is assumed to follow a first-order au-

toregressive process with a possibly serially correlated error term ηjt,

Fjt = αjFjt−1 + ηjt. (3)

As for the county-specific, or idiosyncratic, component eit, we make a similar assumption.

In particular, we assume that

eit = δieit−1 + ϵit, (4)

where ϵit may be correlated across t but not across i, which is the same as saying that any

dependence is captured by the common component.6 The type of serial correlation that can

be permitted is very general, and include for example the broad class of stationary autore-

gressive moving average models.7 The errors ϵit and ηjt, which are mutually independent

for all i, j and t, are homoskedastic in t but not necessarily in i and j.

As a response to the poor precision and power of conventional time series unit root tests,

Moody and Marvell (2005), and Phillips (2006) apply a battery of so-called first generation

panel unit root tests, with which they are able to reject the presence of unit roots in crime

rates for the United States. Unfortunately, these tests are only appropriate if the states are

6The assumption that ϵit is cross-sectionally independent is actually only for simplicity and can be relaxed at
the cost of some extra moment conditions to allow for weak cross-sectional dependence, see Appendix A for a
detailed discussion.

7In fact, the only restriction is that the partial sum processes of ϵit and ηjt satisfy a functional central limit
theorem, see Appendix A.
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uncorrelated, and hence cannot be used for analyzing more complex issues of interstate de-

pendency, such as cross-sectional cointegration. In terms of the model in (1) to (4), the first

generation tests assume that there is no common component, and hence that Xit is com-

pletely idiosyncratic. It also implies that eit is the only source of potential non-stationarity.

Our model is more general, and allows for cross-county dependence, as well as an additional

source of stationarity, Ft. Thus, in this model, the possible non-stationarity of Xit can origi-

nate from Ft or eit, or both. We also allow the autoregressive behavior to differ across both

factors and counties, so that for example some of the factors may be non-stationary while

other are not.

Whether these components actually are stationary or not is an empirical matter. The

problem is that Ft and eit are unobserved, which of course makes all forms of unit root testing

impossible. The first step in PANIC is therefore to try to estimate these components, which

can be done by using the method of principal components. However, since in this paper

crime may be non-stationary this method cannot be applied to the level data, as this might

result in factor estimates that are non-stationary even though the true factors are stationary.

We therefore consider the first-differenced data,

∆Xit = ∆Dit + λ′
i∆Ft + ∆eit, (5)

which are mean zero and stationary as long as Dit does not contain a trend.8 To eliminate

the nonzero mean in case of a trend we further demean ∆Xit, giving

∆Xit − ∆Xi = λ′
i(∆Ft − ∆F ) + ∆eit − ∆ei, (6)

where ∆Xi = 1
T−1 ∑T

t=2 ∆Xit with an obvious definition of ∆F and ∆ei. By applying the

principal components method to either ∆Xit or ∆Xit − ∆Xi we obtain estimates of the com-

ponents in first differences, denoted ∆F̂t and ∆êit, which can then be accumulated to obtain

the corresponding level estimates, henceforth denoted F̂t and êit, respectively.

Having obtained F̂t and êit, PANIC then proceeds to test the two components for unit

roots, thereby making it possible to disentangle the sources of potential non-stationarity

in Xit. If the non-stationary is due to F̂t, then Xit is diverging along a common stochastic

trend, while if the non-stationary is due to êit, then the divergence is due to county specific

sources. If F̂t is non-stationary, while if êit is stationary, crime is cointegrated across counties,

8Note that since Ft and eit are assumed to be integrated of at most order one, ∆Xit must be stationary.
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permitting for the possibility of different convergence clubs. Finally, if F̂t and êit are both

non-stationary, then the divergence has two sources, one that is common and one that is

idiosyncratic.

The justification for testing in this particular way is that the unit root test of êit is asymp-

totically equivalent to that of eit. Similarly, knowing F̂t is as good as knowing HFt, in the

sense that testing F̂t is asymptotically equivalent to testing HFt, where H is an r × r rotation

matrix of full rank that accounts for the fact that λi and Ft are not separately identifiable.9

One implication of this is that since êit is asymptotically independent of F̂t, there is no

need for a joint test, which of course makes the testing very simple. Moreover, because êit

is consistent for eit, which in turn is independent across i, the testing of êit can be conducted

by using any conventional first generation panel unit root test, and so there is no need for a

special test. Bai and Ng (2004) recommend using the meta approach of Choi (2001), which is

based on combining the p-values from the well-known augmented Dickey and Fuller (1979)

test, henceforth denoted ADF, when applied to each county. The resulting panel test, hence-

forth denoted P, has been shown to work very well, even in small samples such as ours, and

will therefore be used also in this paper. For testing the common component, Bai and Ng

(2004) propose using the ADF test.

3.2 Testing for the presence of a trend

Although very general when it comes to the allowable forms of serial and cross-sectional

correlation, the standard PANIC procedure as proposed by Bai and Ng (2004) is still rather

restrictive in the sense that it assumes that the researcher knows with full certainty whether

or not the trend should be included in Dit, which is of course never the case in practice. This

is problematic for at least two reasons.

The first problem is how to deal with this uncertainty in practice. In the time series

literature unit root tests are often conducted after at least some form of pre-testing for the

trend, taking the constant term as given. Most of the time these pre-tests are rather informal,

involving for example inspection of plots of the data and significance tests of the trend slope

in the fitted test regression. Regardless of whether such pre-tests are employed or not, it is

very common to implement the unit root test both with and without the trend, oftentimes

9As is well known, the factor model in (5) is fundamentally unidentified because λ′
i HH−1Ft = λ′

i Ft for any
invertible matrix H. However, in our case exact identification of the true factors Ft is not necessary as the
cointegrating rank of Ft is the same as the cointegrating rank of HFt.
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with conflicting results. Indeed, most empirical work tend to suggest that test results can be

highly sensitive to the treatment of the trend.

In panels, the decision of whether to include the trend or not is even more complex,

especially if one admits to the possibility of unit-specific trend slopes, in which case the

choice must be made not just once but N times, at least in principle. The sensitivity to the

treatment of the trend is therefore usually much higher in panels than in single time series.

In spite of this, researchers that work with panels tend to use much less pre-testing than

researchers that work with time series. A common response to the greater uncertainty over

the trend component is therefore to simply ignore it.

The second problem is more theoretical in nature and refers to the statistical properties

of the PANIC procedure when it is not certain whether the trend should be included. To

appreciate the issues involved Table 1 reports some results of the size and power of the ADF

and P tests when the significance level is 5%. For simplicity, the data are generated from (1)

to (4) with r = 1 and λi ∼ N(1, 1) but otherwise equal coefficients for all i. In particular, the

deterministic component in (2) is specified with ci = 1 and βi = β. The errors in (3) and (4)

are both drawn from the standard normal distribution.10

In agreement with the theoretical prediction on this issue we see that both tests are biased

towards the null if the regression is fitted with an intercept but the data are generated with

both a constant and trend. In other words, the trend can be mistaken for a unit root, which

is also the reason for why one cannot run trend augmented regressions without first testing

whether the observed trend is truly deterministic, as in for example Gould et al. (2002)

and Raphael and Winter-Ebmer (2001). On the other hand, if the data are generated with

a constant, then we see that the inclusion of a trend leads to a loss of power, which can

sometimes be substantial, especially when N and T are small. Only if the deterministic

component is specified correctly do the tests enjoy both high power and good size accuracy.

In order to eliminate these adverse effects we look for a procedure that can be used to

test for the presence of a trend, and that does not suffer too much from the uncertainty about

the integratedness of the data. This is not easy because unlike in the conventional testing

situation here we have two potential unit root sources, and so it is not even certain from

where any non-stationarity originates. One implication of this is that we have to decide

10We use 5, 000 replications with 100 startup values for each unit throughout. All initial conditions are set to
zero.
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upon the presence of the trend already before the two components are estimated. If there

is no trend then the principal components method is applied to ∆Xit, whereas if there is a

trend then it is applied to ∆Xit − ∆Xi. Moreover, once the trend has been removed it is no

longer possible to test for its presence by using the estimated components.

Our solution to this problem is very simple and starts with the regression in (5), which

in the case of a trend is given by

∆Xit = βi + λ′
i∆Ft + ∆eit.

Letting ∆Xt =
1
N ∑N

i=1 ∆Xit with a similar definition of β, λ and ∆et, by averaging across i,

∆Xt = β + λ
′
∆Ft + ∆et (7)

and by further averaging across t,

∆X = β + λ
′
∆F + ∆e (8)

with an obvious definition of ∆X, ∆F and ∆e.

The null hypothesis of interest is that of no trend, that is, βi = 0 for all i. Let β̂ = ∆X

denote the first difference estimator of β, and let

ω̂2 =
1

T − 1

T

∑
t=2

(∆Xt − β̂)2 +
2

T − 1

M−1

∑
s=1

K(s)
T

∑
t=s+1

(∆Xt − β̂)(∆Xt−s − β̂)

be the conventional Newey and West (1994) estimator of the so-called long-run variance

of ∆Xt, where K(s) = 1 − s
M is the Bartlett kernel and M is the bandwidth parameter that

determines how many autocovariances to include in the estimation. In Appendix A we show

that as long as the number of unit roots in Ft, henceforth denoted r1, is not zero,

tβ =

√
T(β̂ − β)

ω̂
→d N(0, 1) (9)

as M, N, T → ∞ with M/ min{N,
√

T} → 0. Note in particular that under the null hypoth-

esis of no trend, tβ =
√

Tβ̂
ω̂ →d N(0, 1), suggesting that |tβ| can be used to determine whether

the trend should be included or not.

The working behind the result in (9) is the following. Note first that since ∆Ft and ∆eit

are mean zero, E(∆X) = β, showing that ∆X is an unbiased estimator of β. In fact, since ∆eit

is independent across i, we even have

∆Xt = β + λ
′
∆Ft + op(1),
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suggesting that asymptotically ∆Xt is just a linear combination of the elements of ∆Ft, which

is where the asymptotic distribution of tβ comes from.11 This is basically the same trick

underlying the proposal of Pesaran (2006, 2007a), which in the current context involves using

∆Xt to approximate the common factors in ∆Ft. A possible alternative to using the method

of principal components to estimate the factors in the unit root test is therefore to use the

cross-sectional averages. At this point, however, we are only interested in making inference

about β, and for this purpose we can make use of the fact that as long as Ft has at least one

unit root, then ∆F = Op(
√

T), implying

√
T(∆X − β) = λ

′√
T ∆F +

√
T ∆e = Op(1).

In Appendix A we show that the Op(1) term is actually normal, and this is the main insight

behind (9).

In order to evaluate the extent to which this asymptotic result applies in small samples

we again use simulations. Table 2 reports some results from the size of a double-sided 5%

level test when the data are generated as before but now with r = 5 and the null of a zero

trend slope imposed. To evaluate the effect of serial correlation in the error driving Fjt we set

ηjt = ρηjt−1 + vjt, where vjt ∼ N(0, 1). Three different rules for the choice of the bandwidth

M are considered. The first is the data dependent rule of Newey and West (1994), while the

remaining two rules are deterministic, and involve setting M either equal to 4(T/100)2/9 as

suggested by Newey and West (1994) or equal to zero as when ignoring the effect of serial

correlation.

As expected we see that the test performs well when ρ = 0 with good size accuracy

for all combinations of N and T. The only exception is when r1 = 3, in which case there

is a tendency for the test to become undersized. The reason for this lies with the rate of

consistency of ω̂2, which goes from M/ min{N,
√

T} when r1 = r to 1/M when r1 < r,

see Appendix A. Thus, as expected given the requirement that M → ∞, setting M to a

small number is not expected to work, and therefore M = 0 is not expected to work at

all.12 The fact that the size distortions go in the opposite direction when ρ = 0.3 is also

11For any real r, aT = Op(Tr) will henceforth be used to indicate that aT is at most of order Tr in probability,
meaning means that aT/Tr converges in distribution as T grows, while aT = op(Tr) will be used in case aT is of
smaller order in probability than Tr.

12The condition that M should go to infinity with the sample size is standard even in the time series literature.
The reason for this is the presence of bias, whose elimination requires letting M to infinity, but at a slower rate
than

√
T. The condition that M/ min{N,

√
T} → 0 as M, N, T → ∞ can be seen as a panel version of this
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partly expected given the well-documented effects of positive serial correlation, and so is

their relative magnitude when M = 0. The overall best performance is obtained by using

the data dependent bandwidth rule.13

Figure 1: Power for different values of T.
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Next, we consider some results from the power of the test, which are summarized in

Figures 1 to 3. In Figure 1, we plot the power as a function of β while varying T, whereas

in Figures 2 and 3, we keep T fixed and instead consider varying r and r1. For simplicity,

N = 20 is kept fixed and ρ is set to zero. The bandwidth is set according to the Newey

and West (1994) data dependent rule. As expected, we see that the power is increasing in

T and in the distance from the null, as measured by |β|. The best power is obtained when

r = r1 = 1, which is to be expected because as long as r1 ≥ 1 the test does not make use

of the fact that there may be more than one unit root. In addition, we see that the rate of

consistency of ω̂2 is not only affecting the size of the test but also the power, especially when

β is close to its hypothesized value under the null. In particular, we see that the power of

requirement. The relatively high rate of consistency in N is due to the fact that the estimation is based on the
cross-sectional averages Xt rather than Xit itself.

13Unreported simulation results show that the test tends to be severely undersized when r1 = 0, which con-
firms our theoretical results.
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Figure 2: Power when T = 50.
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Figure 3: Power when T = 100.
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the test based on five factors drops substantially as the number of unit roots goes from five

to one. As T increases, however, the difference gradually disappears.

In summarizing this section we find that the new test has a number of distinct features

that makes it very attractive from both an applied and a theoretical point of view. Firstly,

the test can be applied with little prior knowledge regarding the degree of integration of the

common and idiosyncratic components. The only restriction is that there must be at least one

unit root factor present, which is of course a testable restriction. Secondly, the test is robust

against quite general forms of serial and cross-sectional dependence, and still it requires

only minimal corrections. In fact, as for the cross-sectional dependence, as long as it has a

common factor structure with at least one unit root, then there is no need for any correction

at all. Thirdly, the test has good finite sample properties with small size distortions and high

power even when N is as small as 20 and T is as small as 50.14

3.3 A sequential PANIC procedure

The above discussion suggests that if the data contain a constant, as is usually the case, but

there is uncertainty about the trend, then the following sequential procedure can be used.15

1. Obtain F̂t and êit by applying the principal components method to ∆Xit − ∆Xi.

2. Test for unit roots in F̂t using the ADF test.16

3. If the null of a unit root is rejected for all the elements of F̂t at Step 2, we conclude that

Ft is stationary and continue to test for unit roots in êit using the P test.

a. If the null of a unit root is rejected, we conclude that eit, and therefore also Xit, is

stationary, and proceed no further. The significance of the trend can now be tested

by using standard techniques for stationary data.

b. However, if the null is accepted, then we conclude that eit has at least one unit

root and therefore so must Xit, and so the procedure is stopped.

14We also ran some simulations with N = 21 and T = 31, which is the sample size considered here, but with
no major changes to the results.

15See Ayat and Burridge (2000) for a similar procedure in the pure time series context.
16One way to control the overall significance level at Step 2 in case of multiple factors is to use a multivariate

rank test, such as the trace test of Johansen (1995) or the MQ tests of Bai and Ng (2004). However, unreported
simulation results suggest that the choice of test at this step has little or no effect on the performance of the
sequential PANIC procedure. In fact, in samples of the same size as the one considered here, the ADF test
actually performed best.
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4. If the null is accepted for at least one of the elements of F̂t at Step 2, then we proceed to

test for the significance of the trend using the tβ test.

5. If the null of no trend is rejected at Step 4, then êit is tested for unit roots, again using

the P test.

a. If the unit root null is rejected, we conclude that the non-stationarity of Xit is due

to the common component, and stop the procedure.

b. On the other hand, if the null is accepted, then we conclude that the non-stationarity

of Xit is due to both components, and stop the procedure.

6. If the null of no trend is accepted at Step 4, Ft and eit reestimated by applying the

principal components method to ∆Xit.

7. The estimated components from Step 6 are tested for unit roots using the standard

PANIC approach in the absence of a trend.

As pointed out earlier the main dilemma here is that while we would like to be able to

increase the power of the unit root tests by removing the trend, by doing so we run the risk

of obtaining biased results that will make it difficult to reject the unit root null even when it

is false. The above procedure is designed to minimize the risk of such bias.

As with all other sequential unit root tests with a possible trend, the behavior of the above

PANIC procedure reflects the interplay between test power and size at each step (Ayat and

Burridge, 2000). Consider for example a situation in which the ADF test in Step 2 is correctly

sized but has low power. If the null of a unit root is rejected, then we are confident that

there is no lack of power, and so the inclusion of the potentially superfluous trend is not a

problem. There is therefore no need to apply the tβ test, which we know is invalid when

all the factors are stationary. On the other hand, if the unit root null is not rejected, then we

do not know if this is due to genuine non-stationarity, or simply the poor power of the test.

Since the latter is going to make the tβ test in Step 4 biased towards the null of no trend, the

probability of correctly identifying trend-stationary common factors is reduced. Similarly, if

the ADF test in Step 2 is oversized, then the likelihood is that the procedure is going to label

the factors as stationary when in fact they are non-stationary.

Fortunately, the simulation evidence suggests that our procedure is not seriously affected

by these problems. This is shown in Table 3, where we report the 5% size and power of the
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sequential factor and idiosyncratic unit root tests. For simplicity we use the same simulation

design as in Table 1. In particular, because the results for the case with r ≥ 2 were basically

the same, we assume that there is a single factor, and to be able to isolate the effect of the

trend test, we further assume that there is no serial correlation. As in Table 2, the bandwidth

is set using the Newey and West (1994) rule.

Two values for the assumed homogenous trend slope β are considered, zero and one.

However, the procedure was almost always able to detect the trend when present in the

non-stationary factor case, and in the stationary factor case the ADF test rejected, causing

the procedure to stop in the trend model. The results for the case when β = 1 were therefore

almost identical to those reported in Table 1 based on taking the trend as given. For this

reason, in Table 3 we only report the results for the case when β = 0. Because the constant-

only tests are now correct while the trend tests include a superfluous deterministic regressor,

the former is expected to perform best, with the sequential tests lying somewhere in between.

In fact, this is exactly what we see in the table. Note in particular how the performance of

the constant-only tests is only slightly better than that of the sequential tests, suggesting that

the tβ test is performing well.

4 Empirical Results

4.1 Data

The data we use are annual and cover the 21 Swedish counties between 1975 and 2008. The

crime rates are defined as the number of reported offences to the police per 100,000 of the

population.17 Two crime categories are considered, property and violent crimes. We will

focus on two of the most common property crimes, burglary and theft. Regarding violent

crimes, most of the previous studies have considered robbery and homicide, and therefore

so do we.18 A more detailed description of the data and our sources is given in Appendix B.

17While we would like to use data on crimes actually committed, there are good reasons for why the number of
reported offences to the police is a good measure of this. For example, consider property crimes. Since reporting
the crime is necessary for receiving insurance compensation, the error incurred when replacing actual offences
by reported offences is likely to be small.

18Although there is no consensus about this, in the present study we regard robbery as a violent crime.
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4.2 Preliminary evidence

In order to get a feeling for the persistence and cross-correlation of the different crimes, we

begin with a graphical inspection of the data. Figures 4 through 7 plot the cross-regional

mean, range and normal 95% confidence bands for each of the four crime types. In Section

3.2 we illustrated how ∆Xt can be used to approximate ∆Ft. A similar result holds for Xt. In

particular,

Xt = Dt + λ
′
Ft + et = Dt + λ

′
Ft + op(1),

suggesting that Xt can be regarded as a measure of the common component of crime, which

should not have unit roots if the regional crime rates are stationary. However, the figures

show no evidence of mean reversion, suggesting that the common components of all four

crimes are non-stationary. Hence, we cannot rule out the possibility that crime rates may be

cointegrated across counties.

Figure 4: Cross-regional mean, range and confidence bands of burglary.
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We also see that the mean is able to explain a large part of the overall variation in the

data. To take one example, if we look at theft in Figure 5 there is an upward trend during the
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Figure 5: Cross-regional mean, range and confidence bands of theft.
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Figure 6: Cross-regional mean, range and confidence bands of robbery.
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Figure 7: Cross-regional mean, range and confidence bands of homicide.
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whole period except in the early 1990’s when theft declined. However, while trending, the

series do not drift far apart. Thus, the common component to theft seem to be rather strong.

Of course, although useful for developing a feeling for the degree of mean reversion,

graphical evidence of this sort does not provide any statistical evidence of whether the

county-level crime rates are actually stationary or not. This is where the PANIC method

comes in, the results of which are reported in section 4.3.

In order to infer the statistical significance of the cross-correlations, we compute the pair-

wise cross-county correlation coefficients of each of the first differenced crime variables. The

simple average of these correlation coefficients across all the 210 county pairs, together with

the associated CD test discussed in Pesaran et al. (2008), are given in Table 4. The average

correlation coefficients are very high, between 0.85 and 0.99, and the CD statistics are highly

significant, which obviously strengthens the case against independence. Thus, as expected,

crime rates across counties are not independent of each other. One implication of this is that

the first generation of panel unit root tests used by for example in Moody and Marvell (2005)

and Phillips (2006) are likely to be deceptive, and that the use of PANIC is more appropriate.
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4.3 PANIC

The preliminary results reported so far indicate that at least some of the crime rates may be

non-stationary. To investigate the statistical significance of these results, we now proceed to

discuss the results from the sequential PANIC procedure of Section 3.3. We begin by looking

at the results from the estimation and testing of Ft, which are then used in determining the

significance of the trend. Finally, we take a look at the results for the estimated idiosyncratic

component.

Following the recommendation of Bai and Ng (2002), the number of factors is determined

using the ICp2 information criterion. The maximum number of factors is set to six.19 For

robbery and theft we end up with five and two factors, respectively, while for burglary and

homicide we estimate one factor.

Table 5 reports the ADF test results for each of the factors, where the lag length has been

determined using the Schwarz Bayesian information criterion. The first thing to notice is

that the results differ depending on whether there is a constant or a constant and trend in

the model. Thus, just as discussed in Section 3.3 the decision of whether to include the trend

or not is going to play an important role here. Of course, at this stage we do not know if the

trend can be safely removed and so we look at the results with the trend included. The 5%

critical value for the ADF test is −3.41, which leads to at least one acceptance for each crime,

suggesting that the common components of all four crimes are non-stationary.

We also see that the estimated factors account for a large fraction of the variance in the

panel, with the first factor accounting for between 20% and 35% of the total variation.20

Together the five factors of robbery account for more that 75% of the total variation, which

represents the largest common component. Homicide have the smallest common component

with only one factor that accounts for about 20% of the total variation.

The results obtained from applying the trend test are reported in Table 6. We see that the

slope coefficients for theft, robbery and homicide are significant at the 5% level suggesting

that for these crimes we should keep the trend in the model. Thus, looking again at Table

5, and the trend results reported therein, we see that among the five factors of robbery there

19Since our panel is quite small, we do not consider more than six factors, as this will only lead to imprecise
factor estimates.

20The first factor explains the largest fraction of the total variation in the panel, while the second factor explains
the largest fraction of the variation controlling for the first factor, and so on. The estimated factors are mutually
orthogonal by construction.
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are four instances where the null of a unit root cannot be rejected at the 5% level. Regarding

theft and homicide, all factors are non-stationary. In other words, for these crimes there is

evidence not only of deterministic trends but also of common stochastic trends.

For burglary, however, the trend is insignificant and can therefore be removed. The ADF

test results in Table 5 for the case with a constant but no trend shows that the null of a unit

root cannot be rejected at the 5% level, which is in agreement with the result for the trend

case. It follows that the common components of all four crimes are non-stationary. Moreover,

while theft, robbery and homicide are trending deterministically, burglary is not.

With this in mind we now proceed to test for unit roots among the estimated idiosyncratic

components. The results from the Bai and Ng (2004) Pê test are reported in Table 7, where

we have again made use of the Schwarz Bayesian criterion for determining the order of the

lag augmentation. It is seen that the evidence is uniformly against the unit root null, and we

therefore conclude that the idiosyncratic component of each crime category is stationary for

the panel as a whole.

Figure 8: County-specific unit root test p-values.
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Of course, the fact that the panel test rejects does not mean that the crime rate of each
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individual county is stationary.21 This is seen in Figure 8, which plots the p-values obtained

by applying the ADF test to each county. Looking at the 10% level, we see that the null

is rejected 20 times for homicide, 12 times for robbery, 10 times for theft and six times for

burglary. In other words, while still rather strong, as expected the evidence of stationarity

at the individual county-level is weaker than at the aggregate panel level. In any case, since

we cannot reject the presence of a unit root in the common components, all four crimes

must be considered as non-stationary. The presence of non-stationary factors and stationary

idiosyncratic components means that crime rates are cointegrated across counties.

As mentioned in Section 3.1 cross-county cointegration is similar to the concept of club

convergence, see for example Bernard and Durlauf (1995, 1996) for a formal definition. But

actually cross-county cointegration is just a necessary condition for club convergence. To

appreciate this, suppose that Ft is non-stationary and that eit is stationary. According to the

definition of Bernard and Durlauf (1995, 1996), Xit and Xjt form a convergence club if their

difference is stationary. But

Xit − Xjt = Dit − Djt + (λi − λj)
′Ft + eit − ejt,

suggesting that for Xit − Xjt to be stationary we also require λi = λj for all i and j. Cross-

county cointegration alone is therefore not enough for convergence.

Of course, this paper is not about convergence, and it is not our intention here to sort

out how and why some counties are convergent while others are not. Nevertheless, to get a

feeling for how reasonable the convergence restriction of equal loadings is, we estimated by

least squares a pooled regression of ∆Xit − ∆Xjt on a constant and ∆F̂t. If the loadings are

equal R2 should be close to zero and the factors should be insignificant.22 In agreement with

this, we find that the R2 statistics from the four regressions lie between zero and 0.04, and

the F-test for the exclusion restriction of all the factors results in two non-rejections at the 1%

significance level.

Similar conclusions can be reached by looking at Figure 9, which plots the cross-county

standard deviation for each crime after detrending, which is a common measure of con-

vergence. As pointed out by Pesaran (2007b), if the loadings are equal, then this measure

21Strictly speaking, for Pê to end up in a rejection of the null of a unit root in the idiosyncratic component of
all 21 counties it is enough that the idiosyncratic component of one of the counties is stationary.

22See Section 4.4 for a theoretical motivation of this regression, which uses the estimated factors as generated
regressors.
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Figure 9: Crime cross-county standard deviations after detrending.
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should not have a unit root or be trending. The obvious mean-reversion of all four series is

supported by the ADF test.23

4.4 The importance and interpretation of the factors

As an illustration of how the importance of the factors has changed over time, Figure 10 plots

the fraction of the total variation in the data that can be explained by the estimated common

component.24 The first thing to notice is the similarity with which the common components

have developed over time. The importance of the common shocks changed dramatically

during the first half of the sample, a period largely consistent with the turbulence of the late

1980’s, and the overheating of the Swedish economy. The importance of the common shocks

then starts to stabilize, levelling off in the end of the sample, which is also something that

is reflected in the macroeconomic data. The deep recession that followed the overheating

23The results look different when the data are not detrended, which is not totally unexpected given that we
have already established that theft, robbery and homicide contain trends. Thus, although Xit and Xjt seem to be
cointegrated, they may not be cotrending. On the other hand, the estimated intercepts in our pooled regressions
are insignificant, suggesting that both types of trends cancel out in the pair-wise crime differences.

24To guard against spurious effects, the variance is calculated from the first-differenced data.
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of the late 1980’s persisted for quite a while but then it started to fade out. In terms of

real output the recovery was quick, but the unemployment rate remained high until the

late 1990’s. In agreement with the results of Table 4 we also see that the importance of the

common component is largest with robbery, and that it is smallest with homicide.

Figure 10: The fraction of the total variance explained by the estimated common component.
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Given the importance common components, it is interesting to consider the driving

forces behind the estimated factors. The results of the previous literature suggest that crime

is driven by factors such as unemployment and income. In this section we therefore make

an attempt to label the estimated factors according to their relationship with macroeconomic

variables.

This is done by regressing each of the factors onto a small set of macroeconomic country-

level variables, including unemployment, per-capita private consumption and per-capita

gross domestic product (GDP).25 The ADF test indicate that the unit root null is accepted

at the 5% level for all three variables. Therefore, since both the factors and explanatory

variables seem to be contaminated with unit roots, in order to minimize the risk of obtaining

spurious regression results, we work with first differences rather than levels. Lagged values

25See Appendix B for a more detailed description of the data.
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of both the first-differenced factors and regressors were included if it improved the fit if the

regression, as measured by the Schwarz Bayesian criterion.

It should be noted that the dependent variable here is ∆F̂t, which is an estimate of ∆Ft.

Thus, since we are dealing with a generated dependent variable, one might inquire as to the

validity of the resulting regression. The following argument can be used. Write

∆Ft = AZt + ut,

where Zt is the vector of contemporaneous and possibly also lagged explanatory variables,

A is a matrix of slope coefficients and ut is a mean zero stationary error term. Hence, by

pre-multiplication of the rotation matrix H, H∆Ft = HAZt + Hut, and then adding and

subtracting ∆F̂t,

∆F̂t = HAZt + Hut + (∆F̂t − H∆Ft) = BZt + wt.

It follows that

B̂ − B =

(
T

∑
t=2

ZtZ′
t

)−1 T

∑
t=2

Zt(Hut + (∆F̂t − H∆Ft)),

where 1√
T ∑T

t=2 Zt(∆F̂t − H∆Ft) = op(1) when
√

T
N → 0, see Lemma A.1 of Bai and Ng (2006).

Hence,

√
T(B̂ − B) =

(
1
T

T

∑
t=2

ZtZ′
t

)−1
1√
T

T

∑
t=2

ZtHut + op(1),

which shows that the effect of the estimated dependent variable is negligible. However,

because A is not identified after replacing ∆Ft with ∆F̂t, the sign of the estimated coeffi-

cients have no particular meaning. In Table 8 we therefore only report the p-values for each

variable. More precisely, the p-values are for the exclusion restriction of both the contempo-

raneous and lagged values of each of the explanatory variables. If the model includes lagged

values of the dependent variable, then the p-value for the exclusion restriction of these lags

is also reported. The standard errors are estimated using the Newey and West (1994) proce-

dure. For each regression two measures of the overall fit are reported, the R2 statistic and the

p-value of an F-test of the null hypothesis that all the explanatory variables but the constant

can be excluded.

Starting with the violent crimes, we see that the common factor of homicide, having the

highest R2 of 73%, loads from both unemployment and private consumption. Robbery is
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also related to the macroeconomy. Specifically, while factors three and five load mainly from

unemployment, the second factor loads mainly from unemployment and per-capita GDP.

Turning next to property crimes, which have received most attention in the literature,

we see that the common factor of burglary is largely unexplained. The R2 statistic is low

and we cannot reject the null that the coefficients of all three regressors are jointly zero. The

results for theft are more promising with the second factor loading significantly from private

consumption. As for the first factor we find that although the p-values of the regressors

are individually insignificant, the F-test clearly rejects that they are unimportant, which is

typical sign of multicollinearity. The R2 statistic is almost as high as for homicide, around

71%. Moreover, since this factor accounts for about 30% of the total variation in the data, it

is clear that the economy is an important determinant of theft.

In summary, for three out of the four crimes considered we find a significant association

between the common factors and the macroeconomic conditions. However, even if these fac-

tors seem to be interpretable, we would like to point out that the results do not say anything

about the strength and direction of the association.

4.5 Robustness

As we have argued above, the PANIC approach used here is very robust in the sense that

it permits not only for county specific deterministic terms and serial correlation but also

for a wide range of cross-regional interdependencies, including dependence in the form of

cross-county cointegration.

One weakness is that the above analysis does not allow crime to be structurally shifting.

Although Figures 4 through 7 do not lend much support of such shifts, we would still like to

allow for the possibility that there might be. In order to investigate this issue more formally,

we employ a version of the procedure of Perron and Rodrı́gues (2003), which is based on

testing for breaks in the first-differenced data. Suppose for example that there is a break in

the level of Xit such that Dit = ci + βit + δiBit, where Bit is a dummy variable that represents

the location of the structural break for each county. It follows that

∆Xit = βi + δi∆Bit + λ′
i∆Ft + ∆eit.

As pointed out by Perron and Rodrı́gues (2003), writing the model in differences in this way

is advantageous for at least three reasons. Firstly, since ∆Xit is stationary, the procedure
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is robust against possible unit roots in Ft and eit. Secondly, since the level break is now an

outlier, the breakpoint can be estimated by using conventional methods for outlier detection.

Thirdly, there may be multiple breaks.26

Applying this procedure to our data, we find only two violations of the no break null,

one for theft and one for robberies. Thus, there seem to be very little evidence of structural

instability. Moreover, redoing the analysis while conditioning on the estimated breaks, we

reach exactly the same conclusions as before.

5 Concluding remarks

In this study, we try to shed some light on the persistence and interregional dependency of

crime, an often neglected feature of empirical studies of the economics of crime. For this pur-

pose, the PANIC methodology of Bai and Ng (2004) is employed, which enables us to first

estimate and then to test for unit roots in two components of the data, an idiosyncratic com-

ponent and a common component. This decomposition is appropriate because crime rates

usually exhibit both high variability within each region over time and strong comovements

across regions, features that are consistent with the recent theoretical models of crime. The

problem is that PANIC assumes that the researcher knows whether a deterministic trend is

present or not, which is not very realistic. The current paper therefore develops a sequential

PANIC procedure that determines the extent of both the trend and the non-stationarity of

the data.

Using a panel that covers 21 Swedish counties between 1975 and 2008, we are able to

reject the presence of a unit root in the estimated idiosyncratic component for all four crimes

considered but not in the estimated common component. Specifically, we find that all com-

mon components have at least one unit root, which leads us to the conclusion that the crimes

are cointegrated across counties. The fact that these components are also relatively important

suggests that most crime shocks are common. Thus, according to our results crime shocks

are not likely to dissipate with time but are more likely to persistent and to spread across

counties, just as predicted by theory.

One implication of this result is that the conventional approach of employing conven-

tional regression techniques designed for stationary panels may be hazardous. It also sug-

26The main disadvantage with this procedure is that it does not allow for the possibility of breaks in the trend.
However, in our data this is not too much of a problem, because there are no apparent trend breaks.
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gests that the conclusions from prior research need to be reevaluated, as the possibility re-

mains that they have been spuriously induced by the presence of cross-unit cointegration.

This is a potentially very serious issue, as nearly all of the leading studies in the field assume

that the data are stationary.

Another implication is that since most previous studies do not account for both the dy-

namics and the cross-correlations of the data, they are likely to misstate the effects of current

shocks on future crime rates.

As far as policy is concerned, because the non-stationarity seem to originate with na-

tionwide factors rather than with county-specific disparities, our results indicate that crime

preventing actions should be centralized. In particular, policy actions aimed at lowering

violent crimes should focus on dampening the effects of unemployment.

29



References

Ayat, L., Burridge, P. (2000). Unit root tests in the presence of uncertainty about the non-

stochastic trend. Journal of Econometrics 95, 71–96.

Bai, J., Ng, S. (2002). Determining the number of factors in approximate factor models.

Econometrica 70, 191–221.

Bai, J., Ng, S. (2004). A PANIC attack on unit roots and cointegration. Econometrica 72,

1127–1177.

Bai, J., Ng, S. (2006). Confidence intervals for diffusion index forecasts and inference for

factor-augmented regressions. Econometrica 74, 1133–1150.

Becker, G. S. (1968). Crime and punishment: An economic approach. Journal of Political

Economy 76, 169–217.

Bernard, A. B., Durlauf, S. (1995). Convergence in international output. Journal of Applied

Econometrics 10, 97–108.

Bernard, A. B., Durlauf, S. (1996). Interpreting tests of the convergence hypothesis. Journal

of Econometrics 71, 161–173.

Breitung, J., Pesaran, M. H. (2008). Unit roots and cointegration in panels. In Matyas, L., and

Sevestre, P. (Eds.), The econometrics of panel data: Fundamentals and recent developments in

theory and practice, 279–322. Kluwer Academic Publishers: Boston.

Choi, I. (2001). Unit root tests for panel data. Journal of International Money and Finance 20,

249–272.

Dickey, D. A., Fuller, W. A. (1979). Distribution of the estimator for autoregressive time

series with a unit root. Journal of the American Statistical Association 74, 427–431.

Edmark, K. (2005). Unemployment and crime: Is there a connection? Scandinavian Journal

of Economics 107, 353–373.

Fajnzylber, P., Lederman, D., Loayza, N. (2002). What causes violent crime? European Eco-

nomic Review 46, 1323–1357.

30



Forni, M., Lippi, M. (1997). Aggregation and the microfoundations of dynamic macroeconomics.

Oxford University Press: Oxford.

Funk, P., Kugler, P. (2003). Dynamic interactions between crimes. Economics Letters 79, 291–

298.

Glaeser, E. L., Sacerdote, B., Scheinkman, J. A. (1996). Crime and social interactions. Quar-

terly Journal of Economics 111, 507–548.

Gould, E. D., Weinberg, B. A., Mustard, D. B. (2002). Crime rates and local labor market

opportunities in the United States: 1979–1997. Review of Economics and Statistics 84,

45–61.

Gutierrez, L. (2006). Panel unit-root tests for cross-sectionally correlated panels: A Monte

Carlo comparison. Oxford Bulletin of Economics and Statistics 68, 519–540.

Hale, C. (1998). Crime and the business cycle in the post-war Britain revisited. British

Journal of Criminology 38, 681–698.

Johansen, S. (1995). Likelihood-based inference in cointegrated vector autoregressive models. Ox-

ford: Oxford University Press.

Levitt, S. D. (1999). The limited role of changing age structure in explaining aggregate crime

rates. Criminology 37, 581–598.

McDowall, D., Loftin, C. (2009). Do US city crime rates follow a national trend? The influ-

ence of nationwide conditions on local crime patterns. Journal of Quantitative Criminol-

ogy 25, 307–324.

Moody, C. E., Marvell, T. B. (2005). Guns and crime. Southern Economic Journal 71, 720–736.

Murphy, K. M., Shleifer, A., Vishny, R. W. (1993). Why is rent-seeking so costly to growth?

American Economic Review 83, 409–414.

Newey, W. K., West, K. D. (1994). Automatic lag selection in covariance matrix estimation.

Review of Economic Studies 61, 613–653.

Perron, P., Rodrı́guez, G. (2003). Searching for additive outliers in nonstationary time series.

Journal of Time Series Analysis 24, 193–220.

31



Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a mul-

tifactor error structure. Econometrica 74, 967–1012.

Pesaran, M. H. (2007a). A simple panel unit root test in the presence of cross section depen-

dence. Journal of Applied Econometrics 22, 265–312.

Pesaran, M. H. (2007b). A pair-wise approach to testing for output and growth conver-

gence. Journal of Econometrics 138, 312–355.

Pesaran, H. M., Ullah, A., Yamagata, Y. (2008). A bias-adjusted LM test of error cross section

independence. Econometrics Journal 11, 105–127.

Phillips, J. A. (2006). The relationship between age structure and homicide rates in the

United States, 1970–1999. Journal of Research in Crime and Delinquency 43, 230–260.

Raphael, S., Winter-Ebmer, R. (2001). Identifying the effect of unemployment on crime.

Journal of Law and Economics 44, 259-283.

Sah, R. (1991). Social osmosis and patterns of crime. Journal of Political Economy 99, 1272–

1295.

Westerlund, J. (2009). A note on the use of the LLC panel unit root test. Forthcoming in

Empirical Economics.

Witt, R., Clarke, A., Fielding, N. (1998). Common trends and common cycles in regional

crime. Applied Economics 30, 1407–1412.

32



Appendix A: The asymptotic distribution of the trend test

In this appendix we prove (9). We begin by assuming that ∆Ft and ∆eit are serially uncorre-

lated, and that all the elements of Ft and eit are non-stationary. We then show how the results

generalize to cases when these assumptions do not hold.

Note first that since eit is non-stationary,

√
NT ∆e =

1√
NT

N

∑
i=1

T

∑
t=2

ϵit,

which is Op(1) if eit is also independent across i. To show this, since ϵit is mean zero, we

only need to verify that the variance is finite so that a central limit theorem applies. Letting

τij = E(ϵitϵjt) denote the cross-sectional covariance of ϵit, we obtain

var(
√

NT ∆e ) =
1

NT

N

∑
i=1

N

∑
j=1

T

∑
t=2

T

∑
s=2

E(ϵisϵjt) =
1
N

N

∑
i=1

N

∑
j=1

τij,

which is zero under cross-sectional independence. Under weak cross-section dependence,

∑N
i=1 τij is not necessarily zero but finite, see Assumption C of Bai and Ng (2004). Suppose

therefore that ∑N
i=1 τij ≤ K, where K is finite, in which case we obtain

var(
√

NT ∆e ) =
1

NT

N

∑
i=1

N

∑
j=1

τij ≤ 1
N

N

∑
j=1

K = K,

showing that the order of
√

NT ∆e is not affected by allowing for weak cross-section depen-

dence in ϵit. By using this result together with the definition of β̂ and (8),

√
T(β̂ − β ) = λ

′√
T ∆F +

√
T ∆e = λ

′√
T ∆F + Op

(
1√
N

)
,

where E(λ
′√

T ∆F) = λ
′√

T E(∆F) = 0 and

var(λ
′√

T ∆F) = λ
′
cov(

√
T ∆F)λ = λ

′ T
(T − 1)2

T

∑
t=2

cov(∆Ft)λ →p λ′Σλ

as N, T → ∞, where λ = lim
N→∞

λ and Σ = cov(∆Ft). Hence, by applying the Lindeberg–Levy

cental limit theorem to the first term,

√
T(β̂ − β ) = λ

′√
T ∆F + Op

(
1√
N

)
→d

√
λ′Σλ N(0, 1).
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The standard error of β̂ is given by σ̂√
T

, where σ̂2 can be expanded as follows:

σ̂2 =
1

T − 1

T

∑
t=2

(∆Xt − β̂)2 =
1

T − 1

T

∑
t=2

(λ
′
(∆Ft − ∆F ) + ∆et − ∆e )2

= λ
′ 1
T − 1

T

∑
t=2

(∆Ft − ∆F )(∆Ft − ∆F )′λ

+ λ
′ 2√

N(T − 1)
1√

T − 1

T

∑
t=2

(∆Ft − ∆F )
√

N(∆et − ∆e )

+
1
N

1
T − 1

T

∑
t=2

N(∆et − ∆e )2

= λ
′ 1
T − 1

T

∑
t=2

(∆Ft − ∆F )(∆Ft − ∆F )′λ + Op

(
1√
NT

)
+ Op

(
1
N

)
= λ

′
Σ̂λ + Op

(
1√
NT

)
+ Op

(
1
N

)
,

from which follows that σ̂2 →p λ′Σλ as N, T → ∞, and so we obtain

tβ =

√
T(β̂ − β)

σ̂
→d N(0, 1).

The above result holds even if ∆eit is serially correlated. However, if the correlation is in

∆Ft, things change. In particular,

cov(λ
′√

T ∆F ) →p λ′ lim
T→∞

cov(
√

T ∆F )λ = λ′Ωλ,

where Ω = ∑∞
s=−∞ E(∆F0∆F′

s) is the long-run covariance of ∆Ft, suggesting that for tβ to be

asymptotically standard normal σ̂2 in the denominator needs to be replaced by a consistent

estimator of the long-run variance of λ
′√

T ∆F.

Let us decompose Ω as

Ω = Σ + Γ + Γ′,

where Γ = ∑∞
s=1 E(∆F0∆F′

s) is the one-sided long-run covariance of ∆Ft. We already know

that σ̂2 →p λ′Σλ. By a similar calculation,

γ̂ =
1

T − 1

M−1

∑
s=1

K(s)
T

∑
t=s+1

(∆Xt − β̂)(∆Xt−s − β̂)

= λ
′ 1
T − 1

M−1

∑
s=1

K(s)
T

∑
t=s+1

(∆Ft − ∆F )(∆Ft−s − ∆F )′λ + Op

(
M√
NT

)
+ Op

(
M
N

)
= λ

′
Γ̂λ + Op

(
M√
NT

)
+ Op

(
M
N

)
,
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where the remainder is negligible provided that M/
√

NT and M/N both go to zero, which

is satisfied if we assume that M/ min{N,
√

T} → 0 as M, N, T → ∞. Thus, letting Ω̂ =

Σ̂ + Γ̂ + Γ̂′ it follows that

ω̂2 = σ̂2 + 2γ̂ = λ
′
Σ̂λ + 2λ

′
Γ̂λ + op(1) = λ

′
Ω̂λ + op(1) →p λ′Ωλ,

which is identically the long-run variance of λ
′√

T ∆F. Hence, σ̂2 may be replaced by ω̂2.

Suppose also that in contrast to before now only the first r1 ≥ 1 elements of Ft are non-

stationary, while the degree of integration of eit is completely unrestricted. In other words,

the only assumption here is that Ft contains at least one unit root.

We now show that this extension does not affect the asymptotic distribution of tβ. The

reason is that the elements that are stationary are of smaller order than those that are non-

stationary. Specifically, using a one to superscript subvectors corresponding to the first r1

elements of Ft,

λ
′
∆F = ( λ1′, λ2′ )

(
∆F1

∆F2

)
= λ1′∆F1 + λ2′∆F2,

But ∆F2 are over-differenced, and so we get

λ2′
√

T ∆F2 =
1√
T

r

∑
j=r1+1

λj

T

∑
t=2

∆Fjt =
1√
T

r

∑
j=r1+1

λjα
T
j Fj0 +

1√
T

r

∑
j=r1+1

λj

T−1

∑
t=0

αt
jηjT−t

=
1√
T

r

∑
j=r1+1

λj

T−1

∑
t=0

αt
jηjT−t + op(1),

where λj is the jth element of λ. Moreover, since |αj| < 1, ∑T−1
t=0 αt

jηjT−t = Op(1), which in

turn implies

λ
′√

T ∆F = λ1′
√

T ∆F1 + λ2′
√

T ∆F2 = λ1′
√

T ∆F1 + Op

(
1√
T

)
→d

√
λ1′Ω11λ1 N(0, 1)

as T → ∞, where λ1 = lim
N→∞

λ1 and Ω11 is the upper left r1 × r1 submatrix of Ω. Hence,

√
T(β̂ − β) →d

√
λ1′Ω11λ1 N(0, 1).

Consider ω̂2. Because of the over-differencing, Ω is singular. Specifically, by Lemma A.1

of Westerlund (2009), as M, T → ∞

Ω̂ =

(
Ω̂11 Op(1/M)

Op(1/M) Op(1/M)

)
→p Ω =

(
Ω11 0

0 0

)
,
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from which it follows that as M, N, T → ∞ with M/ min{N,
√

T} → 0

ω̂2 = λ
′
Ω̂λ + op(1) →p λ′Ωλ = ( λ1′, λ2′ )

(
Ω11 0

0 0

)(
λ1

λ2

)
= λ1′Ω11λ1,

which in turn implies that tβ →d N(0, 1). Thus, tβ remains valid as long as there is at least

one non-stationary factor in Ft.

On the other hand, if r1 = 0,

√
T(β̂ − β) = λ

′√
T ∆F +

√
T ∆e = Op

(
1√
T

)
+ Op

(
1√
N

)
which together with ω̂2 = Op(1/M) yields tβ = Op(

√
M/ min{

√
T,

√
N}). Thus, since we

have assumed that M/ min{N,
√

T} → 0, this will lead to a conservative test. Thus, for tβ

not to have a degenerate limiting distribution, we need r1 ≥ 1. This proves the result in (9).
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Appendix B: Data

Crime data

The annual crime rate data are obtained from the Swedish National Council for Crime Pre-

vention, and are measured as the number of reported offences to the police per 100,000 of the

population.27 Burglary also include attempt of burglary. Theft offences constitute the largest

category of crimes in terms of absolute numbers and includes shoplifting. Robbery includes

both personal mugging and robbery against juristic person. Homicide includes attempt of

homicide.

Macroeconomic data

The macroeconomic data include real GDP per capita, real private consumption per capita

and the unemployment rate, and are obtained from the OECD database Economic Outlook,

number 84.28 As with the crime rates, these data are annual and cover the 1975–2008 period.

27More information can be found at the web site of the National Council for Crime Prevention,
http://www.bra.se/.

28See http://www.oecd.org/.
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Table 2: Size of the trend test.

ρ = 0 ρ = 0.3
N T A B C A B C

r1 = 5, δ = 1
20 50 7.5 7.8 5.8 11.5 10.8 15.7

100 6.3 7.0 5.8 10.3 9.4 16.4
200 5.4 5.7 5.1 8.2 7.4 14.8

40 50 7.3 7.9 6.0 12.5 11.5 17.3
100 6.2 6.8 5.4 10.5 9.5 16.4
200 5.3 5.3 4.6 8.3 7.6 15.5

r1 = 5, δ = 0.5
20 50 7.2 7.7 5.6 11.7 10.9 15.7

100 6.2 7.0 5.7 10.4 9.2 16.4
200 5.6 5.8 5.1 8.1 7.5 14.6

40 50 7.2 8.0 5.9 12.4 11.5 17.3
100 6.3 6.8 5.4 10.5 9.4 16.4
200 5.3 5.4 4.9 8.2 7.5 15.6

r1 = 3, δ = 1
20 50 3.3 3.7 1.1 6.3 6.3 7.1

100 2.7 3.6 1.2 5.5 5.9 7.0
200 2.7 2.9 0.9 4.8 4.6 5.9

40 50 3.6 3.9 1.7 6.9 6.6 7.3
100 2.9 3.8 1.3 5.7 5.7 7.0
200 2.9 3.0 0.9 5.2 4.9 6.4

Notes: ρ refers to the first-order autoregressive serial correlation coefficient
of the factors, δ refers to the autoregressive coefficient of the idiosyncratic
component, and r1 refers to the number of unit roots among the five factors.
The autoregressive coefficient in the stationary factors is set to 0.5. Columns
A, B and C indicate whether the bandwidth has been set as a function of T,
by using the Newey and West (1994) rule or set equal to zero.
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Table 3: Size and power for the sequential unit root tests.

N T δ ADFc ADFτ ADFseq Pc Pτ Pseq

α = 1
20 50 1 6.7 11.9 8.0 10.7 14.2 11.1

100 5.9 10.1 6.4 9.1 12.3 9.5
200 5.0 8.9 5.7 7.1 8.6 7.5

40 50 6.4 11.6 7.8 11.4 18.5 12.2
100 6.0 10.5 6.5 9.5 12.2 9.8
200 5.0 9.4 6.4 7.3 8.5 7.3

20 50 0.95 6.8 11.9 8.0 41.9 25.8 39.9
100 6.1 10.2 6.4 89.1 53.1 85.2
200 5.5 9.4 5.8 100.0 99.3 99.9

40 50 6.3 11.6 7.7 64.7 37.7 61.3
100 5.9 10.3 6.4 99.3 76.1 96.5
200 5.0 9.5 6.3 100.0 100.0 100.0

α = 0
20 50 1 99.8 100.0 100.0 9.0 11.8 11.8

100 99.9 100.0 100.0 8.6 10.9 10.9
200 100.0 100.0 100.0 6.9 8.4 8.4

40 50 100.0 100.0 100.0 9.8 15.0 15.0
100 100.0 100.0 100.0 8.6 10.5 10.5
200 100.0 100.0 100.0 7.1 7.9 7.9

20 50 0.95 100.0 100.0 100.0 39.6 21.8 21.8
100 100.0 100.0 100.0 89.5 51.2 51.2
200 100.0 100.0 100.0 100.0 99.3 99.3

40 50 100.0 100.0 100.0 61.8 32.5 32.5
100 100.0 100.0 100.0 99.5 73.7 73.7
200 100.0 100.0 100.0 100.0 100.0 100.0

Notes: ADFseq and Pseq refer to the Bai and Ng (2004) unit root test of
the common and idiosyncratic component, respectively, based on the
sequential procedure. See Table 1 for an explanation of the remaining
features.

40



Table 4: Cross-county correlations.

Test Burglary Theft Robbery Homicide

Average correlation 0.98 0.99 0.97 0.85
CD 82.57 83.82 81.64 72.23
p-value 0.00 0.00 0.00 0.00

Notes: The results are for the demeaned first differenced series. The CD
statistic tests the null of no cross-correlation. The p-values are from
the asymptotic normal distribution.
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Table 6: Tests for the presence of a trend.

Crime β̂ |tβ| p-value

Burglary −11.51 0.92 0.36
Theft 32.72 2.46 0.01
Robbery 1.27 2.34 0.02
Homicide 0.16 3.21 0.00

Notes: β̂ refers to the estimated trend slope with |tβ| being the
associated double-sided t-statistic for the null of a zero slope.
The p-value is based on the normal distribution.

Table 7: Panel unit root tests of the estimated idiosyncratic component.

Constant Trend
Crime Pc p-value Pτ p-value

Burglary 6.00 0.00 11.66 0.00
Theft 4.01 0.00 8.52 0.00
Robbery 3.73 0.00 9.76 0.00
Homicide 9.86 0.00 24.84 0.00

Notes: Pc and Pτ refer to the Bai and Ng (2004) test with a constant and
a constant and trend, respectively. The p-values are based on the normal
distribution, and the lag length is determined using the Schwarz Bayesian
criterion.
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