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NON-MANIPULABLE HOUSE ALLOCATION WITH RENT CONTROL

Tommy Andersson and Lars-Gunnar Svensson∗

In many real-life house allocation problems, rents are bounded from
above by price ceilings imposed by a government or a local administra-
tion. This is known as rent control. Because some price equilibria may
be disqualified given such restrictions, this paper proposes an alterna-
tive equilibrium concept, called rationing price equilibrium, tailored to
capture the specific features of housing markets with rent control. An
allocation rule that always selects a rationing price equilibrium is de-
fined, and it is demonstrated to be constrained efficient and (group)
non-manipulable for “almost all” preference profiles. In its bounding
cases, the rule reduces to a number of well-known mechanisms from the
matching literature. In this sense, the housing market with rent control
investigated in this paper integrates several of the predominant matching
models into a more general framework.

Keywords: House allocation, rent control, rationing, rationing price
equilibrium, constrained efficiency, non-manipulability.

1. INTRODUCTION

HOUSE ALLOCATION IS a classical problem in the mechanism design literature. The aim is to
allocate a number of houses (or some other indivisible items such as jobs or tasks) among
a group of agents given that each agent is interested in renting or buying at most one
house. Several suggestions have been proposed for this problem. For example, when rents
are exogenously given, and in the absence of existing tenants,1 Hylland and Zeckhauser
(1979) proposed the Serial Dictatorship Mechanism as a solution to this problem. This
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1The problem with existing tenants is not considered in this paper. It was first investigated by
Shapley and Scarf (1974). See also Abdulkadiroğlu and Sönmez (1998), Ma (1994), Pápai (2000), Roth
(1982a), Roth and Postlewaite (1977), and Svensson (1999) among others. Also, the “kidney exchange
problem” resembles a housing market with existing tenants, see Roth et al. (2004) for a detailed discus-
sion. The house allocation model with both existing tenants and new applicants was first considered by
Abdulkadiroğlu and Sönmez (1999).
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deterministic rule assigns each agent a priority according to some criteria (random, queue,
etc.) and the agents have to choose a house from the set of “remaining houses” when the
agents with higher priorities have made their choices. Svensson (1994) demonstrated that
a weaker version of this mechanism (where agents are allowed to have weak preferences)
is Pareto efficient and non-manipulable. Ergin (2002) considered a more general priority
structure, where agents are allowed to have diverse priorities for different houses, and
provided necessary and sufficient conditions for an allocation rule to be Pareto efficient
and non-manipulable.2

Even if the assumption of exogenously given and fixed rents is restrictive, it is satisfied
in many real-life applications. Examples include on-campus housing and public housing.
However, a priority-based fixed-price mechanism cannot take into consideration the exis-
tence of agents who are willing to accept higher rents to receive some other house in the
allocation process. In this sense, there are potential welfare gains by allowing for more flex-
ible rents. The obvious solution to this problem is to adopt a competitive price mechanism
for the allocation procedure. This idea has been advocated by Crawford and Knoer (1981),
Demange and Gale (1985), Demange et al. (1986), Leonard (1983), and Shapley and Shubik
(1972) among others. The type of housing markets where such mechanisms are applicable
are common in metropolitan areas. Also here, Pareto efficient and non-manipulable allo-
cation rules exist. More precisely, because the set of equilibrium prices forms a complete
lattice (Demange and Gale, 1985; Shapley and Shubik, 1972), the existence of a unique
minimal equilibrium price vector is guaranteed. Then by using this price vector as a direct
mechanism for allocating the houses, a Pareto efficient outcome where no agent has any
incentive to misrepresent his preferences is assured as demonstrated by Demange and Gale
(1985).3

Fixed-price priority-based mechanisms and the competitive price mechanism can be
regarded as two polar cases for allocating houses when there are no existing tenants as
rents are totally non-flexible in the former and fully flexible in the latter. A third and
intermediate practice for allocating houses is when a government or a local administration,
by laws or ordinances, imposes a price ceiling and thereby allows for a limited flexibility
in the rents. Even if there has been a widespread agreement among economists that this
type of rent control generates a mismatch between houses and tenants, discourages new
construction, retards maintenance, etc. (see, e.g., Arnott, 1995; Turner and Malpezzi, 2003,
for a detailed discussion), this practice is widely used. As of 2011, legislated rent control
existed in approximately 40 countries around the world.

A general problem in housing markets with rent controls is that there will typically be
an unbalanced relationship between supply and demand (this is obviously also a problem for
housing markets where fixed-price mechanisms are used). Thus, the phenomenon of a price
rigidity arises and a rationing mechanism is normally needed to facilitate the distribution
of houses among agents in addition to the rent leverage. This situation is studied in the

2For additional results and characterizations, see e.g., Balinski and Sönmez (1999), Ehlers (2002),
Erdil and Ergin (2008), Larsson and Svensson (2005), Pápai (2000), and Zhou (1990).

3See also Andersson and Svensson (2008), Leonard (1983), Sun and Yang (2003), and Svensson (2009).
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classical paper by Drèze (1975) where a variant of a competitive equilibrium based on
rationing was introduced.4 To model such a housing market, the rents (or prices) must be
bounded to belong to an exogenously given set that specifies the price ceilings as well as
the minimal acceptable rent (price) for the landlord (the “reservation rent”). This is also
the type of housing market considered in this paper. However, the model is not restricted
to this type of interpretation as explained later in this section.

Because the set of price equilibria that respects the price ceilings may be empty
for some preference profiles, a different equilibrium notion than the concept of a price
equilibrium is needed to analyze the housing market with rent control. In this notion,
the rationing mechanism will play a role as explained in the above. This paper assumes
that the rationing mechanism is given by a priority structure, i.e., for each house, there is
a strict priority-order that ranks the agents in terms of priority. This may, for example,
reflect a situation where families are given higher priorities to three-bedroom apartments,
whereas singles are given higher priorities to studio apartments. In the special case when the
priority-order is identical for all houses, the priority structure collapses to the one adopted
by, e.g., Hylland and Zeckhauser (1979) and Svensson (1994) for the Serial Dictatorship
Mechanism.

As is well-known, the above type of priority structure have implications on which
notion of efficiency that can be incorporated in the equilibrium concept. For example,
(unconstrained) Pareto efficiency is in general incompatible with a priority respecting allo-
cation of the houses (see, e.g., Balinski and Sönmez, 1999; Ergin, 2002, or the more detailed
discussion in Section 4). However, this does not mean that it is impossible to base the notion
of efficiency on Pareto improvements. In fact, the efficiency notion adopted in this paper
essentially states that the assignment of the houses to the agents is “efficient” (or “con-
strained efficient” to use the language of this paper), at a given price vector, if the priority
structure is respected, and if it is not possible to make a Pareto improvement by reallocat-
ing the houses among the agents, and at the same time, respect the priority structure. This
efficiency notion is the key component in the definition of a rationing price equilibrium.
The other components are the standard requirements (see, e.g., Talman and Yang, 2008;
Zhu and Zhang, 2011) that the prices must belong to the price space, the price of any
unassigned house must equal its lower price bound and the rationing mechanism should
only be effective in the special case when the rent that is attached to a house equals its
exogenously given ceiling.

Given a domain restriction where “almost all” preference profiles are considered, it is
demonstrated that the set of rationing price equilibrium price vectors always contains a
unique minimal vector. Using this insight, a rule where the minimal rationing price equi-
librium vector is used as a direct mechanism for allocating the houses among the agents
is defined. This rule is called the minimal RPE mechanism, and it is demonstrated to be
constrained efficient and (group) non-manipulable for “almost all” preference profiles.5 In
the limiting cases where rents are fully flexible or where rents are fixed, the outcome of the

4See also Cox (1980), Dehez and Drèze (1984), Kurz (1982), and van der Laan (1980), among others.
5For the remaining profiles, it is an open question how to define the allocation rule as the set of rationing

price equilibrium vectors need not have a unique minimal element. See Example 3 and the discussion
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mechanism is the same as for the Competitive Price Mechanism (Demange and Gale, 1985)
and the (agent proposing) Deferred Acceptance Algorithm6 (Gale and Shapley, 1962), re-
spectively.

As stated in the above, the framework introduced in this paper can be applied to
other types of problems than house allocation with rent control. This is next illustrated
with the aid of two real-life examples. The first is based on the skyscraper HSB Turning
Torso located in Malmö, Sweden. This unique skyscraper has won numerous awards for its
ground-breaking architecture.7 The owners of the building (HSB) decided to allocate the
147 apartments in the building using a fixed-price mechanism and a well-defined priority-
order based on, e.g., membership and savings in the HSB fund. However, a combination of
two circumstances made it very difficult for the owners to determine the fixed rents. More
explicitly, the cost to build the house was more than twice as high as expected (1.6 billion
SEK instead of 700 million SEK), and the uniqueness of the building made it very difficult
to predict willingness-to-pay for potential tenants. The first of these facts suggests “high”
rents whereas the latter is a warning that if the rents are “too high,” it will be difficult
to find tenants. In the end, it was decided to set the rents below the break-even level.
However, at the inaguration on August 27, 2005, all 147 apartments had a tenant, and
there were around 350 persons in the queue willing to lease an apartment. This raises the
following question: were the rents too low considering that many people obviously were
interested in leasing an apartment and given the fact that costs not were covered? The
answer to this question is probably yes. An alternative way of assigning the apartments to
the potential tenants is to use the framework suggested in this paper, namely, to impose
upper and lower bounds on the rents and then let the reported preferences determine the
rents and the assignment of the apartments for the given priority structure.

A second example, and an alternative interpretation of the model, is the case when the
indivisible items are jobs or positions. In many such markets, wages are bounded from below
by legislated minimum wages (corresponding to price ceilings in the rent control model)
and from above by the employers’ maximum willingness to pay for a worker (corresponding
to the reservation rents of the landlord in the rent control model). As of 2011, this type of
legislation was present in around 200 countries. On these markets, it is well established that
workers often are paid above the minimum wage, e.g., members of the union (Shaviro, 1997)
or workers employed by the local government (Wilkinson, 2004), which makes it relevant
to study labor markets with minimum wages but where wages may exceed the legislated
lower bound. The model introduced in this paper provides a framework for analyzing this
type of labor market.

The paper is outlined as follows. Section 2 relates the concept of a rationing price
equilibrium and the minimal RPE mechanism to various solution concepts and mecha-

following Definition 5.
6Note that houses are merely objects to be consumed in our framework exactly as colleges are merely

objects to be consumed in the “student placement problem” (see, e.g., Balinski and Sönmez, 1999, for a
detailed discussion).

7The process of erecting the building was covered in the documentary Extreme Engineering broadcast
for the first time on Discovery Channel in July 2004.
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nisms proposed in the literature. Section 3 introduces the house allocation model with rent
control. Section 4 defines the priority structure and a notion of efficiency. The concept
of a rationing price equilibrium is formally defined and analyzed in Section 5. A domain
restriction is defined and thoroughly discussed in Section 6 where, in particular, the set
of rationing price equilibrium vectors is demonstrated to contain a unique minimal price
vector given the domain restriction. Section 7 defines the minimal RPE mechanism and
demonstrates that it is (group) non-manipulable for “almost all” preference profiles. This
mechanism is also related to several well-known mechanisms from the literature. Some con-
cluding remarks are gathered in Section 8. All proofs, technical definitions, and technical
results are relegated to the Appendix.

2. RELATED LITERATURE

To the best of our knowledge, this paper is the first to define an constrained efficient and
(group) non-manipulable allocation rule for a housing market with rent control and with an
exogenously given priority structure. This does, of course, not mean that this type of market
has not been considered earlier. As already explained in Section 1, many classical papers
consider such a market (see, e.g., Drèze, 1975, or footnote 4), but the main focus in those
papers is the weakening of the price equilibrium concept in exchange economies to handle
the case with price rigidities when items are perfectly divisible. The case with indivisibilities
on housing markets with price rigidities has recently been considered by Talman and Yang
(2008) where the concept of a “constrained Walrasian equilibrium” (CWE, henceforth) is
introduced. It is straightforward to demonstrate that any rationing price equilibrium (RPE,
henceforth) can be transformed into an CWE by basing the “rationing scheme” (as defined
in Talman and Yang, 2008) on the assignment of the houses. However, it is in general
impossible to transform all CWE states into RPE states as the RPE states have to respect
an exogenously given priority structure while no such restriction prevails for the CWE
states. Hence, the set of RPE states is a proper subset of the set of CWE states. Also,
as the CWE states have no built-it efficiency requirement, there are CWE states where it
is possible to make a Pareto improving reallocation of the houses among the agents, and
at the same time, respect all requirements of the concept for any given priority structure.
This is not possible at any RPE state as an RPE state must be constrained efficient.

The efficiency concern is also the main motivation behind the study by Zhu and Zhang
(2011) where a weakening of the CWE concept is introduced to include so-called “market
efficient assignments.” This notion of efficiency is based on maximizing a specific sum
of individual house valuations and upper price ceilings subject to that preferences are
represented by quasi-linear utility functions. However, even if we restrict the preferences to
be quasi-linear, the solution concept suggested by Zhu and Zhang (2011) is fundamentally
different from an RPE as, again, a “market efficient” assignment need not respect a given
priority structure and Pareto improvements that respect all requirements of their concept
may be possible for any given priority structure.

Both Talman and Yang (2008) and Zhu and Zhang (2011) provide algorithms that
identify their respective solution concepts. In these dynamic processes, the rationing scheme
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is endogenously determined by the process. On the other hand, neither Talman and Yang
(2008) nor Zhu and Zhang (2011) investigates if their respective mechanisms reach a non-
manipulable end state or not. In addition, their sets of “equilibrium price vectors” will, in
general, not contain a unique minimal element. Hence, the core problems of the present
paper are not considered in Talman and Yang (2008) and Zhu and Zhang (2011).

The allocation rule considered in this paper is also one of few in the literature that inte-
grates existing“efficient”and non-manipulable rules into a more general framework. A well-
known example is the You-Request-My-House-I-Get-Your-Turn mechanism, introduced by
Abdulkadiroğlu and Sönmez (1999), which integrates the Serial Dictatorship Mechanism
with strict preferences (Hylland and Zeckhauser, 1979) and the Top-Trading Cycles Mech-
anism (Shapley and Scarf, 1974). Another example is the Kidney Exchange Mechanism,
first investigated by Roth et al. (2004), where a generalized version of the Top-Trading
Cycles Mechanism (Shapley and Scarf, 1974) that also takes trading chains into account is
considered. A third example is Pápai (2000) where a large class of mechanisms that solve
the house allocation problem is proposed. These rules are called Hierarchical Exchange
Rules, and they can be regarded as a generalization of the Top-Trading Cycles Mechanism
(Shapley and Scarf, 1974), even if no initial ownership is assumed in the model. An im-
portant difference between those mechanisms and the one considered in this paper is that
the former mechanisms only work in the absence of monetary transfers whereas the rule
considered here can be applied to housing markets independently of if monetary transfers
can be carried out or not.

3. THE HOUSING MARKET WITH RENT CONTROL

There is a finite set of houses and a finite set of agents denoted by H = {1, . . . ,m} and
N = {1, . . . , n}, respectively. In some examples, the letters a, b, c, d, and e will be used to
denote elements in H. The houses in H do not have any existing tenants by assumption. In
some housing markets, it is natural to assume that there are several owners of the houses,
but since our results do not require this, it is, for notational simplicity, assumed that there
is a single owner of all houses (our arguments extend with only a few modifications to the
case with multiple owners). Agents wish to buy, or rent, at most one house and have an
option not to buy, or rent, a house at all. This outside option is formally represented by a
null house, denoted by 0. These houses are available in an unlimited number of copies.
An assignment is a mapping µ : N → H ∪{0} such that µi = µi′ for i ̸= i′ only if µi = 0.

Hence, two distinct agents can not be assigned the same house in H. Denote by µ0 the
set of houses that is not assigned to any agent at assignment µ. The null house is always
included in this set as its supply is unlimited. Hence:

µ0 = {h ∈ H : µi ̸= h for all i ∈ N} ∪ {0}.

Let p ∈ Rm+1 be a price vector. A coordinate in p is denoted by ph and it represents
the price, or rent, of house h ∈ H ∪ {0}. The price of the null house is, without loss of
generality, always assumed to equal zero, i.e., p0 = 0. A state is a pair (p, µ) consisting of
a price vector and an assignment.
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Price vectors are assumed to be restricted by exogenously given lower and upper bounds

denoted by p ∈ Rm+1 and p ∈ Rm+1
, respectively. Here, R = [−∞,∞] represents the

extended real line, and it is assumed that p ≤ p. Note that p ∈ Rm+1
since we do not

exclude the case when there is no upper price limit for some houses. The lower bounds
can be thought of as the owner’s reservation prices or rents, and the upper bounds as a
legislated rent control. Also note that as p0 is always zero, it is clear that p0 = p0 = 0. The
price space is given by:

Ω = {p ∈ Rm+1 : p
h
≤ ph ≤ ph for h ∈ H ∪ {0}}.

Each agent i ∈ N has (indirect) preferences on pairs of houses and prices. Denote by Ri

agent i’s preference relation on the set of houses and prices (H∪{0})×R. The corresponding
strict preference and indifference relations are denoted by Pi and Ii, respectively. The
following notation will be used: if h, h′ ∈ H ∪ {0} and phRip

′
h′ , then agent i ∈ N weakly

prefers house h at price ph to house h′ at price p′h′ .8 When the price vector is fixed during
the analysis (i.e., when p = p′), the simplified notation hRih

′ is employed.
Preferences are assumed to be rational and monotonic for all agents i ∈ N , i.e., Ri is

a complete and transitive binary relation on (H ∪ {0}) × R and phPip
′
h if ph < p′h. It is

also, for all agents i ∈ N , assumed that phPiph′ if h = 0 and if ph′ is “sufficiently large.”
Further, preferences are assumed to be continuous, i.e., the sets {ph ∈ R : phRip

′
h′} and

{ph ∈ R : p′h′Riph} are closed for each i ∈ N and all h, h′ ∈ H ∪ {0} and all p′h′ ∈ R. All
preference relations Ri satisfying the above properties for agent i ∈ N are gathered in the
set Ri. A preference profile, or for short a profile, is a list R = (R1, . . . , Rn) of the agents’
preferences. This list belongs to the set R = R1× . . .×Rn. Finally, we adopt the notational
convention of writing a profile R ∈ R as R = (RC , R−C) for C ⊂ N .

4. RATIONING AND CONSTRAINED EFFICIENCY

It is well-known that a price equilibrium9 exists under very general conditions (see, e.g.,
Demange and Gale, 1985; Shapley and Shubik, 1972). However, if there are finite price
ceilings, the intersection between the set of equilibrium price vectors and the price space
Ω is empty for some profiles R ∈ R. Hence, a different notion than the concept of price
equilibrium is needed to analyze housing markets with rent control, and this weakening
must contain some kind of rationing mechanism as prices alone cannot solve the allocation
problem. Here, it is assumed that the rationing mechanism is based on a priority struc-
ture π, i.e., for each house h ∈ H, there is an exogenously given strict priority-order πh.
Formally, πh : N → N is a bijection where the highest-ranked agent i ∈ N is the agent
with πih = 1, the second highest ranked agent i′ has πi′h = 2, and so on. A special type

8Note that ph has a dual meaning. It represents the real number ph as well as the pair (h, ph). This will
not cause any confusion as ph is equivalent to the pair (h, ph) if and only if it is written in connection to
a preference relation.

9A price equilibrium will be formally introduced and defined in Section 5. See also Crawford and Knoer
(1981), Demange and Gale (1985), Demange et al. (1986), Leonard (1983), Mishra and Talman (2010),
Shapley and Shubik (1972), or Svensson (1983).
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of priority structure, which is a prerequisite for analyzing the Serial Dictatorship Mecha-
nism (Hylland and Zeckhauser, 1979; Svensson, 1994), is when πh = πh′ for all h, h′ ∈ H.
Throughout this section, prices are assumed to be fixed. In this case, we recall, from Section
3, that the simplified notation hRih

′ will be employed instead of phRiph′ .

An assignment µ is priority respecting if there is no agent i ∈ N who strictly prefers
some house h to µi and house h is assigned to some other agent j ∈ N who has lower
priority for house h than agent i, and, furthermore, all agents weakly prefer their assigned
house to any unassigned house.10

Definition 1 For a given profile R ∈ R and a given priority structure π, assignment µ
is priority respecting if for all i, i′ ∈ N : (i) µi′Piµi only if πi′µi′

< πiµi′
, and (ii) µiRih if

h ∈ µ0.

A priority respecting assignment µ need not be (unconstrained) Pareto efficient as there
may exist some other assignment that Pareto dominates µ but where the priority structure
is not respected. In fact, Pareto efficiency is only guaranteed for specific priority structures.
Ergin (2002) demonstrated that acyclicity of the priority structure is sufficient for Pareto
efficiency (given fixed prices). This condition roughly means that no agent can “block” a
potential settlement between two other agents without affecting his own assignment.

Example 1 Let N = {1, 2, 3}, H = {a, b}, π1a < π2a < π3a and π2b < π3b < π1b. Let also
bP1aP10, aP20P2b, and aP3bP30. In this case, assignment µ = (a, 0, b) is priority respecting
and assignment µ′ = (b, 0, a) Pareto dominates µ. However, assignment µ′ does not respect
the priority structure π as µ′

3P2µ
′
2 and π2a < π3a, i.e., agent 2 can “block” the settlement

between agents 1 and 3. �

The above insight leads to a “second best” notion of efficiency where only priority re-
specting assignments are compared.11

Definition 2 For a given profile R ∈ R and a given priority structure π, a priority
respecting assignment µ is constrained efficient at profile R if there is no priority respecting
assignment µ′ that Pareto dominates µ at profile R, i.e., there is no priority respecting
assignment µ′ such that µ′

iRiµi for all i ∈ N and µ′
iPiµi for some i ∈ N .

10In, e.g., Balinski and Sönmez (1999), condition (i) of Definition 1 is called fairness and condition (ii)
is the combination of individual rationality and non-wastefulness. Note also that an assignment is stable
(Balinski and Sönmez, 1999; Gale and Shapley, 1962) if and only if it is fair, individually rational, and
non-wasteful (Balinski and Sönmez, 1999, Lemma 2). Hence, any stable assignment is priority respecting
and vice versa. Finally, condition (i) of Definition 1 is also known as adaptability.

11In some special cases, constrained efficiency (as defined in Definition 2) coincides with (unconstrained)
Pareto efficiency. This is, e.g., the case when agents have strict preferences and the priority structure of
Hylland and Zeckhauser (1979) is adopted, i.e., when πh = πh′ for all h, h′ ∈ H. Note, however, that if
agents are allowed to have weak preferences (as is our framework), it is not always possible to attain (un-
constrained) Pareto efficiency, even for this simple priority structure, since a potential settlement between
two agents may be “blocked” by a third agent (i.e., the priority structure must to be respected).
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We end this section by stating three important remarks. First, the set of constrained
efficient assignments is non-empty for any R ∈ R because there is a finite number of
assignments and since there always exists a priority respecting assignment.12

Second, the notion of efficiency in Definition 2 is rather weak in the sense that there
may be several constrained efficient assignments at a specific profile. This feature will be
important when prices are introduced into the model. In fact, if there are several constrained
efficient assignments at a given profile R (and a given price vector), not all of them may
be compatible with our notion of equilibrium (Definition 3). This point is later illustrated
in Example 2 in Section 5.
Finally, note that we adopt a“straightforward” interpretation of the priority structure, π,

in the sense that agents are not allowed to exchange priorities. This interpretation is differ-
ent from the one considered in, e.g., Abdulkadiroğlu and Sönmez (1998, 2003) and Pápai
(2000). There, Pareto efficient outcomes are guaranteed for any priority structure if a gen-
eralization of the Top Trading Cycles Mechanism (Shapley and Scarf, 1974) is adopted. In
our framework, where agents are not allowed to exchange priorities, (unconstrained) Pareto
efficient outcomes can generally not be obtained as assignments have to be priority respect-
ing. This can be seen in Example 1. If exchange would be allowed, agents 1 and 2 (i.e.,
the agents with highest priorities for houses a and b, respectively) would trade priorities
as they both are made strictly better off by this trade, and the resulting assignment would
be µ′′ = (b, a, 0). This is a Pareto improvement compared to µ = (a, 0, b) from Example
1. Assignment µ′′ is, however, not allowed in our framework since π must be respected,
µ′′
1P3µ

′′
3, and π3b < π1b.

5. RATIONING PRICE EQUILIBRIA

As explained in the previous section, the standard notion of price equilibrium cannot
be used to analyze the housing model with rent control as there may be an unbalanced
relationship between supply and demand when prices are restricted to belonging to Ω. This
imbalance also suggests that any equilibrium notion used to analyze this type of market
must have some incorporated rationing mechanism. This section proposes an equilibrium
notion called rationing price equilibrium where the built-in rationing mechanism is given
by the priority structure π from Section 4.

Definition 3 For a given profile R ∈ R and a given priority structure π, a state (p, µ)
is a rationing price equilibrium (RPE) if the following conditions hold:

12A priority respecting assignment can be obtained by arbitrary breaking ties in R (and thereby
obtaining the strict profile P̂ ) and by applying the (agent proposing) Deferred Acceptance Algo-
rithm (Gale and Shapley, 1962) given P̂ and π (exactly as in the “student placement problem,” see
Balinski and Sönmez, 1999). This algorithm generates an assignment µ where (a) there is no pair
(i, h) ∈ N × H where hP̂iµi and πih < πi′h if µi′ = h, and (b) no agent i ∈ N with hP̂iµi if µi ∈ µ0,
see, e.g., Roth (2007, pp. 3–4). Since the breaking of indifferences does not switch the positions of any two
houses in the preference relation Ri, conditions (a) and (b) are satisfied also for profile R. But if conditions
(a) and (b) are satisfied for R, then conditions (i) and (ii) of Definition 1 are satisfied for R, respectively.
Hence, µ is a priority respecting assignment.
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(i) for all h ∈ µ0, ph = p
h
,

(ii) p
h
≤ ph ≤ ph for all h ∈ H ∪ {0},

(iii) for all i, i′ ∈ N, pµi′ = pµi′
if pµi′Pipµi

, and
(iv) µ is a constrained efficient assignment.

Before relating this concept to the notion of a price equilibrium and related suggestions in
the literature, the intuitive ideas behind the various conditions of Definition 3 are explained.
Conditions (i) and (ii) are the standard requirements that the price of any unassigned house
must equal its lower price bound and that the price vector must belong to the price space,
respectively.

Requirement (iii) is based on Drèze (1975) and a series of subsequent papers (where
Talman and Yang, 2008; Zhu and Zhang, 2011, are the most closely related to this study)
where it is argued that the rationing mechanism should only be put to use when a specific
set of houses, with prices equal to the upper price bound, is overdemanded.13 The under-
lying motivation is the standard textbook argument that states that prices on houses that
are overdemanded should increase to approach a price equilibrium (of course, given that
reaching a price equilibrium is the ultimate goal). However, when prices are bounded from
above, it may not be possible to increase the prices in such fashion that all overdemanded
sets of houses are eliminated, which is necessary for obtaining a price equilibrium (see, e.g.,
Demange et al., 1986; Hall, 1935; Mishra and Talman, 2010).

Requirement (iv) guarantees that the assignment at any RPE state is “efficient” and that
the priority structure is respected. As already explained in Section 4, the “cost” of this
guarantee is that the state need not be (unconstrained) Pareto efficient. Condition (iv) is
also dependent on condition (iii), and this dependence will give further insights to why
a stronger efficiency notion cannot be adopted.14 More specifically, the efficiency notion
must be weak enough to guarantee that condition (iii) of Definition 3 is always satisfied for
some “efficient” assignment. This need not be the case as there may be several constrained
efficient assignments at a given price vector and not all of them are necessarily compatible
with condition (iii). This conflict is illustrated in the following example.

Example 2 LetN = {1, 2, 3},H = {a, b, c}, and πih = i for all i ∈ N and h ∈ H. For each
agent i ∈ N , preferences are represented by a quasi-linear utility function uih(p) = vih− ph
where the values vih are represented by real numbers. Let vi0 = 0 for all i ∈ N and: v1a v1b v1c

v2a v2b v2c
v3a v3b v3c

 =

 11 10 0
10 0 5
0 10 5

 .

13That is when the number of agents that only demand houses from some set H ′ ⊂ H is strictly larger
than the number of elements in the set H ′, see, e.g., Demange et al. (1986) or Mishra and Talman (2010).

14From a technical point of view, the set of “quasi rationing price equilibria” (see Appendix B) need not
be closed for all profiles R ∈ R if stronger efficiency notions are applied (See Lemma 2 in Appendix B).
Without a closed set there may not exist a “minimal” RPE vector, the existence of which is necessary to
obtain a well-defined allocation rule (see the discussion in Sections 6 and 7).
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Let the price space Ω be given by the condition 0 ≤ ph ≤ 1 for all h ∈ H. Consider the
price vector p, where pa = 1 and pb = pc = 0, and note that there are two constrained
efficient assignments at this price vector: µ = (a, c, b) and µ′ = (b, a, c). However, only state
(p, µ) is an RPE state as Definition 3(iii) is violated for state (p, µ′) since 0 = pb < pb = 1
and pµ′

1
P3pµ′

3
. �

We next remark on the relation between an RPE and a price equilibrium. The latter
is a state (p, µ) where each agent has been assigned his most preferred house among all
houses at the prevailing prices p, i.e., pµi

Riph for all i ∈ N and all h ∈ H ∪ {0}, and
where the price of any unassigned house equals its lower price bound. The former of these
conditions guarantees that the state also is envy-free (Foley, 1967). However, if the state
(p, µ) is envy-free, then µ must be constrained efficient as µ can be selected for any priority
structure. Consequently, an envy-free RPE is also a price equilibrium. Conversely, a price
equilibrium (p, µ) is an RPE if p ∈ Ω, and, therefore, a price equilibrium is always an RPE
if ph = ∞ for all h ∈ H.
The final remark concerning Definition 3 is its relation to alternative equilibrium con-

cepts. Talman and Yang (2008) proposed a notion of equilibrium for housing markets with
rent control called Constrained Walrasian Equilibrium (CWE). Their concept is not based
on an exogenously given priority structure but rather on a rationing scheme Q that speci-
fies which houses in H the agents in N can and cannot be assigned. For a given rationing
scheme Q, a CWE satisfies conditions identical to conditions (i)–(iii) of Definition 3. Be-
cause Q can be created arbitrarily as long as these requirements are satisfied, it is easy
to demonstrate that for any RPE state (p, µ) there exists a rationing scheme Q such that
(p, µ) is a CWE state. However, if (p, µ) is a CWE state, there need not exist a priority
structure such that (p, µ) constitutes an RPE state. The underlying reason for this is that
a CWE need not be constrained efficient, i.e., at a given CWE, it may be possible to make
a Pareto improving reallocation of the houses among the agents and at the same time
respect all requirements of the concept for any given priority structure. In a related paper,
Zhu and Zhang (2011) provided a weaker equilibrium concept than CWE and introduced
a notion of efficiency that can be applied whenever preferences are represented by quasi-
linear utility functions. However, their notion of efficiency is based on maximizing a sum
of valuations and upper price limits so it is not based on Pareto efficiency or on Pareto
improvements. In fact, if state (p, µ) satisfies their notion of equilibrium, it may be Pareto
improved for any priority structure.
We end this section by introducing some notation. A price vector p is an RPE vector if

there is an assignment µ such that the state (p, µ) is an RPE. For a given profile R ∈ R, the
set of RPE states is denoted by ΣR and the corresponding set of price vectors is denoted
by ΠR, i.e.: ΠR = {p ∈ Ω : (p, µ) ∈ ΣR for some assignment µ}.

6. MINIMAL RPE VECTORS

The basic idea for constructing a (group) non-manipulable allocation rule for housing
markets with rent control is the same as in the standard competitive model where a Pareto
efficient and (group) non-manipulable allocation rule can be obtained if the unique minimal
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equilibrium price vector is used as a (direct) mechanism for allocating the houses among
the agents (Andersson and Svensson, 2008; Demange and Gale, 1985). Therefore we are,
in the rent control framework, searching for minimal price vectors in the set ΠR.

Definition 4 For a given profile R ∈ R and a given priority structure π, the price vector
p∗ ∈ ΠR is a minimal RPE vector if for p ∈ ΠR, p ≤ p∗ only if p = p∗.

Theorem 1 For any profile R ∈ R and any given priority structure π, there is a minimal
RPE vector p∗ ∈ ΠR.

A minimal RPE vector need not be unique as illustrated in the following example.

Example 3 Let N = {1, 2, 3, 4, 5}, H = {a, b, c, d, e}, π1h = 1 for all h ∈ H, π2a = 2,
and π3b = 2 (the remaining priorities may be selected arbitrarily). For each agent i ∈ N ,
preferences are represented by a quasi-linear utility function uih(p) = vih − ph where the
values vih are represented by real numbers. Let vi0 = 0 for all i ∈ N , and:

v1a v1b v1c v1d v1e
v2a v2b v2c v2d v2e
v3a v3b v3c v3d v3e
v4a v4b v4c v4d v4e
v5a v5b v5c v5d v5e

 =


10 10 0 0 0
10 0 0 5 0
0 10 0 0 5
0 0 0 10 0
0 0 0 0 10

 .

Let also 0 ≤ ph ≤ 1 for all h ∈ H. In this example, there are two minimal price vectors
p and p′ where pa = pb = pe = 1, pc = pd = 0, p′a = p′b = p′d = 1, and p′c = p′e = 0. The
vector p is obtained at the assignment µ = (b, a, e, d, c), and the vector p′ is obtained at
the assignment µ′ = (a, d, b, c, e). �

To obtain uniqueness of a minimal RPE vector, it is necessary to exclude some pro-
files from the domain R. The domain restriction that will be employed when proving the
uniqueness of a minimal RPE vector, as well as the (group) non-manipulability result in
the next section, is a subset R̃ ⊂ R where R̃ is the set of profiles such that no two houses
are connected by indifference (NCBI) at any price vector p ∈ Ω.

Definition 5 For a given profile R ∈ R, two houses, h1 and ht, in H ∪{0} are connected
by indifference (CBI) if there is a price vector p ∈ Ω, a sequence of agents (i1, . . . , it−1),
and a sequence of houses (h1, . . . , ht) where t ≥ 2, hj ̸= hk for some houses in the sequence,
and:
(i) ph1 = ph1

and pht = pht
,

(ii) phj
Iijphj+1

for 1 ≤ j ≤ t− 1, and
(iii) if h1 = ht, then t ≥ 3 and ij ̸= ik for some agents in the sequence.

In Example 3, houses a and b are CBI as long as v1a = 10. However, if v1a = 10− ε for
some “small” ε ̸= 0, the profile belongs to R̃. Because R̃ only contains profiles such that no
two houses are CBI at any price vector, it is relevant to have a discussion about whether
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this is a severe domain restriction or not, and what implications the NCBI assumption
have on the individual preference domains R̃i, i.e., when R̃ is a product space of individual
domains. Three examples are used to shed some light on this. The first example is based on
a fixed-price mechanism, and it demonstrates that the assumption of NCBI is equivalent
to assuming strict preferences. Because it is well-known that one cannot go much beyond
strict preferences if one insists on “efficiency” and non-manipulability (Ehlers, 2002), the
NCBI assumption must, in this case, be regarded as a mild domain restriction. The second
example shows that if there is no upper price bound, then the assumption of NCBI does
not reduce the preference domain at all, i.e., R̃ = R.

Example 4 Suppose that p
h
= ph for all h ∈ H and let R ∈ R̃. If phIiph′ for some

i ∈ N and some h, h′ ∈ H (h ̸= h′), then houses h and h′ are CBI, which contradicts the
assumption that R ∈ R̃. Hence, preferences must be strict. �

Example 5 Suppose that ph = ∞ for all h ∈ H and let R ∈ R̃. Then it will never be
the case that phIiph′ for some agent i ∈ N and some houses h, h′ ∈ H as preferences are
monotonic, ph ∈ R, and ph /∈ R. Hence, R̃ = R.

The next example investigates the domain containing only quasi-linear profiles Rq ⊂ R.
This commonly adopted domain15 has previously been described in Examples 2 and 3.
From that description, it is apparent that for each R ∈ Rq, it holds that vih − vih′ ∈ R for
any agent i ∈ N and any two distinct houses h, h′ ∈ H, and the main insight is that two
houses can be CBI. Example 6, below, demonstrates that it is possible to define a restricted
domain R̃q

i for i ∈ N of quasi-linear preferences such that R̃q = R̃q
1× . . .×R̃q

n ⊂ R̃, where
vih − vih′ ∈ ∆i for any agent i ∈ N and ∆i is a tight subset of R. Consequently, the NCBI
assumption must be regarded as a mild assumption when only considering quasi-linear
profiles.

Example 6 Suppose that ph ∈ Q for all h ∈ H whereQ is the set of rational numbers. Let
also I denote the set of irrational numbers. Assume next that α1, . . . , αn are n“independent”
irrational numbers in the sense that αi ∈ I for all i ∈ N and αi ̸= Σj ̸=irjαj if rj ∈ Q.
Define:

∆i = {x ∈ R : x = yαi where y ∈ Q and y ̸= 0} for each i ∈ N .

Clearly, ∆i is a tight subset of R and ∆i∩Q = ∅. Suppose next that the preference domain
for agent i ∈ N is given by:

R̃q
i = {quasi-linear utility functions : vih− vih′ ∈ ∆i for all h, h

′ ∈ H ∪{0} , h ̸= h′}.

Consider now a sequence of agents (i1, . . . , it−1) and a sequence of houses (h1, . . . , ht) where
t ≥ 2, ph1 = ph1

, and pht = pht
. To see that houses h1 and ht cannot be connected by

15See, e.g., Crawford and Knoer (1981), Demange et al. (1986), Leonard (1983), Mishra and Talman
(2010), Talman and Yang (2008), and Zhu and Zhang (2011) among others.
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indifference, suppose that phj
Iijphj+1

for all 1 ≤ j ≤ t− 1, i.e., vijhj
− phj

= vijhj+1
− phj+1

for all 1 ≤ j ≤ t− 1. By adding these equalities and by simplifying, we obtain:

(1) Σj(vijhj
− vijhj+1

) = ph1 − pht .

But ph1 − pht ∈ Q while Σj(vijhj
− vijhj+1

) /∈ Q. Hence, equation (1) cannot hold, and
therefore houses h1 and ht cannot be connected by indifference. �

A final observation is that for any profile R ∈ R̃, any sequence of agents (i1, . . . , it−1),
and any sequence of houses (h1, . . . , ht) where t ≥ 2, the prices phj

may be chosen so
that ph1 = ph1

and phj
Iijphj+1

for 1 ≤ j ≤ t − 1. In that case, pht will be uniquely
determined by continuity and monotonicity of the preferences. However, if preferences are
chosen randomly, the probability is zero that pht = pht

since p and p are given exogenously
(similarly, if h1 = ht and ij ̸= ik for some agents in the sequence, then the probability that
pht = pht

is zero). Consequently, one may argue that very few profiles are excluded in R̃
compared to R, and, therefore, that “almost all” profiles are included in R̃.

Theorem 2 For any profile R ∈ R̃ and any given priority structure π, a minimal price
vector p∗ ∈ ΠR is unique.

7. NON-MANIPULABILITY

This section defines a (group) non-manipulable allocation rule that implements an RPE
state. Let R∗ ⊂ R. An allocation mechanism is a function f with domain R∗ that selects
an RPE state as an outcome, i.e., f(R) ∈ ΣR for R ∈ R∗. This paper employs the following
definition of (group) non-manipulability.

Definition 6 Let R∗ ⊂ R. An allocation mechanism f with domain R∗ is group manip-
ulable at a profile R ∈ R∗ by a (nonempty) group of agents C ⊂ N if there are preferences
R′

i for agents i ∈ C such that R′ = (R′
C , R−C) ∈ R∗, and there are two states f(R) = (p, µ)

and f(R′) = (p′, µ′) such that p′µ′
i
Pipµi

for all i ∈ C. If the mechanism f is not group manip-

ulable by any group C ⊂ N , at any profile R ∈ R∗, it is (weakly) group non-manipulable.

Note that a group of agents can manipulate an allocation mechanism only if all members
of the group are made strictly better of by misrepresenting their preferences.

For the remaining part of this paper, let R∗ = R̃. Note then that the above definition
of (non-)manipulability means that an agent’s choice of preferences to manipulate an al-
location mechanism is restricted by the choices of the other agents. However, Examples
4–6 illustrate cases where R̃ is a product space of agents’ preference domains and, con-
sequently, where an agent makes his choice of preferences to manipulate independently of
the choices of the other agents. Also, as argued in Section 6, “almost all” preference profiles
are included in R̃.

From Theorem 2, it is clear that the following mechanism is well-defined for any R ∈ R̃.
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Definition 7 The minimal RPE mechanism f is defined to be a mapping of profiles
R ∈ R̃ to a rationing price equilibrium (p∗, µ), where p∗ is the unique minimal price vector
in ΠR and µ is any selection of assignment such that (p∗, µ) ∈ ΣR.

Theorem 3 Let f be a minimal RPE mechanism with domain R̃. Then f is group
non-manipulable.

We next remark on two polar cases of the minimal RPE mechanism, and consequently
also two polar cases of Theorem 3. The first is when there are no upper price bounds
(i.e., when ph = ∞ for all h ∈ H). In this special case, no two houses are connected by
indifference (see Example 5), and ph < ph for all h ∈ H at any RPE state (p, µ). Conse-
quently, pµi

Riph for all i ∈ N and all h ∈ H ∪ {0} by Definition 3(iii). Hence, the minimal
RPE mechanism always selects a price equilibrium containing the unique minimal equi-
librium price vector (Shapley and Shubik, 1972; Demange and Gale, 1985). As this price
vector must also be the minimal vector in ΠR, it follows that the Competitive Price Mecha-
nism (Demange and Gale, 1985) reduces to a special case of the minimal RPE mechanism.
Consequently, the main (group) non-manipulability result in Demange and Gale (1985,
Theorem 2), as well as its generalization in Andersson and Svensson (2008, Theorem 1), is
covered by Theorem 3.
In the other extreme case when the upper and lower price bounds coincide (i.e., when

p
h
= ph for all h ∈ H), the minimal RPE mechanism reduces to a fixed-price mechanism.

As explained in Example 4, the NCBI assumption implies that preferences are strict. Be-
cause the (agent proposing) Deferred Acceptance Algorithm (Gale and Shapley, 1962) is
the only non-manipulable and constrained efficient (or stable, see footnote 10) mechanism
in this case (see, e.g., Alcade and Barbera, 1994; Balinski and Sönmez, 1999), it follows, by
Theorem 3, that the minimal RPE mechanism reduces to a (direct mechanism) version of
the (agent proposing) Deferred Acceptance Algorithm. Therefore, the theorem also repro-
duces some well-known (group) non-manipulability results in the matching literature where
monetary transfers are not allowed, including, e.g., Dubins and Freedman (1981, Section
3 “Coalitions”) and Roth (1982b, Theorem 5). Also, in the case when the priority-order
is the same for all houses, the outcome of the minimal RPE mechanism is the same as
the one of a Serial Dictatorship Mechanism (Hylland and Zeckhauser, 1979), and therefore
non-manipulability results related to this mechanism are also covered by Theorem 3, e.g.,
the result in Svensson (1994, Theorem 1) given strict preferences.

8. CONCLUDING REMARKS

This paper has introduced the concept of a rationing price equilibrium (RPE), and it has
been demonstrated that the set of RPE states is nonempty for any given profile in R, and,
moreover, that the set of RPE price vectors may contain several minimal price vectors.
However, if the domain R̃, where no two houses are connected by indifference at any given
price vector, is considered, then the minimal RPE price vector is unique. This result implies
that the minimal RPE mechanism is well-defined for all profiles in R̃, as its definition
requires the existence of a unique minimal RPE vector (recall from Example 3 that the
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minimal RPE vector need not be unique for all profiles in R). It remains an open question
how to define the minimal RPE mechanism when considering the full preference domain.
Consequently, it is also an open question how to define a non-manipulable allocation rule
for the full preference domain. However, the non-manipulability result presented in this
paper is valid for “almost all” preference profiles.

Also, the minimal RPE mechanism is defined as a direct mechanism. Another interesting
extension of this paper is to define a dynamic process that converges to a state that is
selected by the minimal RPE mechanism in a finite number of iterations.16 One can imagine
that such a process starts at the lower price bounds and that each agent reports his most
preferred houses at the given prices. Then the prices of all houses in some cleverly selected
set of overdemanded houses S (if such a set exists) are increased until one of the agents
that demand only houses from the set S obtains an indifference to some house outside of
the set S, or the price of some house in S equals its upper limit. Then, by Example 2,
each constrained efficient assignment needs to be identified at the given prices to ensure
that an RPE can be identified if there is one at the given prices. If, at the given prices
p, there is an assignment µ such that the state (p, µ) is an RPE, the process terminates.
Otherwise a new overdemanded set is cleverly selected, and the process is repeated. The
upper bounds guarantee that the process eventually terminates. However, even if such a
dynamic process appears to be a promising candidate, several obstacles must be overcome.
For example, it is not clear how to identify all constrained efficient assignments at any
given price vector when indifferences are allowed as an exhaustive search is computationally
infeasible (Manlove et al., 2002). Here, some recent papers (including, e.g., Erdil and Ergin,
2006, 2008) may be helpful. Second, it is not clear how to select the set S as it cannot
include any house with a price equal to the upper price bound, and as it is also not clear
if and how the preferences should be reported whenever the price of a house equals its
upper price bound.17 Even if the problem of finding an “auction type” dynamic process
that generates an outcome identical to the minimal RPE mechanism is important, it is left
for future research.

Other possible extensions of the model includes the possibility for initial ownership of the
houses as in, e.g., Shapley and Scarf (1974), Abdulkadiroğlu and Sönmez (1998) and Pápai
(2000), and priority structures that allow for weak priorities as in, e.g., Abdulkadiroğlu et al.
(2009), Ehlers and Erdil (2010), and Erdil and Ergin (2006, 2008).

16In, for example, the auction literature, the dynamic processes are central. See, e.g., Ausubel
(2004, 2006), Ausubel and Milgrom (2002), Bikhchandani and Ostroy (2002), Bikhchandani et al. (2011),
Gul and Staccetti (2000), Mishra and Parkes (2007, 2009), Perry and Reny (2005), or Sankaran (1994).

17In Talman and Yang (2008), this problem is solved by matching overdemanded houses (with prices
equal to the upper price bound) to agents that demand these houses based on a lottery mechanism, and
then by removing all matched houses and agents from the problem. This trick does not work for the type
of housing markets investigated in this paper (even if the lottery mechanism is replaced by the priority
structure) as it need not result in an RPE because a constrained efficient assignment must be selected
when all prices are known to guarantee that the minimal RPE price vector is identified (a similar point
has previously been illustrated in Example 2).
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APPENDIX A: PRELIMINARY RESULTS AND DEFINITIONS

In Appendix A, the concept of an isolated set (Definition 13) is introduced, and a sufficient condition for
its nonemptiness is provided (Proposition 1). The latter result is a key ingredient in the proof of Theorem
3. However, from a technical viewpoint, it will sometimes be convenient to work with a weaker notion of
efficiency than constrained efficiency. Also this notion is introduced in Appendix A (Definition 11) together
with a number of related concepts and results that will be helpful in the subsequent appendices.
The entire net trade between any two states can be decomposed into a number of unique trading cycles

as explained in the following definition.18

Definition 8 Let (p, µ) and (p′, µ′) be two states. A sequence G = (i1, . . . , it) of distinct agents consti-
tutes a trading cycle from µ to µ′ if µij ∈ H for 2 ≤ j ≤ t, µ′

ij
= µij+1 for 1 ≤ j < t, and either:

(i) µi1 ∈ H and µ′
it
= µi1 (closed trading cycle), or

(ii) µi1 ∈ µ′
0 and µ′

it
∈ µ0 (open trading cycle).

The above definition is stated somewhat more generally than necessary in this appendix. In fact, in the
remaining part of this appendix, prices are assumed to be fixed. In this case, we recall from Section 3, that
the simplified notation hRih

′ will be employed instead of phRiph′ .
The set of unenvied agents and the set of envied agents at profile R ∈ R are defined as F = {i ∈ N :

µi′Ri′µi for all i
′ ∈ N} and E = N \ F , respectively. An assignment µ is envy-free at profile R ∈ R if E

is empty and all agents in N prefer their assigned house to any unassigned house (Foley, 1967).

Definition 9 For a given profile R ∈ R and a given priority structure π, agent i′ ∈ N has priority to
envy agent i ∈ E at assignment µ if:

(i) µiPi′µi′ , and

(ii) for all i′′ ∈ N and i′′ ̸= i′, µiPi′′µi′′ only if πi′µi < πi′′µi
.

Definition 10 For a given profile R ∈ R and a given priority structure π, let µ and µ′ be two priority
respecting assignments. Then µ′ is a priority respecting improvement of µ if there is a trading cycle
G = (i1, . . . , it) from µ to µ′ such that:

(i) µ′
iRiµi for all i ∈ N and µ′

iPiµi for some i ∈ N ,

(ii) if µ′
i = µi′ and µi′Piµi for some i, i′ ∈ N , then agent i has priority to envy the agent i′, and

(iii) µ′
i = µi for all i ∈ N \ {i1, . . . , it}.

Definition 11 For a given profile R ∈ R and a given priority structure π, let µ be a priority respecting
assignment. Then µ is weakly constrained efficient at profile R if there is no priority respecting improvement
of µ.

Obviously, a constrained efficient assignment µ is also weakly constrained efficient, while the converse is
not necessarily true.

18We remark that an alternative presentation of Definition 8 is to describe the net trade by a number of
directed arcs from agents to houses, and from houses to agents. In this case, the description of closed and
open trading cycles would be more closely related to the description of the Top-Trading Cycles Mechanism
(Shapley and Scarf, 1974) and w-chains (Roth et al., 2004), respectively. Note, however, that top-trading
cycles as well as w-chains are mechanisms used to reallocate items among the agents in the case of initial
ownership whereas trading cycles, as defined in this paper, only are used as tools to describe allocative
distinctions between any two given states. Also, initial ownership is not assumed in this paper.
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Lemma 1 For a given profile R ∈ R and a given priority structure π, let µ be a weakly constrained
efficient assignment. Then the set of unenvied agents F is nonempty.

Proof: Suppose that µ is weakly constrained efficient. To obtain a contradiction, assume that F = ∅.
But then, E = N by construction. First note that if µi = 0 for some i ∈ N , then i ∈ F . Hence, µi ̸= 0
for all i ∈ N . Because E = N , let i1 ∈ E and define recursively a sequence of agents (i1, . . . , it) such that
ij+1 has priority to envy ij for 1 ≤ j < t. Since F = ∅, there are indices t and k such that ik has priority
to envy it and k < t. But then there is a priority respecting improvement of µ, denoted by µ′, defined by
a closed trading cycle where: µ′

ij
= µij−1 for k < j ≤ t, µ′

ik
= µit , and µ′

ij
= µij for the remaining agents.

But this contradicts the assumption that µ is weakly constrained efficient. Hence, F ̸= ∅. Q.E.D.

Definition 12 For a given profile R ∈ R and a given priority structure π, suppose that assignment µ is
weakly constrained efficient and that the corresponding set E is nonempty. The correspondence φ : F → 2F

is then defined as follows. For i ∈ F , i′ ∈ φ(i) if there is a sequence (i1, . . . , it) of agents and an index k,
2 ≤ k ≤ t− 1, such that:

(i) i1 = i and it = i′,

(ii) ij ∈ E if and only if 2 ≤ j ≤ k,

(iii) ij has priority to envy ij+1 for 1 ≤ j < k, and

(iv) µijIijµij+1 for k ≤ j < t.

The purpose of the correspondence φ is to get means to make priority respecting improvements. The
construction of φ starts with an agent ik ∈ E such that µikIikµik+1

and ik+1 ∈ F . Then agent ik−1 is
chosen to be the agent that has priority to envy agent ik, agent ik−2 is chosen to be the agent that has
priority to envy agent ik−1, and so on until the beginning of the sequence is reached where i2 ∈ E and
i1 ∈ F . The choice of ij for k < j ≤ t is such that ij ∈ F and µijIijµij+1

for k ≤ j < t. Note that the
definition of φ presupposes that F is nonempty. But this follows from Lemma 1 as µ is constrained efficient
by assumption. Also, φ(i) may be empty for some i ∈ F .
A set of houses S is isolated, at a given assignment, if the assignment is envy-free among the agents who

are assigned a house in S, and all agents who are not assigned a house in S strictly prefer their assigned
house to any house in the set S.

Definition 13 For a given profile R ∈ R, a set of houses S ⊂ H (S ̸= H) is isolated at assignment µ if
for all h ∈ S: (i) µiRih for all i ∈ N , and (ii) µiPih for all i ∈ N with µi /∈ S.

Proposition 1 Let R ∈ R be a given profile and let π be a given priority structure. If µ is a weakly
constrained efficient assignment and there is an agent i ∈ N such that µi′Piµi for some i′ ∈ N , then there
is an isolated set S ⊂ H of houses. In addition, S \ µ0 ̸= ∅.

Proof: Suppose, as in the proposition, that E ̸= ∅ and that µ is weakly constrained efficient. Let, in
addition, the correspondence φ : F → 2F be defined as in Definition 12. To obtain a contradiction, suppose
that there is no isolated set.
First, it is demonstrated that ∪i∈Fφ(i) = F . By contradiction, suppose that i′ ∈ F but i′ ̸∈ ∪i∈Fφ(i),

and let F ′ ⊂ F be defined as: i ∈ F ′ if and only if there is a sequence (i1, . . . , it) of agents ij ∈ F such
that i1 = i, it = i′ and µijIijµij+1 for 1 ≤ j < t. Since there is no isolated set, by assumption, there is an
agent i′′ ∈ E such that µi′′Ii′′µi for some i ∈ F ′. But then there is also a sequence (iq, . . . , i0) of agents,
where q < 0, such that:

• iq ∈ F and ij ∈ E if j > q,

• ij has priority to envy ij+1 for q ≤ j ≤ −1, and
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• i0 = i′′.

Note that the existence of iq ∈ F follows as µ is weakly constrained efficient, i.e., if always ij ∈ E,
then there would be a priority respecting improvement assignment where only agents in E are trading,
contradicting that µ is weakly constrained efficient. But we now have a sequence (iq, . . . , i0, i1, . . . , it) that
satisfies properties (i)–(ii) in Definition 12. Hence, i′ = it ∈ φ(iq). This shows that ∪i∈Fφ(i) = F must be
the case.
Let now F ∗ = {i ∈ F : φ(i) ̸= ∅}. Then, F = ∪i∈Fφ(i) = ∪i∈F∗φ(i). Hence, for each i ∈ F ∗ there is an

i′ ∈ F ∗ such that i ∈ φ(i′). Then there are sequences (i1, . . . , it), ij ∈ F ∗, of agents such that ij ∈ φ(ij+1)
for 1 ≤ j ≤ t − 1. Consider some i1 ∈ F ∗ and choose t as large as possible. This means that it ∈ φ(il)
for some l < t. According to the definition of φ, for each j ≤ t, there are sequences of agents satisfying
properties (i)–(iv) of Definition 12 in the following way:

(i1j , i2j , . . . , iqjj) with i1j = ij+1 and iqjj = ij .

Thus for j ≥ l:

(i1t, i2t, . . . , iqtt) with i1t = il and it = iqtt ∈ φ(i1t),

(i1t−1, i2t−1, . . . , iqt−1t−1) with i1t−1 = it and it−1 = iqt−1t−1 ∈ φ(i1t−1),

...
...,

(i1l+1, i2l+1, . . . , iql+1l+1) with i1l+1 = il+2 and il+1 = iql+1l+1 ∈ φ(i1l+1),

(i1l, i2l, . . . , iqll) with i1l = il+1 and il = iqll ∈ φ(i1l).

Now construct one sequence and rename the agents according to:

(i′1, i
′
2, . . . , i

′
t′) =

(i1t, i2t, . . . , iqtt, i2t−1, i3t−1, . . . , iqt−1t−1, . . . , i2l+1, i3l+1, . . . , iql+1l+1, i2l, i3l, . . . , iqll).

Here, i′1 = i1t = il and i′t′ = iqll = il. Then, since i′1 = i′t′ , there must be indices k and p such that the
subsequence (i′k, i

′
k+1, . . . , i

′
p−1) contains only distinct agents and i′k = i′p. From the construction of the

sequence, it also follows that some agent in the subsequence belongs to E. But then we can define a priority
respecting improvement µ′ according to µ′

i′j+1
= µ′

i′j
for j < p, µ′

i′1
= µ′

i′p
and µ′

i = µi for the remaining

agents. This is a contradiction to µ being weakly constrained efficient. Hence, there must be an isolated
set.
Finally, if the assignment µ : N → H is weakly constrained efficient and the set of envied agents E is

nonempty, the same presumptions are valid for the assignment µ̃ : N → H \µ0 where µ̃i = µi for all i ∈ H.
Hence, the assignment µ̃ has an isolated set S̃ where S̃ ∩ µ0 = ∅. The set S̃ is obviously also an isolated
set at assignment µ. Q.E.D.

APPENDIX B: THE PROOF OF THEOREM 1

The first step in the proof of Theorem 1 is to consider a superset of ΠR, denoted by ΠR, and show the
existence of a minimal price vector p∗ in ΠR. In the second step, it is demonstrated that p∗ belongs to ΠR,
and, consequently, that p∗ is a minimal price vector in ΠR. The proof of Theorem 1 is proceeded by some
notation and two lemmas.
A state (p, µ) that satisfies conditions (ii)–(iv) of Definition 3, at a given profile R ∈ R, is called a quasi

rationing price equilibrium (quasi RPE). For a given profile R ∈ R, denote by ΣR the set of quasi RPE
and by ΠR the corresponding set of price vectors. Clearly, ΣR ⊂ ΣR and ΠR ⊂ ΠR.

Lemma 2 For any given profile R ∈ R and any given priority structure π, the set ΠR is nonempty,
bounded from below, and closed.
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Proof: From the assumptions on Ri (see Section 3), it follows that phPiph′ for all i ∈ N and for all
h′ ∈ H if h = 0 and if ph′ is “sufficiently large.” Hence, p ∈ ΠR if ph′ is “sufficiently large” for all h′ ∈ H
as then (p, µ) ∈ ΣR if µi = 0 for all i ∈ N . Consequently, ΠR ̸= ∅. The set ΠR is bounded from below
as p ∈ Ω and as Ω is bounded from below by p. To prove that ΠR is closed, suppose that R ∈ R and let

(pj)∞j=1 be a convergent sequence of price vectors such that pj ∈ ΠR and pj → p as j → ∞. Consider next

the state (pj , µj) ∈ ΣR. Since there is only a finite number of distinct assignments, it is, without loss of
generality, assumed that µj = µ for all j. The following three observations complete the proof:

• p ∈ Ω. This follows since Ω is closed.

• There is a constrained efficient assignment µ∗. This assignment can be identified using the following
procedure. If µ is envy-free, then µ is constrained efficient by definition. Hence, µ∗ = µ. Suppose
instead that µ is not envy-free, i.e., that pµi′Pipµi for some distinct agents i and i′ in N . Then
pjµi′

Pip
j
µi

for j “sufficiently large” by continuity of the preferences. Hence, πi′µi′ < πiµi′ as (pj , µ) ∈
ΣR. Consequently, µ is priority respecting. Now, since there is only a finite number of assignments,
there is a constrained efficient assignment µ∗ that dominates µ in case µ is not constrained efficient.

• ph = ph if phPipµ∗
i
for some i ∈ N and some h ∈ H. This follows because if phPipµ∗

i
, then phPipµi

since µ∗ dominates µ. But then pjhPip
j
µi

for j “sufficiently large”and, hence, pjh = ph for j “sufficiently
large.” Thus, ph = ph.

Q.E.D.

Lemma 3 (Alkan et al., 1991, Perturbation Lemma) Let (p, µ) be a state and R ∈ R a given profile. If
pµiRiph for all i ∈ N and for all h ∈ H ∪ {0}, and ph > p

h
for all h ∈ H, then for each “sufficiently small”

ε > 0 there exists another state (p′, µ′), where p′µ′
i
Rip

′
h for all i ∈ N and for all h ∈ H ∪ {0}, and where

p
h
≤ ph − ε < p′h < ph for all h ∈ H.

THEOREM 1 For any profile R ∈ R and any given priority structure π, there is a minimal RPE vector
p∗ ∈ ΠR.

Proof: Let (p∗, µ) ∈ ΣR, and suppose that p∗ is a minimal price vector in ΠR and, moreover, that the
assignment µ is chosen so that the number #H ′ = #{h ∈ µ0 : p∗h > p

h
} is minimal. The existence of a

minimal price vector p∗ ∈ ΠR follows since ΠR is nonempty, bounded from below, and closed by Lemma
2. To prove the statement, we show that #H ′ = 0 because then p∗ is also minimal in ΠR. This conclusion
follows directly from Definition 3(i), the assumption that p∗ is minimal in ΠR, and the fact that ΠR ⊂ ΠR.
To obtain a contradiction, suppose that H ′ ̸= ∅, i.e., that #H ′ > 0. Let now:

H ′′ =

{
h ∈ H : there is a sequence (i1, . . . , it) of agents such that µit = h
and p∗h′Ri1p

∗
µi1

for some h′ ∈ H ′ and p∗µij−1
Rijp

∗
µij

for 2 ≤ j ≤ t.

}
It is first demonstrated that p∗µi

Rip
∗
h for all i ∈ N and for all h ∈ H ′ ∪ H ′′. Note that if h ∈ H ′, the

conclusion follows directly by the definition of a quasi RPE. To obtain a contradiction, suppose instead
that there is an agent i ∈ N and a house h ∈ H ′′ such that p∗hPip

∗
µi
. But then there is also an agent l ∈ N ,

houses h′ ∈ H ′, h′′ ∈ H ′′ where p∗h′′Plp
∗
µl
, and a sequence (i1, . . . , it) of agents such that:

• p∗h′Ii1p
∗
µi1

, p∗µij−1
Iijp

∗
µij

for 2 ≤ j ≤ t, and h′′ = µit ,

• p∗µi
Rip

∗
ij

for all i ∈ N , and all j where 1 ≤ j ≤ t, and

• agent l is the agent with priority to envy agent it at the assignment µ.

But given such a sequence, the assignment µ′ is a priority respecting improvement of µ if µ′
ij

= µij−1

for 2 ≤ j ≤ t, µ′
i1

= h′, µ′
l = µit , and µ′

i = µi for the remaining agents i. This is a contradiction to the
assumption that µ is constrained efficient. Hence, p∗µi

Rip
∗
h for all i ∈ N and for all h ∈ H ′ ∪H ′′.
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Now, if p∗h = p
h
for some h ∈ H ′′, then it is possible to make a priority respecting reassignment of

the houses such that the number #H ′ decreases, contradicting the assumption that the number #H ′ is
minimal. Hence, p∗h > p

h
for all h ∈ H ′ ∪ H ′′. But then H ′ ∪ H ′′ is an isolated set with p∗h > p

h
for all

h ∈ H ′ ∪ H ′′ by the above conclusions. By Lemma 3, it is then possible to decrease the price p∗h for all
h ∈ H ′ ∪H ′′ and obtain a new quasi RPE. But this contradicts that p∗ is a minimal price vector in ΠR.
Hence, H ′ = ∅, i.e., #H ′ = 0. Q.E.D.

Corollary 1 Let R ∈ R be a given profile and π a given priority structure. A price vector p∗ is a
minimal price vector in ΠR if and only if p∗ is a minimal price vector in ΠR.

Proof: The proof of Theorem 1 shows that if p∗ is minimal in ΠR, then p∗ is minimal in ΠR.
Let now p̃ ∈ ΠR be minimal in ΠR. Then p̃ ∈ ΠR since ΠR ⊂ ΠR. Suppose that p̃ is not minimal in ΠR.

Then there is a minimal price vector p∗ in ΠR where p∗ ≤ p̃ and p∗ ̸= p̃. But then p∗ is minimal in ΠR by
Theorem 1. Consequently, p̃ is not minimal in ΠR, which is a contradiction. Q.E.D.

APPENDIX C: THE PROOF OF THEOREM 2

The proof of Theorem 2 is preceded by some notation and two lemmas. Because the outcome of these
lemmas also will be useful in the proof of Theorem 3, they are formulated somewhat more general than
necessary at this point. More precisely, the lemmas are based on two given profiles R ∈ R̃ and R′ ∈ R̃
where R′ = (R′

C , R−C) for some (possibly empty) set C ⊂ N , and two states (p, µ) ∈ ΣR and (p′, µ′) ∈ ΣR′

where p′µ′
q
Pqpµq for all q ∈ C. All results presented in this appendix hold for C = ∅ (i.e., for R = R′)

and this is exactly what is needed in the proof of Theorem 2. Later, in the proof of Theorem 3, it will be
assumed that C is nonempty.

Notation 1 Let R ∈ R̃ and R′ ∈ R̃ be two given profiles where R′ = (R′
C , R−C) for some C ⊂ N , and

consider the two states (p, µ) ∈ ΣR and (p′, µ′) ∈ ΣR′ where p′µ′
q
Pqpµq for all q ∈ C. Define S1 = {h ∈ H :

p′h < ph}, S2 = {h ∈ H : p′h = ph} ∪ {0}, and S3 = {h ∈ H : p′h > ph}.19

Lemma 4 Let R ∈ R̃ and R′ ∈ R̃ be two given profiles where R′ = (R′
C , R−C) for some C ⊂ N , and

consider the two states (p, µ) ∈ ΣR and (p′, µ′) ∈ ΣR′ where p′µ′
q
Pqpµq for all q ∈ C. Let also S1 and S3 be

defined as in Notation 1. Then (i) p′µ′
i
Pipµi if µi ∈ S1, and (ii) pµiPip

′
µ′
i
if µ′

i ∈ S3.

Proof: Note that part (i) holds by definition if i ∈ C. Suppose therefore that i /∈ C, i.e., Ri = R′
i. In

this case, p′µ′
i
Rip

′
µi

by Definition 3(iii) since (p′, µ′) ∈ ΣR′ and µi ∈ S1 (i.e., p′µi
< pµi

). But then p′µi
Pipµi ,

by monotonicity, as p′µi
< pµi . Part (ii) follows by symmetric arguments. Q.E.D.

Lemma 5 Let R ∈ R̃ and R′ ∈ R̃ be two given profiles where R′ = (R′
C , R−C) for some C ⊂ N , and

consider the two states (p, µ) ∈ ΣR and (p′, µ′) ∈ ΣR′ where p′µ′
q
Pqpµq for all q ∈ C. Let also (i1, . . . , it)

be a trading cycle where p′µ′
il

Pilpµil
for some il in the trading cycle, and let S1 and S2 be defined as in

Notation 1. Then p′µ′
ij

Rijpµij
and µ′

ij
∈ S1 ∪ S2 for 1 ≤ j ≤ t.

Proof: To obtain a contradiction, suppose that there is a trading cycle G = (i1, . . . , it) from µ to µ′

with pµik
Pikp

′
µ′
ik

for some agent ik ̸= il in the trading cycle. Without loss of generality, it is assumed that

l < k. In case l < k is not possible for the cycle G, we can instead consider some other trading cycle with
trade from µ′ to µ. Now it is also possible, without loss of generality, to choose l = 1 and k > 1 so that:

p′µ′
i1

Pi1pµi1
, p′µ′

ij

Iijpµij
for 1 < j < k, and pµik

Pikp
′
µ′
ik

.

19Note that the null house cannot belong to S1 or S3 as p′0 = p0 = p
0
= p0 = 0 by assumption.
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Suppose now that k > 2. From Lemma 4(i) and the above assumptions, it follows that µ′
i1

= µi2 /∈ S1 and
µ′
k−1 = µk /∈ S1. Moreover, from Lemma 4(ii) and the above assumptions, it follows that µ′

i1
= µi2 /∈ S3

and µ′
k−1 = µk /∈ S3. Hence, µ

′
i1

= µi2 ∈ S2 and µ′
k−1 = µk ∈ S2. But then pµi2

= pµi2
and pµik

= pµik
,

by Definition 3(iii), as pµi2
Pi1pµi1

and pµik
Pikp

′
µ′
ik

, respectively. Consequently, houses µi2 and µik are CBI

at profile R which contradicts that R ∈ R̃. Hence, k = 2.
Since µ and µ′ are constrained efficient at states (p, µ) and (p′, µ′), respectively, it is clear that πi2µi2

<
πi1µi2

and πi1µ′
i1

< πi2µ′
i1
. But this is a contradiction since k = 2, i.e., µ′

i1
= µi2 . Hence, there is no agent

ik ̸= il with pµik
Pikp

′
µ′
ik

.

Finally, the statement µ′
ij
∈ S1 ∪ S2 for 1 ≤ j ≤ t follows directly from Lemma 4. Q.E.D.

Given the result in Lemma 5, each agent in N can be assigned to one of two disjoint sets, defined below
in Notation 2, whenever two RPE states are compared.

Notation 2 Let R ∈ R̃ and R′ ∈ R̃ be two given profiles where R′ = (R′
C , R−C) for some C ⊂ N , and

consider the two states (p, µ) ∈ ΣR and (p′, µ′) ∈ ΣR′ where p′µ′
q
Pqpµq for all q ∈ C. Denote by N+ ⊂ N

the set of agents belonging to a trading cycle where at least one agent receives a strictly higher utility in
the change from (p, µ) to (p′, µ′). Let N− represent the remaining agents, i.e., N− = N \N+.

THEOREM 2 For any profile R ∈ R̃ and any given priority structure π, a minimal price vector p∗ ∈ ΠR

is unique.

Proof: This proof uses Notation 2 for the case when C = ∅, i.e., for the case when R = R′. Let now
R ∈ R̃, and let p′, p′′ ∈ ΠR be two minimal price vectors. The two corresponding RPE states are denoted
by (p′, µ′) ∈ ΣR and (p′′, µ′′) ∈ ΣR. Let also p be a price vector defined by ph = min{p′h, p′′h} for all h ∈ H.
The proof demonstrates that there is an assignment µ such that the state (p, µ) is a quasi RPE (defined
earlier in Appendix B). But then a minimal price vector in ΠR is unique. Consequently, a minimal price
vector in ΠR is unique by Corollary 1. As p obviously belongs to Ω, we need only to demonstrate that µ
is well-defined and constrained efficient, and that Definition 3(iii) is satisfied for (p, µ).
Consider the trading cycles from (p′, µ′) to (p′′, µ′′), and define N+ and N− as in Notation 2. Let now

µ̂ be defined by:

µ̂i = µ′′
i if i ∈ N+, and µ̂i = µ′

i if i ∈ N−.

To show that µ̂ is a well-defined assignment, let i, l ∈ N (i ̸= l) be two agents such that µ̂i = µ̂l. If
i, l ∈ N+, then µ′′

i = µ′′
l . Hence, µ

′′
i = µ′′

l = 0. This cannot be the case when i, l ∈ N+. By the same
arguments, if i, l ∈ N− then µ′

i = µ′
l = 0, and, consequently, µ̂i = µ̂l = 0. Finally, if i ∈ N+ and l ∈ N−,

then µ′′
i = µ′

l. But this means that i and l belong to the same trading cycle, and hence both belong to N+

or both belong to N−, which is a contradiction. Hence, µ̂ is a well-defined assignment.
We next show that µ̂ is priority respecting (Definition 1), i.e., that for all i, l ∈ N : (i) pµ̂iPlpµ̂l

only
if πiµ̂i < πlµ̂i , and (ii) µiRih if h ∈ µ0. Note first that if i, l ∈ N+ or if i, l ∈ N−, then condition (i) is
satisfied since µ′ and µ′′ are priority respecting. If, on the other hand, i ∈ N+ and l ∈ N−, then pµ̂iPlpµ̂l

means that p′′µ′′
i
Plp

′
µ′
l
. Hence, p′′µ′′

i
Plp

′′
µ′′
l
since l ∈ N−. But then πiµ′′

i
< πlµ′′

i
and µ′′

i = µ̂i. Consequently,

condition (i) is satisfied (the remaining case, pµl
Pipµi , follows by symmetrical arguments). That condition

(ii) is satisfied follows directly since µ′ and µ′′ are priority respecting. Hence, µ̂ is priority respecting.
Note now that if µ̂ is not constrained efficient, then there is another priority respecting assignment that

Pareto dominates µ̂. Hence, after a finite number of improvements, a constrained efficient assignment µ is
obtained.
Finally, to demonstrate that Definition 3(iii) holds for (p, µ), assume that pµi < pµi

for some i ∈ N .
Suppose also that pµi = p′µi

, and, hence, that p′µi
< pµi

. Consider first an agent l ∈ N+. Then:

pµl
Rlpµ̂l

Ilpµ′′
l
Ilp

′′
µ′′
l
Rlp

′
µ′
l
Rlp

′
µi
Ilpµi .
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This sequence follows from the definitions of p, µ, µ̂, N+, and Definition 3(iii) since p′µi
< pµi

. If l ∈ N−,
the corresponding sequence becomes:

pµl
Rlpµ̂l

Ilpµ′
l
Ilp

′
µ′
l
Rlp

′
µi
Ilpµi .

In both cases, we obtain pµl
Rlpµi if p′µi

< pµi
. Hence, pµi = pµi

if pµiPlpµl
must be the case. The case

pµi = p′′µi
now follows by symmetrical arguments. Q.E.D.

APPENDIX D: THE PROOF OF THEOREM 3

THEOREM 3 Let f be a minimal RPE mechanism with domain R̃. Then f is group non-manipulable.

Proof: Suppose that the agents in C ⊂ N can manipulate the minimal RPE mechanism at profile
R ∈ R̃. Then there is a profile R′ = (R′

C , R−C) ∈ R̃ and two states (p, µ) = f(R) and (p′, µ′) = f(R′)
such that p′µ′

q
Pqpµq for all q ∈ C by Definition 6. Let S1, S2, and S3 be defined as in Notation 1, and let

N+ and N− be defined as in Notation 2. Now N+ ̸= ∅ as q ∈ N+ for all q ∈ C by assumption (i.e.,
N− ∩ C = ∅). To prove the theorem, it is sufficient to show that there is an isolated set S ⊂ S1. Then it
is possible to decrease ph for all h ∈ S by a “small” ε > 0 and obtain a new RPE according to Lemma
3, which contradicts that (p, µ) is selected by the minimal RPE mechanism. Note also that there may be
cases where S ∩ S1 = ∅ (e.g., when p = p), but then a contradiction is obtained before Lemma 3 is being
used.
Consider now the restriction µ+ of µ to N+. That is, µ+ : N+ → H+ and µ+

i = µi, where H+ is the
range of µ+, i.e., H+ = {h ∈ H ∪ {0} : h = µi for some i ∈ N+}. By Lemma 5, H+ ⊂ S1 ∪ S2.
We will, in a series of steps, prove that the restriction µ+ of µ is weakly constrained efficient. Suppose that

the restriction µ+ is not weakly constrained efficient. Then there is a sequence of agents G = (i1, . . . , it)
where ij ∈ N+ for 1 ≤ j ≤ t that defines a trading cycle which is a priority respecting improvement of µ+

but can be “blocked” by an agent k ∈ N−. This means that there is an agent il in the sequence G such
that pµil

Pkpµk
and πkµil

< πil−1µil
. But then pµil

= pµil
since (p, µ) is an RPE. Moreover, since k ∈ N−

and µil ∈ S1 ∪ S2 it follows by monotonicity that p′uil
Pkp

′
uk
. Consequently, p′µil

= pµil
as (p′, µ′) is an

RPE. Hence, pµil
= p′µil

= pµil
and µil ∈ S2.

We first prove that the agents il and k can be chosen so that il−1 is the agent in N+ with priority to
envy agent il. To prove this, note that if pµil

Pil−1
pµil−1

, then agent il−1 is the agent in N+ with priority to

envy agent il according to Definition 9. Hence, to obtain a contradiction, it is assumed that pµil
Iil−1

pµil−1

(note that it cannot be the case that pµil−1
Pil−1

pµil
as il−1 ∈ N+).

Since the sequence G defines a priority respecting improvement, there is an agent il′ in the sequence
such that pµi

l′+1
Pil′pµi

l′
. Now, if l′ < l − 1 or if G is a closed trading cycle, l′ can be chosen so that

pµij
Iijpµij+1

for all j, l′ < j ≤ l − 1, after renumbering the agents and the houses. But then houses

µil′+1
and µil are connected by indifference, which is a contradiction. Assume instead that l′ ≥ l and that

G is an open trading cycle. Then pµij
Iijpµij+1

for all j < l. In this case, choose l as large as possible

such that pµil
Pkpµk

for some k ∈ N− and let k be the highest ranked agent with this property. Then an
assignment µ′′ is a priority respecting improvement for the entire set N of agents, if µ′′

k = µil , µ
′′
ij
= µij+1 ,

for j ≥ l, and µ′′
i = µi for the remaining agents. To show this, we need only to check that the priorities are

respected. But this follows since πikµil
< πil−1µil

and πil−1µil
< πijµil

if pµil
Pijpµij

and j < l − 1. Hence,

a contradiction to the assumption that the assignment µ is constrained efficient. We, therefore, conclude
that pµil

Pil−1
pµil−1

must be the case, and, consequently, that agent il−1 is the agent in N+ with priority
to envy agent il.
Consider now the state (p′, µ′) and recall from the above that pµil

= p′µil
= pµil

. But then µil /∈ µ′
0

as (p′, µ′) is an RPE. Consequently, there is an agent r ∈ N+ such that µ′
r = µil since µil ∈ H+. Note

also that r ̸= il because if r = il, then agent il belongs to a trading cycle containing only himself which
contradicts that il ∈ N+ as µil ∈ S2 by the above conclusions. Now, either pµil

Prpµr or pµrRrpµil
must
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prevail. We will demonstrate that neither of these cases hold which establishes a contradiction to the
assumption that the restriction µ+ of µ is not weakly constrained efficient.

• Suppose that pµil
Prpµr . Because pµil

Pkpµk
and µ′

r = µil , by assumption, it is clear that pµ′
r
Pkpµk

.
Further, because µ′

r = µil ∈ S1 ∪ S2, by Lemma 5, monotonicity yields p′µ′
r
Pkpµk

. Moreover,

pµk
Rkp

′
µ′
k
as k ∈ N−. Consequently, p′µ′

r
Pkp

′
µ′
k
. Hence, πrµil

< πkµil
since µ is priority respect-

ing. Because agent il−1 is the agent in N+ with priority to envy il and pµil
Prpµr , it must be the

case that πl−1µil
< πrµil

. But this, together with πrµil
< πkµil

, is a contradiction to πkµil
< πil−1µil

.

• Suppose that pµrRrpµil
. Note first that pµrPrpµil

cannot be the case since r ∈ N+, µ′
r = µil , and

µil ∈ S2. Hence, pµrIrpµil
. Let now H ′ ⊂ H be a set of houses that can be linked to µil by a

sequence of indifferences, and let h′ = µil and i′ = il to avoid the same index for two different
agents. More precisely, h ∈ H ′ if there is a sequence of distinct houses (h1, . . . , ht) and a sequence
of distinct agents (i1, . . . , it−1) such that:

phj+1
Iijphj

for 1 ≤ j < t, h = h1, and ht = µil .

By definition µil /∈ H ′, but H ′ ̸= ∅ as µr ∈ H ′. Since ht = µil , pil = pµil
, and no two houses

are CBI, it must be the case that p
hj

< phj < phj
for all 1 ≤ j < t. Moreover, if µi ̸∈ H ′ and

µi ̸= h′ then pµiPiph for all h ∈ H ′ by the construction of H ′. Note first that if also pµi′Pi′ph for all
h ∈ H ′, then it is possible to decrease ph for all h ∈ H ′ by a “small” ε > 0 and obtain a new RPE
according to Lemma 3, which contradicts that (p, µ) is selected by the minimal RPE mechanism.
Note next that if pµi′ Ii′ph for some h ∈ H ′, we have a contradiction to the NCBI assumption as
pi′ = pil = pµil

.

We conclude that the restriction µ+ of the assignment µ to the group N+ is weakly constrained efficient.
But then by Proposition 1, there is an isolated set S ⊂ S1 ∪ S2 such that:

(1) S ̸= ∅ and S ∩ µ0 = ∅,

(2) if N++ = {i ∈ N+ : µi ∈ S} then pµiRipµl
for all i, l ∈ N++, and

(3) if i ∈ N+ \N++ then pµiPiph for all h ∈ S.

This follows because if some agent in N+ is envied by some agent in N+, then there is an isolated
set S ⊂ (S1 ∪ S2) ∩ µ0 by Proposition 1, and if no agent in N+ is envied by an agent in N+, the set
S = {h ∈ S1 ∪ S2 : h = µi for some i ∈ N+} satisfies points (1)–(3) from the above. Note also that if S is
isolated, then the set S ∩ µ0 is isolated.
It is next demonstrated that S ∩ S2 = ∅. Suppose that S ∩ S2 ̸= ∅. Then, there is an agent i′ such that

µi′ ∈ S ∩S2 where the set S satisfies points (1)–(3) from the above. Let (i1, . . . , it) be a trading cycle from
µ to µ′ such that ij = i′ for some 1 ≤ j ≤ t. Then ij ∈ N+ for all 1 ≤ j ≤ t, by Lemma 5 and Notation 2,
as i′ ∈ N+ is implied by the above construction of S. We next consider two cases and prove that in each
case a contradiction is obtained, implying that S ∩ S2 = ∅.

(i) If µij ∈ S∩S2 for all 1 ≤ j ≤ t, then pµij
Iijpµij+1

for all 1 ≤ j ≤ t as S is envy-free. This contradicts

that ij ∈ N+ because at least one strict preference is required by Notation 2.

(ii) If µij ̸∈ S ∩S2 for some 1 ≤ j ≤ t, then there is an agent il such that µil ̸∈ S ∩S2 and µ′
il
= µil+1

∈
S ∩S2 (or µ′

il
∈ µ0). Then µil ∈ S1. Moreover, pµil+1

Pilpµil
by Lemma 4. This is a contradiction to

(2) above.

We conclude that S ∩ S2 = ∅ and S ⊂ S1 must be the case. Now if S1 = ∅ (e.g., if p = p), then also
S = ∅, which is a contradiction to (1) above. On the other hand, if S ̸= ∅, then for all h ∈ S:

• pµi
Riph for all i ∈ N+ with µi ∈ S since S is isolated,

• pµiPiph for all i ∈ N+ with µi ̸∈ S since S is isolated,
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• pµiPiph for all i ∈ N−. This follows since p′µ′
i
Rip

′
h by the definition of RPE as p′h < ph ≤ ph. Hence,

p′µ′
i
Piph by monotonicity. Then once more by monotonicity, pµiPiph since i ∈ N−.

The above three bullet points demonstrate that S ⊂ S1 is an isolated set for the entire set H of houses.
But then the proof is complete by the arguments stated in the beginning of the proof. Q.E.D.
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Pápai, S. (2000): “Strategyproof Assignment by Hierarchical Exchange,”Econometrica, 68, 1403–1433.
Perry, M. and P. Reny (2005): “An Efficient Multi-Unit Ascending Auction,” Review of Economic

Studies, 72, 567–592.
Roth, A. (1982a): “Incentive Compatibility in a Market with Indivisibilities,”Economics Letters, 9, 127–

132.
——— (1982b): “The Economics of Matching: Stability and Incentives,” Mathematics of Operations Re-

search, 7, 617–628.
——— (2007):“Deferred Acceptance Algorithms: History, Theory, Practice, and Open Questions,”Working

paper 13225, National Bureau of Economic Research.
Roth, A. and A. Postlewaite (1977): “Weak versus Strong Domination in a Market With Indivisible

Goods,” Journal of Mathematical Economics, 4, 131–137.
Roth, A., T. Sönmez, and U. Unver (2004): “Kidney Exchange,”Quartely Journal of Economics, 119,

457–488.
Sankaran, J. K. (1994): “On a Dynamic Auction Mechanism for a Bilateral Assignment Problem,”

Mathematical Social Science, 28, 143–150.
Shapley, L. and H. Scarf (1974): “On Cores and Indivisibility,” Journal of Mathematical Economics,

1, 23–37.
Shapley, L. and M. Shubik (1972): “The Assignment Game I: The Core,” International Journal of

Game Theory, 1, 111–130.
Shaviro, D. (1997): “The Minimum Wage, the Earned Income Tax Credit, and Optimal Subsidy Policy,”

The University of Chicago Law Review, 64, 405–481.
Sun, N. and Z. Yang (2003): “A General Strategy-Proof Fair Allocation Mechanism,”Economics Letters,

81, 73–79.
Svensson, L.-G. (1983):“Large Indivisibles: An Analysis with Respect to Price Equilibrium and Fairness,”



NON-MANIPULABLE HOUSE ALLOCATION WITH RENT CONTROL 27

Econometrica, 51, 939–954.
——— (1994): “Queue Allocation of Indivisible Goods,” Social Choice and Welfare, 11, 323–330.
——— (1999): “Strategy-Proof Allocation of Indivisible Goods,” Social Choice and Welfare, 16, 557–567.
——— (2009): “Coalitional Strategy-Proofness and Fairness,”Economic Theory, 40, 227–245.
Talman, D. and Z. Yang (2008): “A Dynamic Auction for Differentiated Items Under Price Rigidities,”

Economics Letters, 99, 278–281.
Turner, B. and S. Malpezzi (2003): “A Review of Empirical Evidence on the Costs and Benefits of

Rent Control,” Swedish Economic Policy Review, 10, 11–56.
van der Laan, G. (1980): “Equilibrium Under Rigid Prices with Compensation for the Consumers,”

International Economic Review, 21, 53–73.
Wilkinson, T. (2004): “The Ethics and Economics of the Minimum Wage,” Economics and Philosophy,

20, 351–374.
Zhou, L. (1990): “On a Conjecture by Gale about One-Sided Matching Problems,” Journal of Economic

Theory, 52, 123–135.
Zhu, J. and D. Zhang (2011): “Dynamic Auction for Efficient Competitive Equilibrium Under Price

Rigidities,”Advances in Artificial Intelligence, 7106, 809–818.


