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Abstract 
 
Detection turning points in unimodel has various applications to time series which have cyclic 
periods. Related techniques are widely explored in the field of statistical surveillance, that is, 
on-line turning point detection procedures. This paper will first present a power controlled 
turning point detection method based on the theory of the likelihood ratio test in statistical 
surveillance. Next we show how outliers will influence the performance of this methodology. 
Due to the sensitivity of the surveillance system to outliers, we finally present a wavelet 
multiresolution (MRA) based outlier elimination approach, which can be combined with the 
on-line turning point detection process and will then alleviate the false alarm problem 
introduced by the outliers.  
 
 
JEL classification: C12, C52, C63 

 

Keywords: Unimodel, Turning point, Statistical surveillance, Outlier, Wavelet multi-
resolution, Threshold.  
 
 
 
 
1. Introduction  
Time series which show periodic character are often used to model cyclical behavior in the 

expansion and recession of business cycles in economics, and detection the turning points of 

each cycle in the on-going process in a timely and precise fashion will be advantageous for 

future strategic decisions. Especially when we already have a related leading indicator which 

shows similar but advanced periodical dynamics to the index of interest, prompt and accurate 

detection of turning points in the leading indicator will give valuable signals for the prediction 

of the series of interest. Related research is being explored in the theory of statistical 
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surveillance, which aims to give out alarms as soon as the data information accumulates 

evidence to a level sufficient to prove the occurrence of a changing point. Based on different 

ways of defining turning points and measurements of the data, there exist various 

methodologies to build test statistics which will give out alarms when they exceed certain 

threshold values. Most test statistics are built on the theories of the likelihood ratio, posterior 

distributions, or hidden Markov chains. The comparison of different methods is exhaustively 

examined in Andersson et al. (2005). This paper will mainly consider a turning point 

detection methodology utilizing the likelihood ratio method: SRlin method which is derived 

by Shiryaev-Roberts (SR) technique. The test will be constructed in a way which can control 

the power of the alarm system, that is to control its ability of giving out the alarm in time 

when a turning point actually occurs. This test statistic has the advantages of easy application 

and straightforward interpretation, and it is also flexible to the demand of the appliers based 

on their own criteria of power control.  

Although the surveillance system performs well under the restrictions of parametric model 

and i.i.d. normal error, the non-stationarities of the time series will always affect the property 

of the alarm test statistic. The consequences of various non-stationarities such as seasonality 

and trend behavior are carefully examined in Andersson et al. (2006). However, the problem 

of outliers has not yet aroused enough attention although an outlier is quite easy to be 

misunderstood as some kinds of turning point for an on-line testing procedure. Moreover, an 

outlier detection methodology in statistical surveillance calls for a higher demand of 

technique than the normal outlier elimination methodology as we need to combine the outlier 

elimination on-line with turning point detection. Therefore we need a technique which can 

detect the outlier on-line as well as give out alarms for the real turning point as soon as 

possible. In this paper we introduce a methodology based on wavelet multi-resolution analysis 

(MRA), which can reach this goal easily and efficiently.  

This paper mainly deals with three topics: the construction of the power controlled test 

statistic in the surveillance system, the influence of the outliers, and a wavelet methodology to 

eliminate the negative effect of the outliers. According to the three topics, the rest of this 

paper will be organized as follows: Section 2 will introduce the underlying model for the 

turning point detection systems, the test statistic and an evaluation criterion. Section 3 will 

illustrate how the outlier will influence the whole detection procedure and Section 4 will show 

how the wavelet approach can eliminate the influence of outliers. The conclusion will be in 

the last section.  
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2. Turning point detection system based on likelihood ratio method  
2.1 The underlying unimodel and the event to be detected 

The time series X={ ,  t=1,2,...}tX  which the statistical surveillance will monitor is the leading 

indicator of the business cycle such as the unemployment insurance claims, house start, and 

car sales. As the leading indicator have similar but several step ahead periodic dynamics as 

the business cycle, detection of the turning time of the leading indicator will help to predict 

the turning point of the series of interest.  The surveillance system suppose in each cycle the 

indicator series has the stochastic dynamics t t tX µ ε= + , where 2. . .(0, )t n i dε σ  and the 

underlying process tµ  has a unimodel structure, which means tµ  is either convex or concave. 

Here we assume that the unimodel is convex containing a peak. Then based on the 

observation tx , at each decision time s , we need to tell whether sµ  belongs to the upward 

trend ( )D s  or the downward trend ( )C s , where:  

1

1 1 1

( ) : ...

( ) : ... ...
s

s

D s
C s andτ τ

µ µ

µ µ µ µ− −

≤ ≤

≤ ≤ ≥ ≥
,                                                                                  (I) 

with τ  being the unknown peaking time in the unimodel. Statistical surveillance is an on-line 

detection process in which we need to make repeated decisions each time we have a new 

observation sx . On the other hand, as statistical surveillance deals with the periodic time 

series, the structure of the model in a unit cycle can always be estimated based on the 

observations from last cycles. Thus this paper assumes the unimodel for tµ  is known and a 

linear model is further chosen for simplicity. Then ( )D s  and ( )C s  have the following 

structure: 

{ }
0 1( ) :

( ) : ( )
sD s s

C s C
µ β β

τ

= +

∪
,                                                                                                              (II)  

where 0 1 1( ) : ( 1) ( 1)sC sτ µ β β τ δ τ= + − − − + , { }1,2,..., sτ = ; 0β , 1β  and 1δ  can be estimated 

from the historical data. The rest of the paper will adopt this parametric linear assumption as it 

is straightforward enough to illustrate the above mentioned three topics. We will see in the 

later part of the paper, as the likelihood ratio test is quite robust to the underlying model 

structure and the error distribution, the result from this linear symmetric model can be easily 

extended to other parametric models or even nonparametric cases, and for related research, 

the reader can be referred to Frisén (1994) and Andersson et al. (2006). 
2.2 Alarm statistics  

http://www.businessdictionary.com/definition/unemployment-insurance.html
http://www.businessdictionary.com/definition/claim.html
http://www.investorwords.com/3110/money_supply.html
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A surveillance system is constructed on two main elements:  test statistic and alarm limit. At 

each decision time s , let sΧ  denote the filtration generated by X  till time s , and sxτ  denote 

the information generated by X  from time τ  to s . Then the likelihoods for the two events 

{ } { ,  1, 2,..., } {  }iC s i i s Cτ τ= ≤ = ∪ = = = ∪  and { }D sτ= >  correspond to ( )sL C Χ  and 

( )sL D Χ  , and the likelihood ratio based test surveillance system will give out an alarm as 

soon as: 

1 1

( ) ( )( ) ( ) ( )( ) .
( ) ( ) ( ) ( ) ( )

i iC Cs ss s
s s

i alarms D s D
i is s

f x f xL C f C P iLR s w k
L D f D P s f x f x

τ τ

τ τ

µ µ µ µτ
τ µ µ µ µ= =

= =Χ Χ =
= = = = ≥

Χ Χ ≤ = =∑ ∑ ,  

where ( )
( )i

P iw
P s
τ
τ
=

=
≤

 and the alarm time At  is then min[ : ( ) ]A alarmt t LR t k= ≥  where 

( )
1 ( )alarm

k P Dk
k P C

= ⋅
−

  with k  being a positive constant which is chosen to satisfy certain 

evaluation criteria. The expression of alarmk  is actually deduced in a way which lets the 

likelihood ratio based method be equivalent to a posterior probability based method where the 

alarm rule is ( )sP C kΧ >  under the situation ( ) 1 ( )P D P C= − , and the proof is as follows:  

( ) ( ) ( ) ( ) ( ) ( ) 1( )  
( ) ( ) ( ) ( ) ( ) ( )

( ) . ( )                       
( ) (1 ). ( )

s s s
s

s s s

s

s

f C P C f C P C f D P D
P C k k

f C P C f D P D f C P C k

f C k P D
f D k P C

Χ Χ + Χ
Χ > ⇒ > ⇒ <

Χ + Χ Χ

Χ
⇒ >

Χ −

. 

It is obvious that in the determinations of both iw  and alarmk  we need to know the distribution 

of the turning point time τ . When no reliable distribution is available, Shiryaev (1963) and 

Roberts (1966) proposed a method which assumes a non-informative prior distribution for τ , 

and let ( )P tτ =  be equal for all t . Therefore, the resulting alarm statistic has equal weights 

and the test statistic is: 
1

( )( ) ( )
( )

( ) ( ) ( )

iCss
s s

s D
is s

f xL C f C
SR s

L D f D f x
τ

τ

µ µ

µ µ=

=Χ Χ
= = =

Χ Χ =∑ . For the linear 

specified model in (II)  and under the assumption that the unimodel is symmetric with 1 1δ β= , 

the test statistic becomes: 

12
1

1( ) exp 4 ( ( 1 ))
2

s s

u i
i u i

SRlin s x i u wβ
σ= =

   = − − +      
∑ ∑ , 

where 2
1 0 1(4 ( 1) 4 ) ( 1)

s

i
u i

w i u iβ β β
=

= − + − +∑ . 
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In an on-line surveillance detection system, an alarm is given as soon as ( )SRlin s  exceeds the 

limit ( )
1 ( )alarm

k P Dk
k P C

= ⋅
−

, which turns out to be a constant and can be determined by 

simulations based on certain size-controlled or power-controlled criteria. In the next section, 

we will propose a criterion which can control the power of the test and decide alarmk  by Monte 

Carlo simulations, with the power corresponding to the ability of the system to give out an 

alarm as soon as the turning point appears.  
2.3 Alarm limits and related criteria to evaluate the performance of system  

Without knowing the distribution of τ , the alarm limit alarmk  can be determined by fixing a 

certain criterion for evaluating the performance of the alarm statistics. In the statistical 

hypothesis testing framework contains null hypothesis 0H  and alternative hypothesis AH . In 

a statistical surveillance system, 0H  is interpreted as that there is no turning point till the 

current time and sX  belongs to phase D  while AH  asserts that a turning point already 

occurred and sX  belongs to phase C . Thus here the size is related with false alarms when no 

turning point occurs and power will correspond to the alarm delay after a turning point has 

already appeared. Then alarmk  can be chosen either by fixing the size or by controlling the 

power. As long as alarmk  is determined, the detection system can be evaluated by comparing 

the other type of index which corresponds to power or size.  In Gan (1993) and Andersson 

(2002), alarmk  is chosen from simulation by controlling the median run length (MRL) until a 

false alarm and it is a size-fixed method as it assumes no turning point has occurred during the 

whole surveillance period. In the following sections we will investigate the influence of the 

outlier on false early alarms, which is to compare the sizes before and after the outlier occurs, 

thus we need to choose alarmk  in a power-fixed method. Here the power is defined as the 

probability that the alarm will ring with only a one step delay after the turning point actually 

occurs. Suppose the whole series has T  observations, this power criterion is: 

0 APower (reject  H H True) (Alarm rings at 1 if ) ( ( 1) )

          ( 1) ( ( 1) ) ... ( -1) ( ( 1) -1)
alarm

alarm alarm

P P s s P LR k

P s P LR s k s P s T P LR s k T

τ τ

τ τ

= = + = = + >

= = ⋅ + > = + + = ⋅ + > =
. 

Monte Carlo simulation shows that in the likelihood ratio based approach, as long as the 

underlying parametric model is fixed, alarmk  will be stable regardless of the actual turning 

point time. Thus we only need to set a T  which can give a stable alarmk . The detail procedure 

to compute alarmk  is that: we set τ  increase from 1 to T , for each τ  we carry out 10000 
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simulations and get the “1-power” quantile of ( 1)LR s + to approximate  

( ( 1) ) PoweralarmP LR s k sτ+ > = = . Under the assumption that the turning point occur at same 

possibility in the whole series, alarmk  can be approximated as the mean value of the T  

quantiles. Furthermore, alarmk  does not need to be an exact value but in certain digit level as 

( 1)LR s +  is much bigger than ( )LR s  if sτ = , and this is also the reason that the surveillance 

system performs well as it is quite easy to distinguish  ( 1)LR s +  from ( )LR s  when the 

turning point actually occurs.  
2.4 Simulation result from Monte Carlo experiments 

The parameters for the underlying linear model are set as 0 1 1β β= = . To decide alarmk , we set 

1σ = , power = 0.8 and T = 30 which is large enough for the stability of alarmk . Based on a 

fixed power and its corresponding alarm limit alarmk , we can evaluate the size of this test 

system, which is the probability that the system will give out a false alarm before any turning 

point occurs, and it can be measured by the average length and rate of the false early alarm 

before the actual turning point. Here we choose the power to be equal to 0.8 as this 

corresponds to a low size and the system can then avoid a high early false alarm rate.  On the 

other hand, we can still investigate the property of the power for the alarm system by way of 

evaluating the actual delay length and rate, as alarmk  is chosen by just fixing the delay at a 

length equal to one. Monte Carlo simulation is applied to assess the power-fixed test system. 

In the Monte Carlo experiment, we simulate three different series which follow the dynamics 

in the linear model (II) with the actual turning points time turnT  set to be 5, 30, and 50. It is 

also interesting to investigate how the volatility will influence the test system, thus we set 

three variance levels where ~ [0.5,1.5], ~ [1.5,2.5]U Uσ σ  and ~ [2.5,3.5]Uσ . Based on the 

experimental design, and for each case the number of replications is 1000, we get the 

following simulation result:  
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Table 2.4.1: Property of the power controlled surveillance system 

 turnT             False early alarm             Alarm delay 

                       length        rate                    length        rate 
~ [0.5,1.5]Uσ  

 5                    1.000        0.001                   1.014       0.780 
 30                  14.000      0.003                   1.421       0.982 
 50                  20.714      0.007                   1.689       0.984 

~ [1.5,2.5]Uσ  
 5                    1.000         0.001                  2.698       0.999 
 30                  15.667       0.006                  2.358       0.991 
 50                  27.800       0.005                  2.292       0.992 

~ [2.5,3.5]Uσ  
 5                    1.000         0.002                  3.681       0.997 
 30                  12.167       0.006                  3.678       0.992 
 50                  21.500       0.010                  3.553       0.989 

 

In Table 2.4.1, the index’s length and rate correspond to the average length and occurrence 

frequency for a false early alarm or an alarm delay in 1000 replications. Thus Table 2.4.1 

shows that under the restrictions of i.i.d. normally error and linear symmetric model, the 

alarm system is alert as well as accurate with a short delay and quite low false alarm 

percentage: lower than 1%. The change of variance does not have much influence on the size 

property while in the power perspective, higher variance will bring about a longer delay, and 

this is due to the higher variance’s confounding the likelihood value and the system may wait 

till ( )LR s i+  is large enough to trigger the alarm. However, compared to the false alarm 

length, the alarm delay is quite short: lower than 4 for all cases, and for ~ [0.5,1.5]Uσ , the 

system is quite alert with very short delay length: less than 2. This good behavior of the 

surveillance system is due to the strict restrictions that the parametric model is already known 

and the error is i.i.d. normal. Loosening the restrictions will always degrade the performance 

of the alarm system and lots of efforts have been devoted to resolve the problems aroused by 

less restricted data. Among them, Frisén (1994) discussed the consequence of unsuitably 

specified parametric models and introduce a nonparametric method. Andersson et al. (2006) 

had a wide exploration of the influences brought up by autocorrelation errors, seasonal effects, 

and a long time trend. However, after closer scrutiny of this turning point detection procedure, 

we see that if an outlier that has the same turning direction appears before the actual change 

appears, the system may give out a false early alarm as it will misidentify this outlier as a 

turning trend. The next sections will discuss the problems brought in by the outliers as well as 

how to improve the test when the data is polluted by outliers.  
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3. The influence of outlier 
The data structure with additive level outliers (AO) which we will further investigate is 

defined as ( ) ( ) ( ) ( ) ( ) ( )y t t I t t x t tµ ω ε ε= + ⋅ + = + , where ω  is the magnitude of the 

disturbance and ( )I t  is an index function which is 1 at the outlier appearance time and 0 

otherwise. In an on-line peak detection procedure, if a down biased outlier appears, the 

detection mechanism may misidentify it as a downwards turning point and give out an early 

false alarm although the main trend of the series is still upwards. The following simulations 

add one outlier at a random time before the turning point occurs with 3 levels of magnitudes 

of the outliers where ω  is set to be 1.5 , 3σ σ− − , and 5σ− . The influence of the outlier will be 

illustrated clearly by using one turning point case with turnT =30 and ~ [0.5,1.5]Uσ . The total 

length for the whole series is set to be 60. We examine the system again by 1000 Monte Carlo 

replications as 1000 replications can already give out stable false early alarm and alarm delay 

rate. The result is as follows: 
Table 3.1: Property of the power-controlled surveillance system under outlier influence 

    ω            False early alarm             Alarm delay 

                     length        rate                   length        rate 
~ [0.5,1.5]Uσ  

1.5σ−             15.181       0.011                 1.352       0.952 
3σ−                14.384       0.250                 1.002       0.362 
5σ−                14.739       0.813                 1.242       0.157 
~ [1.5,2.5]Uσ  

1.5σ−             14.285       0.007                 2.220       0.992 
3σ−                14.613       0.176                 1.862       0.801 
5σ−                14.753       0.657                 2.745       0.303 
~ [2.5,3.5]Uσ  

1.5σ−             14.281        0.016                 2.992      0.963 
3σ−                13.116        0.103                 3.454      0.886 
5σ−                13.959        0.596                 3.450      0.380 

 

Table 3.2.1 shows that for when ω = 1.5σ− , the system is almost not influenced with a still 

very low false alarm rate. When ω = 3σ− , the problem of the outliers begin to appear with an 

obviously higher false alarm rate and when ω = 5σ− , the alarm rate rises significantly to even 

around 80% when ~ [0.5,1.5]Uσ . Table 3.2.1 also shows that for ω = 3σ−  and  ω = 5σ− , the 

larger σ  is, the less will the system be influenced by the outlier, such as when ω = 5σ− , the 

false alarm rate will be lower when ~ [2.5,3.5]Uσ  than the false alarm rate when 

~ [1.5,2.5]Uσ . However, this is not due to the system’s being more robust to the outliers 
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with higher σ  level, but can be explained as larger σ  will confound the likelihood value and 

the alarm is not that easy to be triggered compared to data with lower σ .  

Generally speaking, when carrying out online turning point detection, it is important to correct 

the outlier in order to eliminate its negative influence. However, detection outlier in an on-line 

surveillance procedure requires a more tricky methodology as it needs to combine the outlier 

detection procedure on-line with turning point detection and correct it as soon as it appears. 

Some traditional outlier detection approaches which need the whole series of data or nearby 

observations such as kernel regression are not suitable. This paper will introduce a wavelet 

based method which can achieve the required detection and correcting demands in the 

surveillance system as it can handle the data on-line. The main advantage of this wavelet 

approach is that it can analyze data in both the time domain and the frequency domain and 

thus possesses good localization identifications in both time and scale. Therefore, for a series 

which shows non-stable or non-stationary aspects such as structure break, discontinuities or 

data spike, wavelet methodology will be an elegant algorithm to be adopted.  

 

4. Wavelet based outlier correction methodology  
4.1 A brief introduction to wavelets and wavelet multiresolution 

The main drawback of Fourier transformation is that it can not maintain the information of the 

time domain and will be unsuitable for signals with irregular behavior such as spikes or data 

breaks. The wavelet transformation adopts a basis of spatially localized functions as its 

transform filter. Then based on wavelet filtering of the original signal through shifting and 

dilations, the wavelet transformation can capture the characteristics of data series both in the 

frequency domain and the time domain. A brief introduction of the wavelet methodology is as 

follows: 

Corresponding to sinusoidal waves in the Fourier transform, the wavelet basis functions 

{ }, : ,k j k jψ ∈  used in the wavelet transform are generated by translations and dilations of a 

basic mother wavelet 2 ( )Lψ ∈   and can be expressed as ,
1( ) ( )k j

t kt
jj

ψ ψ −
= . For a 

continuous signal ( )f t , its wavelet transform is  *
, ,( , ) , ( ) ( )k j k jk j f f t t dtγ ψ ψ= 〈 〉 = ∫  and the 

inverse wavelet transform is ,( ) ( , ) ( )k jf t k j t dkdjγ ψ= ∫∫ . Time and frequency resolutions can 

be achieved using different choices of k  and j . In the time domain, translation of k  

corresponds to different time points; in the frequency domain, compressed versions of  
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, ( )k j tψ  with lower j  maintain the high frequency information of the original signal, while 

dilated versions with larger j  capture the lower frequencies in the signal. For discrete time 

series, the original Discrete Wavelet Transform (DTW) can be achieved by certain 

orthonormal transformation. We here introduce the maximal overlap discrete wavelet 

transform (MODWT) which is not orthonormal but has no restriction on the sample size, 

while the original DWT needed the sample length be a multiple of a power of two. For an N  

dimensional discrete vector { , 0,..., 1}tX t NΧ = = − , the level J  MODWT of Χ  contains 

1J + vectors 1,..., ,J JW W V  with wavelet coefficients jW  corresponding to changes of scale 

12 j
jτ

−= , while the wavelet scaling coefficients JV  corresponds to averages on a scale of 

2 j
Jλ = . The N  dimensional vectors jW  and JV  are computed by ,j j J Jw v= Χ = ΧW V  

where jw and Jv  are N N× matrices. Then the MODWT based MRA of Χ  is defined as: 

1 1

J J
T T
j j J J j J

j j
D Sw v

= =

Χ = + = +∑ ∑W V , where jD  is the thj  level MODWT detail containing the 

microscopic detail of Χ  which is the high frequency information of the original signal and 

JS  is the thJ level MODWT smooth containing landscape characteristics of Χ  which is the 

low frequency resolution of the signal. Basically, the MODWT and multiresolution can be 

viewed as a band-pass filter process on Χ , and based on different transformation matrices 

jw  and Jv , we have different choices of filters. For more information about the wavelet 

methodology and MODWT, we refer to Vidakovic (1999), Percival and Walden (2000), and 

Gençay et al. (2001).  

 
4.2  Wavelet based method to correct for outliers in an on-line surveillance system  

As outliers belong to the microscopic detail of the signal, it is reasonable to analyze it in the 

wavelet detail, which is most sensitive to the local behavior of the signal. There already exist 

literatures on the wavelet outlier detection: such as Canan and Huzurbazar (2002) and Aurea 

et al. (2009). The main idea of these papers is to set a threshold for the wavelet detail 

coefficient of the original observations or the residuals from the specified model. The outlier 

can be detected when the detail coefficients surpass the threshold and later be corrected after 

an inverse wavelet transformation. In our system of surveillance analysis, we need to specify 

the underlying model of the upward trend ( )D s  and that of the downward trend ( )C s , thus 

the residual based method is not suitable as we have no idea which pre-model is specified first. 
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Instead we take the wavelet detail jD  directly from the original data to check if it is outside a 

certain threshold level. The first level wavelet detail is taken as it captures the finest 

information of the signal and will be most sensitive to the outliers. Thus we set J =1 in the 

wavelet transform which results in decomposition 1 1D SΧ = + . More straightforwardly, for an 

outlier polluted series, the following figure shows how the wavelet detail can be used to detect 

the outlier:  

 
Figure 4.2.1: Wavelet decomposition of outlier polluted series  

 

Figure 4.2.1 shows that for this series with outlier appearing at time 25, according to the 

wavelet decomposition, wavelet detail 1D  is quite sensitive to the outliers with a significant 

deviation at the outlier occurrence time, which makes it efficient to detecting outliers. For the 

wavelet smooth 1S , it can still remain the original unimodel structure and the outlier time is 

not obvious. By following the procedure in Aurea et al. (2009), we set the threshold value θ  

directly to the lower 2.5% percentile value of the wavelet detail from standard normally 

distributed data. Then the whole outlier detecting and eliminating procedure can be carried 

out in the following steps: 

Step 1: Based on all the available observations 1 1 ... tx x + , we use the wavelet decomposition to 

decompose the series into wavelet detail 1D  and wavelet smooth 1S . 

Step 2: Record the time when 1D  lower than θ , set the corresponding 1D  to 0 and this results 

in a new wavelet detail '
1D . 

Step 3: Set ' '
1 1X D S= +  and then put 'X into the detection system. 
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The new series 'X  maintains the original structure of the observations X  but with the 

suspicious outlier point corrected, and we can also know when the outlier appears from the 

information given in 1D . For the outlier polluted series in section 3, we apply the procedure 

based on the above 3 steps. As when ω = 1.5σ− , the system is almost not influenced by the 

outliers, we only carry out the correlation procedure for ω = 3σ−  and ω = 5σ− . Monte Carlo 

simulation based on 1000 replications giving the following table: 
                               Table 4.2.1: Property of the surveillance system after filtering the outliers 

         ω            False early alarm             Alarm delay 

                            length        rate                 length        rate 
~ [0.5,1.5]Uσ        

     3σ−                   14.544      0.079                1.875       0.898 
     5σ−                   13.759      0.216                1.456       0.738 

~ [1.5,2.5]Uσ  
     3σ−                   16.589       0.073               2.825       0.915 
    5σ−                   14.099       0.181               2.597       0.803 

~ [2.5,3.5]Uσ  
     3σ−                  13.833        0.072               3.352       0.911 
     5σ−                  14.691        0.178               3.388       0.804 

           

Compared with Table 3.1, the false alarm rates in Table 4.2.1 are subdued to a large extent 

both when ω = 3σ−  and 5σ− , especially when ~ [0.5,1.5]Uσ  and ~ [1.5,2.5]Uσ  where the 

system is influenced seriously by the outliers, the reduction of the false alarm rate is quite 

obvious. Although for ω  lager than 5σ− ,  the false alarm rates are still not very low even 

after the wavelet filtering, but in those cases the outliers are easily noticed visually when more 

observations are added. Thus by combining the wavelet detection and visual impression 

together, the outlier problem can be reduced significantly in the surveillance process. Table 

4.2.1 also shows that the corresponding alarm delay rates are higher by using 'X  instead of 

applying original data X . As the delay lengths are quite moderate, this higher delay rate 

problem is not serious compared with the problems brought up by false alarm with its length 

being easily larger than 10. 

 

5. Conclusion  
This paper concentrates on three issues: first a power controlled on-line turning point 

detection system is proposed in Section 2 and we show this methodology performs well with 

the ability to give out timely alarms after only short delays. Section 3 points out that the 

decent behavior of this method is degraded by an outlier, which brings about a high false early 
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alarm rate. To solve this problem, we next apply a wavelet multiresolution (MRA) based on-

line outlier elimination method in Section 4, both the visual figures and the simulation results 

show that this methodology can reduce the influence of the outlier considerably. Generally 

speaking, the wavelet based approach has the advantage of being able to detect and correct the 

outlier on-line with turning point monitoring as the data process continues. Moreover, 

although the whole analysis in this paper is based on a linear parametric model, the same 

technologies can be extended to another unimodel quite easily. We only need to change the 

likelihood function in Section 2, and all the methodologies are fairly robust to the underlying 

unimodel structure.  
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