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Abstract

In a recent study, Bai (Fixed-Effects Dynamic Panel Models, A Factor Analytical
Method. Econometrica 81, 285-314, 2013a) proposes a new factor analytic (FA) method
to the estimation of dynamic panel data models, which has the unique and very use-
ful property that it is completely bias-free. However, while certainly appealing, it is
restricted to fixed effects models without a unit root. In many situations of practical
relevance this is a rather restrictive consideration. The purpose of the current study is
therefore to extend the FA approach to cover models with multiple interactive effects

and a possible unit root.

JEL Classification: C12; C13; C33; C36.
Keywords: Interactive fixed effects; Dynamic panel data models; Unit root; Factor ana-

lytical method.

1 Introduction

Consider the panel data variable y;;, observable for t = 1,..., T time seriesand i = 1,..., N
cross-sectional units. The data generating process (DGP) of this variable is assumed to be

given by the following dynamic panel data model:

Yit = Cip +0Yit-1+ Eit, (1)

*The authors would like to thank Jorg Breitung, David Edgerton and Vasilis Sarafidis for many valuable
comments and suggestions.



where p € (—1,1], y10 = ... = yno = 0, ¢ is the common component of the data, and
e;t is an error term. Two specifications of c;; will be considered; (C1) ¢;; = A’F;, and (C2)
cit = Ai(Fr —pF—1) fort =2,..,T and ¢;; = A}F;, where F; is an m x 1 vector of common
factors and A; is a conformable vector of loading coefficients. Both specifications presume
that m > 1; if m = 0, we define ¢;; = 0. The DGP that arises under C2 can be seen as
emanating from y;; = A'F; + s;;, where s;; = ps;;_1 + €;;, which differs only slightly from
the more common DGP under C1. Note in particular how C1 and C2 are indistinguishable
for |p| < 1. Since the analysis of C1 is simplest we therefore assume throughout this paper
that C1 holds whenever |[p| < 1. The appropriate model to consider under p = 1 is less
obvious and in the present paper we therefore consider both.

Using the terminology of Bai (2009), (1) constitutes a fixed “interactive” effects model
under either C1 or C2, which is more general than many of the fixed effects models previ-
ously considered in the literature (see Bun and Sarafidis, 2013; Chudik and Pesaran, 2013,
for recent surveys). Suppose, for example, that F; = 1, which implies that under C1, ¢;; =
AlFy = A;. This means that under the additional assumption of |p| < 1, (1) reduces to what
can only be described as the “classical” dynamic panel data model with unit-specific fixed
effects, which has attracted considerable attention in the literature. One reason for this is
the existence of the so-called “incidental parameters bias”, or “Nickell bias” (Nickell, 1981),
which arises because of the increasing number of fixed effects. In the classical micro panel
setting with T fixed and N — oo this bias is a severe problem, as in this case least squares
(LS) is inconsistent. This has led to the development of alternative estimators such as the
generalized method of moments (GMM) (see, for example, Arellano and Bond, 1991; Arel-
lano and Bover, 1995; Blundell and Bond, 1998), which is now the most common approach
in empirical work with dynamic panels.

This paper focuses on the case when T — oo, which lessens the problem of bias. How-
ever, while consistent, the asymptotic distribution of the LS estimator is still miscentered
(see, for example, Hahn and Kuersteiner, 2002). In fact, all estimation approaches known to
us are biased in one way or another (see Moon et al., 2013, for an overview of this literature).
This includes GMM, which suffers from problems of weak instrumentation and instrument
proliferation (see, for example, Roodman, 2009).

The presence of bias has recently motivated Bai (2013a, b) to propose a new factor analyt-

ical (FA) approach to the estimation of (1). The name stems from the fact that the estimator,



which is based on quasi-maximum likelihood (quasi-ML), coincides with the one used in
factor analysis (see, for example, Anderson and Amemiya, 1988). A key feature of FA is that
it does not require estimation of the individual effects themselves, but only estimation of
their second moment, S, = N1 Zfil )\z‘/\§ . Since under F; = 1 this moment is just a scalar,
the incidental parameter problem caused by the fixed effects is effectively removed, leading
to an estimator that is completely bias-free. It is also instrumentation-free, which means that
the usual difficulties associated with weak instruments and instrument proliferation do not
arise in GMM. The work of Bai (2013a, b) is restricted to the classical setup with F; = 1 and
|| < 1, but is otherwise very general with regard to the idiosyncratic error term, €;;, which
is allowed to be both cross-section and time series heteroskedastic. Time-specific effects?,
non-zero initial values and predetermined regressors can also be accommodated.

In this paper we extend the work of Bai (2013a, b) to the case when F; is not necessarily
just unity and p € (—1,1]. This is important for (at least) two reasons. One reason is that
while fixed effects are commonly used, there are many situations in which they are unlikely
to be sufficient. An example is the consumption model based on the life-cycle and rational-
expectation hypotheses, which predicts that consumers” marginal utility of wealth should
vary over time. Other examples include asset pricing models that assume time-varying risk
premia, and models of economic growth in which the state of technology is assumed to
follow a linear trend (see Bai, 2009, Section 3, for additional motivating examples). In such
cases the fixed effects assumption is almost surely mistaken. The challenge from a theory
perspective is that the property of unbiasedness in the fixed effects case does not necessarily
carry over to the more general interactive effects model considered in this paper. Indeed,
even the introduction of a linear trend, which is arguably the simplest departure from fixed
effects, causes the LS bias to double in size regardless of of whether [p| < 1 or p = 1 (see
Phillips and Sul, 2007).

The extension to the model with interactive effects is related to the recent working paper
of Bai (2013c), which appeared after the first version of this paper was written. Bai (2013c)
considers a dynamic interactive effects model that is similar to (1) under C1 with [p| < 1
imposed, which is estimated by a version of the estimator considered here. The focus of this

paper, however, is on the relatively challenging unit root case, although we also consider

!In this sense, FA is very similar to the GMM approaches considered by Ahn et al. (2001, 2013) and Robertson
et al. (2010) in the fixed-T case.
2Time-specific effects amounts to setting F; = (1,7;)' and A; = (a;, 1)/, such that ¢;; = ALF; = a; + 11



the case when |p| < 1. Our extension holds considerable promise, from both applied and
theoretical viewpoints. From an applied point of view, even variables that on theoretical
grounds are expected to be stationary tend to be highly persistent, and the evidence that
they do not contain a unit root is weak, at best, as is evident from the large and increasing
literature on non-stationary panels (see Breitung and Pesaran, 2008; Baltagi, 2008, Chapter
12, for surveys of this literature). One would therefore not like to exclude the possibility of
unit roots when working with real data. From a theoretical point of view, the main problem
is the presence of bias, which is even more potent in the unit root case than under |p| < 1
(see, for example, Moon et al., 2013; Phillips and Sul, 2007). Indeed, as is now well under-
stood, in the unit root case the presence of deterministic terms in the fitted model affects the
asymptotic distribution of all estimators of p, and does so in both the time series and panel
contexts. In panels, this implies that different deterministic specifications have their own
bias expressions. For example, if the chosen specification involves structural break dummy
variables, then the bias depends on the location of the break(s). This poses serious problems
in implementation, as not only is there a need to bias-correct, but the appropriate correction
factors also critically depend on the particular model being estimated. Moreover, the com-
plexity of the calculations involved in obtaining these factors increases very quickly with
both the number and non-linearity of the fitted deterministic terms. Even for simple LS the
required moment calculations are in fact basically impossible, except in the simple case of
(at most) a linear trend. Researchers therefore typically only provide correction factors for
this case, thereby constraining the use of their estimators to panels that are characterized by
similarly simplistic deterministic behavior.

Our findings show that the “FA estimator” has a normal limit for all values of p, includ-
ing unity, and that it is unbiased.? The limiting distribution of the estimator considered here
is thus continuous as p passes through unity, in contrast to what happens for most exist-
ing approaches. In fact, the only other estimator known to support asymptotically normal
inference for all values of p € (—1,1] in the current large-T context is the one of Han and
Phillips (2010). This estimator is only v/ NT-consistent, however, in contrast to FA, which is
(at least) v/ NT-consistent. The fact that FA is unbiased when p = 1 means that the standard

requirement of (at most) a liner trend is not needed, and the otherwise common bias cor-

3Bai (2013c), and Bai and Li (2012) refer to the estimator as a “(quasi-)ML estimator”. In this paper, however,
we follow Bai (2013a, b) and refer to it as an “FA estimator”.



rection factors can be completely avoided. In terms of model specification, this means that
researchers can proceed just as in the classical regression context. Indeed, all one has to do
is to augment the test regression with whatever deterministic specification is felt to be ap-
propriate. The only requirement is that the chosen specification is general enough to include
the true one. Interestingly, the usual empirical problem of deciding on which deterministic
terms to include does not arise since the common factors, and hence also the deterministic
part of the model, can be treated as unknown. Our approach is therefore not only general,
but is in this sense also remarkably simple. However, this advantage is at the same time the
main drawback of the approach. In the unit root case it is usually desirable to restrict the de-
terministic part of the model (see Schmidt and Phillips, 1992), but since in FA deterministic
and stochastic factors are treated in the same manner, this is not possible without at the same
time also restricting the other factors. We therefore consider both C1 and C2 when p = 1in

this paper.

2 Assumptions

It is useful to write (1) in vector notation. Let us therefore introduce v; = (yi1, ..., ¥it)’,

F=(F,.. F;) and¢; = (&1, ....€;7)’, where y; and ¢; are T x 1, while F is T x m. Define

[0 0 0 ... 0 0 0 0 ...0

1 0 0 ... 0 1 0 0 ... 0
j=10 1 0 ... 0], L — p 1 0 ...0[,

(0 ... 0 1 0] T2 . p 1 0]

which are both T x T. It is useful to think of ] and L as “lag” and “accumulation” matrices,
respectively. Let us further denote by ¢; = (c;1,...,¢; )’ the T x 1 vector of stacked observa-
tions on c¢; ¢, which under C1 and C2 is given by ¢; = FA; and ¢; = (It — pJ)FA,, respectively.

In this notation,

yi=ci+plyit+e, 2)
which can be solved for y;, giving

yi=Tci+T¢e; =Tu;, 3)

whereT = (I — p])*1 = It +pLand u; = c; +¢;. Note that L, and hence also I, are functions

of p. In order to emphasize this, we write L = L(p) and I' = T'(p) whenever appropriate.
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The conditions that we are going to be working under are summarized in Assumptions EPS,
F and LAM. Throughout, C < oo, tr A and ||A|| = /tr (A’A) will be used to denote a
generic positive constant, and the trace and Frobenius (Euclidean) norm of the matrix A,

respectively.

Assumption EPS. ¢;; is independent and identically distributed (iid) across both i and t with
E(eit) = E(e},) =0, E(e3,) = 0> > 0,and 0 *E(¢},) = k < C.

Assumption E If [p| < 1, then T'F'F — Xf, T 'F'L'F — XL, T7'FLL'F — %2 and
TFL'LF — Z% as T — oo for some m x m positive definite matrices X, Z}D, Z% and Z%,
whereas if p = 1, then T"'F'F — %p, T?F'L'F — £}, T 3FLL'F — % and T °F'L'LF —

Y3 as T — oo. In both cases, ||F|| < C forall t.

Assumption LAM. ||A;|| < C for all i, and S, — X, as N — oo for some m X m positive

definite matrix X,.

Remark 1. Assumption F is significantly less restrictive than the fixed effects assumption of
Bai (2013a, b). Although the way that Assumption F is stated supposes that F is fixed, this is
not necessary. F can also be random. In this case, we assume F to be independent of ¢; ; for all
i and ¢, and also that Assumption F is satisfied in expectation, in the sense that the expected
value of the various sample moments are assumed to behave as in Assumption F. Moreover,
E(||F|[*) < Cinstead of ||F;|| < C. This means that there are basically no restrictions on F at
all. It can, for example, include both fixed and random elements, have nonzero mean and/or
arbitrary dynamics. As we discuss in Section 3, the required moment conditions should be

satisfied in most models of empirical relevance.

Remark 2. Since the focus in this paper is the treatment of F when p € (—1, 1], in interest
of transparency of the results, some of the other assumptions are quite restrictive. Many
of these can, however, be relaxed in the way suggested by Bai (2013a, c). For example,
while Bai (2013b) requires that ¢;; is normal, in Bai (2013a, c) this assumption is relaxed
to allow for iid but not necessarily normal innovations. In this paper we do not assume
that ¢;; is normal, but do require that it has a symmetric distribution. The reason for this
is that the information matrix is no longer diagonal when E(sg”t) # 0, thus adding to the

complexity of an already quite complicated problem. Applications are not limited to models



with symmetric innovations, however, since all the relevant second-order derivatives are
provided (see Appendix B). Similarly, although we follow Bai (2013b) here and assume that
¢; + is homoskedastic, the results can be extended along the lines of Bai (2013a, c) to allow for
heteroskedasticity (over both time and cross-section). Nonzero initial values and regressors

that are exogenous can also be permitted (see Bai, 2013a, b).

3 Asymptotic results

We begin by considering the scenario when |p| < 1 and F is known. We then show how the
results are affected when p = 1 and/or F is unknown. Unless otherwise stated, we assume
throughout that m > 1, and thus that there are at least some effects present. As mentioned
in Section 1, the analytical results under C1 are substantially simpler than those that apply
under C2. Since C1 and C2 are indistinguishable for all values of p but one, we will only be

using C1 whenever |p| < 1.

3.1 |p| <1and F known

When F is known the vector of parameters is given by 6 = [(vechS,),p,c?] = (6},65),
where 6; = vech S, 0, = (p,0?)’, and vech is the half-vec operator that eliminates all supra-
diagonal elements of A from vec A. The purpose of this paper is to make inference regarding
this vector, and in so doing we follow the FA approach of Bai (2013a, b, c), which is based on
the following “discrepancy” function (between %(6) and Sy):

Q(6) = log(|Z(6)]) +tr (S,(0) 1),

where |A| is the determinant of A, 5, = N~! YN vy, 2(8) = 2T (p)A(Sy,0%)T(p)' and
A(Sy,0%) = It + 07 2FS,F'. To simplify notation we may at times write Q, ¥ and A for
Q(0), () and A(S,,0?), respectively. The objective function, denoted £(9), is just —N /2
times Q(6);

0(0) = —g

N _
Q(6) = = [log(IZ(6)]) + tr (5,2(9) )],
Remark 3. The objective function considered here is very similar to those considered by Bai

and Li (2012) in the context of a pure common factor model, Ahn et al. (2001, 2013) in the

context of a small-T static panel data regression model with (weakly) exogenous regressors,



and Robertson et al. (2010) in the context of a small-T dynamic panel data model. Note
in particular how, as in these other papers, 6 does not contain Ay, ..., Ay, but only S,. This
means that the dimension of 6 remains fixed as N — oo, which is also the reason for the

unbiasedness of FA in the fixed effects case (see Bai, 2013a, for a detailed discussion).

Let us define G(p) = I'(p)~'S,I'(p)~" and A(6,) = It + 02F5,(6>)F/, where 5,(6>) =
0?F~(072G(p) — It)F " and A~ = (A’A)"1A’ for any matrix A. In Appendix A we show

that concentration with respect to S, leads to the following concentrated objective function:
£e(62) = — 5 Qu(62) @
with
Qc(6) = Tlog(c?) +log(|A(62)]) + o~ *tr [G(p) A(62) ']

being the correspondingly concentrated discrepancy function. The objective is to maximize
(c(6,) with respect to 6. Let us therefore denote the true values of p, 0% and « by po, 03
and ko, respectively. Let §, = (p,02)" be the FA estimator of 69 = (po,0%)" obtained by
maximizing /.(6,) over the parameter space @ = {6, : p € (—1,1], 0> > 0}, thatis, 6, =

arg maxg,ce, £c(02). It is assumed that 69 is an interior point in @,.

Lemma 1. Under C1, |po| < 1, and Assumptions EPS, F and LAM,

B 1 o2 o2 _ _
(NT) .(6) = —3 (log(az) + Ug) - T:Z(Po —0)?w? 4+ 0,((NT)"V/2) + 0,(T 'og(T)),
where w% = T lr (L()L6 + U(;ZSAF/L{)MPL()P) >0, Ly = L(po), Mr = It — Prand Pr =

F(F'F)"'F.

The second term in the expansion of (NT) 4. (6,) is obviously maximized at p = po. The
derivative of the first term with respect to ¢ is given by —(1 — 0§ /0?)/(20?), which attains
its maximum at 0> = ¢2. This implies the consistency of 8, that is, |6, — 69|| = o0,(1).
Interestingly, consistency does not require N — oo, but holds also when N is fixed, provided
that T — oo. Bai (2013a, b, ¢) provides results that are similar to Lemma 1 (see in particular
his Lemmas 2 and S.1). Unlike our Lemma 1, however, these results are based on letting

N, T — oco. Moreover, is not apparent that the estimator is consistent also under a fixed N,

since the accuracy of approximation is not given by Bai (2013a, b, c).



Theorem 1. Under the conditions of Lemma 1, as T — oo for any N, including N — oo with
VNT3/2 0,

Hy2(6,—69) ~ N [0 w* 0

where ~ signifies asymptotic equivalence and H, = diag(v/NT?,/NT).

According to Theorem 1 there is no asymptotic bias, despite the generality of the condi-
tions placed on F; (8, — 69) is centered at zero even when scaled by v/NT. The condition
that v NT3/2 — 0 is the same as in Bai (2013a, b). What is new, however, is the fact that
asymptotic normality does not require N — oo, but holds even when N is fixed. The magni-
tude of N is not irrelevant, though, as N — oo leads to an increase in the rate of consistency,
from /T to the v/NT rate given in Theorem 1.

The covariance matrix given in Theorem 1 is different from the one reported by Bai
(2013b, Theorem S.2); what are here 0§ (o — 1) and w; 2 are in Bai (2013b) 20§ and (1 — p3),
respectively. The first difference is due to the fact that the results reported in Bai (2013b) as-
sume that ¢;; is normally distributed. Under normality the two expressions coincide, since
in this case ko = 3, giving 0§ (ko — 1) = 20;. The second difference is due to the general for-
mulation of F considered here, which includes the fixed effects consideration of Bai (2013a,
b) as a special case. In order to appreciate this, note first that by Proof of Lemma 1 (see
Appendix C), we have T~ tr (LoL)) = 1/(1 — p3) + O(T~!). Moreover, under fixed effects,
F=17r=(1,..,1),a T x 1 vector of ones, suggesting that

TP LyMrLoF = T 'F'LyLoF — T~ 'F'LyF(F'F)"Y(F'LyF)
= T M5L)Lolr — (T '15Ly1r) (T 115LY1T),
where, by Proof of Lemma D.1, T"'14L{Lolr = 1/(1 — po)?> + O(T~1) and T~ 114L{1r =
1/(1 = po) + O(T~1). Since the leading terms cancel out, T~ 'F'LiMpLoF = O(T~!), which

in turn implies

wi = T r (LoLy + 04 2SAF' LeMFLoF) = +0O(T™).

(1—p5)
The results reported in Theorem 1 are therefore identical to those reported in Theorem S.2 of
Bai (2013b) under normality.

Although the above discussion refers to the case where F = 17, we expect T-1F L{MEpLoF

to be negligible in most other specifications of empirical relevance. In Appendix D we con-

sider as examples the cases where F consists of an intercept with a possible break, and where
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it consists of an intercept and (normalized) trend. In both cases, we show that the required

sample moments satisfy

T'FF = Sp+0(T™Y),

T'FLYF = Yr+O(T™h),
T F L)L F = ;ZF +0(T™),
(1= po)?
with Xr depending on the particular specification of F being considered. Hence, in these

cases the leading terms also cancel out, leading to T~ F’ LyMpLoF = o(T—1).

Remark 4. The result given in Theorem 1 is similar to the one given in Theorem 2 of Bai
(2013c). One difference is that his analysis is based on an approximation where the depen-
dence on F, and hence also the presence of T"'F'L)MpLoF in w?, is treated as negligible
(see Bai, 2013c, Theorem 1). Our Theorem 1 retains the dependence on F and is therefore
more accurate in this regard. In particular, and despite our best efforts, we have not been
able to prove that the dependence on F is in fact negligible in general. Moreover, as we ex-
plain in Section 3.2, when py = 1 the dependence on F becomes more apparent and in fact
drives some of the results. Another difference in comparison to Bai (2013c) is the method of
proof. The proof given in Appendix C is based on formal derivation and evaluation of all

the relevant derivatives, and is in fact interesting in itself.

3.2 po=1and F known

In the common factor strand of the so-called “second-generation” panel unit root literature
(see Breitung and Pesaran, 2008; Baltagi, 2008, Chapter 12) it is common to decompose F into
two parts; (i) a deterministic part, and (ii) a random part that is mean zero. While the latter
part is supposed to satisfy C1, the former is restricted as in C2 (see, for example, Moon and
Perron, 2004; Pesaran, 2007; Peasaran et al., 2013; Phillips and Sul, 2003). In our case, both
parts are given the same treatment, which is also the reason for considering both C1 and C2.

Note in particular how under p =1,

¢ t
Vit =Y Cint+ Y €in )
n=1 n=1

where the first term on the right equals A!Y},_; F, in C1 and A/F; in C2. For example, if

F =1, while in C2 A4, ..., AN represent fixed effects, in C1 they represent unit-specific trend

10



slopes. Thus, while under C2 the interpretation of the loadings is the same for all values of
p, including unity, this is not the case under C1. This is also the main reason why determin-
istic terms are typically supposed to satisfy C2 in the previous literature (see Schmidt and
Phillips, 1992, for a discussion). On the other hand, if F; is iid with zero mean and positive
definite covariance matrix, then 22:1 F, represents a common stochastic trend, which is of
the same order of magnitude as Y"!,_; ¢; ,. Under C2 the idiosyncratic part of the model will
thus tend to dominate, but under C1 this is not the case. That which is desirable about C1
(C2) when F; is stochastic (deterministic) is therefore undesirable when F; is deterministic
(stochastic). In this section we therefore consider both models.

We begin by considering the results under C1. The following lemma shows that 6, is

consistent.
Lemma 2. Under C1, pg = 1, and Assumptions EPS, F and LAM,

—1p-3 1 2 ‘73 ‘73 22,2 -2 ~1/2
N7 TLc(6) = o712 log(o”) + ) E(PO —p) T "wi + O0p(T77) + O, ((NT)™75),

where T~2w?% > 0.

The result reported in Lemma 2 is similar to the one reported by Moon and Phillips (1999,
equation (8)) for the Gaussian log-likelihood function in the fixed effects near-unit root case.
A difference when compared to Lemma 1 is that in Lemma 2 the first term on the right-hand
side of N~1T~30.(6,) is negligible. This does not mean that ¢ is inconsistent, but merely
that it is consistent at a slower rate than p. This is shown in Theorem 2, which provides the

relevant asymptotic distribution.

Theorem 2. Under the conditions of Lemma 2, as N, T — oo with /NT~3/2 — 0,

Note how the rate of consistency of (¢ — po) is vNT?/2, which is higher than the usual
panel “superconsistency” rate of v/ NT. As mentioned in the above, the reason for this ex-
traordinarily fast rate of consistency is that under C1 and Assumption F, while Y}, _; &, =
O,(VT), we have || Yl Fu|| < Yh—q ||Fu|| = O(T). The asymptotic distribution is there-
fore dominated by the common component. In order to appreciate the effect of this we

look at T~?w? = T3tr (LoLj + 0 25, F'LyMrLoF), the inverse of the asymptotic variance of

11



VNT®/2(p — 1). While the first term is due to Y"!,_ €; ,, the second term is due to Y/, _; F,. A

direct calculation shows that
1
T2t (LoLh) = 7 Z —p) / (1= v)do+0(1) = 5 +o(1),

implying that T—2w? = T~3tr (0, 2S\F'LyMpLoF) + o(1). Earlier we showed that the effect
of F'L{MpLyF was negligible in the special case of |pg| < 1 and F = 17. When py = 1 this
is no longer the case. Indeed, it is not difficult to see that with F = 1y and t = |[vT| for
v € [0,1],
T3FLyMrLoF = T 314LyLolr — (T~ 215L1r) (T 215 Lyly)
1 T-1

2 ?
— TSE(T—t)t—<TZZ(T—t)> +0(1)

t=1

_ 2/2]10(1—v)vdv— </l (1—v)dv)2—|—o(l) 11—2+0(1),

=0

and therefore

Sx
T2,,2
wi = 12%"’ o(1).

Hence, vVNT?/2(p — 1) ~ N(0,1202/S,) under F = 17, a result that is again driven by the
common component.

Theorem 1 and the discussion that follows it make use of Assumption F, which is very
general. It is therefore interesting to consider a few special cases. Suppose for example
that m = 0, such that the model can be fitted without factors. In this case, T*Zw% =
T3tr (LoL})) = O(T!), suggesting that the rate of consistency is reduced from /NT%/2
to /NT. In fact, since T 2tr (LoLy) — 1/2, it is not difficult to show that VN T(p—1) =y
N(0,2) as N, T — oo with VNT3/2 5 0, where —4 signifies convergence in distribution,
which is in agreement with existing results for the ML and LS estimators of pg (see, for exam-
ple, Levin and Lin, 1992, Theorem 3.2). If m > 0 but F; is iid with zero mean and positive def-
inite covariance matrix, such that !, _; ¢; , and Y/, _; F, are of the same order, then v NT(p —
1) ~ N(0, Tw; ?). Moreover, since T~2tr (S\F'LiMpLoF) = T~ 2tr (S\F'LyLoF) +0,(1) < C
and T~%tr (LoL{) — 1/2, both the common and idiosyncratic components contribute to the

asymptotic distribution.

Remark 5. Theorem 2 requires that N, T — co with VNT3/2 — 0, which is stronger than

the corresponding condition in Theorem 1. The reason for this is the usual dependence on
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Brownian motion as T — oo when pg = 1, which is effectively smoothed out by passing

N — oo, thereby enabling asymptotic normality.

The fact that T—3tr (S, F'L{MpLoF) under C1 drives the results is important, not only for
the rate of consistency, but also because of what it implies for A;. In the unit root literature it
is quite common to assume that C1 holds, but to restrict the order of the deterministic trend
polynomial to be the same under pp = 1 as when |pg| < 1 (see, for example, Levin et al.,
2002). For example, it is assumed that A; = ... = Ay = 0 when F; = 1, for otherwise y;;
would contain a linear trend. Unfortunately, this is not possible in FA, at least not under C1,
as the effect of S, on w? is non-negligible and Sy — £, > 0 under Assumption LAM. Hence,
if F; = po = 1, then y;; must contain a linear trend, which is clearly very restrictive. With
this is mind, we now continue to the results obtained under C2.

The required derivatives and the resulting asymptotic derivations become extremely te-
dious under C2 due to the way that the inverse of I" enters into the expressions. Intuitively
the extension of the above results for C1 to C2 follows from simply replacing F by T "' F. Note
in particular how the concentrated objective function has the same form as in (4) but with F

replaced by T'F in A(6,) and S, (62); hence, A(62) = It + 02T (p) " FS,(62)F'T(p)~" and
Sx(02) = o*(T(p)~'F)~(¢72G(p) — Ir) (T (p)~'F) .

Lemma 3. Under C2, pg = 1, and Assumptions EPS, F and LAM,

2
_ %

—17-2 —

(po = p)*T~2tr (LoLg) + Op(N71/2) + Oy (T7).

The rate of consistency of p under C2 is generally lower than under C1 as the normaliza-
tion of /.(6,) with respect to N and T indicates. Theorem 3 confirms this.
Theorem 3. Under the conditions of Lemma 3, as N, T — oo with VNT-1 =0,

Hy(0—09) ~ N (0p, | 7927 O
2 — ~ ’ ’

where w3 = T~ Mr (LoLY + 05 2SAF'T~YL{Mp1pLoT ~1F).

It can be shown that || T~ 'F'T~VL{Mp1:LoT ~1F|| < C, giving

T 'w} = T %tr (LoLy + 05 2SAF' T VL{Mp-1pLoT "'F) = T~2tr (LoLg) + o(1).

13



Hence, since T~2tr (LoL})) — 1/2, we can show that vVNT(p — 1) =, N(0,2) as N, T — o
with vVNT~! — 0, which is the same result as obtained under C1 with m = 0. Since F
is completely unrestricted here, the specification in C2 therefore leads to simplified results
when compared to C1. Note in particular how the asymptotic distribution does not depend
on S,. This means that the requirement that S, — £, > 0 is no longer necessary (a formal
proof is available upon request). Under C2 some (or indeed all) of the loadings may be zero
for all units, which was not possible under C1.

The fact that the limiting distribution is asymptotically invariant with respect to F is
wort discussion. As explained in Section 1, most existing estimators of p are biased in ways
that depend on the deterministic specification being fitted. Valid inference in these cases
therefore requires bias-correction. Typically these correction factors are only available for
the simple case of (at most) a linear trend, which obviously limits the applicability of these
estimators. Here we are also assuming that F is known. In practice, however, there is un-
certainty over F, and in such cases researchers have to adopt a liberal modeling strategy to
ensure that the deterministic behaviors of all the units are captured. The conventional speci-
fication with (at most) a linear is clearly inadequate if one allows for the possibility that some
of the units may be trending non-linearly. This will be the case when, for example, work-
ing with variables where trending behavior is evident, such as GDP, industrial production,
money supply and consumer or commodity prices. The invariance property of FA is there-
fore not only very convenient from an applied point of view (as there is no bias to correct

for), but also enables inference in cases previously not possible.

Remark 6. Hahn and Kuersteiner (2002) study the asymptotic distribution of the LS estima-
tor of pp under C2 in the fixed effects unit root case. According to their Theorem 4, not only

is LS biased, but is asymptotic variance (51/5 ~ 10) is also substantially higher then for FA
).

Remark 7. The requirement that VNT ! = 0is stronger than in Theorem 2. The reason for

this is the relatively slow rate of consistency in this case.

In Section 3.1 (|po| < 1) we assumed that C1 held true. We then showed that the asymp-
totic distribution under py = 1 can be written in exactly the same way but with a different
rate of consistency. In this sense the results are continuous as pg passes through unity. The

same is true under C2, that is, the asymptotic distribution of §, when |pg| < 1 is the same as

14



in Theorem 3 but with H; and Tw, ? replaced by Hj, and w, ?, respectively (a formal proof
is available upon request).

The above results imply that normal inference is possible for all pg € (—1,1] under both
C1 and C2. Consider C2. Denote by @3 an estimator of w3. This estimator can be based on
either numerical or analytical evaluation of the Hessian at 6, = 0, (the elements of which are
given in Appendix B), but it can also be based on direct estimation of asymptotic formula

for w%, that is,
@3 = T~ Mr (LoLy + 6 2S;F' T VLiM¢_1 p Lol 'F),

where I' = T(p) and S% = $,(2). By using the results provided in Proof of Lemma 1, it
is not difficult to show that |[Sy(69) — Sa|| = 0,(1). But we also have ||6, — 63|| = o0,(1),
suggesting that, by the continuous mapping theorem, ||5,(8,) — 5,(69)|| = 0,(1). Hence,
1154 (82) — SAl| < |1SA(69) — Sal| +115A(82) — 5A(69)]] = 0, (1), showing that 5% is consistent
for S, (see also Bai, 2013a, Theorem 1; Bai, 2013b, Corollary S.1). A similar argument can be
used to show that ||['(9) ™1 —T~1|| = 0,(1). Therefore, ¥3 is a consistent estimator of w3.

2

Regardless of how @? is constructed the FA-based t-statistic for testing Hy : po = p° is given

by
Hp°) = @ V/NT(p - 0°).

The asymptotic distribution (as N, T — o0) of this t-statistic under the null hypothesis is an

immediate consequence of the above results and is given by
t(po) —d N(O,l),
which holds for all values of p° € (—1,1].* Note in particular how #(p°) can be used as a unit

root test.

3.3 F unknown

The above presumes that F is known. This is not necessary. If F is unknown we de-
fine & = [(vechS,),p,0?, (vecF)"]" = (0],6}), where 8; = vech S, is as before and 6, =
l0,0?%, (vecF)']’. Let us denote the true value of F by F0 = (F, ..., F2)’, and the correspond-

ing estimator by F. The estimation of 6 can proceed exactly as before. The main difference

4Note that the asymptotic distribution of #(p°) holds even if pg = 1 so that the rate of consistency is faster
than the \/NT rate used in normalization of (9 — 0°). This is due to the “self-normalizing” property of t(o°). For
example, if pg = 1 under C2, then t(0°) = &V/NT(p — 0°) = VT 102V NT(p — p°) —4 N(0,1).
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is that since now both A; and F are unknown there is an identification issue, which can be
resolved by imposing m? restrictions (see, for example, Bai and Li, 2012, Section 4, for a
detailed discussion). In the Monte Carlo study of Section 4 this is accomplished by setting
F = (I;,G"), where G is (T —m) x m.

Proposition 1. Under C1 or C2, py € (—1,1] and Assumptions EPS, F and LAM, uniformly in t,

I = Fll = 0,(1).

In most applications the coefficient of interest is pp, not F, and in such cases the main
concern is how to control for F. For this reason we only provide a consistency result here, al-
though the asymptotic distribution of /N (F; — F?) can be obtained as in Bai (2013c, Proposi-
tion 2). The fact that F can be treated as unknown means that applied researchers are spared
from the problem of having to decide on which deterministic components to include. For
example, if structural shifts are present, then there is no need for any a priori knowledge

regarding their locations, which are obtained as part of the estimation process.

Remark 8. Proposition 1 supposes that the number of factors, m, is known. However, the
asymptotic results also hold when m is replaced by a consistent estimator, 7z say. Write
p(m) for p. Consider for simplicity the case when |pg| < 1. To see that §(s1) has the same

asymptotic distribution as p = p(m), consider
P(VNTI[p(iir) — po] <) = P(VNTI[p(iir) — po] < 8| = m)P(1hr = m)
+ P(VNT[p(rir) — po] < 8|s#t # m)P(rir # m),

where § > 0 is a small number. Because P(ii = m) — 1 and P(it # m) — 0, the second
term on the right-hand side converges to zero, and P(vV/NT(p(11) — po) < 6) = 1+ o(1).

Moreover, conditional on 7t = m, p(#1) = p(m). Thus,
[P(VNT[p (i) — po] < 6) = P(VNT[p(m) — po] < 6)| = 0.

Bai and Ng (2002) consider the problem of consistent estimation of m in the context of a pure
common factor model, and make several suggestions toward this end. It is conjectured that

these estimators are consistent also in the present setup.
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4 Monte Carlo results

A small-scale Monte Carlo simulation exercise was carried out to evaluate the small-sample
performance of FA. The DGP is given by (1), where ¢;; ~ N(0,1), A; ~ U(1,2) and py €
{0,0.5,0.95,1}. Three DGP’s for F; were considered:

Fl. =1,
F2. F,=(1,0) ift < |T/2] and F; = (1,1)’ otherwise;
3. F, ~ N(0,1).

While we assume that F; is known in F1 and F2, we treat F; as an unknown parameter to
be estimated along with the other parameters of the model in F3. The estimation in F3 is
carried out in two steps. According to (3), under C1, y; = I'FA; + I'e;, which is merely
a static common factor model for y;. The first step of the estimation procedure therefore
involves the use of the method of principal components to estimate G = I'F. Since y; need
not be stationary, we follow Bai and Ng (2004), and apply the principal components method
to Ay;; rather than to y;;. This gives an estimator of (the space spanned by) G in first-
differenced form, which is then accumulated to levels. In the second step, 69 is estimated
conditional on the first-step estimator G of G. Under C2 and po=1G=F.

In addition to FA, in F1 the fixed effects LS estimator, the bias-adjusted LS (BALS) es-
timator of Hahn and Kuersteiner (2002), and the Anderson and Hsiao (1981) instrumental
variables (IV) estimator using both lagged levels (AHL) and differences (AHD) as instru-
ments are simulated. A large number of results were produced, but in interest of space we
focus on the bias and root mean squared error (RMSE) of §, and the size of a nominal 5%
level t-test. Some of the unreported results are described in the end of this section. The
number of replications was set to 5,000. All computational work was done in GAUSS 11.°

Table 1 presents the results for F1 when |pg| < 1. We see that the bias and RMSE of FA
is very small and that this is true for all the sample sizes considered. In fact, performance is
very good even for N and T as small as 10. The values of T'and N are not irrelevant, however.
In particular, we see how the bias and RMSE tend to zero when T and/or N increase, which

agrees with the v/ NT-consistency of FA. As expected, this improvement in performance

5In implementing FA we used the BFGS algorithm for constrained optimization with non-negativity con-

straints on ¢2.
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holds irrespectively of the relative expansion rate of T and N, and therefore even when N is
held fixed and only T increases. In fact, FA is uniformly better than the competing estimators
in terms of bias and RMSE. The performance of BALS is very similar, though, especially for
the larger values of N and/or T, which is consistent with the fact that both estimators are
asymptotically efficient (see Bai, 2013a, Section 4). We can also see that the size of the FA-
based t-test is close to the nominal 5% level for all values of pg and sample sizes considered.
The same cannot be said about the other estimators, however. Indeed, AHL is consistently
undersized, and LS is consistently oversized. The results for AHD and BALS are generally
better, although there is a tendency for the distortions to vary quite markedly with py; when
po = 0 the tests are oversized, whereas when pg = 0.95 they are undersized.

Since most of the estimators considered are designed specifically for the fixed effects
case, we only consider FA in experiments F2 and F3. The results are reported in Table 2. The
first thing to note is that the performance in F2 and F3 is almost as good as in F1. In fact,
the results for F1 and F2 are almost identical. The results for F3 are slightly worse, which
is as expected since in small samples the estimation of F will lead to increased variance.
Performance is still very good, however, and gets better as N and/or T increases, which is
presumably a reflection of the consistency of F;.

The results for the case when pg = 1 are summarized in Table 3. As expected in view
of the relatively high rate of consistency in this case, the results are generally much better
than when |pg| < 1; the bias and RMSE values are very close to zero, and the size distortions
are minimal. Comparing across the two specifications of the common component, we see
that the results for C1 are generally much better than those for C2, which is again due to
the difference in the rate of consistency. The only exception is F3 in which the results for C2
look best. The reason for this is that F; ~ N(0, 1) here, which, as we explained in Section 3.2,
implies that the rate of consistency under C1 is reduced from v/ NT%/2 to v/NT. Looking next
across the three DGP’s considered for F; under C2 we see that the results are very similar,
which we take as support for the theoretical prediction that FA should be asymptotically
invariant with respect to F.

As mentioned in the beginning of this section, the complete set of Monte Carlo results is
huge (they are available upon request). However, since most of the results are very similar
to the ones reported in Tables 1-3, we do not include them here, but only briefly describe

them. First, FA performs well even when ¢;; is drawn from a fat-tailed distribution. For
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example, the results based on drawing ¢;; from a t-distribution with seven degrees of free-
dom are almost indistinguishable from those reported in Tables 1-3. Second, performance is
not affected by the presence of heteroscedasticity provided FA is modified as outlined in Bai
(2013a), and that T and N are sufficiently large, which is accordance with our expectations.
Third, performance is also unaffected by the presence of time-specific fixed effects when
appropriately accounted for as explained in Bai (2013a). Fourth, under C2 the presence of
a unit root causes serious problems for the competing estimators, especially for AHL and
AHD, where the bias and RMSE results are hundreds of times larger than those found under
stationarity. LS and BALS perform better in terms of bias and RMSE, but their size distor-
tions are still unacceptably large with sizes that are close to 100% in the majority of cases.
The fact that the asymptotic distribution of the FA-based t-statistic is the same regardless of

the value taken by pg is therefore a great advantage.

5 Conclusion

The FA approach of Bai (2013a, b) was extended to the case with interactive effects and a
possible unit root. It was shown that the estimator is unbiased and asymptotically normal
for all values of pg € (—1,1]. The unbiasedness property not only makes the estimator easy
to compute, but also enables estimation and inference in situations previously not possible.
In FA the deterministic terms are treated as additional common factors that may be estimated
from the data. It was argued that while this makes for very simple implementation (in the
sense that no modeling of the deterministic component is required), it is also a drawback in
the unit root case when compared to other approaches that enable a separate treatment of

deterministic and random factors.
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Appendix A: Preliminaries

We start with some notation. It is convenient to write L = L(p) as L = (I3, ...,I7), where [; =

li(p) = (0},.1,1,0,.... 0T 17")"is T x 1 and 0,k is a 7 X k matrix of zeroes. In this notation,

I' = Ir 4+ pL and -1 = It —p]. LetI'g = It + poLo, where Ly = L(po) = (11,0,...,lT,0). It
follows that

I 'Ty = (It — o]) (It + poLo) = It — pJ + poLo — ppoJLo = It + (00 — p) Lo-

At times it will be useful to be able to rewrite Lo as Ly = (I_t0,...,I-10)’, where I_;y =

(pT-17, .., p, 1,0}, ) is the reverse version of I o. Let A} = Y.!_; p~° As for any m x 1 vector

As. In this notation, letting A = (A4, ..., A7)/,

o o

1A o g
LOA p— E p— .1 p— .1

oA i ;

-0 Zstll Pg ! CA; AT

This result will be used frequently in the sequel.

The matrix treatment builds heavily on Abadir and Magnus (2005), especially the matrix
calculus. It is convenient to define the matrix derivative operator D, which is such that
if the matrix function F(x) is m x p and x is n x g, then DF(x) = dvec F(x)/d(vecx)’ is
mp x nq. Hence, denoting by d the matrix differential, then d vec F(x) = F(x)dvecx, or
DF(x) =dvecF(x)/dvecx.

Throughout, A, B and C will be used to denote generic matrices. 4, b and c denote generic

scalars.

Proof of (4).

Consider log(|Z|) in Q(6). By using |AB| = |A||B| and |T| = 1, we obtain |Z| = |¢?A| =

(0?)T|A|, and therefore
log(|Z]) = Tlog(0?) + log(|A]).

Making use of this, the definition of S,, and then tr (AB) = tr (BA), we obtain
Q(6) = Tlog(0?) + log(|A(S1,6%)]) + 0~ 2tr [G(p)A (S, %) ]

where G(p) =T (p) 'S, T(p)~".
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We now consider the first order condition with respect to S,. Since vec(ABC) = (C' ®
A)vec B, we have D (FS,F') = F ® F'. By using this and D log |A| = [vec (A’"1)]'D A, we

obtain
D log(|A]) = [vec (A D] (F® F)).

The derivative of tr [G(0)A(Sy,0?) "] is given by
Dtr (GA™) = —[vec (A"IGA Y] (Fe F'),

as follows from noting that Dtr|AB~!| = —[vec (B~'AB~!)’)'D B. Solving for S, from the

resulting first order condition gives

D log(|(It + 0 2FS)\F')|) + 0 ?Dtr (G(Ir + ¢ 2FS,F') ™)
= [vec((It + o 2FS,F') D) (F® F)
— o 2vec((It + 0 2FS;F)'G(Ir + o *FS,F') V) (F® F') =0,

or It + 0 2FS)F' = 072G, giving 5, (62) = 02F~ (072G (p) — I7)F~/,where A~ = (A’A) 1A’
for any matrix A. Let A(6,) = It + 0 ~2FS,(62)F'. The concentrated discrepancy function is

Qc(0) = Tlog(o?) +log(|A(62)]) + o *tr [G(p)A(62) 7],

as required. u

Appendix B: Derivatives
Derivatives under C1

The concentrated objective function is

NT N A N A _
£:(62) = — =5 log(0?) — 5 1og(|A(82)]) — 55t [G(p)A(62) 1.
We begin by taking partial derivative with respect to p;
() N A N A 1
S = 2P I0sAM)) ~ 55Dt (GR)AW) ) (A1)

Consider Dlog(|A(6)]). From
d$,(6,) = d*d [F (0 2G(p) — It)F'] = F-dG(p)F,
we have
dA(6y) = d[Ir + 0 2FS5)(6:)F') = ¢ 2F[d $,(62)]F' = 0 2FF~d G(p)F'F.
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Moreover, from d AB = (d A)B+ A(dB) and d (A’) = (d A),
dG(p) =d[I(p)7'S,I(p) "] = [dT(0)~1]S,T(p) ™" +T(p)~'Sy[d T (p) "7,
and so, via vec(ABC) = (C' ® A)vecB,

vecdG(p) = [T(p) ' ®@dT(p) ' +dT(p) ' ®@T(p) ']vecS,.

Here,
[ 1 0 0] [0 0 0 0]
» —0 1 0 -1 0 0 0
dlp)™ _d | o —p 1 0|=| 0 -1 0 0| =_j,
dp dp : .
0 0 —p 1] [0 0 -1 0|
from which it follows that
DG(p) = —[T(p) ' ®J+]®TI(p) JvecS, = —C(p). (A2)

with an obvious definition of C(p). Hence, since vecd A(6,) = 0~2(FF~ ® FF~)vecd G(p),

we can show that
DA(6;) =0 2(FF- @ FF7)DG(p) = —o %(FF~ ® FF~)C(p). (A3)
Application of D log |A| = [vec (A’"1)]'D A now yields

Dlog(|A(62)]) = [vec(A(62)")]'DA(6:) = —o*[vec (A(62)")]'(FF~ @ FF7)C(p)
= —o %[vec(F'F'A(6,)'FF7))'C(p) (A4)

where the second equality holds because A(Gz) is symmetric, while the third is due to
vec(ABC) = (C' ® A)vec B, or (vecB)' (C® A’) = [vec(ABC)]'.

In order to obtain Dtr [G(p)A(62) '] we use the fact that tr (A’B) = (vec A)'vec B, from
which it follows that

Ditr [G(p)A(62) '] = (vecIr)'D[G(p)A(62) ).

By using this, d AB = (d A)B + A(d B), vec(ABC) = (C' ® A)vecB, and the symmetry of
A(92>/

D[G(0)A(62)7"] = (A(62) ' @ I1)D G(p) + (Ir @ G(p))D [A(62) 1],
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and, by further useof dA~! = ~A~1(d A)A~!'and (A ® B)(C® D) = AC ® BD, we obtain
DIA(B2) ] = —[A(62)7 ® A(62) IDA(6)
= 0 ?[A(62) " @ A(6)"|(FF~ @ FF~)C(p)
= 0 2[A(6)'FF~ ® A(62)'FF]C(p). (A5)

This implies

Ditr [G(o)A(62)
'DIG(p)A(6:) )

( )

( )
= (veclr)'[o7*(Ir ® G(p))[A(62) ' FF~ @ A(62) T'FF~] — (A(62) " @ I7)]C(p)

(vecIr)'[c72(A(62) ' FF~ @ G(p)A(62) "'FF™) — (A(62) ' ® I1)]C(p)

= [vec(c 2 F'"F'A(62) 'G(p)A(62) 'FF~ — A(6,) H)]'Clp), (A6)

where the last equality follows from (vec B)'(C ® A’) = [vec(ABC)]’, and the symmetry of
G. Define B(6;) = F~'F/(A(6;)~! — 02A(6,) 1G(p)A(62) "1)FF~ + A(6,) L. Insertion of
this and above expression for D log(|A(6,)|) into (A1) now yields

Pl — —Dlog(A)]) ~ zzDtr G(AE:)
_ %[Vec (F'F'A(62)""FF)'C(p)
— paveclo 2FFA) 'Go)AG) TFE — A(e) 1) Clp)
= S lvecB(6:)]'Clp), (A7)

as required.
90:(62)/90? can be obtained using exactly the same arguments as for d/.(6,) /dp. From

$1(62) = 0*F~(¢72G(p) — It)F~', we obtain

A(62) = It + 07 2FS)(6,)F = It + 0 2FF G(p)F'F —FF"F'F/, (A8)
and therefore,

dA(6:) = —c*FF~G(p)F'F/,
from which it follows that

DA(6,) = —c*(FF~ ® FF " )vecG(p). (A9)
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Hence,

D log(|A(6;)]) = —o *[vec(F'F'A(6;) 'FF)])'vecG(p), (A10)
D[A(6:)7'] = o *A(6;) 'FF~ @ A(6,) " 'FF |vecG(p), (A11)

which in turn implies

Dtr[G(p)A(62)""] = (veclr)'(Ir ® G(p))D (A(62) )
= o *Y(vecly) (It ® G(p))[A(62) 'FF~ @ A(6,) 'FF Jvec G(p)
= o *(veclr)'[A(6) 'FF~ ® G(p)A(62) 'FF |vec G(p)
= o *vec[F'F'A(6,) 'G(p)A(62) 'FE]'vecG(p), (A12)

Hence, since
Do 2tr [G(p)A(62) 7] = —o*r [G(p)A(62) ] + 0 *Dtr [G(p)A(62) Y],

we can show that

do?

NT ND e N e coa) - - N D (6o A (6

= N ED10g(IA@)]) + oyt [G(0)AE) ] D [G(p)A:) ]

_ _ﬂ 574 —I! A -1 —\1/ ﬁ A —1\7/

= o T 50 [vec (F7'F'A(6,) " FF)]'vecG(p) + gl [vec (A(62) )] vec G(p)

_ %a—%ec [F'F'A(6:) "G (o)A (6,)"FE]'vec G(p)

_ N N /

552 T 2 [vec B(62)]'vec G(p). (A13)
Consider 92(.(0,)/(dp)?. The starting point is
N o [vec B(62)]'C(p). (A14)
Since vec B(6;) and C(p) are vectors, we can apply D A’B = B'(D A) + A’(D B) to obtain

202 9%((6,) / /
N B2 - C(p)'Dvec B(6,) + [vec B(62)]'DC(p). (A15)

We start with D C(p), which is simplest. Indeed, fromd (A®B) = (dA) ® B+ A® (dB)
anddT(p)"'/dp=—],

DC(p) =D[I(p) '®@]+]®T(p) 'JvecS, = —2(] ® J)vecS,. (A16)
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Consider Dvec B(6;). We have

vec B(6;)
= vec[F'F'(A(6:) ™' — o 2A(6,) "1G(p)A(62) "V )FF~ 4+ A(6,) 7Y
= (F'F@F'F)(vec[A(6:) 1] — o 2vec [A(6,) 'G(p)A(62) 1)) + vec[A(62) 7Y,

implying
DvecB(6) = (F'F @ F'F)(D[A(62) '] — ¢ 2D [A(62) 'G(p)A(62)]) + D [A(62) 7],
where, by repeated use of d AB = (d A)B+ A(d B),

d [A(9z)’1G(P)A(9z)’1]
= [dA(62)]G(p)A(02) " + A62) 71 [G(p) A(62) ]
= [dA(62)]G(p)A(62) T + A(62) T ([d G(p)]A(62) ™ + G(p)[d A62)1)).

Hence,

D[A(62)'G(p)A(62) "]
= [A(62)7'G(p) @ Ir + It @ A(62) ' G()][DA(62) '] + [A(62) ! @ A(62) '][D G(p)]
= 0 2[A(62)'G(p)A(62) 'FF~ @ A(62) 'FF~]C(p)
+ 0 2[A(6:)'FF~ @ A(62) 1G(p)A(62) ' FF~]C(p)
— [A(62) T @ A(62)IC(p), (A17)

where we have used D[A(6,)7!] = 0 2[A(6,) " 'FF~ ® A(6:) 'FF~]C(p) and DG(p) =
—C(p). It follows that

DvecB(6;) = (F'F@F'F)D[A(6)7]
— o HF'F@F 'F)D[A(62) 'G(0)A(62) '] + D[A(62) ]

F'F'A(6:) 'FF~ @ F'F'A(6,) 'FF~]C(p)
F'F'A(6:) " 'G(p)A(62) "FF~ @ F~'F'A(62)'FF]C(p)
)"

[F

“F

— o *F'F'A(6:) 'FF~ @ F'F'A(6,) " 'G(p)A(62) *FF~]C(p)
[F
[

- 0

+ o 2[F'FA(6:) '@ F'FA(6:)7]C(p)

+ 072[A(6)'FF~ ® A(62) 'FF|C(p), (A18)
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which in turn implies

20% %L (62)

N (9p)?
= o0 %C(p)’

F'F'A(6;) 'FF~ @ F'F'A(62) 'FF~]|C(p)
— o *C(p)'[F'F'A(62)1G(p)A(62) 'FF~ @ F~'F'A(6:) "'FF~|C(p)
(62)"
+ 0 2C(p)'
+ o 2C(p)'[A(62) 'FF~ @ A(6,) 'FF~]C(p)

()'[F
()'[F
— o *C(p)'[F'F'A(6) 'FF~ @ F'F'A(62) "'G(p)A(62) ' FF~]C(p)
(o) [F7'F'A(62) " @ F'F'A(62)']C(p)

()]

— 2[vecB(6,)]'(J ® J)vecS,. (A19)

For 9%4.(6,)/(902)?,

?((6;) NT N

— —[vec B(62)]'vec G(p) + N [vec G(p)]'Dvec B(6,), (A20)

(002)2 T 208 o 204
where

Dvec B(6>)

= (F'F@F 'F)(D[A(62) ] —0?D[A(62) 'G(p)A(62) ")) + D[A(62) ]

= o *F'FA(62) 'FF~ @ F'F'A(6;) 'FF~]vecG(p)

— o S[F'FA(62) 'G(p)A(6) 'FF~ @ F'F'A(6;) "'FF " ]vec G(p)

— o ®[F'FA(6;) 'FE~ @ F'F'A(6,) ' G(p)A(62) 'FF~]vec G(p)

+ o *[A(6:)'FF~ ® A(6;) 'FFJvecG(p), (A21)

as follows from noting that
D[A(62)7'G(p)A(62) 7]
= [AB)'G(o) @It + Ir @ A(62) 'G(p)]DA(62) !
= o 4A(6:)7'G(p)A(6) 'FF~ @ A(62) ' FF~]vec G(p)
+ o A(6)T'FFT @ A(62) 1G(p)A(62) L FF vec G(p).
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Insertion into the expression for 92(.(6,)/(d0?)? yields

20.(6,)
(902)?
— % _ %[VecB(Gz)]’vecG(p)
+ % [vec G(p)'[F'F'A(62) 'FF~ @ F'F'A(62) 'FF]vec G(p)
- Z(%[Vec G(0))'[F'F'A(62) "' G(0)A(62) "FF~ @ F~'F'A(6,) "' FF]vec G(p)
_ Zalm[vecc(p)]'[F*’P/A(ez)*lpF* @ F'F'A(6,) G (o) A(6,) 'FF~|vec G(p)
b veeGlo) [AB:) TFE @ A(6:) FE Jvec Glo). (A22)

It remains to consider 9%/.(6,)/(dpdc?). Taking partial derivative of 9/.(6,)/dp with

respect to 02,

a;f;a(ﬁi) = L [veeB(62)]'C(p) + 55 C(p) DvecB(6:)
= olvecB(B:)/Clp)
+ %C (0)'[F'F'A(6,)"'FF~ @ F'F'A(6,) " 'FF " Jvec G(p)
- %C(p)’[F*’F’f\(ez)*lG(p)f\(ez)*lpz—"* ® F~'F'A(62) " FF~]vec G(p)
- 2%C(p)/[F"F’f\(ez)—ln— ® F'F'A(62)'G(p)A(6:) "FF]vec G(p)
+ %C(M’[A(Gz)*lf‘l—‘* ® A(6;)'FF~]vec G(p). (A23)

This establishes the last of the required derivatives under C1.

Derivatives under C2

The concentrated objective function has the same form as before, except that F should be
replaced by T~!F. Hence, if we let A(62) = It + 2T (p)"'FS$,(62)F'T(0)™" and $,(62) =
o*(T(0)~'F)~(¢72G(p) — Ir)(T(0)~'F) ™, then

NT N A N n B
£(02) = ——5- log(e?) — 5 Log([A(62)]) — 5 5t [G(p)A(2) 1],
and therefore

) D log(lA(e:)) - %Dtr (G(p)A(62)71].

30



Consider Dlog(|A(62)|). Repeated use of d AB = (d A)B + A(d B) yields
dS.(6,) = c*d[(T
= o?[d
_|_
" *1P>*<0*2G<p> ~ 1)l (T(o) 1 F) ) (A24)
Letting H(p) = F'T(p) YT (p) ~'F, we have
d(T(p)™'F)~ =dH(p)'FT(p)™"" = [dH(p)']F'T(p)~" + H(p) ' F'dT(p)~"
FromdA~! = —A"!1(d A)A™}, vec(ABC) = (C' ® A)vec B and the symmetry of H(p),
DH(p)™! = —[H(p)~' @ H(p)'IDH(p),
where
d H(p) = F'[(dT(p)~")T(0) ™ +T(p)~"(dT(p) ")IF,

and therefore, by further use of vec(ABC) = (C' ® A)vecB,d (A’) = (dA) and A’ ® B’ =
(A®B),

DH(p) = (FT(p)""®F)DI (o)™ + (F @ FT(0)"")DT(p)""
= —(T(o) 'F®F)vec] — (F®T(p) 'F)'vec]. (A25)

Hence, since (A® B)(C® D) = AC® BD and dT'(p)'/dp = —]J,

DH(p)™"!
= [H(p) '@ H(p) "[(FT(0) " @ F)vec]' + (F @ FT(p) ")vec]]
= (H(p) 'FT(p)"" @ H(p) 'F')vec]' + (H(p) 'F' @ H(p) 'F'T(p)")vec],

which in turn implies, viaA® B+ A®C=A® (B+C),

D(T(p)'F)~ = (T(0)'F® L,)DH(p)" — (Ir © H(p) 'F')vec ]
= (T(0)'FH(o) 'FT(p) " ® H(p) 'F')vec]'
+ (T(p) 'FH(p) 'F' & H(p) 'F'T(p) V)vec ] — (Ir ® H(p) 'F')vec '
= [(T(p)'FH(p) 'F'T(0)"" = Ir) ® H(p) ' F']vec]’
+ (T(p) 'FH(p) 'F'® H(p) 'F'T(p) "')vec]. (A26)
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From this we can further deduce that

D(T(p)~'F)™" = (H(p)"'FT(p)"" ®T(p)'FH(p)~'F')vec]'

+ [H(p)'F' @ (T(p) '"FH(p) 'F'T(p) " — Ir)]vec]. (A27)

Also, from the results for C1, DG(p) = —C(p) = Co(p) = —[I'(p) ' @ ]+ J@T(p) !|vecS,.
Insertion of this, D (T (p) "'F)~ and D (T'(p)"'F)~" into D $, (62) now yields

DS, (6,)

- -

Q

+ o+ o+ o+

a*[(T(0) 'F) " (¢72G(p) — Ir) @ Ln]D (T () 'F)~
[(T(p)'F)~ @ (T(p) 'F) D G(p)

7?1y ® (T(p) 'F)~ (072G(p) — I7)]D (T(p) 'F)~’

2[(T(p)'F)~(¢7%G(p) — Ir)(T(p) 'FH(p) 'FT ()" — It) ® H(p) ' F']vec]’
[(T(p) ' F)~(¢"2G(p) — Ir)T(p) "FH(p) 'F'® H(p) 'FT(p) "Jvec]
[(T(p)'F)~ @ (T (P)le)*]Co(P)

o*[H(p)'F'T (o)™ @ (T(p)""F)~ (¢ *G(p) — Ir)T(0) 'FH(p) ' F'lvec]’
o*[H(p)'F' @ (T(0) 'F)~ (672G (p) — Ir)(T(0) 'FH(p) 'F'T(p)~" — Ir)]vec].

2

Suppressing for simplicity any dependence on 6,, defining V. = V(p) = T"'FH!, and
using AR B+ A®C=A®(B+C),a(A®B) =adA®B =A®aB, A’®B = (A®B),
VTS, =V'Gl'and H'F' = V'T,

A

DS,

m + +

+ o+ o+

o?[V'(c72G — I7)(VFTY — It) ® H 'F']vec ]’

PH P @V (c72G — It)(VETY — Ir)]vec ]

V(072G — It)VF @ V'lvec ] + o[V @ V(072G — It)VF'|vec]' + (V' @ V') Cy
Ve V)[I'® (G-It (VET™Y — It)]vec |

Ve V)[(G—-aIr)(VETY - Ip) @ T’|vec]

Vev)
)'C

(
(
( "(G—*Ir)VF @ Ir|vec ] + (V@ V)'[Ir ® (G — 0*Ir)VF']vec ]
(

Ve V)C 0/
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where

' ® (G —o?I7)(VET™V — Ir)]vec ]
= vec[(G—?It)(VFT™YV — Ip)JT]
= vec[I 'S, V(VFT ™V —I7)JT] — o*vec [(VFT ™V — Ir)]T]

= [['J(VFT V- Ip)I ' ®@T 'vecS, — o?vec [(VE'T Y — Ir)]T].
and

[(G — o?Ir)VF & Ir]vec |
= vec[JFV'(G — 0?Ir)] = vec (JEV'G) — ?vec (JEV')

= vec (JFVT'S,I ) — o?vec (JEV') = (T ' ® JFV'T !)vecS, — o?vec (JFV').
Similar calculations reveal that,

[(G—c?Ir)(VFTY - It) @ T'|vec ]’

= [['@T'J(VFT Y~ Ir)T 'vecS, — o?vec [I'](T'FV' — Ir)],
and
(It ® (G — d?Ir)VF'lvec]' = (JEV'T ' @ T ')vecS, — o?vec (VF']).
Hence, letting

Ci = [(I'J'(VFTV—1Ir)+ JEV)T ' @ 'vecS, — o*vec (VE'TV — Ir)JT + VF']"],
C, = [['e@J(VFTYV —Ir) + JFV ) tvecS, — o*vec [I'](T'FV' — Ir) + JFV'],

which are both functions of 6,, we obtain
DSy = (Ve V) (Co+Ci+Ca). (A28)
Let us now consider A(6) = It + 02T (p) "'FS,(62)F'T (o)~ Y;

dA(6;) = o 2d[T(p) "FSr(62)F'T(p)~"]
= o 2[dT(p) "JFSA(62)F'T ()" + 0T (p) " F[d Sx(62)]F T ()"
+ o (p) 'FS,(6,)F'[dT(p) V],
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from which it follows that

DA(62) = o2[[(0)'FSA(62)F @ Ir]DT(p) " + o ?[[(0) 'F @ T'(p) ' F]D 5,(62)
+ o 2[Ir®@T(p) 'FS,(6,)F|DT(p)V
= —0*[[(p) 'FSA(62) F' @ Ir]vec ] + 0 *[T(0) 'F @ T(p) ' FID $5(62)
— o [Ir ®T(p) *FS,(6;)F']vec]'. (A29)

Use of S, = (T7'F)~(G — ¢?I7)(T~'F)~" = V'(G — ¢?Ir)V and noting that T"'FV’ is sym-

metric,

DA = -0 ?[['FV/(G—?Ir)VF @ Ir]vec] — o ?[Ir @ T"'FV'(G — ¢*I7)VF']vec ]’

+ o 2T FRTIF)(Ve V) (C+C +C).
From V'V = H},

[TEV'(G — 0?I1)VF @ Ir)vec]
= vec[JFV'(G — o?I7)VF'T V] = vec (JEV'GVFT V) — 0*vec (JEV'VFTV)
= vec (JFVT 'S, I VVFT V) — o?vec (JFV')

= T '®@])(FVT '®@FV'T ')vecS, — oc?vec (JFV'),
and, by following the same steps,

[Ir @ TYFV'(G — 0?I1)VF |vec ]’
= (JI Y)FVT '®@FVT )vecS, — oc?vec (VF'T).

Hence, defining
Ci(0) =Ca=(T'®@]J+ ]I ) FVT '@ FVT ')vecS, — oc*vec (JEFV' + VF']'),
we have
DA = ¢ 2 [—(I'FV' @I 'FV)(Co+ Cy + Cp) + C3] = —02C, (A30)

with an implicit definition of C = C(6,). Application of D log |A| = [vec (A’"1)]'D A now
yields

D log(|A(82)]) = [vec (A(62) 1D A(82) = —o2[vec (A(62)71)]'C(62). (A31)
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The tr [G(p) A(62) 1] term has the same form as before. We can therefore make use of the

results reported in Proof of Lemma A.1 to arrive at

Dtr[G(p)A(6,)7Y] = (vecIr)D[G(p)A(62)71]

= (vecIr)'[(A(62) "' @ I)DG(p) + (It © G(p))D (A(62) 1)),
where, viad A~! = —A"1(d A)A7Y,
D[A(6)7Y = ~[A(62) T @ A(62) D A(62) = 0 2[A(6) L @ A(62)T1C(6).  (A3D)
Hence, since (vec B)'(C ® A’) = [vec(ABC)]/,

Dtr [G(0)A(62) 7]
= (vecIr)'[(A(62) " @ Ir)DG(p) + (It ® G(p))D (A(62) )]
= (vecIr)'(A(62) "' @ I)Co(p) + 0 *(vecIr) (Ir @ G(p))[A(62) ' @ A(62)']C(62)
= [vec(A(62) 1)]'Colp) + 0 *[vec (A(62) ' G(p)A(62)1)]'C(62) (A33)

The above results lead to the following expression for 9¢.(6,)/9dp:

3568(52) = D I0g(|A®)]) ~ 55Dtr [G(0)A(B:) ]
= %[Vec (A(6,)™H))'C(62) — %[vec (A(62)"H)]"Co(p)
_ %ﬂvec<A<ez>*1c<p>A<ez>*U]'sz)
_ —%[(Vec B1(6,))'Co(p) — (vec By(62))'C(62)], (A34)

where

Bi(62) = A(62)7,
Bz(@z) = U_ZA(GQ)_lc(p)A(Bz)_l—A(Gz)_l.

Consider 92/.(0,)/(dp)?. As before, the starting point is

202 3lc(62)
N op

= —[(vec B1(62))'Co(p) — (vec B2(62))'C(62)].

From D A’B = B'(D A) + A'(DB),

202 9%(,(6,)
N (dp)?

= —Co(p),D B1 (92) — [VeC 31(92)],1) Co(p) — 6(92)/[) 32(92)

— [VeC Bz(@z)]IDE(Qz). (A35)
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We have already shown that D B;(6,) = D[A(6,)7!] = 0 2[A(62)"' ® A(6;)1]C(62) and
DCy(p) = —DC(p) =2(J ® J)vecS,. Let us consider D B, (6,);

D By(62) = 0 *D[A(02) "' G(p)A(62) '] —D[A(62) 7).

Since the second term on the right is already known, we only need to consider the first term,

which has the same form as under C1. As in that case,

DI[A(62)"'G(p)A(62) "]
= [A(62)'G(p) @ I + Ir @ A(62) ' G(p)][DA(62) '] + [A(62) ! @ A(62) '][DG(p)]
= 0 2[A(62) 'G(0)A(62) T @ A(62) !+ A(62) T @ A(62) ' G(p)A(62) 'C(62)
+ [A62) 7T @ A(62) 7] Colp), (A36)

showing that, suppressing again the dependence on 6,,

D B,

(GA' @I+ I @ GA™! = ?In)C+ o 2 (AT @ A1) Gy (A37)

The only term missing now in 92£.(6;)/(dp)? is D C(62). When evaluating this term it is

convenient to write Cy, C;, Cp and Cj in vectorized matrix format;

Cr = vec (cx),

where
co = —(JIG+GI'T),
¢ = G(I'FV —Ip)JT +VF]) —c*(VFT YV — It)JT — *VF'],
o = (UJ(VET Y —Ip)+ JFV)G — *T'J (T 'FV' — Ir) — c?JFV/,

c3 = JFV'GVFTV4+T'FV'GVF'] —¢*JEV' —*VF'].
In this notation

C = —(T'EV' @I 'FV)(Co+Ci+C) +C3

= —vec[T'FV'(co+c1+ ) VFT V] + G, (A38)

36



leading to the following expression for D C(65):
DC=-D[I'FV'(co+c1 +c2)VFT V] + DGCs. (A39)
Here
d[T7YFV/(co+c1+ ) VFT Y
= (AT HFV'(co+c1 +c)VFTV+TIFAV')(co+c1+c)VFTV
+ TEV'[d(co+c1 4+ ) ]VETV+TEV (co+¢1 + ) (dV)FTV
+ T7'FV'(co4 ¢y +c)VF(AT™Y),
and therefore
DT 'FV/(co+c1 + ) VFT V)
= ['FV'(co+c14 ) VE QIf]DT + [T7FV/ (co +c1 + ) @ T HF|D V'
+ TPV @TFVID(co+c1 +c2) + T TFRTEV/ (co +c1 +c2)]DV
+ [Ir@T'FV'(co+c1 + ) VF|DT Y, (A40)
where all the required derivatives are known, except for D (¢ + c¢1 + ¢2). Let us there-
fore consider D¢y. Since dveccy = d Cy, we have that D¢y = DCy = 2(] ® J)vec Sy =
2vec (JS,]'") = 2vec (JTGI']"). For D¢y = D Cy, we use
deg = (AG)((IFV' —Ip)JT + VF']) + G[d (T 'FV' — It)JT 4+ VF']")]
— d(VFT Y —Ip)]JT = c*(VETY — I1)]J(dT) — c*(d V)F'],
from which it follows that

Dce; = [(T'J(VET ™V —1I)+ JFV) @ I7]DG + (Ir ® G)D (T 'FV' — I)JT + VF'])

AT @Ir)D(VETY —I) — ?[Ir ® (VETY — I)J]DT
— ¢*(JE®I7)DV. (A41)

Here
d((TEV' = Ip)JT + VE']") = [d (T 'FV' — Ip)]JT + (T 'FV' — Ip)J(dT) + (d V)F'J.
giving
D(T'FV' —Ip)JT+VF]) = ('@ Ir)D(TFV' —Ir)
+ [Ir® (I 'FV' —I1)]IDT + (JF® It)D V.
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Let Pr1p = T"'FH'FT~Y and My = It — Py1p. In this notation,

DV DI 'FPH Y= (H'FeI)DI '+ (Ir T 'F)DH!

—(H 'F'® Ir)vec]
+ (r@T'A)[(H'FT V@ H 'F)vec] + (H 'F @ H'FTV)vec]]
(H'PT VU 'FH 'F)vec] + [H'F @ (T 'FH'FT™Y — Iy)]vec]

(HFPT V@I 'FH 'F)vec] — (H 'F' ® Mp-1p)vec]. (A42)
and therefore

DV' = (I 'FH 'F @ H'FT V)vec] — (Mp-1f ® H 'F)vec ], (A43)
from which we obtain

D(I'FV' —Ir)
= (VF@Ip)DI '+ (Ir T 'F)DV/
= (IT'FH 'F @ Prap — VF @ It)vec ] — (M- @ T 'FH 'F')vec ]’

= —(VF @ Mp1p)vec] — (Mp1p @ Prapl’)vec ],
and
D(VETV —Ir) = —(Mp-1f ® VF')vec ]’ — (Pp-1pI” @ Mp-ip)vec .

But we also have

1 0 0 0O O 0
are)  d Lo 1 0 0 ... 0
p) _ 9 1Y I 2p 1 0 ... 0|=r7 T(p),
ot Pl et 20 1 0]
such that
DT (p) = vec[['(p)JT(p)] = [[(p)’ @ T(p)]vec]. (A44)
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By addi

D

which ¢

DC1

ng these results,

(T7'FV' — I7)JT + VF']T)

= —(I'J'VF' @ Mp-ip)vec] — (T')'Mp-1p @ Pr—1pI’)vec |

+ [Ir @ (T7FV — Ip)J(T" @ T)vec ] + (JFH 'F TV ® Pr1pI')vec ]!

— (JFH 'F' ® Mp-ip)vec]

= [T +JT)Prapl” @ Mp-splvec ] + [(JTPr-1p — I')'Myp1p) ® Prapl']vec |’
— (It @ Mp-p])(T" @ T)vec ],

an in turn be inserted into the expression for D ¢; giving

—[(I']'Mpp — JFV') @ I1]Co

[(T'] + JT)Pr-1pT’ @ GMy-1p]vec ] + 2[(T'] + JT)Pp-1pI’ @ Mp-ig]vec |

[(JTProap —T'J'Mpo1g) @ GProapI’|vec J' — 0 [(JTProip — I'J'Mp1p) @ ProipI’]vec |/
[It ® GMp-1p]](T" @ T)vec ] + ?[It @ Mp-1]](I" @ T)vec |

[(JTPp-1p — T']' Mpo1p) @ IT)Co — [(T'] 4 JT)ProafT” @ (G — 02 Ir) Mp-1f]vec |
[(JTPrap —T'J'Mra1g) ® (G — 0*I7) Pra gl vec J'

I’ ® (G — o?Ir)Mp-1p]T]vec ], (A45)

and because of symmetry we also have

DC2

= [IT %) (]rpr—lp — F/I/Mr—lp)]co — [(G — U'ZIT)MF—IF &® (F/]/ + ]r)Pr—lpr/]VeC ]/
+ (G —?Ir)Praafl’ @ (JTProip — T Mp—i)]vec |
— [(G = ®I)Mp-1fpJT @ T']vec ] (A46)
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It follows that

D(C0+C1 +Cz)

DCO + [(]rpr—ll;‘ — FIIIMrle‘) ® IT + IT ® (]rpr—ll: - r/]IMF—ll:‘)]CO
[I'® (G — ?I7)Mp_1pJT]vec ] — [(G — o?Ir) Mp-1pJT @ T']vec '
[(T']) + JT)Pr-1pI’ ® (G — 0I7) Myp-1p]vec |

(

[(G — o?I7)Mp-1p @ (T']' + JT) Ppa gl vec |/

[(G — 0?Ir) Prpl’ @ (JTPrap — T’ Mypoag)]vec |
(

[(JTProap — ') Mpo1p) @ (G — 0?I1) P fpI']vec J'.

Insertion into (A40) now gives

DT 'FV/(co+c1 + ) VFT V)

+
+

TEV (co4c1+ ) VF @ It]DT L + [T1FV/(co +¢1 + ) @ T IF]D V'
T FV' @TFV D (co+c1+c2) + [T FRTFV (¢ +c1 +¢)]DV

[Ir @ T"YFV'(co + c1 4+ ) VF' DTV

—[Pr-1p(co + €1+ ¢2)' Pro1pI’ @ Mp-1p]vec |

[Pr-1p(co+c¢1 4 c2) Mp1p @ Prapl’|vec ]’

[Pr-1p ® Pr-1]D Co

[Pr1p(JTPr1p = T'J'Mp1p) ® Proap + Proap ® Prap(JTPrap — ' Mpap)]Co
[Pr1pI" ® PrapGMrpap]T]vec |

[Pr1pGMp1p]T ® PrapI']vec ]’

[Pr1p(T']" + JT)PrapI’ @ PrapGMp-ag]vec |

[Pr1pGMrp1p ® Proap(I']" + JT) Proapl’]vec J'

[Pr-1p(G = 02 I1) Prap T’ ® Proap (JTPrap — ') Mp—ip)Jvec |

[Proap(JTPrap — T'J' Mpip) © Proip(G — 02 It ) Pra p Jvec T

[Mp-1p ® Pro1p(co +¢1 + c2) PrapIvec ]’

[Prapl” @ Proap(co + 1+ ¢2) Mpap]vec]. (A47)

It remains to consider D C3, which we expand as follows:

DC; =D (JEV'GVET V) + D(T'FV'GVF']") —¢?D (JEV') — D (VF']'),  (A48)

40



where

d (JEV'GVFT™Y) = JF(dV)GVETV +JFV(dG)VFT YV + JEV'G(AV)FTV
+ JFV'GVF(dTY)
giving
D (JFV'GVFT™Y)
I"'FV'GRJF)DV' + (T'FV' ® JFV)DG + (I 'F® JFV'G)DV
Ir ® JFV'GVF)DIV
P IFGPr 1FT (024 ]TPI- 11:)VeC] (PrleGMr—lp & ]I’PI-AFI’/)VeC I/
P -1F ®IFP1" IFGPF 1FF )VeC] — (PF 1Fr/ ®]FPP 1FGM1" 1F)VeC]

(T

(

(

(

— (It ® JTPr1pGPrapl’)vec J' + (Pr1p ® JTPrap)Co

(Pr—1pGPro1pl’" @ JTPpoip)vec | — (Pro1pGMp—1p @ JTPro1pI )vec |

(Mp-1p @ JTPp-1pGProi g )vec ' — (PraipI @ JTPpo1pGMp-1f)vec |
(

+ Pl" 1P®]FPF ]F)CO

The matrix product in second term of D Cj is just the transpose of the product in the first

term. Hence,
D (I 'FV'GVF'])
= (IFPF—IF ® PF—IFGPF—]FF/)VeC ]l — (]].—‘Pr—ll:‘r/ ® Pr—lFGMr—lp)VeC]
— (]FPquGPquF/ ® Mr—lF)VeC] — (]rpr—lFGMr—lF ® Pqur/)VeC ]/
+ (IFPF—1F®PF—1F)C0~

The third and fourth terms are given by

D(JEV') = (Ir®]JF)DV’
= (I 'FH'F @ JFH 'FTV)vec] — (Mp1yr ® JFH 'F')vec ]

= (Prapl’ @ JTPrap)vec] — (Mp1p @ JTPr1pI)vec ),
and

D (VF']') = (JTPr-1p @ Pro1pl’)vec ' — (JTPp-1pI" @ Mp-1p)vec ],
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respectively. Insertion into (A48) gives, after simplification,

DC; = (It ®JTPrap — JT & Mp-ip) (Pr-1p(G — 0?I) Proap I @ It)vec |
+ (JIPrap @ It — Mpap ® JT) (It ® Prap(G — UZIT)PrflPr/)VeC J
— (Ir®JT+JT @ It)(Pp-1pGMp-1p @ Pra g )vec |’
— (Ir®JT +JT @ Ir)(Prapl” @ PrapGMpap)vec |
+ (Ir@JT+JT @ Ir)(Prap ® Prap)Co. (A49)

The corresponding expression for D C in (A39) can be obtained by using this and the result
for D[T~'FV'(co + ¢1 + ¢2) VF'T~V]. The expression for D C, together with those for Cy, D By,
By, DCy, C, D B, and By, can in turn be inserted into (A35) to obtain the required expression
for 024.(0,) / (9p)>.
020:(0,)/ (0pdr?) remains. Note that
202 9%4:(6)

N 9pdo? = —Co(p)'D By (62) — C(62)'D Ba(62) — [vec B2(62)]'D C(67). (A50)
As under C1,
DB;i(6;) =D [A(Gz)—l] = 0-_4[[\(62)_11)1"*113 ® A(GZ)_lpr—lp]VeC G(p) (A51)
Also,

dBy(f2) = d[o?A(62)7'G(p)A(62) "] —d [A(62)7"]
= (Ao 2)A(62) 1G(0)A(6:) " + o 2d [A(82) 1G(0)A(6,) ] —d

>
—~
&
N

S—
=

= 072A(02) 7 G(p)A(62) 7T + 02 [d A(62) TG (p) A(62)

DBy(6) = —o *[A6) @ A6:) HvecG(p) + 0o 2[A(62) 1G(p) @ Ir]DA(8,) !

or, suppressing the dependence on 6;,

DB, = - YA T@A YvecG+ e 2(ATIG®Ir)+ 0 2(Ir @ ATIG) — Ip]D (A7)
= 0 HAT@A YvecGH [ HATIGRIr) + o X (Ir @ AT1G) — Ip2]

x (A7'Prap ® AT Proag)vec G. (A52)
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For C, since Cq, C, and Cs are already in vector format, we have

D Cl fry —U'_ZVeC [(VF/F_ll — IT)]F + VF,],] = —O'_ZVGC (PF—IFF/]/ - Mr—lF]rX,A53)
DG = —o vec[['J/(T'FV/ — Ir) + JFV'] = —0 2vec (JTPy 1 — I'J My 15 JAS)
DC; = —0 %vec (]FV/ + VF/]/) = —0 2vec (JTPrap + Pr—lpr/]/)~ (A55)

With D Cy = Op2,4, this yields
DC = —(T'FV @I 'FV)D(C;+C) +DGCs
= 0 *(Prap @ Prap)vec (Prapl’) — Mpap]T + JTPrap —I')'Mpoip)
— o 2vec (JTPpaap + ProifT'])
= 0 2(Prap®Prap)(Ir @ Prapl’ — Mpap @ T )vec |/

2(Proip ® Proap) (Praapl’ @ It — T' @ Mp-1f)vec |

+
Q

- O

= O 2 Pl"—lp X Pr—lFr/)VeC ]/ + 0'72(1)1"—11:1—‘/ &® Pr—lF)VeC]

(

(
Z(PrleIﬂ/ ® IT)VeC] — 0'72(11" ® PrleIﬂ/)VeC I/

(

— (

2(Ppapl’ @ It)vec | — 0 2(It @ ProafpI’)vec '
= 0 (Mpap ® ProafI)vec ] — 0 2(Pro1f T’ @ Mp-1p)vec]. (A56)

The required expression for 9%(.(6,)/ (dpdc?) is implied by this.

Appendix C: Proofs of main results

Proof of Lemma 1.
Let K = K(6,) = (¢5,(62)~' + F'F)~1. Application of (A +CBC')"! = A=l — A"1C(B~' +
C'A71C)"1C’'A7 ' to A~ yields

A7l =1y — F(¢*S;' + F'F)"'F = It — FKF'.
Since tr (A+ B) = tr A+ tr B and tr (AB) = tr (BA), we can show that

Q. = Tlog(c?) +1og(|A|) + o 2tr G — o 2tr (GFKF'), (A57)
where G = G(p) = T'(p)~'S,I'(p) V.

In order to establish the required result we need to evaluate each of the right-hand side

terms of (A150). We begin with ¢~2tr (GFKF’). By the definition of F~,

A

Sy = 0*F (072G —1Ip)F' =c*(F'F)"'F(¢7%G — I)F(F'F)!
= (FF)"'F'GF(F'F)™' —*(F'F)"L (A58)
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By using this and (A +CBC') ! = A~ — A7IC(B~! + C’A~1C)"1C’A~! we obtain
K = (&SP +FF) = (FF)' = (FF) Yo7 25, + (FF) )" Y(F'F)~!
= (FF)"'=¢*(FGF)}, (A59)
suggesting that
tr (GFKF') = tr(F'GFK) = tr [F'GF((F'F)~! — ¢*(F'GF)™ )]
= tr[F'GF(F'F)"Y —o?tr I, = tr [F'GF(F'F)1] — o?m. (A60)

Consider F'GF. In particular, let us consider S,. Clearly, this quantity only depends on the

true values of p and 02, pg and 03. Hence, writing I'y for I'(pg), we have

N

1
Sy = ToSulp =Togy ) (FAi +ei)(FAi +e1)'To
i=1

1Y 1Y
= Fo(ang + FSAF,>T6 + FON Z F/\ie’il“f) + FON Z EiA;F,r(l)
i=1 i=1
1 N
ol Sl - a@m, (A1)
i=1

where the third equality follows from adding and subtracting 03ToI'y. It follows that

T?F'GF = T ?2FT 'S T VF=T'FT ' S.I;I VF

1 N
= T 2FT 'To(cdIr + FSyF)T{TVF + T—Hf’r—lrom FAel Ty VF
i=1
11 1 1 al 1ol 17
+ TPT Ty Y A FT)IVF
NT 5
1 N
+ T‘lP’F‘lrom Y " (eig; — og Ir) T V'E, (A62)

i=1
We now evaluate each term on the right-hand side. The first term can be expanded in the
following fashion:
T2F'T Ty (0d Iy + FS,F)THT~VF
= 0T ?FT oI VF + T 2F T 'ToFS,F'T{I VF. (A63)
Consider T 2F'T o[yl "VF. From T T = It + (oo — p) Lo, ||AB|| < ||A]|||B]|, ||A+ B|| <
||Al| 4+ ||B||, and the assumed properties of the moments in F and Lo, we obtain
||TYF T VE||
= |IT7'F'[Ir + (po — p) Lol [I + (po — p) Lo F||
< |IT7'F'FI[ +2lpo — pl[| T F'LGF|| + (po — p)?||T~'F'LoLgF|| < C,
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implying

||[T2FT oI VE|| = O(T™ ).

As for the second term on the right-hand side of (A63), by substitution of [Ty = I + (0o —

p)Lo,

FTITGFSAFTTVF = F'[Ir + (oo — p)Lo] FSAF'[IT + (00 — p)Lo)'F

= F'FSyF'F+ (po — p)F'FS\F'L{F + (po — p)F'LoFS\F'F

+ (00 — p)*F' LoFSyF'LiF, (A64)

which can be substituted back into (A63), giving

T 2FT 'To(cg It + FS,F)T{TVF

_|_

T2 F'T Ty I VF + T 2F T 'ToFS,F'T,I " VF
(TYF'F)S\(T'F'F) + (00 — p)(T 'F'F)S, T 'F'L{F
(00 — )T YF'LoFS\(T'F'F) + (po — p)*T 'F'LoFSAT 'F'L{F + O(T~1). (A65)

The effect of the second term on the right of (A62) can be deduced from

+

T'FT™'T F—Zx\ IrVr

TYF'[Ir + (oo — p)Lo] F—ZAs [IT + (0o — p)Lo)'F

IT'F']| +lpo — pl||T~'F'E|

/\Z‘S-F
T i=1 l

1
= 2 AigiLoF
NT =

loo — pl||T'F'LoF|| (po — p)?||T'F'LoF||

Z/\&F

‘ Z)\SLO

By using E(g;€}) = 0gIr and the fact that €]FF'e; is just a scalar,

il

1 i I
A& F

NTH

1 i N | FFeA)] 1 ii o .
— Eltr(AieiFF'eiA)] = —= E(e;FF'ej)tr(AiA})
NT 54 l NT 53 Z !
71 kY ! / ! 1 / / /
7 L L rlE(ee) FFr(AiA) = o ) trlE (el FF (M)

45



and by repeated use of the same argument,

1 N
E —— Y N LF
(It

2
) = o2tr(T ' F' LoL,F)tr(S,) < C,

suggesting that |[(NT) 12N AeiF|| and ||(NT)"V2 N, AelL)F|| are O,(1). The order
of the second term on the right-hand side of (A62) is therefore given by

1 N
T*lF’rflroFm Y N ToTVF
i=1

= O,((NT)™"/2). (A66)

The effect of the third term is of the same order.

It remains to consider the fourth term, which can be expanded in the following fashion:

_|_

+

N
T*lF’rflroi Y (i — o Ir)ToTV'F
NT =
1 N
T'F'[Ir + (po — p) Lol 55 Y_(ei€; = o3 Ir) [Ir + (po — p) Lo]'F
i=1
1 N 1 N
T‘lP’m Y (i€ — ogIr)F + (po — p)T—lF/m Y (ei€; — ofIr) LoF
i=1 i=1
1 N
(po = )T~ F'Loysz ) _(eiei — ogIr)F
i=1
1 N
(o = p)*T 'F'Loygr Y- (eie; — 0 Ir) LoF. (A67)

i=1

Consider the first term on the right-hand side. We have

il

F'(e;eh — ogIr)F

)

fi
I
*

N
N2 Z tr[F'E(e;e;FF'e;e})F — 0§ F'FF'F] (A68)
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Here,

tr[F'E(e;€;FF'¢;€;) F]

t=1s=1

2
T T
= E(tr[F'e;eiFF'e;eF]) = E[(¢/FF'e;) <Z ) si,tei,SF[Fs>

Il
1=
1=
1=

Z E(Si,tsi,sgi,msi,n)Ft/PsFy/nFn

n=1

H.
Il
—_
1)
Il
—_
3
Il
—_

T -1
/ !/
E(eicis€imein) FFFpFu + )
t=1s=1m=1n=1

Il
1=
1=
1=

....
I
—_
3
Il
—
3

+
1=
1=
1= L
1=

/ !
E(Si,tei,sgi,mei,n)Ft FsFan

t=1s=t+1m=1n=1
T T t—1 T s—1
= o) FFFF+40;Y Y FEFF+20; Y. Y FEFF,
t=1 t=1s=1 s=n+1n=1

as follows from nothing that

/ !/
E(ei€i€imein) F FtFyFy

1=
1=
1=

....
Il
_
3
Il
—
3
Il

T T m-1
/ / / /
E(eis€is€imeim) FIFFpFn+ Y Y E(e;s€i€imein)F{FiFy Fn
1m=1n=1

I
1=
1~ "

[
L
S
I
L

! lA
E(ei€i€imein)F FE,,Fy

..,
I
—_
3
Il
—_
3

_|_
1=
1=

o

[ay

/ !
E(Ei,tei,tgi,mgi,m)Ft FtFmFm

Il
1=
1=

....
Il
—_
3
Il
—

t—1
Yy E( ) F{FiE Fyy
=1

I
1=

T
E(e €t VF/EF/F; —|—2Z
t=1

W
I
—

T T t-1
= o) FFFF+20;Y. Y FEF,F
t=1 t=1m=1
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-~
[ay

1~
i \

—_

! !
E(si,tgi,sgi,mgi,n)ljt PstPn

| Mﬂ
- ﬁMH

1=~

©n

T
Z Y E(eis€is€imein) F FsFy Fy
m=1n=1

3
I
- =

! !
E(eieis€isein) F{FsFFy +

1=
-
HMI

t=1s=1n=1
T t—1 T
E(e; 1€ o€; m€in) F{ FsF),F,
sz,tsl,ssz,mez,n tistmin
t=1s=1m=s+1n=1
t—1 T t—1 T

E(gjseiseisein) IEFF +)_ Y. ) Z E(e;iq€is€imein)F FsFpEn

1=
1=

t=1s=1n=1 t=1s=1m=s+1n=1
T t—1
E(e;seiseiseis) FFsFLF
iteisciscit)llsbglt
t=1s=1
T t—-1 T T t—-1 T s—1
! 1 1 !
YN Y Eleiseiseimeis) FEFpF+ )Y Y Y E(eiseiseimein) F{FsFpFy
t=1s=1m=s+1 t=1s=1m=s+1n=1
T t—-1 T T
1 1
Z Z Z E('gi,tei,ssi,mgi,n)FtFsFan
t=1s=1m=s+1n=s+1
T t—1 T t—1
! !
2Y" Y E(e3,)E(e3,)FRF.F, = 203 Y Y F/RE.F,
t=1s=1 t=1s=1
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T
Y ) E(eisis€imein) F{FsFy,Fy

1=
1=

t=1s=t+1m=1n=1

T T T s—1 T

= Y Y ) E(eiscististin) F{FFiF, +Z 2 Y Y E(eiseiseimein) Ff FoFy,Fy
t=1s=t+1n=1 t=1s=t+1m=1n=1
T T T T

+ Z Z Z Z Sz tei,ssi,msi,n)P;FsFrlnPn
t=1s=t+1m=s+1n=1
T T T T s—1

= Z Z ZE Eztszs'gls‘gzn)FthF Fy + Z Z E 5zm€1581m515)1: FSF/ Fs
t=1s=t+1n=1 s=t+1m=1
T T T T

+ E 2 Z E 81z“cfz',s‘C'i,mei,n)I_ﬂt,‘/lzsljrlrrl:rz
t=1s=t+1m=s+1n=1
T T T s—1

= Y ) E(eistististis)F/FFF + Z Y ) E(eiseististin) F{FFiF,
t=1s=t+1 t=1s=t+1n=1
T T T T s—1

+ Y. Y Y E(eigistisein) FEFFa+ Y. Y E(€imeis€imtis)FpFsFp,Fs
t=1s=t+1n=s+1 s=t+1m=1

T T T —
E(Si,tgi,sgi,msi,m)Ft/FsFr/nFm + Z Z Z Z gltgi,sgi,mei,n)Pt/FsFr/nFn
t=1s=t+1m=s+1 n=1

_|_
Dagl
ii
£l
3
1= 10

T
Y E(eisisimtin) F{FsFy,Fa

+
1=
1=

t=1s=t+1 m=s+1n=m+1
s—1 T -1
= 2 Z ZE *)FEFF, =205 ) ZF’FSFPn
s=n+ln= s=n+1n=1
Hence, since
T T T T T T t—1
r(FFF'F) =Y Y t(RFEF) =) Y FFRFF =) FRFFR+2) Y FRFFE,
t=1s=1 t=1s=1 t=1 t=1s=1

we can show that
2

1 N
H\/m EF/(‘C'Z"C’Z' - (TgIT)P
i=1

1
= N7z, Ztr [F'E(e;€;FF'e;el)F — 0§ F'FE'F]

= (kg —0F) ZF[HF{B + 203 (

T t—1 T s—1
Y )Y FERFF+ Y ) FFERFF|<C,

t=1 t=1s=1 s=n+1n=1
implying
1 N
—— Y F(e IT)F|| = Op(N~Y2T71). (A69)
NT* H




Multiplication by Ly does not affect this result. The other terms in (A67) are therefore of the
same order. Therefore,

1 N
T'PT 'To—— Y (&€, — 0§ Ir) [T V'F

= 0,(N~¥217 1), (A70)
NT = ’

Hence, by adding the results, and using O,(N~1/2T~1) < O,((NT)~1/2),
T2F'GF
= T 2FT 'ToFS\FT{I VF+O(T 1) + 0, ((NT)~'/?)
= (T YF'F)S;(TYF'F) 4 (po — p) (T YF'F)S\T *F'LyF + (0o — o) T *F'LoFS, (T 'F'F)
+ (oo —p)*T 'F'LyFSyT'F'LYF + O(T™) + O,((NT)*/?), (A71)
which in turn implies
T r (GFKF')
= tr[T2F'GE(T'FF) Y - T 'm
= tr[T2FT 'ToFSAFTI VF(T'F'F) ' + O(T ™) + O, ((NT) /)
tr [(TYF'F)S\(T'F'F)(T'F'F) ™Y + (00 — p)tr (T *F'F)S\T 'F'LyF(T'F'F)7!]

(00 — p)tr [T F'LoFS\(T'F'F)(T'F'F)]

+ o+

(0o — p)*tr [T ' F'LoFSAT'F'LHF(T'F'F) '] + O(T™") + O,((NT)~/?)

tr [(TYF'F)S,] +2(po — p)tr (T 1F'LoFS,)

+ (po— p)*tr [T VP LoFSAT 'FLyF(T'FF) 1+ O(T 1) + 0,((NT)"/2).  (A72)

Next, consider tr G, the third term in Q.. By using the above results regarding the order

of the cross-sectional sums in ¢;A} and (e;e; — 02 Ir), we can show that
T 'trG
_ -1 -1 Y
= T tr(T s, )

1 N
= T [T o (0 Iy + FS\F)TET Y] + T~ r (rlroN FAie;.rgrl’>
i=1

_ . T E _
+ T 4 (r 1F0N;eiA§F’F6F 1’>
1 -1 1 al / 2 =1
+ T tr r FON Z(Eiﬁi - (TO IT)F(JF
i=1
= T M [['To(cgIr + FSAF)TRI V] + O, ((NT)V/2). (A73)
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For the remaining term, via T Wil =1,trLy=tr L6 =0,

T Yr [T (03I + FSAF)THI V]
= T 'tr([It + (0o — ) Lol (05 It + FSAF')[Ir + (0o — p)Lo)’)
= T 'r(cgIr + FSyF') + (po — p) T tr [(03 It + FS,F') L)
(00 — 0) T ttr [Lo(c3 It + FSAF')] + (po — p)*T tr [Lo(03 I + FS,F') L]
a1+ (po — p)*T
(0o — )T 'tr (LoFSAF') + (po — p)T'tr (LoF S, F'Lp)
= g[1+ (oo —p)*tr (T 'LoLy)] + tr (T F'FSy) +2(po — p)tr (T~ F'LoFS,)
4+ (po — p)*tr (T"YF'LYLoFS;),

_|_

T tr (LoLy)] + T tr (FSAF") + (oo — p) T ‘tr (FSAF'Lj)

_|_

giving
TG = of[1+ (po—p)*tr (T 'LoLy)] + tr (TF'ES)) +2(po — p)tr (T 'F'LoFS,)
4+ (po — p)*tr (T"YF'LYLoFS,) + O((NT)~1/2). (A74)
The order of the second term in Q. is given by
T 'og(|A]) = T ' log(|Ir + 0 2FS,F'|) = O,(T 'log(T)), (A75)
as is clear from noting that
T Y|FS\F'|| = T Y|F[o*F (¢72G — Ir)F']F||
= o*T Y|F(F'F)"'F (072G — It)F(F'F)"'F/||
< T YF(FF)'FGF(FF)'F|| + T ||F(F'F)"'F||
= ||[T2F'GF(T'F'F) || + T Y|Lu|| = O,(1).
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Hence, by putting everything together, with O(T~!) < O,(T'1og(T)),

T'Q

= log(c?) + T 'log(|A]) + o 2T 'tr G — o >T 'tr (GFKF')

= log(c?) + o T 4trG — o 2T tr (GFKF') + OP(T_1 log(T))

= log(c?) + o 208[1 + (oo — p)?tr (T LoL{)] + o %tr (T'F'FS,)

+ 20 2(pg — p)tr (T"YF'LoFS)) + 0 2(po — p)*tr (T F'L{LoFS,)

— o 2tr[(T7'F'F)S,] — 20 %(po — p)tr (T 1F'LoFS,)

— 0 (po — p)*tr [T ' LoFS\T 'F'LyF(T'F'F) "] + O, ((NT)V/2) + O, (T log(T))

= log(c?) 4+ o203 + 0 %(po — p)?[oatr (T~ LoLY) 4 tr (T~ 1F'LYLoFS,)

— tr (T'F'LoFSAT 'F'LOF(T'F'F) ™) + 0, ((NT) /) + O, (T " log(T))

= log(c?) + 020 + 0208 (po — p)*w? + O, ((NT)"V/2) + O, (T 'og(T)), (A76)
where w% = T ltr (LoLj + UO’ZS)LF’L{)MFLOF), Mp = It — Prand Pr = F(FFF)"'F. If A
and B are positive semidefinite, then 0 < tr (AB) < (tr A)(tr B). Since Mr is idempotent,

T-F L{MELoF positive semidefinite. Hence, because S, is positive definite too, we have

that tr (S,T'F'LyMpLoF) > 0. By using this and

T_ltr (LOL/) o 1 itr (ltol/ ) . 1 iTitpzn o 1 i(l p2(T+1*f)>
0o/ = 7 0f0) — 0 = =7 % —
T t=1 T t=1n=0 T(l - P%) =1 0
1 _
S am O (477

from which it follows that tr (T~ 1LoL}) > 0, we obtain w? > 0. Hence,

-1 _ L
(NT) . = ZTQC
1 o} op ~
= = (log(o*z) - Ug) - ﬁ(ﬁo —0)*w} + O, ((NT)"1/?)
+ 0,(T 'log(T)), (A78)
as required for the proof. [

Lemma C.1. Under C1, |po| < 1, and Assumptions EPS, F and LAM, as T — oo for any N,
including N — oo, provided that /NT3/% — 0,

_1 94 (6) wi 0
Hl/lz 5022 ~ N <02><1/ [ 0 (KZU_E;D ’
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where H, = diag(v'NT?,/NT), w? = T Ytr (LoL{ + 0 *SAF'LyMpLoF), Mg = It — P and
Pr = F(F'F)"'F.

Proof of Lemma C.1.

We have
202 90,(69
2R — fvec B Clpo), (a79

where G(pg) = T;'S,Iy" and A(69) = Ir + 0, 2FS,(69)F'. Consider C(pg). From S, =
[0S, we have vecS, = (I'g ® I'g)vecS,. Note that [Ty = Ly. Hence, since (A ® B)(C®
D) = AC® BD and (C' ® A)vec B = vec(ABC),

To'®]+]@T  )vecS, = (I @+ @I ") (To®To)vecS,
(It ® Lo+ Lo ® It)vec S, = vec (LoS, + SyuLy). (A80)

C(po)

By using this and tr (A’B) = (vec A)’'vec B, we obtain
205 9L:(69)

VNT 9p
Consider B(69). Let Ky = K(89) = (¢28,(69) "1 + F'F)~1 = (F'F)"' — 02T -2(T~2F'G(po)F)~},
such that A(69)~! = It — FKoF' (see Proof of Lemma 1). This implies

= VNT V2t [B(69)(LoSy + SuL})]. (A81)

F/FAB)'FE~ = F(FF)"'F'(It — FKoF)E(F'F)'F' = F((F'F) ! = Ky)F’
= 0fT2F(T *F'G(po)F)'F, (A82)
and
F'A(63)'G(po)A(63) ' FF~
= F(F'F)"'F/(Ir — FKoF')G(po) (It — FKoF')F(F'F) " 'F’
= F(F'F)"'F(G(po) — G(po)FKoF' — FKoF'G(po) + FKoF'G(po)FKoF')F(F'F) " 'F’
= F((F'F)™' —Ko)F'G(po)F((F'F)™' — Ko)F'

= o§T 2F(T %F'G(po)F)"'F/, (A83)
suggesting that B(69) simplifies to

B(63) = F'F'(A(63)' — oy *A(63) 'Glpo)A(63) ")FF~ + A(63) "
= 0dT*F(T2F'G(po)F) 'F' — 0y 204 T2F(T2F'G(po)F) 'F + A(69) "
= A7 (A84)
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Therefore,
208 9L(69)
VNT dp

= VNT Y2t [B(69)'(LoSu + SuLf)]
= VNT V2t [A(69) " (LoSu + SuLh)] = Q. (A85)
Note that tr (S, L)) = tr (LoSy), as is clear from using tr A = tr A’ and the symmetry S,,. But
Ky is symmetric too, and therefore tr (KoF'S,L{F) = tr (F'LyS,FKo) = tr (KoF'LoS,F), which
in turn implies that tr [FKoF'(LoSy + SuL{)] = tr [KoF'(LoSy + SuLj)F| = 2tr (KoF'LoSyF).
By using this and A(69)~! = It — FKoF', we obtain
Q = VNT V2r[A(6)) N (LoS, + SuLj)]

= VNT V2t (It — FKoF')(LoS, + SuL))]

= VNTV2tr [LoSy + SuL} — FKoF'(LoS, + SuLb)]
2VNT V2[tr (LoSu) — tr (KoF'LoSuF)] = 2(Q1 — Q2), (A86)

with implicit definitions of Q; and Q>.
Consider Qq, which, via tr (A + B) = tr A+ tr Band tr (AB) = tr (BA), can be expanded

in the following fashion:

Q1 = VNT V2t (LyS,)

1 N
= INT Y [tr (LoFA;AF') 4 tr (LoFAse}) + tr (LogiA{F') + tr (Loge})]
i=1
1 N
= AT Y [tr (AJF'LoFA;) + tr (€,LoFA;) + tr (AjF'Log;) + tr (¢;Log;)]
i—1
= Qu+Qn+ Q1 (A87)
where
1 i ,
Qu = AF'LoFA,
NT =
1 % ,
Qur = (e\LoFA; + A Log;),
NT i=1
1 i )
Qi3 = €;Log;
NT 5
From AJF'LoFA; = tr (AJF'LoFA;) = tr ()\i/\{P,LQF), Q11 can be written as
1 Y VN1
= MF'LoFA; = t (AN 'F'LoF
= V/NT V2tr (S,F'LoF). (A88)
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Consider Qqp, where T~/ ZSQLOF and T~1V/2F'Lye; are clearly mean zero, and, by a central
limit theorem (CLT), also normal. As for the variance of these normals, by using E(g;¢}) =
O'SIT, we have

E[(&;LoFA; + AjF'Log;)?]
= E(AMF'Lbeie|LoFA;) + 2E(AN/F' Logiei LoFA;) 4+ E(M.F' Logie/ LyFA;)
= gAMF (LyLo +2LoLo + LoL))FA,,

suggesting that
2
2 1
E(Q%) = E||—== Y (&iLoFA;+ AjF'Loe;)
NT i=1
1 N N
= NT Y ) El(eiLoFAi + AlF'Log;) (€;LoFA; + AF Log;))]
i=1j=1
1 N
= N7 Z%E[(s LoFA; + AJF Loe;)?]
1=

(70 NT Z Aj F/ L{ oLo+2LoLo + L()LO)P)L
= ojtr [SAT YVF(LGLo +2LoLo + LoLy)F] = X1z
Hence, using ~ to signify asymptotic equivalence,

Q12 ~ N(0,X17), (A89)

which holds for any N, including N — oo, provided that T — co.
When evaluating Qi3 it is useful to write €/Loe; = Zthz €i €7, 1, where €}, is as in Ap-

pendix A. Clearly,
= Z E[(ef;_1)*] = T 'E[tr (€jLyLoe;)] = T tr [E(ese;) LoLo] = o T ' (LoLy),

from which we obtain

B 1 T T . .
T 1E[(€2L0€i)2] = T Z ZE(Ei,tsi,SSi,tflgi,sfl)
t=25=2
1 T ) 2 T t—1
t=2 t=3s=2
21 a 2 4 1
= O ) El(€f,-1)*] = ogT 'tr (LoLp) = Zia.
t=2
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Hence, by a CLT for martingale difference sequences,
T 12l Loe; ~ N(0,Z13) (A90)
as T — co. This means that

N
Qi3 = Y €iLog; ~ N(0,%13) (A91)

1
VNT 5
as T — oo for any N, including N — co.

Let us now consider the covariance between Q15 and Qq3. Note first that if k > ¢,

E(fit‘g?t 1‘€;'Fk 1)

= (24n+s)
= Z Z E(eizeis€in)
s=1n=
t—1
_ p6+k7(2+t+s)E 815 +2 Z t+k (24+n+s) E(Ei,t)E(gi,s)E(ei,n)
=1 s=1n=t+1

1 —
k—
+ 22 IS E (o) VE (e15810) = O,

whereas if k < £, then

1 k—
k—(2
E(eisef, 1€i51) = Y, ) oo ( +n+S)E<8i,t)E(€i,55i,n) =0,
s=1n=1

suggesting

I
1=
1=

E(F'Log;€;Loe;) FeE(eie;; 1€ 5 1)

k=21t=2
T t—1 T T
= Z FeE(eis)E(ef; 1875 1) + Z Z FE(eiseis1€i5—1) = 0.
=3 k=2 t=2 k=t
Moreover,
T
E(egLQSZ‘SQLoF) = E ZE(Eirtng—lgi,k)F]:il
k=21t=2
T X T t—1
!/ !
= Z E(gi,t)E(Saik,t—l)Ft*fl + Z Z E(gi,t)E(szt—lsi,k)Fqu
t=2 t=3 k=2
T
+ Z Z E(eiseis 1)E(eix)F 1 = 0.
=2 k=t+1

Therefore, E[¢/Loe;(€;LoFA; + AJF'Loe;)] = 0, suggesting that
1
(Q12Q13) NT - Z E & L()8 (8 LoFA; + /\,F Log; )] 0. (A92)
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Hence, putting everything together,

Q1 — Qu = Q2+ Qi3 ~ N(0, X1 + Xy3). (A93)
Next, consider Qy;

Q2 = VNTV2tr (KoF'LoS,F)
N
[tr (KoPlLoF)\i)\gF/F) +tr (KoPILoP)\ii-Z;F) +tr (KoPIL()&'/\;F/F)

w%

L gieiF)]
N
= Z [tr (A/F'EKoF'LoFA;) + tr (€/EKoF' LoFA;) + tr (A[F'EKoF' Log;)
+ (K()F L()Sl‘SiF)]
= Qu + Qxn + Qup, (A94)
with

M.F'FKoF' LoFA;,

’MZ

Il
—

Qu =

Mz

Qn = (eiFKoF'LoFA; + AJF'FKoF Log;),

%~ 3
=S ~

Il
—_

1
Q23 — \/ﬁz (KoF/Losisi-F).
i=1

From Proof of Lemma 1, T2F'G(po)F = (T 'F'F)Sy(T 'F'F) + O(T!) + O,((NT)~1/?),

and therefore

TKy = (T 'FF)' — 3T YT 2FG(po)F)*
= (T'FPR) ' - @T YT 'FF) IS YT FF) 1 +0(T7?)
+ Op(N"V2T773/2), (A95)

Here, ||(T~'F'F)~'S;}(T~'F'F)~!|| = O,(1), which means that (A95) may be written as

TKo = (T'F'F)"'+0(T™). (A96)
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Substitution of (A95) into the expression for Qy; yields

Qy = T-YF'F(TKy)F'LoFA,

FZN

1
= —— Y ANF'LgFA;
/7NT 1221 1 0 1

- Z‘ﬁ ! ZA’ T'F'F) T 'FLoFA; + O(VNT /) + 0,(T?)

- QH—\FT 1262tr (PrLo) + O(VNT /%) 4 0,(T72), (A97)

where the last equality holds, because

1 N 1 N
agﬁ Y ASTHT'F'R)'T'FLyFA; = agﬁ Y tr [AMS HT'F'F) ' T F'LoFAy)
i=1 i=1
= optr [(T'F'F) 1T 1F'LyF]
= Ugtr (P]:L()),
with Pr = F(F'F)~'F'.
Consider Q2. This term is mean zero and, by a CLT, also asymptotically normal. As for
the variance, via TKy = (T7'F'F)~1 + O(T 1),
TYE[(¢,FKoF' LoFA; + AJF'FKoF' Log;)?]
= T N F'L{FKoF E(e;e}) FKoF LoFA; + 2T 'ALF'FKoF' LoE (e;¢}) FKoF' Lo FA;
+ T 'AF'FKoF'LoE(g;e}) LyFKoF' FA;

o AT Y F'LYyF(TKy) T YF'F(TK) T~ F'LoFA;
205 M TV F(TKo) T ' F LoF(TKo) T~ 'F'LoFA;

+ o+

g AT F'F(TKo) T ' F'LoLyF(TKo) T F'FA;

AT F'LYF (T YF'F) YT F LoFA; 4+ 208 AL T Y LoF (T Y F'F) ' T F Lo FA;
4+ GGAT IF LoLyFA; +O(T ™).
Hence, letting
Yo = agﬁ Z EMTYF'[LyF(F'F)"*F'Lo + 2LoF(F'F) "'F'Lo 4 LoLy]FA]
1 N
= agﬁ Y tr (AT 'F'[LyF(F'F) "' F'Lo + 2LoF (F'F)"'F'Lo + LoLg]FA;)

= optr [SAT VP (LyPrLo + 2LoPrLo + LoL{)F],
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we can show that

1 N
Q= —— Y (e;FKoF'LoFA; + A{F'FKoF'Log;) ~ N(0,%2), (A98)

—_

which again only requires T — co; N may be fixed but can also tend to infinity.

For Q»3,

E(KoF'Log;eiF) = 03 (TKo) T 'F'LoF = o3 (T 'F'F) ' T 'F LyF + O(T™ 1),
giving

1 N
Qo = 7NTZtI‘ (KoF/LOQiSQF)
\ i=1

= 03V NT V2t (KoF' LoF) + (F'Log;e'F — 02F'LoF)]

\/72’[1‘ K()
= VNT V253t [(T*lF F) T F'LoF]

+ T V2 (TKO 1P Loeiel F — angp’LoF)) +0,(VNT3/2)

oL
= VNT Y202tr (PrLo) + O,(T~/2) 4 0,(VNT3/2). (A99)

The results for Q1 and Q3 implies

Qo1 + Q23
= Qu — VNT V203tr (PrLo) + VNT Y202tr (PrLo) + Op(T~Y/2) + 0,(VNT%/2)
= Qu +0,(TV%)+0,(VNT¥?). (A100)

Hence, if we assume that N is fixed or N — oo with VNT3/2 = 0(1), provided that T — oo,
then

Q = Qu+Qun+Qxs=0Qu+Qun+0,(T "?)+0,(VNT*?)
~ Qu+ N(0,Zp). (A101)

Q1 and Q> are not uncorrelated. Note in particular how

E[(Q1 — Q11)(Q2 — Qu)] = E[(Qi2 + Q13)Q22] + 0(1) = E(Q12Q22) +0(1),

where the first equality requires v/ NT~3/2 = 0(1) for the remainder to be negligible. The
last equality is due to the fact that E(Q13Q22) = 0. In order to see that this is so, write

1 N
E(Q13Q») = NT Y E[eiLog;(€;FKoF' LoFA; + AJF'FKoF Log;)]
i=1
1 N
= NT [E(ﬁliL()EiS?PKoP,LQFAi) + E(A;P,FK()F,L()&S?LQ‘SZ')],
i=1
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where we know from before that E(F'Log;eiLoe;) = 0, suggesting that the second term is

zero. We can similarly show that

T

T
E(eiLoe;e’F) = ZZE(si,tef,t_lei,k)P,i
k=2 t=2
T

T t-1
= Y E(5)E(e5,-)F + ) Y E(ein) E(efyrein) F

t=2 t=3 k=2

T T
+ Y. ) E(eisef, 1)E(eix)F =0,

t=2k=t+1
showing that the first term is zero too. In sum, therefore,

E(Q13Q2) = 0. (A102)
For E(Q12Q2),
E(Q12Q2)

1 N
= ﬁ E E 8 LoP)\i + )\;F/Loei)(S/Z'FKQF/LOF/\i + )\;F/PK()PIL()SZ')]
i=1
N

1

NT | Y E(MF'LyeieiFKoF' LoFA; + AJF'Logie;FKoF' LoFA; + AF'Lye;e; LyFKoF'FA,
=1

;F’LoeiEiLOFKoF,F/\»,

where
1 N
NT Y E(AF'Lyeie;FKoF' LoFA;)
i=1
1
= NT: ZA/F’LO (e;e)FKoF'LoFA;

= ZA’ “LF'LYF(TKo) T YF' LoFA;

i N Ztr MTYF'LYF(TYF'F) T YF LoFA; ) + O(T ™)

aotr(sAT VP LAPELoF) + O(T 1),

and, by the same steps,

E(MF'Logie' FKoF' LoFA;) = 0ptr (S\T 'F'LoPrLoF) + O(T ™),

=

N
Il
—_

E(MF'Lye;eiLGFKoF'FA;) = optr (SAT 'F'L{LyPrF) +O(T™Y),

3~ 3 3-
gk

M=

N
I
—_

E(MF'Logie' L)FKoF'FA;) = optr (S\T 'F'LoLyPrF) + O(T ).
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It follows that
E(Q12Qm) = ogtr [SyT*F'(LyPrLo + LoPrLo + LyL{Pr + LoL{Pr)F] + O(T 1), (A103)
and so we obtain

E[(Q1 — Qu1)(Q2 — Qu1)]
= E(Q12Q2) +o0(1)
= ojtr [ST 'F/(LyPrLo + LoPrLo + LHLoPr + LoLyPr)F] + o(1), (A104)

Hence, by combining the results,

E[(Q1 — Q2)7]
= E[((Q1 - Qu) — (Q2 — Qu))?
= E[(Q1— Qu)*l + E[(Q2 — Qu)*] = 2E[(Q1 — Qu1)(Q2 — Qu)]
= Y+ T34 Zon — 2E(Q12Qm) +o0(1)
= 0o4tr [SAT 'F/(LyLo 4 2LoLo + LoLy)F] + o5 T~ tr (LoLy)
4+ o4tr [STYF/(LyPrLo + 2LoPrLo + LoL))F]

— 203tr [SyT'F'(LyPrLo + LoPrLo + L{LyPr + LoLyPr)F] + o(1)

oy T 1tr (LoL})
+  ogtr [SAT'F/(LyLo + 2LoLo + 2LoLy — LyPrLo — 2L{LyPr — 2LoL4Pr)F] + 0(1)
o5 T Mtr (LoLy) + ogtr [SAT'F'(LyMELo + 2MrLoLo + 2LoLyME)F] + 0(1)

= T 'tr(05LoLy + 0§ SAF' LyMeLoF) + 0(1) = ogw? + o(1), (A105)
where w? = T~ 'tr (LoL) + 05 2SAF'LyMrLoF). The sixth equality is a direct consequence of
tr (SAT*F/L{)L{)PFF) = tr (S)T~'F'PrLoLoF), while the seventh is due to F’Mr = 0,7 and
MrF = O7xm.
Thus, putting everything together,

Q—Q2 = Qu+0Qun+Qis— (Qu+Qxn)+0,(T ) +0,(VNT32)
= Qu+Qui—Qu+0,(T 2) +0,(VNT*?)
~ N(0,05w?), (A106)

which holds for T — co and any N, including N — oo, provided that v NT3/2 = 0(1). The

implication of this result is that

0
L oll2) _ %;Q =05%(Q1 — Q2) ~ N(0,w}). (A107)
0

VNT 9p
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Next, consider 8&(98) /902, which we write as

9:(09) NT N 0 Akl
307 = o7+ 5alvecB()] veeGlp) =

N
T2 T Ugtr[BwS)G(po)J, (A108)

where we know from before that B(69) = A(6))~! = Ir — FKoF' = Ir — F(F'F)"'F' +
0T 2F(T 2F'G(p)F)'F/, suggesting
tr [A(62) G (po)]
= trG(po) — tr [F(F'F)"'F'G(po)] + ogtr [T 2F(T 2F'G(po)F) *F'G(po)]

= trG(po) — tr[(F'F)"'F'G(po)F] + citr I,

which can be substituted back into 9/.(69) /dc?;

94,69
a((722) _ _Zf\gg i ;;%tr [B(69)G (po)]
_ —N(;O?Z) + zzjgl(th(Po) —tr[(F'F)""F'G(po)F])

= 5o (1 [6(0) — B1r) ~ w () FGlpo)F — i) (A109)
Clearly, G(po) =T 'S,IyY =Ty (ToSuIy)Ty " = Su, from which it follows that
tr [(F'F)"'F'G(po)F — 03] = tr[(F'F)"'F'S,F— o3 1,]
= % é (MJF'FA; + 2€;FA; + tr [(F'F) "' Fle;eiF — 03 1)),

tr [G(p()) — U'gIT] = tr (Su — 0'317)

1 N
— N Z[/\;F/F)Li + ZEZ‘F/\Z' + tr (SiSQ — 0'51]“)].
i=1

By using E[(&? & —03)* = E( — 20%¢ lt+04) =E(e 1t) 05, it is possible to show that, by a
CLT,as N —- ocoor T — o0, or both,

b %tr (eieh —oflr) = b i(e’s- —iT) = b % i(82 —?)
VNT S T NTET NTEET
—4 N(0,E(¢},) — 05)
But we also have
1 N
Ztr ) 'FeieiF — ogh] = —= Y tr [(T 'F'F) 'T'FeieiF — o5 L] = 0,(1),
\F N5



and therefore, with ko = o, *E(e?,),

! 866(98) 1 ! 3 e 2 IeN—=1p/, ot 2
VNT 002 - ﬂﬁz‘,[tr( —o3lr) —tr (F'F)"'Feie’F — ogh)]
0 i=1
— Liii <T71/2)
2061%1:“:1
(KQ 1 )
N{O ’ A110
s ( 403 (A110)

which requires T — oo, but not necessarily N — co.

In what remains we show that

1 E <8€c(98) 8&(98))

NT 02 9p
N T
- 216 VNT > 2 )(Q12 + Q13 — Q)] + Oy (T /2) + 0, (VNT3/2)
O i=1t=1
= 0,(T™V%)+0 (fT 3/2), (A111)

The proof begins by the following observation:

T T t—1

2 Z El(e}, — 0p)eiseis 1] = Y El(el,—og)eil E(el 1) + Y Y E(e5, — 05)E(eisels 1)
t=2 t=3s=2
T T
+ E 2 E(eis)E Ug)ef,s—l] =0,
t=1s=t+1

suggesting that (NT)~1/29¢.(0Y) /902 is uncorrelated with Q;3. But we also have
g8 g 2

T T t—1
ZZE 1s 1F] = ZE@%t—O—(%)E(S;tfl)Ft—i_ZZE@%J_O—(%)E(S;S*OFS
t=1s= =2 =2
T T ) T
+ Z Z FSE[(Si,t_ zs 1 Z Z FSE 1tszs 1
t=1s=t+1 t=1s=t+1

T
Y Y E[(e}, — 0f)eisFry] = ZE[(E o2)ei Fi 1+ZZE ; — 03)E(eis)Ffs_
+ Z Z E ‘C’ls UO>Fzs 1—ZE zt Ft 1s

t=1s=t+1 =2
which are both zero if E (ef’ ;) = 0. Hence, under this condition ,(N T)~V 28&(98) /902 is not
only uncorrelated with Qy3, but also with Q1 and Qa,. It follows that (NT)~1/ 28&(99 )/ 90>
and (NT)~1/29¢,(09)/0p are asymptotically uncorrelated, and hence independent by nor-

mality. Therefore,

p [ @0
ﬁ agc(peg) ~ N 02><1/ 0 (Kz(l)(;ll) (A112)
do? 0



as T — oo and any N, including N — oo, provided that v/ NT~%/2 = o(1). |

Lemma C.2. Under C1, |po| < 1, and Assumptions EPS, F and LAM,

H1826<9>H1:[w% 0

1/296,(26,)’ 0

1| F 0T +0,((NT)V2).
203

Proof of Lemma C.2.

Write
og 9*(c(69)

where
Uy = oy 2T 'Clpo)[F'FA6) 'FF~ @ F'F'A(69) 'FF~]C(po),
U = —oy*T'Clpo) [F'F'A(63) G loo)A(63) T FE~ & F~'F'A(69) 'FF~]C(00),
Us = —og T 'Clpo)'[F~'F'A(63) ' FF~ @ F'F'A(63) "' G(po)A(63) "' FF~]C(po),
Us = o5 T 'Clpo)'[F'F'A(6)~" @ F'F'A(63)~']Cpo),
Us = o T 'Clpo)'[A(63)"'FF~ @ A(63)""FF~]C(po),
Uy = —2T '[vecB(89)]'(J® J)vecS,.
From Proof of Lemma C.1, C(pyg) = vec(LoSy + SuL;). By using this, (C' ® A)vecB =
vec(ABC) and tr (A’B) = (vec A)'vec B, we obtain
Uy = oy2T 'Clpo) [F'FA6) 'FF~ @ F'F'A(69) ' FF]C(po)
= 02T 'C(po)'vec [F'F'A(69) 'FF~(LoSy + SuL{)F'F'A(69)'FF]
= 0y 2T tr [(LoSu + SuLy)'F'F'A(69) " 'FF~ (LoSu + SuLy)F'F'A(69) " 'FF .
From Proof of Lemma C.1, we further learn that F~'F'A(09) "'FF~ = 62T~ 2F(T~2F'G(po)F) "' F’.

Also,

1 N
T2FL,S,F — T Z(P’LOFAZ-AQF/F + F'LoFAelF + F'LoeiALF'F + F'LoejelF)

1
— ZF LoFAMALF'E + (NT) YT LF'LoF)

NT2 )LZ'EQF

3-
H
1=

1
F —

s E NT
= T 2F'LyFS,F'F + Op((NT) 12y 1 0,(T ). (A114)

+ (NT)" /2 Log,AL(T1F'F) + F'Loe;e'F

S| =

I
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The limit of T~2F’S, L{F is just the transpose of this, suggesting that

T2F(LoS, + SuLy)'F
= T 2F'S,L4F + T *F'LoS,F
= T 2(FLoFSAF'F + F'FSyF'L{F) + O,((NT)""2) + 0,(T ). (A115)
By using this and the fact that T"'F'LoF and T~ 'F'F are bounded by assumption, we can
show that ||T~2F/(LoSy + SuL{)'F|| = Op(1). But ||T"2F'G(po)F|| is of the same order, and
therefore
Uy = T lodtr [T 2F'(LoSy + SuLy) F(TF'G(po)F) 'T2F'(LoSy + SuLb)F
x (T72F'G(po)F) '] = O,(T ). (A116)
Consider U,. By using the results reported in Proof of Lemma C.1 for F~'F/A(69)~'FF~
and F~'F'A(69)7'G(p0)A(69)~'FF~, we obtain
U
— oy T (o) [F'F/A(6) ' Glpo)A(69) 'FF~ & F/F'A(69)'FF~]C(p0),
= —0y*T"'C(po)'vec [F'F'A(69) "'FF™ (LoSu + SuLg) F~'F'A(63) "' G(po)A(63) " FF ]
= —0oy T 'tr [(LoSu + SuLy)'F~'F'A(9) ' FF~ (LoSy + SuLj)
X F/F'A(89)'G(po)A(63) ']
= —o3 T Yr [T 2F (LoS, + SuLy)'F(T2F'G(po)F) T 2F'(LoS, + SuLy)F
X (T2F'G(po)F)"] = =L, (A117)

and it is not difficult to see that, Us = U, = —U;. Moreover,

F'FA)! F(F'F)"YF'(Ir — FKoF') = F((F'F) ! = Ko)F’

= 4T 2F(T*F'G(po)F) 'F' = A(69)"'FF~,
suggesting
U = 0y 2T 'Clpo)'[F"F/A69) ' @ F'F'A(69)1C(po)
= 0y 2T 'C(po)'vec [F'F'A(69) ™ (LoSu + SuLy)A(63) ' FF]
= 03T Ytr [T 2F'(LoSy + SuLb) F(T2F'G(p0)F) 'T2F'(LoSy + SuLb)F
x (T2F'G(po)F)'] = Uy, (A118)
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which is true also for Us, that is, Us = Uj.

It remains to consider Us. From JTy = Ly and (C' ® A)vec B = vec(ABC),
(JoJ)vecS, = (J®J)(To®@To)vecS, = (Lo ® Lo)vec S, = vec (LoS,Lp).
Also, A(89)™' = It — F(F'F)"'F' 4+ 62T 2F(T~2F'G(po)F)~'F’, which we can use to show
that
Us = —2T '[vecB(63)]'(J ® J)vecS,
= 2T M [(F'F'A(09) 'FF~ — oy 2F'F'A(69) "'G(p0)A(63) 'FF~ + A(62) 1)
X LoSyLy)
= 2T Yr[(Ir — F(F'F)"'F 4+ 63T 2F(T2F'G(po)F) 'F')LoS,L})
= —2tr (T 'LoS,LY) +2tr [((T'F'F) ™t — 3T Y (T 2F'G(po)F) 1) T 2F LoS,LyF)
= —2tr (T 'LoSuLg) + 2tr (T 'F'F) 'T 2F'LoSuL{F] + O, (T 1).
Here
T—2F'LyS,LyF

1 N
= W Z(F/LQF)H/\;F/LZ)F + FILoP)\ieéL{)F + P/L()Si)\;F/LE)F + FIL0€1'8;-L6P)
i=1

1 X - B N
= g ;F/LOFAiA;F’L6F+ (NT) " Y2(T~'F' LoF) \/t;/\s ‘LoF

mZ

f
= T 2FLoFS,F'LyF + O,((NT) /2 +

WH

F'Log;iAj(T~'F'LyF liﬁ F'Log;e;LyF
0cisg 0 TN =~ 0 0
0,(T), (A119)
and therefore
tr [(T~YF'F) ' T2F'LyS, L)F]
= tr[(T'F'F) ' T 2F'LyFS\F'LyF] + O, ((NT)"Y/2) + O, (T ™)
= tr (SAF'L4PrLoF) + O, ((NT)"Y2) + O, (T ™).
For tr (TflLOSuL{]), we use that T—1/2 e.LLoFA; = T~ 12yl 285, 1F" 1 Ai, which is asymp-
totically normal as T — oo, suggesting that (NT) /2N ¢/LILoFA; = O,(1) for any N,

including N — oo, provided that T — co. But the same is true for (NT)~1/2 YN, tr [Lo(e;e’ —
oglIr)Ly], because T~1/2tr [Lo(e;e; — o31r)Ly] = T~1/2 2322[({:;{71)2 —03(T — 1) Ur (LoL})]
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is asymptotically normal too. It follows that

tr (T~

1LoS,LY)
1 N
NT | E[tr (LoFAALF'LY) + 2tr (LoFAeiLy) + tr (LogeiLy)]

i=

1 1 2

— NATYF'LYLoF LALoFA;

NZ% ( oL0 ) \/7\/72‘S oL0

optr (T"'LyLo) + fﬁ Ztr el — ogI7) LyLo]

tr (S\T F'L)LoF) + otr (T~ 1L0L0) +0,((NT)~1/2), (A120)

from which the following result for U is obtained:

Uy = —2tr(T 'LoSyLy) +2tr (T 'F'F) T 2F'LoS,LyF] + Op(T 1)
= 2T 'tr (0§LhLo + SAF'LHMrLoF) + O, (T~ 1) + O, ((NT)~1/2). (A121)
Hence,
1 9%4.(69) 1 1 .
TNT (9p)? —Trg(urk...%—tlé) Y 2(u1+u6) §U6+Op(T )

= T Yr(LjLo+ 0y 2S\F’ LOMFLOF) +0,(T™1) + 0,((NT)"1/?)
= wl+0,(T ) +0,((NT)"/2). (A122)

Next, consider 9£,(69) / (d02)?, which we write as

with

12\10;01"8(286;(2(;2) =P +..+D; (A123)

P = 1—20,°T '[vecB(63)]'vecG(po),

P, = oy*T [vecG(po))'[F'F'A(63) 'FF~ @ F'F'A(69) 'FF ]vec G(po),

Py = —oy°T [vecG(po))'[F'F'A(69) " G(0o)A(69)'FF~ @ F'F'A(69) " 'FF~]
vec G(po),

Py = —0y°T ' [vecG(po)]'[F'F'A(63) 'FF~ @ F'F'A(69)'G(po)A(63) 'FF~]
vec G(po),

Ps = oy *T [vecG(po))'[A(69)*FF~ @ A(63) ' FF ]vec G(po).
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From Proof of Lemma 1,

T [A09)'G(po)] = tr[T*G(po)] —tr[(T'F'F)'T2F'G(po)F] + T 'tr I
= g +tr (SAT 'F'F) —tr (S,T'F'F) + 3T e L + Op (T 1)

leading to the following result for P;:

P = 1-20,°T [vecB(89))'vecG(po) = 1 — 205 2T 'tr [B(69)G(po)],
= 1205 2T " [A(69) G (po)] = =1+ O,(T1). (A124)

For Py, via F~'F'A(69)"'FF~ = 03T 2F(T~2F'G(po)F) ' F,

P, = oy *T [vecG(po))[F'F'A(69)'FF~ @ F'F'A(63) ' FF]vec G(po)
= (7074T*1[Vec G(po)]'vec [F*’F'/A\(98)*1FF7G(pO)F*’F’/A\(QS)*lFF*]
= oy *T 'tr [G(po)F~'F'A(69) ' FF~G(po)F'F'A(69) 'FF~]
= T Mr[G(po)T 2F(T *F'G(po)F) 'F'G(po) T *F(T *F'G(po)F) 'F']

= T ltrh, (A125)
whereas for P;,

Py = —03°T '[vecG(po)]'[F~"F'A(63) " Glpo)A(63) ' FF~ @ F'F'A(63) ' FF"]
x  vecG(po)
— 55T vec Goo))'[F'F'A(69) "'FF~ G o0) FF'A(63) "G (po) A (63) " FF~]
= Tt [Glpo) T 2E(T 2 Glpo)E) ' F'Gpo) T 2F(T2FG(po) F) ' F
— T el = —P. (A126)

We can similarly show that Py = —P, and Ps = P». Therefore,
1 0%.(9) 1

( 1
NT (302)2 ~— 20

203

1
P1+..-+P5) — —ﬂpl—i-op(’r_l) =
0

+0,(T™1). (A127)
920.(69)/ (0pd0?) satisfies

20 0%0:(69)
NT 9pdc?

= Rl +...+R5,
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where

Ry = —T '[vecB(69)]'C(po),

Ry = 032 T 'Clpo) [F'FA(63) 'FF~ @ F'F'A(69) 'FF ]vec G(po),

Ry = —oy*T 'C(po)[F'FA(69) 'G(oo)A(69)'FF~ @ F'F'A(63) 'FF Jvec G(po),
Ry = —oy*T 'C(po)[F'FA(6)) 'FF~ @ F'F'A(69) " G(po)A(63) 'FF~Jvec G(po),
Rs = 02T 'C(po)'[A(69)'FF~ @ A(69) 'FF~]vec G(po).

Asin 92(.(609)/(9c?)?, the first term in the expansion is also the dominant term. We therefore

focus on this. From C(pg) = vec (LoSy + SuLy),

Ry = —T 'vecB(69))C(po) = —T 'tr[A(6)1(LoS, + SuLj)]
= T Yr[(Ir — F(FF) 'F + 03T 2F(T2F'G(po)F) 'F')(LoS, + SuL})]
= —2tr (T 'LoS,) + 2tr (T F'F) ' T2F'LyS, F]
— 20T Yt [(T2F'G(po)F) *T2F'LyS,F]

= —2tr (T 'LoSy) +2tr [(T'F'F) T 2F'LyS,F] + O,(T ).

Here
-1 1 N 2l / Al /
tr (T L()Su) = NT [tr ()\i)\iF LQF) + tr (LOF}Lisi) + fr (LoeiAiF ) + tr (Lgeisi)]
i=1
= tr (SAT'F'LoF) + O,((NT)~1/?), (A128)

suggesting that, with T-2F'LyS,F = T-2F'LyFSAF'F 4+ O,((NT)"1/2) + 0,(T1),

Ry = —2tr (T 'LoSy) + 2tr (T 'F'F) ' T2F'LoS,F] + Op(T ")
= —2tr (SAT 'F'LoF) +2tr (SAT 'F'LoF) + O,(T~') + O,((NT)~1/2)
= Ou(T")+O0,((NT)V?). (A129)

The other terms are all of smaller order in magnitude than this. Therefore,

207 0%0:(69)
NT 9pdo?

= 0,(T™") + O, ((NT)"/?), (A130)

as was to be shown. This completes the proof of the lemma. [

Proof of Theorem 1.
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In view of Lemmas C.1 and C.2, the proof of Theorem 1 follows by standard arguments (see,
for example, Amemiya, 1985, Chapter 4). It can be shown that the third-order derivative of
£:(69) is bounded. By using this and Taylor expansion of £.(6,) about 6, = 63;

9l.(69) 1 920.(69) _
(e(62) = £c(69) + 3%2 (02— 03) + 5 (02 — 65)' aeza;é (62 — 63) + Op((NT)"12), (A131)
suggesting that
0 _ o) s
NT[L:(02)(p) — Lc(67)] = VNT NT (6, — 6;)

o0,

2 0
+ LUNT (6, - oy L)

96,96,

VNT(6, — 6) + O, ((NT)12).

0, is the minimizer of N T[l:(62) — £ (98)] Thus, treating this as a function of vV NT (6, — 98),

we obtain the following first order condition:

\/ﬁ%(eg) VNT (6, — 69)

09},
1F 0y 920c(03) o 0 ~1/2y _
+ SVNT(6; —6;) 7~ VNT (62— 0;) + Op((NT)"7) =0,

2 06,00,

implying
VNT (0, - 63) = — (182&(93))_1 L 9(%) | (NT)"1/2) (A132)
2 NT 96,06, VNT 06, P '

The required result is now a direct consequence of Lemmas C.1 and C.2. n

Proof of Lemma 2.

The proof of Lemma 2 follows from simple manipulations of Proof of Lemma 1. In particular,
since pp = 1 affects the order of all quantities involving Ly, all the results involving such
terms will have to be reevaluated.

We start by considering T~*F'GF (earlier T~2F'GF), which has the same expansion as in

(A62), repeated here for convenience;
T*FGF = T*FT 'S, T VF=T*FT T S.I;I "F
1 N
= T *FT'To(c3Ir + FS,F)T)TVF + T—SP’r—lrom Y FAE T T VF
i=1

1 N
+ T*3FT*1FOW Y A FT(IVF
i=1

_ _ 1 ¥ _
+ T3FT 1rom;(eie;—agmrgr VE,
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By using the known orders of the sample moments in F and Ly,
T 4F T 'To(cgIr + FS,F)T,TVF
= T *FT ' To(T VF+ T *FT T FS,FT,TVF
= T 3T 'FF)S\(T'F'F)+T Yoo —p)T 'F'FS,T*F'L\F
+ T Yoo —p)T 2F'LoFSAT 'F'F + (po — p)*T 2F'LoFS\T >F'L{F + O(T?).

Also,
T3FTIT F—ZA r-'r

= T3F[Ir + (o — p)Lo] P—ZAe [Ir + (0o — p)Lo]'F

= N V21-52(T71F'F)

—— Y A F
\/NT; o

1 N 1/
W ; AigiL()F

+ NTV2T732(pg — ) (T7'F'F)
1/27-3/2 27 1 &
+ N VT —p)(T"“FLoF)——= ) Aig;F
(PO p)( 0 )mz 1%1
_ . 1 al
+ (NT)"V*(pg — p)*(T ZFILOF)W;)HSQLE)F

whose order is determined by the last term on the right-hand side. By using the fact that

g;LyFF'Log; is a scalar we can show that the normalized sum in this term is O, (1);

2
1 al It/

1 N N 1 N N
~ s L L Bl P Laegh)] = s 1) EGLGEF Lag A
i=1j=1 i=1j=1
71 "y 2 1 / / /
-~ NT3 Y ) tr[F'LoE(ejer) LoFIAA; = O NT3 Y tr(F'LoLyF)AjA,
i=1j=1 =
= optr(T3F'LoLyF)tr(S,) < C.
Hence,
TFT T FIT ZA T~VF|| = Op((NT)"'/?), (A133)
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Moreover,

1 N
T—‘*F’r—lroN Y (ei€; — ogIr)ToIV'F
i=1

N

1
T~*F'[It + (po — p)Lo] N Y (ei€; — ogIr) It + (po — p) Lo)'F
i=1

< NV2r73 2Ir)F
Py Lo
1/2 5/2 Y 2
/
+ 2NTET o — WZ( & — oplr) LoF
+ N7Y2771(pg — p)? F’Lo Z — 0fIT)LYF
=1

= Op(N'2T 1),

which holds because each of the three terms are O, (1), as follows from using the same steps
as in Proof of Lemma 1.

Insertion of the above results into the expression for T~*F'GF yields
T4FGF = T *T 'FF)S\(T'F'F)+T (oo — p)T 'F'FS, T *F'L{F
+ T Yoo —p)T 2F'LoFSAT 'F'F 4 (po — p)*T >F'LoFS\T *F'L{F
+ O(T™3H) +O((NT)"1/?), (A134)
which in turn implies
T 3tr (GFKF')
= tr[T*F'GF(T'F'F)" 1] +0O(T?)
= T 2tr (T 'F'ES\T 'F'F) + T (oo — p)tr (T 'F'FS,T2F'L{F)
+ T Yoo — p)tr (T"2F'LoFS\T*F'F) + (po — p)*tr (T2F'LoFS\T>F'L\F)
+

O(T™2) +O((NT)"V/2). (A135)

For tr G, by the same expansion as in (A73), and then the above results to evaluate the
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order of the three last terms,

TG = T tw(l's,r ")

T 3tr [['To(0g It + FS,F)TAT Y] + O((NT)~1/2)

= T 203[1+4 (po — p)*tr (T LoLy)] + T 2tr (T"F'FS,)
+ 2T Yoo — p)tr (T2F'LoFSy) + (0o — p)?tr (T >F'LLoFS,)

+ O((NT) /%), (A136)
Note that the three first terms in this expression are actually O(T~'). The order of T~ log(|A|)
is the same as when |pp| < 1 (see (A75)). By using this, the above results regarding T 3tr G
and T~3tr (GFKF’), and the same algebra as in (A76),

T3Q. = T ?log(c?) + T 3log(|A|) + 0 *T>tr G — ¢ 2T 3tr (GFKF')
= 0 T 3trG— 0 *T >tr (GFKF') +0,(T?)
= T *[log(0?) +0 205 + 0?03 (po — p)*wi]

+ O((NT)"V2) +0,(T7?), (A137)

which in turn implies

IR 1
NTT P = —55Q
1 2 ‘73 ‘7(% 22, 2
= Tor2 <10g(<7 )+02> - ﬁ(PO‘P) T w
+ Op(T™2) +O,((NT) V), (A138)
where T*Zw% > 0. [ |

Lemma C.3. Under C1, po = 1, and Assumptions EPS, F and LAM, as T — oo for any N,
including N — o, provided that VNT—3/2 — 0,

L9069 T2w?> 0
H 1 C( 2) ~ N <02><1’ [ 1 (Kofl)
This proof is almost identical to that of Lemma C.1, and hence only essential details are

3/2"36, 0o U

Proof of Lemma C.3.

given. All variable definitions are the same as in Proof of Lemma C.1. Because of the change

of normalization of 9¢,(69)/9p from (NT)~1/2 to N~1/2T~3/2 the relevant quantity is no
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longer Q but T~'Q. Consider T~'Q;. As in Proof of Lemma C.1, the mean of this quantity

is zero. For the variance, from Proof of Lemma C.1,
E[(T7'Q3%,)] = d4tr [SxT3F'(LyLo + 2LoLo + LoLy)F] = T 2%1,,
and therefore
T 'Qi ~ N(0, T L), (A139)

which holds for T — co and any N, including N — oo, as in Lemma C.1. T-1/2Q;3 is mean

zero too, and with variance
T2E[(¢}Loe;)?] = og T *tr (LoLy) = T~ 213 < C,
suggesting that T~1/2Q;3 = O,(1). Hence,
THQ1—Qu) =T ' (Qu+ Qi) =T 'Qu+0,(T"V2) ~N(0,T?Z1p).  (A140)

T~1Q, requires more work. TKj is the same as before; TKy = (T 'F'F)~' + O(T1).
Therefore, all remainder terms that are driven by this result have the same order as in Proof

of Lemma C.1. This implies
T7'Qxn = T'Qu — VNT3203tr (PrLo) + O(VNT /%) + 0, (T7?). (A141)
Consider T~!Qs,, whose variance is given by

T 3E[(e}FKoF' LoFA; + AJF'FKoF' Log;)?]
= AT 2F'LyF(TKo) T *F'F(TKo) T >F' LoFA;
+ 203AT'F'F(TKy)T>F' LoF(TKo) T 2F'LoFA;
+ OFATYF'F(TKo) T 3F'LoLyF(TKo) T F'FA;
= OFAT2F'LYF(T YF'F) YT 2F LoFA; + 203 Al T 2 F LoF (T 'F'F) "' T2F' LoFA;
4+ GBAMT3F'LoLyFA; + O(T™1).

Hence, noting that T2, = 03tr [SA\T3F'(L{PrLo + 2LoPrLo + LoL})F], we have

1 N
T'Qn = N Y (e}FKoF'LoFA; + AJF'FKoF'Log;) ~ N(0, T*%p) (A142)
i=1

as N, T — oo. The reason for the large-N requirement here is that Lo¢; is a random walk,

suggesting a nonstandard limiting distribution for T~1Q,; as T — oo with N fixed.
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T~1Q,3 can be expanded in the same was as in Proof of Lemma C.1;

1 N
T_1Q23 = — Ztr (KOF/L(]SI'S/-F)
VNT3/2 [ Z
= BYNT 2t (Ko LoF) + s L tr[Ko(F'LosieiF - 0o F'LoF))
- \/NT%;/ZUOZtr [(TﬁlF’F)flelF/LoF]
1 N

-1/2 / o 21/ -3/2

+ T “tr (TKO N2 ;(P Loe;e;F — oy F LoF)) + Op(\/NT )

= VNT320%tr (PrLo) + Op(T~1/?) + 0,(VNT3/?). (A143)
Hence,
T1(Qa + Q23)

= T'Qu — VNT3203tr (PrLo) + VNT *20tr (PrLo) + Op(T~ /%) + 0, (VNT*/2)
- QU017 O, (VNT 1es

which in turn implies, provided that vV NT3/2 — 0as N, T — oo,

T'Q = T HQu+Qun+Qxn) =T " Qu+Qx)+0,(T"?)+0,(VNT¥?)
~ T7'Qu + N(0, T*Lp). (A145)

Except for the rescaling by T the correlation between T~1Q; and T~1Q; is the same as in

Proof of Lemma C.1, that is,

T2E[(Q1 — Qu)(Q2 — Qu)]
= 04tr [SxT3F'(LyPrLo + LoPrLo + LHLGPr + LoLyPr)F] 4 o(1), (A146)

The above results, together with the same algebra used in Proof of Lemma C.1,

T 2E[(Q1 — Q2)*]
= T 2E[((Qi1 — Qu) — (Q2 — Qu))?
= T 2E[(Q1— Qu)*l + T ?E[(Q2 — Qu)?*] — 2T ?E[(Q1 — Qu1)(Q2 — Qu)]
= T 22+ T 2S5+ T 22y — 2T 2E[(Q1 — Q11)(Q2 — Qu1)] +0(1)
= 03T *w}+o0(1), (A147)
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which is just T~2 times the result obtained in Lemma C.1. Note also that the effect of T~2%13

in T~2w? is O(T~!). We consequently obtain

THQi—Q) = T 'Qu+Quz+Qis— (Qu+Qu)]+0,(T?) +0,(VNT?)
= T Qi+ Qiz— Q)+ 0,(T2) + O, (VNT3/?)
~ N(0,09T *w?) (A148)

as N, T — co with vV NT3/2 — 0. Insertion into N~1/2T=3/29¢,(69) / 9p gives

1 94:(69)
VNT3/2  dp
This establishes the desired result for 9/.(69) /9p.

=0y 2T H(Q1 — Q2) ~ N(0, T2w?). (A149)

The result for 9/.(69) /dp is a consequence of the fact that 94 (69) /9p does not depend on
Lo. Moreover, by using exactly the same calculations as in Proof of Lemma C.1 we can show

that the expected value of the normalized cross-derivative is zero. n

Lemma C.4. Under C1, po = 1, and Assumptions EPS, F and LAM, as T — oo for any N,

including N — oo,

J— 717
H H 0 L

9%0c(69) 1 szw% 0 1 1
¢ = T T)~1/2).
3/296,(26,) 32 2(173 +Op(T7) +Op((NT) )

Proof of Lemma C.4.

This proof is analogous to that of Lemma C.2. The only change is the rescaling by T, the

effect of which can be traced out following the steps as in Proof of Lemma C.3. n

Proof of Theorem 2.

In view of Lemmas C.3 and C.4 the desired result follows by the same line of argumentation

used in Proof of Theorem 1. [ |

Proof of Lemma 3.

From the first-order condition with respect to Sy we obtain the following slightly modi-
fied expression for A(6,): A(62) = It + 02T (0) "'FSA(62) F'T(p) V. Letting K = K(6,) =
(028,(62) "1 + F'T(p)"VT'(p)~'F) 1, this implies

A'=1r T 'F(?S + FT VT 'R 'FT Y = Iy — T 'FKFT Y,
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and therefore
Q. = Tlog(c?) +1og(|A]) + o 2tr G — o *tr (GT 'FKF'TY),

where G = G(p) = I'(p)'S,I'(p) " is as before.
Consider ¢—2tr (GT~'FKF'T~"). As in Proof of Lemma 1,

N

Sp = AT F) (e 2G—Ip)(T'F)™’
= (FT VT 'F) 'FTVGr'rF(FT VT 'F) ! - 2(FT VTR, (A150)

which in turn implies
K= (S '+ FT VT ') = (FT'T 'R = *(FT VG 'F) Y, (A151)
suggesting that

tr (GT'FKFT™V) = tr(FTVGI'FK)
= tr[FTVGr'F(FT VT 'F)! = 2(FTVGI'F) )]
= tr[FTVGr'F(FT VT 'F) Y — ot I,

= tr[FT VG 'F(FT VT 'F)7Y - ¢?m. (A152)

Consider FTVGT1F = F’l"*l’l"*lsyl"*l’rfll:, where S, can be expanded in the usual

fashion as
/ 1 N —1 -1 !
Sy = ToSuly =Toy; Y (Tg'FA; +€) (T 'FA; +€)'T
i=1

1 Y 1 Y
= 0fToT) + FS,F' + N Y FAeTH+ Toxs Y e F

i=1 i=1

1 N / 2 !/
i=1

Hence,
T3FTVGr—'F
— T*3F/rfllrflsyrfllr711:
= BT 3FT VI IOy, VI 'F+ T 3FT VI 'FS,FT VI 'F

1 Y 1 Y
+ T*3F’r*1/r*1N Y FAETT VT IF + T*%T*”F*WON g AMFT VI
i=1 i=1
N

1
+ T—3F’r—1’r—1r0N Y (i€} — 0§ Ir) LT VT 'F, (A154)
i=1
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where
T3FT VT I Vr-'F
= T FT V[Ir + (po — p)Lo] It + (po — p)Lo] T~'F
= T3FT VT 'F+ (00— p)T PFT V(Lo + L)T 'F + (oo — p)*T FT VLo LiT 'F.

Consider the T-rowed matrix A = (Ay,.., Ar). If p = po = 1, T1A = (A1, AA,..., AAT),
whereas if p = pp = 0, then T"'A = A. This suggests that the (norm of) above sample
moments are minimized for p = pp = 1 and maximized for p = 0, in which case the orders
are the same as in Proof of Lemma 2. Hence, || T 'F'T-VI~F||, ||T2F'TV(Lo + L{)T'F||
and ||[T3F'T~VLoLyT~1F|| are all O(1), suggesting that

T3 T VT oI T VT F = (pg — p) > T 3FT VLoL,T ' F+O(T ™), (A155)
0 Po—p 0
and, by the same argument,

T 3T VIS, T VT F|| < T Y|T YT VT LF|2)|SA|| = O(T™Y). (A156)

Setting again p = 0, we can also show that

1 N
TOFT T F g ) ATl T 1F
i=1

1

< ||IT'FT-Vr1F|| N7z

N
Y AiEi[Ir + (po — p)Lo] T™'F
i=1

S N71/2T73/2"Tle/rfllIﬂleH

1 N
gL
i=1

+ (NT)""2|oo —pl[|T"'F'T~VT'F| LI 'F

1 N
—— V)
= Op((NT)™'?), (A157)
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and

N
T3FT VT, WZ(sle; — 3I7)TAT VT 1F
1 1 N 2 1
= |[|T°FTV[Ir + (po — P)LO]N Z(sz’«“«? — ogIr)[Ir + (po — p)Lo] T F
N
< N—I/ZT—Z Fll-' v Z 11:
=1
1/2 3/2 / 1/ 1 % ! 2 ! 1
+ 2N V27732| 9y — o|||F'T7Y ——— ¥ (ese} — o I7)L)TF
\/NTB/Z = !
1 N
+ N7Y2|pg — p|?||F'T VLo eieh — of 1) LAT'F|| = 0,(N"1/2).  (A158)
p P \/NT?’ i 0 0 14
i=1

It follows that
T3FT VG 'F = og(po — p)*T >FT VLeLiT ' F+ O(T 1) + 0,(N7Y?),  (A159)
which can be substituted back into tr (GT"'FKF'T~V), giving

T %tr (GT'EKF'T™Y)
= w[T3FT VG 'F(T'FT VT 'F) Y — *T*m

= (oo —p) e [TFTVLoLeT ' F(T'FT"T'F) '] + O(T ") + O, (N~'/2).(A160)
Next, consider tr G. Since T—2tr (I 'ToTpI ) = (po — p)?T2tr (LoLy) + O(T7Y),

T2trG = T 2t ('S, TY)

= T 203tr (T eIl Y) + T Ur (T YFTVI1FS,)

1 N
+ 2(NT) V2t (\/Wzr—lmig;rgr—“>

+ N Vr (\F . Zr "To(ese} ang)rgr—l/)
= af(po—p)*T" ztr(L0L0)+Op(T_1)
+ Op(N72). (Al61)
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Hence, by adding the results,

T2Qc
= T llog(c?) + T 2log(|A|) + o 2T *trG — ¢ 2T 2tr (GT'FKF'T™Y)
= 02T 2trG— 0o T *tr (FTVGI'FK) + O,(T ™)

= o %0§(po — p)* T *tr (LoLg)
— 0208 (po — 0)*tr [T PF T VLoLiT ' F(T'FT VT 'F) ' + 0,(T™ 1) + 0,(N~1/2)
= 07%05(p0 — p)*T*tr (LyMr-1pLo) + Op(T™1) + Op(N1/3),

with an obvious definition of Mr-1. In particular, note how for any T x m matrix A =

(A4, ..., A1),

Al At — Ay
AAZ ! .
oI A=L ( , . o = 1747 — A.
: Ar—Ar_,4
(AAT)I 0;11><1

Hence, since ||T~Y(17F; — F)'(17F; — F)|| < 2||T 'Fr1517F}|| 4+ 2||T1F'F|| = O(1), we
can show that
T%tr (LyMy-17Lo)
= T %tr(LoLy) — T 2r [LyT F(F'T VT 1F) LT VL]
= T %r(LoLy) — 2tr[ YArF — F)Y (11F; — F)(T P T-VT71F) 7Y
) +0(T?)

= T %tr(LoL)) +
It follows that
T2Q. = 0203 (po — p)*T2tr (LoL}) + O, (T™1) + O, (N~1/2),
which in turn implies
2

IR 1 0; B
NTIT e = 55 Qe = =5 % (po — )Tt (LoLj) + O, (N71/2) +- 0,(T ™), (Al62)

as was to be shown. [ |

Lemma C.5. Under C2, po = 1, and Assumptions EPS, F and LAM, as N, T — oo with

VNT-1 =0,

a0,(69 T 1w? 0
Hy! (6) ~N(0m,[ 2 )

20, 0




Proof of Lemma C.5.

In this proof we set 6, = 69. Therefore, to simplify notation, functions such as I'(p) and
C(69) will be written I and C, respectively. Analogous to Proof of Lemma C.1 and using the

results provided in Appendix B, we may write

20(% ol -1 /= /

T VNT r (Bye — Bjco), (A163)
where

By = /A\fl,

B, = o,?A'GAT'-ATY,

c = _Pl"*lF(CO +C —f-Cz)Prle + 3,
cg = —(L()Su + SuLé);
1T = (Su — O'gIT)Pl—ulFLé — (Su — O-gIT)MF—lP‘LQ,

¢2 = LoPrap(Su—0glr) — LoMrp(Su — o3 1t),
¢s = LoPr1p(Su—0gIr)Prip + Proap(Su — 03 Ir) PropLy.
where My = It — A(A’A)"'A’ = Iy — P4 for any T-rowed matrix A, G = FflSyl"*l’,
A = It + 0y T 1FS,FT~V and S, = 03(I"'F)~(0; %G — Ir)(T"'F)~'. Here c, ..., c3 are as
in Appendix B with 6, = 98 imposed, which implies JT' = Lp and G = I’*lsylﬂfl’ =3S,.
Consider —/NT tr (Bjco), the second term on the right-hand side of (A163). Since
B; = A=! = Iy — T7'FKF'T~V (see Proof of Lemma 1) and ¢y = —(LoS, + SyL}) are both

symmetric,
—VNT Yr (Bjcg) = VNT 'tr[A"Y(LoS, + SuL))] = 2V NT 'tr (A~1LyS,)
= 2VNT Mr[(Ir — T'FKF'TY)LoS,]
= 2V/NT 'tr (LS, — KF'T™VLyS, I~ 'F)
2T V2(Q1 — Qy), (A164)
where Q) is the same as in Proof of Lemma C.1. The only difference is that F in Q11, Q12 and

Qi3 is premultiplied by T~!. The asymptotic distribution of T~1/2Q; under py = 1 can be

obtained by using exactly the same steps as in Proof of Lemma 2, and can be shown to be

T2(Q1 — Qu1) ~ N(0, T"1(Z12 + 13)), (A165)
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where

z

1
— Y NPT VLT EA,,
VNT =" 0 1
Y3 = 03T ttr(LoLy),

Il
—_

Yo = ogtr[S;TYFTV(LiLo 4 2LoLo + LoLy)TLF].

This result, which requires N, T — oo, is similar to the one given in Proof of Lemma C.4,
except that now the effect of Q13 is no longer negligible.
The analysis of Q, differs from before. Note in particular how
T7Y2Q, = V/NT 'r(KFT VLS, ['F)
1 Y e _ _ _ _ _
INT X;[tr (MFT VT 'EKFT VLoT 'FA;) + tr (T 'FKFT VLT 'FA))
1=

+ tr AWFT VT 'FKFT VLoe;) + tr (KF' T VLoe;eilT ' F)]

= T V3(Qu + Qun + Qux), (A166)
with
1 N
Qu = = Y AFT VT 'FKFT VLI 'FA,
i=1
1 N
Qn = VNT Y (T ' FKFT VLeI 'FA; + AJFT VT 'FKF'T VLge;),
i=1
1 N
Qun = N Y tr (KFT VLoe;elT'F),
i=1

which are the same as in Proof of Lemma C.1, except for the premultiplication of F by I'"1.
From Proof of Lemma 3, under p = py, ||[T*FT-VGI'F|| = O(T!) + O,(N~1/2), and

therefore, by Taylor expanding the inverse,
TK = (T'FT VTR T 2(T°FTVGrF) !
= (T'FT VT 'F) ' + O(T73) + 0,(N V2T 72). (A167)

Substitution into the expression for Q»; yields

1 N
T12Qy = ﬁZA;Tflp’rfl’rle(TK)T*lF’rfl’Lorflmi
i=1

= Qu +O(VNT?) +0,(T?). (A168)

The last equality makes use of the fact that LoI ! = ], and therefore T-'F'T-VL,I"'F =
T'FT-VJF =T 'Y ,ARF ,=0(1).
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The analysis of Q»; is similar to that in Proof of Lemma C.1, as is the end result;
T~2Qp ~ N(0, T 'Zp),
where
Yoy = optr [Sy T F'TV(LyPr-1pLo + 2LoPr-1pLo + LoLy)T 1 F],

which requires T — oo with N fixed or N — co.

For Qo3,

TV2Qn = KF'T Y Loe;e)l'F)

1 N
— Y
VNT 1:21 (

= 02VNT Y 2tr (KFT VLI 'F)
1 N
+ — Y o [K(FT VLogielT 'F — o F'T~ VLI 'F)]
VNT 5 l
= VNT '@t [(TFT VYT F) TP T VL, 'F
0
1 N
T2 (TK\/W Y (FT VLoeieT'F — agF’rl’Lor1F)>
i=1
+ Op(VNT ™) +0,(T%) = 0,(VNT 1) + 0,(T"1/?), (A169)
which is 0 (1), provided that VNT ! = 0(1). Hence, if we assume that T — oo with N fixed
or N — oo such that v/NT~! = 0(1), then

Q = Qu+Qn+Qu=Qu+Qn+0,(T V) +0,(VNT)
~ Qi1+ N(0,Z2). (A170)

The correlation between T~1/2Q; and T~1/2Q, is the same as in Proof of Lemma C.1,

with F replaced by T ~F;

T 'E[(Q1 — Qu1)(Q2 — Qu1)]
= optr [S\T >F' T Y(L{Pr-1pLo + LoPr—1pLo + LyLyPr-1p + LoLyPr—1p)T L F]
+ o(1), (A171)

which we can use to show that

TE[(Q1 — Q)] = T 2tr(05LoLy + 03SAF' T VL{Mp-1pLoT 1F) 4+ 0(1)
= 05T w3 +0(1). (A172)
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where w2 = T tr (LoL) + 05 2SAF'T~VL{Mp1LoI' "' F). Hence,
1
—E\/NT_ltr (Bico) = T~2(Q1 — Q2) ~ N(0,04T ' w3), (A173)

as N, T — oo with /NT~1 = 0(1).
Let us now consider v NT~'tr (B}¢), the first term in (A163). From A~! = Iy —T~'FKF' TV,
K= (FTVT1F)~! — 2(FT-VYGI'F)~}, and the idempotency of Pr1p,
PrapAT'GAT PR

= Prap(Iy =T 'FKFTY)G(It — T 'FKF'TY)Pr1f
= PrapGPrap — 0y 2PrapgGT ' FKF TV Prap
— Prapl 'FKFT VGPrap + 0y *PrapfT ' FKE'T VG ' FKF'T VP 1p
= Pr1pGProp — ProipGT ' FKF T VPrap
— PrafT ' FKF T VGProip + Proa T ' FKE T VGT ' FKF TV Proi
= PrapGProp — ProapGT F[(FT VTR — 3(FT VG F) YT VP
— Praf T YF[(FT VTR — g (FTVGT I F) T VGPr
+ P T ' E[(FT VTR — (FT VG F) T VG
x TF[(FT VT 'F) ' —(FT VG F) " FT VP
= PrapGProp — ProapGU A F(FT VTR P T VP
+ 03P pGT YF(FTVGT ) P T VP
— P T F(FT VTR TP TVGPo

g Pra T VF(FT VG ) ' FTVGProip

Pra T Y F(FT VTR Y PT VG F(FT VT F) YFT VP
— 0P T F(FT VTR A FT VGt F(FT VG F) LT VP
— 0P T F(FT VG R YT VG F(FT VT ) LT VP

+ o3P T LF

(
(
(FTVGrF) ' FTVGr'F(FT VG 'F) ' FT VPrip
(

= o3P T 'F(FT YGT'F) ' FT VP,
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and

ProapA™ Proap
= Prap(It =T 'FKF T Y)Prip
= PrapProap — Prap T F[(FT VTR — B(FT VG F) T VPrap
= 0fPraf T ' F(FT VG ) T FT VP,

We similarly have

ProapA'GAT LoPrap
= PrapGLoPrp — ProapGT P F(FT VT E) L FT VLo Py
+ 0P pGT YF(FTVGTIF) P T VP
— P T F(FT VT F) VP TVGLo P

0g P T ' F(FTVGT'F) ' FT " VGLoPri

P T F(FT VT ) PTG R(FT VT F) VT VLo Pra g
— P T F(FT VT E) A FT VG U F(FT VG Y F) ' FT VLo Prosp
— 0P T F(FT VG R YT VG F(FT VT F) PP T VLo Praf
+ ogPr T F(FT VG F) 'FT VGT ' F(FT VGT 'F) ' FT VLo P
= 0PI YF(FT VG F) PTG — It|LoPrsf

+ 0§ Pra T YF(FT VG F) ' FT VLo P,
and

Proap A LoProip = 03 Proi p T YF(F'TVGT1F) VP T VLo P .

85



It follows that

tr (B4C)
= tr[(0; AT GA — A7)y
— tr[Prap(og 2AT'GA™ = AT Proap(co + 1 + )]
= tr[(op2ATIGA™ — A )]
= tr[(og*AT'GAT = A" (LoPr1p(Su — 0§ ) Proap + Proap(Su — 05 Ir) Pr-1£ L))
= 2tr[Prap(oy 2AT'GA™ — AT LoPrap(Sy — 03 Ir)]
= 2tr[Prap(Ir =T YF(FTVGT'F) 'FTVG) Lo Proip(Sy — 03 17)]
= —2tr [Pr1pMr1pLoPrip(Su — 03 17)]
— 2tr [Proap(Proap — T YF(FT VG YF) ' FTVG) Lo Pr1p(Sy — 0317)]
= 2tr [Prap(Proap — T UF(FT VG F) ' FTVG) Lo Pro1p(Sy — 03 17)).
By adding and subtracting terms, and noting that G = S,
(FT V'R~ 1PV — (FrVGr'r)~'rFr-vcg

= [(GFT VTR — (FTVGr'F) YgFT Y — (FTVGI'F)'FT V(G — 03 17)

= (FTVGr'F)'FT V(G — @Ip) T ' F(FT VT 'F) 1o F TV

— (FT7VYGr'p)'FrY(G - 3Ir)

= —(FT7VS,I'F)'FIrY(S, — 0dIr)Mp-1f,
which, together with It 4+ Lo = I and Mp-1pPr-1p = Orxr, gives

VNT tr (Byt)
= 2VNT Y [P f T F((FT VTR IFT Y — (FT VG 'F)'FTVG)
X LoPrip(Su — a3 Ir)]
= 2VNT ' [T 'F(FT VS, T F) 'FT~Y(S, — 02 Ir)Mp-1pLoPr1p (S, — 0217)]
= N V27 Y [(TFT- VS, I 1F) !
x T YFTVYVN(S, — 0@Ir)Mp-apT ProapVN(S, — 02 It)T L]
= Op(N V21771 (A174)
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By adding the results

1 aﬁc 1 -1 /= / 1 —1 /! —1/2 -1
- ¢ — _— /NT Y% (B¢—B = ———+VNT 'tr (B O,(N T
V/NT 9p 203 * (B2t~ Bico) 205 * (Brco) + Oyl )

= L TA(Q- Q) ~ NOT ) (A175)
0

as N, T — oo with /NT~1 = 0(1).
Since 9¢./d0? is unaffected by the rescaling of F by I'"'F, the asymptotic distribution
of (NT)~1/29¢,/9c? is the unaffected too, as is its covariance with N~1/2T~19¢,./9p. This

completes the proof. n

Lemma C.6. Under C2, pg = 1, and Assumptions EPS, F and LAM, as N, T — oo,

920:(69) T'ws 0
_qpg-19 %e\Y2) pr-1 _ 2
H, 892(892)/Hl 0 % +0,(1).

Proof of Lemma C.6.

The proof of Lemma C.6 is tedious, yet straightforward, following the same steps as in Proof

of Lemma C.2. It is therefore omitted. [ |

Proof of Proposition 1.

In this proof we only consider the case when |py| < 1 (under C1); the results for the case
when pg = 1 are analogous (after suitable rescaling by T; see Proof of Lemma 2). The proof
proceeds as follows. We begin by deriving the appropriate limit of (NT)~!/.. We then show
that the leading term of this limit is minimized for F = F 0 where FY is the true value of F.
The first part of the proof is very similar to that of Lemma 1; hence, only essential details

are given. Consider F'GF = F'T~15,I"VF. Using F" to denote the true value of F, S, may
be expanded as

1N

Sy = Toy ;(POM +ei) (FOA; +€)'Tg
= To(cdIr + FOSAF)T) + ro% f:PO/\ie;r{) + Fo% isi)\;PO’rg
1Y - -

+ FON Y (ei€; — ogIr)Ty, (A176)
i=1

87



giving
T?F'GF = T 'Fr Y(T7's,)r VF

= T 2FT 'To(o3Ir + FOS,FO)TATVE + TP T 1Ty — Z FOAelTyT—VF

NT
1 I8 10/ T -1
+ T7'FT- FNTZSAF LorF
1 N
+ T—lF’r—lroW Y (ei€; — o Ir) oI VF. (A177)

i=1
The first term on the right is
T 2F'T'To(odIr + FOS,F¥)T(TVF
= T 2FT T I{T VF 4+ T 2FT Ty FOS, FOT,TVF,
where we know from Proof of Lemma 1 that T2F' T T, VF = O(T~!). But we also

have
FT TS, FUTyT " VF = F'[Ir + (oo — p)Lo]F°SAFY [I1 + (po — p)Lo]'F
= F'F'S,FYF 4 (po — p)F'FOS,FYLYF + (oo — p)F'LoF°S\FYF
+ (oo — p)*F'LoF°S,FYL{F,
and therefore
T2FT Ty (03It + FOS,F¥)T{T~VF
= (T'FF)S\(T'FYF) + (o — o) (T 'F'FO)S, T FYL{F
+ (o0 — )T YF'LoF°S)(TYFYF) + (00 — p)?T 'F'LoF°SA,T'FYLLF + O(T™1).  (A178)
By using the same arguments as in Proof of Lemma 1, while the second and third terms on
the right of (A177) are O, ((NT)~1/2), the fourth term is O,(N~/2T~1). It follows that
T2F'GF = (T 'FF)S\(T'FYF) + (po — p)(T 'F'F)S, T FYL{F
+ (o0 —p)T 'F'LoF°S,(TFYF)
+ (oo — p)*’T'F'LoF°SyT'FYL{F + O(T™1) + O,((NT)"V?),  (A179)
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which in turn implies
T 'tr (GFKF')
= tr[T2FGE(T'F'F) Y —o*T 'm

tr [T 2FT ' ToF°S, FOT T VE(T'F'F) "1+ O(T ') + O, ((NT)~1/2)

tr (T F'FO)SA(T ' FYF)Y(T'F'F) Y + (o0 — p)tr [(T'F' S, T FYLyF(T'F'F) ]
(00 — p)tr [T 'F'LoF°Sy (T 'FYF) (T 'F'F) 1]

+ o+

(0o — p)*tr [T F'LoFSAT'F'LHF(T'F'F) '] + O(T™") + O,((NT)~/?)

tr (SAT1FYPrF) 4+ 2(po — p)tr (SAT ' FYPrLoF°)
+ (oo — p)*tr (SAT 'F'LYPrLoF) + O(T 1) + O, ((NT)~1/2). (A180)
For tr G, by the arguments of the proof of Lemma 1,
TG = T (TS, T V) =T "tr [T 'To(cZIr + FSAF)TET V] + 0,(1)
= g[1+ (oo — p)*tr (T 'LoLy)] + tr (SAT'FYF) 4 2(po — p)tr (SA T FYLoF?)
+ (po —p)*tr (SAT 'F'LiLoF’) +O(T1). (A181)
By using this and the fact that T~'log(|A|) = O,(T~!1log(T)) (see Proof of Lemma 1), we
obtain
T'Q.
= log(c?) + T log(|A|) + 02T 'tr G — ¢ 2T 'tr (GFKF')
= log(c?) + 0 2T 'tr G — o 2T 'tr (GFKF') + O, (T 'log(T))
= log(c?) 4+ 203[1 + (oo — p)?tr (T LoLy)] + o 2tr (SAT ' FYFY)
+ 207 %(po — p)tr (SATEYLoF®) + 07 2(po — p)?tr (SAT1F'LYLoF)
— 0 2tr (S;TFYPpF®) — 20 2(pg — p)tr (SAT 'FY¥PrLoF°)
— 0 (o — p)*tr (SAT 'F'LYPrLoF) 4+ O, ((NT)~/2) + O, (T log(T))
log(0?) + 02051+ (po — p)?tr (T~ LoLy)] + o 2tr (S, T FY MpF?)

+ 207%(po — p)tr (SAT FYMpLoF®) + 0 2(po — p)tr (SAT ' F'LyMpLoF°)
+ Op((NT)™/%) 4+ 0,(T '1og(T)). (A182)

As in Lemma 1 we can show that all four terms involving the trace are nonnegative. Hence,
since tr (S\T~'FYMpF°) = tr (S,T'F”MrLoF°) = 0 for F = F°, Q, (£.) is minimized (max-
imized) for F = FO. This completes the proof of the proposition. u
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Appendix D: Additional results

In Lemmas D.1 and D.2 we report the limits of T~'F'F, T-'F'LYF and T-'F'L{LoF in two
cases with a specific F and |p| < 1 (under C1). These limits are useful for evaluating w?.
In the first case, F is made up of an intercept subject to a single structural break at time
Tg = |tT|, where T € (0,1) is the break fraction and |x] is the integer part of x. That is,
F = (1r,Dr,), where 1t = (1,...,1)"isa T x 1 vector of ones and Dr, = (1/TB’0/(T—TB)x1)/' In

the second case, F is made up of an intercept and (normalized) time trend; F = (17, T_lTT),

where v = (1,..., T)".

Lemma D.1. Suppose that F = (11, Dr,). Under |pg| < 1 and Assumption F,

T'F'F = Zp+0(T™Y),
1

T'FLIF = —— Y +0(TY,
0 (1_PO) F ( )
1
TFLIL,F = ———Yr+0(TY),
ool = g O
where
sp= | ! T].
T T

Proof of Lemma D.1.

The first result is easy;

1
T

11y 14D,

T-F'F =
D 1r Df Dr,

+O(T Y =Zp+0O(T ). (A183)

_1T
Tt ot

Consider T~ 1F’ L{F. According to the ratio test, if lim; ;e |ar41/4¢| < 1, then ZtT,O a; is

convergent. Hence, since |0} /ph| = |po| < 1, L, pf) converges, as does Y[ p3!. Specifi-

cally, "o ph = (1—pg ™) /(1 = po) — 1/(1—po) and Y-\ p3 = (1 —pJ””)/(l—p%) —
1/(1—p3)as T — oo. Also, for any sequence {a;}]_,, Y Y111 a —(t41) =Y (T —t)ay.

S t+1
It follows that
1 1 T -1 T s (t+1) 1 T-2 .
T 1rLolr = tholT—fZ Lo TZ(T—l—f)Po
t=1 t=1 s=t+1 t=0
( ) T-1 1 T-1 (T . 1) T-1 B
= T ZP{)—?ZW{):TZPB+O(T B
t=0 t=0 t=0
1
= +O(T™Y),
(1 —po)
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and, similarly, since l;,ODTB =0forallt =Tz +1,..,T,

T-11 LgDTB
1 Te=1l T (t41) Tp—2
= ZZODTB— ZloDTB—f X 0 =7 2 (Tr—1-t)p
t=1 s=t+1 t=0
(Tp —1) &=, 1 T 1
T E) %) ( ) (1 —Po) ( )

Consider Y./ tpf. Since |(t+ 1)phtt/(toh)| = [(t+1)/t|po] — |po|l < 1, Tj_; tpl con-
verges. Moreover, pT T — p(%( “OT 0 and ZtT OTB ph = (1 pg Tty /(1 — pg) =

(1- P(%(l Tmﬂ)/( —po) = 1/(1 — po). These results imply

1 B
TﬁlD,TBLélT — ZZ olr = = Z Z —(t+1)
t=1 s=t+1
(Ts — 1) T—Tg 1 Te=3
_ B E P6 T TB o t)pT Tp+1+t
t=0
= M 5 g T S Y g T Z to
t=0 t=0
(Tp —1) e T 1
= — L Oo(T™! +O(T™ ),
1 76 —(t+1) T -1
T DLDT = ZDT—— = —|—O(T )
0~"1p Z 0 B T ;1 ) (1 _pO)
Therefore,
T*]F/L/F _ T*l 1,TL61T 1/TL6DTB
0 D} Lyly Df LyDr,
1 1 T 1
= — T = — S +0(T A184
(1_P0)[T T < ) (1_ 0) F < ) ( )

It remains to consider

1
T

1 LhLoly  14LyLoDr,

T 'F'L)LoF =
00 D, LyLolr Dj,LyLoDr,
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Note that [} yls0 = Y P én (s +2) 120t pA S for t > s, suggesting

T 15 L)LolT

2
leolt0+ T ZZZ olso

1 T T ,
72 2 liolso = =
t=1s=1 t=2s=
1 LT, 2 Lt T—1—t
T oL Mt ZZP >, P
t=1 n=0 t25 n=0
1 L Tt = (T—t)
T(1—p2) 21_90 + 1_ ZZP 1_Po )
) = Po F=2 =1
1 1 2(T—t) 2 R
0
(1_90) (1_Po)t 0 (1_p%)t2225:21 0
2 T -
(1—9%)Z ;
1 T— sz( )
T—1-—t
(1—%) 1—% ;: %)E% f
2(T—t)
0
(1_90 Z 0 ;
! Ti ()
+O(T™
(1- Po) (1 - Po t=0 PO
1 200 -1
+ +O(T )
(1—-p5)  (1—p3)(1—po)
(14 po) 1 1
+O(T™ 7+OT .
@i —p TOT ) = T e 700

Moreover, since again pr —0,Tg/T — T, and ZtTﬁ 1 p(t) and ZtTﬁ 1 tpf) are convergent,

Zzlo

= TB+1 S=
1

H\*—‘

:TZZP Zp%n:

t=Tp+1
1

1

1

= o),

T(1- O
T(1 - pj

T(1-p5

ls 0
Tp

s=

0) 1=

)

)pO

Tgp,” + Z toh +

T—1—t 1

Z Zp (1-p3 ")

n=0 (1 —Po) t=Tp+1 5=

ZZP )

TB+1S
Tp—1 Tgfl

1
( PO) t=1

Tp—1 1 Tp—1

t; (Ts —t)pp +O(T71) = WPO *Tp Z oo +O(T™)
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and therefore

. 1 T Tg 1 Tg Tp
T "14LyLoDr, = 7 Yo ) olso == 2 zltolsoJr 2 El olso
t=1s=1 t Tg+1s=
1 —1l—= B B
=TZZP ZP+Zles,o
t=Tg+1s= n=0 t 1s=
T 27Tpo T 1
- + +O(TY) = —— +0(T™),
SMSLED T = T=py
Tg Tg
T~'Df LyLoDy, = Z Z I} olso = W +0O(T™).
It follows that
TP L{LoF = mlp)zzp +0(T™), (A185)
— ro
and so we are done. [

Lemma D.2. Suppose that F = (17, T~'tr). Under |po| < 1 and Assumption F the results of
Lemma D.1 hold, but with X given by

1 1/2

XE= 0 13

Proof of Lemma D.2.

For T 'F'F,
rpp_p| Ml T —li LT s o), (Al86)
- Tty T2t | T&| T 122 | °F ’
where
11 o 1 1/2
S — / dr = ) A187
=0 rrzlr [1/2 1/3] (A187)

with r € [0, 1] being the limit of T~!t. The order of the error of approximation follows from

SUP; <1< SUP ;1) T<r<t/T (T~1)k — v*| = O(T~1) for all k < co.

Consider

ULjly T 4L
T-1F'F = T! T=0T T=0'T ,
0 [T—1T§L61T T—27h LYty

where T~ 11/ Lylr is know from Lemma D.2. Let us therefore consider T*21%L61T. Since

(£ )06/ (boh)| = [(t+1)/t]lpol — |po| < 1, iy tof converges, as do Y/ pf, Li—1 £20f,
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Yr 1 03 and Y[, tp?'. By using these results and Y/, t = T(T + 1) /2, we obtain

21 L6TT
T 2T-1-
= TZZZtOTT Tzz E -y Tzz Z sp0 = 22 Z (s+t+1)p
=1 s=t+1 =0 s=t+2 =0 s=1
1 T-2T—

= TZE E spO-I-TZEt-I-l (T—1—1t)ph

1 =22(T—1-1)(T - -
= TZZ 5 6 Zt+1 (T —1—1t)ph

= Z Z 2t26+ Zt+1 (T—1—t)p}

- 1
= b+O(T = ———
2T EOPO ) 2(1— po)

and by further use of Y/, t* = T(T +1)(2T +1)/6,
T

+0(T™),

0 1 T , 1 -1 T s (t+1) 1 T-2T—
T “trLolt = 7Etlt,olT =75 Z tpg T2 Z E SPO
e s e T
(T-1) % -1 1 1
= +O(T)=+——=+0(T""),
X 1 I T-1 T ey 1122
/
T trLytr = T3ZtltOTT 32 Y tspy TSZ Z (s—1—1t)(s—1t)ph
=1 t=1 s=t+1 t=0 s=t+2
1 T=2T-1-t t 1 T=2T-1-t
= ﬁz ZS<S+1>p0:ﬁZ ZSP0+ Z T—1-t)p
t=0 s=1 t=0 s=1
1 T=2T<1—t

Therefore,
T*11’TL(’)1T T*21’TL6TT
T2th Lyl T 3thLjtr

1 1 1/2
(1—po) | 1/2 1/3

T'FLYF = [

+O(T) = ———Xp+0(T™h). (A188)

(Tt

Finally, consider T~'F'L)LoF. Since ¥/_; t?0 2 and Y/, tpg(T_t) are convergent by
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the ratio test,

1 T 2(T—t) t—1 e
LY
t=2

s=1
_ Ly ey ;
= )ty L(E—9)eg
t=2 s=1
t—1 T t—1
S L (ARb I T S SP Ll o
T t=2 s=1 T t=2 s=1
1 2 2(T—t) 1 & o' 2
= 17_27? (1-pp) — T*tho Y sp5=0(T"?)
T3(1 = po) =2 s=1
This implies
T37 /L6L0TT
— T3 2 Ztsltolso == Etzltolto + 75 thsltolso
S
T 2T 1t )
= 5t p Z ZtSP Z po”
t=1 n=0 t=2s5= n=
_ 1 L 2( 2(T—) — 2T—1)
- Zt ) Z Z tspp “(1—py )
( t 1 t 2s5=1
1 T(T+1)(2T—|—1) 2 2T £ f—s
— t) sp
T3(1—p%) 6 1_Po 2 1—Po Z ; ’
N~
— )t Spy
3(1-p) Z ; ’
= + +0O(T)
3(1-p5)  3(1—p5) (1~ po)
= +0 s tO(T),
s-@a—p O = s T
where the last equality holds because
1 T t—1 ; 1 T t—1 1 T ztfl 1 T t—1
ﬁgtz{sﬁ’o—s = ﬁth(t—s)pézﬁgt 1P8—ﬁ2t25108
= S= = s=
= ZtZZp +0(T™) = 1 o) th H+o(T™)
— po
P
= ——+0(T"
30—y TOT:
The same steps can be used to show that
1
T2t LyLolr = T~ 215 LyLotr = 31— po)? +0O(T™).
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giving

T 'FLyLoF = SZE+O(T). (A189)

1
(1—po)

as required. [

96



‘T = 1 ‘T yuawrLradxa UT '1$9) [9AJ] %,G [EUTWIOU € I0J dI8
$)[NSaI 9ZIS Y[ *SI01Id parenbs ueaw 1001 9y 03 s19J31 ,SIAY,, ‘A[9A109dsa1 ‘(Z007) IoUTISIaNY Pue UYeH] JO I0)ew)ss § pajsnipe-seiq ayj 0} pue “I0jewnss G $}99JJ9 pPaxy auy
“I0JeWI)SS DATeUR I0J0R] S} ‘S)USWINISUL SE (SOUIDJJIP) S[oAd] padSer Sursn 10jewinss AT (186T) OIS PUe UOSIdpuy ayj 03 19J1 5TV, Pue .S, . VL, ‘(.AHdV,,) ,IHV,, SHON

00 S8000  S800°0 6’89  FI000 €100°0— ¥% 900000 00000 8%  SSP00  €000°0 00  €P000  10000— 00T 00T
00 64100 641070 TIZ /1000 9100°0— 'S Z0000 00000 '€ 86200  €000°0 00 62000 00000 00T 00T
00 99600  99€0°0 '8 92000 ¥200°0— 6% 60000 00000 8T  €0200 00000 00  0¥000 00000  0S 00T
00 ZTLT0 92410 886 01200 €0200— 8%  9%000 00000 ¥0 69100 00000 00 S0T00  20000— 0T 00T
00 98000  S800°0 0€F  S1000  TI000— 8% 80000 00000 LY €2900 %2000 00 65000 T0000— 00T 00T
00 08100 081070 99% 81000 ST00'0— S% 60000 00000 €€ L0000 01000 00  ¥S000 000000 00T 00T
00 99600  99€0°0 L€ £T000  €200°0— 0S  €1000  10000— 8T  £LT00 01000 00 45000 T0000— 0S 001
00 TELTO0  0SLT0 'S8 €I200  0020°0— €S 69000  10000— €0 T€00  €0000 00  9¥100  20000— OT 00T
00 98000  S800°0 04 /1000  TI00'0— 9% 11000 00000 6% 65800  SE00°0 00  ¥8000 10000 00 OS
00 08100 641070 €0e  T2000 ST000— LY €1000 00000 ¥e 04800 02000 00 940000 00000 00T  0S
00  Z9500  £9€0°0 87€  0€000 €2000— 9% 81000 00000 8T  ¥8€00 0000 00 84000 10000— 0S  0S
00 68410  9€41°0 €85 1CT00 S6100— 0S 06000  T0000 TO  £T€00 80000 00  S0ZO0  S0000 0L 0§
00 06000  £800°0 8TI 92000 0T000— ¥S  €2000  T000°0— 7S ZESTO 10100 00 091000 00000 00T O
00 ¥8100 781070 GII  T€000  €1000— 'S /2000  1000°0— '€ Z0010 85000 00  0S1000 00000 00T O
00 €600  TZ£0°0 ¥2l  €P000  6100°0— 0S  9€000  10000— €T ¥8900 02000 00  6S1000  TO000  0S O
00 16410  SZT0 €6l  S9200 6S10°0— 'S ¥8100 10000— €0  €2900  ¥1000 00  ZI¥00 %1000 O O
G660 = 0d
6%  FH000 100070 €76 98000 ¥Z00°0— ¢%  THO0'0 00000 €/ 18200 80000 00 96000  ZTO000 00T 00T
TGS €9000 0000 9L 65100  LFI0°0— LY 65000 000070 €L L0F00 11000 00  6VI000  TO000 00T 00T
€S 06000  ¥000°0 66 €0€0°0  0620°0— TS 08000 00000 G/  S6S0°0 92000 00 95200  €00000  0S 00T
'€ /€200 78000 000T  SOET'0  68CI0— TS ¥S100  €0000— L9 S€TT0  SHT00 00 SS/£TC  S610— 0L 00T
TS €9000 000070 €ee L6000 ¥£00°0— 'S 09000 00000 9L 66500  €0000 00  9€100  TO000 00T 00T
IS 68000 00000 ¢S TI00  SFI00— 'S €8000 T000°0— '8 /500  T100°0 00  CIZ00  2T0000 00T 00T
LY 9TI00  €000°0 TLL  91€00  T620°0— TS €100 €000°0— 78  1S800  €1000 00 49600  €0000  0S 00T
6'€ 62600 980070 866 SIET'0  S8TI0— 'S %1200  €000°0— T8  S¥8E0  SLF00 00 ¥8STIz €¥ee0— O 001
€9 88000 00000 6TC  SII00  ¥$£00°0— 6%  G8000 00000 ¥/ 85500 91000 00 681000 00000 00 0S
TS ¥CI00  T0000— 6'€C  F6100 1S100— 0S  ZI100  €0000— 98 TC800  TE000 00 86200 T0000— 00T  0S
96 9/100 00000 €IS I¥E00  ¥620°0— TS 85100  ¥0000— 78  SITI0 16000 00  TIS00 90000  0S  0S
§%  95%00  S800°0 ¥¥6  6VET0  98CT0— TS 66200  8000°0— T8 9W6L0  SLTI0 00 109G  TO0T'0— 0T  0S
IS %6100 10000 6  L0T00  ¥£00°0— 0S /8100 00000 98 88TI'0 88000 00  €€%00  £Z00000 00T O
TS LLZ00 10000 Tel 11€00  SPI00— 8% /5700  €0000— €6 888T0  €F100 00  €6900 60000 00T O
¥S  $6500 100070 I'ST  G8¥0'0  €620°0— 'S €F€00  60000— 06 9870  SIF00 00  TZT0 62000 05 0T
TS /8600 611070 VIF 68510 SSTI0— 19 12900 Nwoo.oqw TL  ¥209T8  ¥ISe1— 00 €9019C 8¢%00 0L O
go=20
6% 15000 00000 66T TL000  6V00°0— €S 05000  T0000 06  ¥CI00  T0000 00  T/000  TO00D0 00T 00T
TS €000  T10000— L0V  €TI00  0010°0— LS TZ000 100070 68 841000  T0000 00  F0T1000  2TO000 00T 00T
19  S0TI00 8000°0— 9¢9 87200  F0T0'0— ¥S 00100 10000 L8  TSTO0  £000°0 00  ISTI00  €0000  0S 00T
TET  6€500  TTTO0— 866  SEIT0  TITT0— TS SIT00  €000°0— V.  SP900  €£00°0 10  SPP00  TI000 0L 00T
'S 7000 00000 T'ZT /8000  0S00°0— 8S 1000 10000 66  S/1000  T1000°0— 00 €000 00000 00T 00T
99 €0100  TO000— 79T €PI00  TO10°0— TS 10100 00000 96  6V200 00000 00  8PI000 10000 00T 00T
6'S  LFI00  600010— LT1F 05200 S020°0— 'S IFI0O0  T0000— 00T  8S€0°0  €000°0— 00 91200  T0000— 0S 00T
791 8TH00  8TT00— €¥6  FIIT0  9IIT0— S% 66200 10000 ¥8  Te600  ¥€00°0 0  1€900 60000  OT 00T
6% 10100 000070 ¢TIl TII00  0S00°0— €S 66000  T0000 68 /FT00  S0000 00 P00 10000 00T  0S
€S FHPI00  $0000— €41 9100 €010°0— TS IPI00  2000'0— 66 6500 01000 00 80200  TO00D0 00T  OS
6'S  $0T00  0T000— £ST 98200 9020°0— 0S  S6I00 00000 ¥6  01S00  £2000 00 1000 80000 0SS 0§
€Tl €960°0 TTTO0— 8L €0TI0  TITT0— TS 0TF00  T0000 €8 CIET0  1TI00 10 04800 62000 0T  0S
Y%  $2200  $000°0 89  /TT00  SF000— €% 12200  S000°0 86 79500  €200°0 00  TCE00  Z0000 00T O
8% LI00  $000°0 T8  8TE00  S600°0— ¥¥ 60600  S000°0 FOL G600  ST00°0 00  F9%00  £00000 00T O
€S T9%00 20000 T'Il  €6¥00 ¥6100— LY LS00 800070 I'6  IFIT0 68000 00  £/900 92000 05 O
08 6VIT0  0I200— 9%C  SOST'0  00IT0— €S 76800 Nooo% L8 99¢€0  THI0°0 TO0 08120  9%FI00 0L O
0= 0,
ozI5  HSIN serg °zIs IS serg 9zi5  HSINYI serq °zIs IS serg 9z SN serg N N
s104 S1 Vi auv THV

"1 > [00] uaym 4 10§ syMsaz 3z1s 9,6 pue FSAY ‘serd T [qeL

97



‘3821 9y} jo uonjeuerdxs ue 10§
1 9[qeBL 39S "(T‘0)N ~ '{ ‘e ur seasaym ‘astmrayio (1°7) = 7 pue [g/ L] > 741 ,(0°T) = 1 ‘¢d Ul :S2j0N

L% 81000  1000°0— 9%  GF00'0  0000°0 £9 15000 100000 00T 00T
¥¥% 620000 1000°0— 'S #9000 00000 99  $/000 100000 00T 00T
S¢F  SP00'0  T000'0— 6F 6000 T000°0— LS S0100 10000  0S 00T
'Y £0200 SE€00°0— TS  S5T00  C1000— 9% 95200  €0000  OT  00C
€6 97000 1000°0— TS $9000 00000 6/ ¥/000 100000 00T 00T
¥S  I¥000  $000°0— 0S 68000 <20000— 6'S 20100 10000— 00T 00T
8%  €9000 S000°0— L% 62100 2000 0— 8% SPI00 00000 0S 00T
g€ L0€00  €900°0— €5 $9€00  ¥200°0— 0S  £9€0°0 90000— 0T 00T
€6 £800°0  €000°0— TS 06000 00000 ¥/ €01000 10000 00T 0S
L% 65000 9000°0— TS 8TIO0  €000°0— LS SPI0O0  TO000— 00T  0S
€S 16000 01000— 'S F8I00 8000°0— €6 S0Z00 ¥0000— 0S  0S
€ 09500 80T0°0— ¢S €100  6£00°0— g's  £IS00 10000— OL  0S
TL 68000 S100°0— 9GS  £020'0  000°0— 96 F€200 90000 00T O
T'Z SPIO0  T€000— 8G 66200 90000— ¢S 8600 S0000 00T  OT
TL O LET0°0  €900°0— 6'S 6200 S100°0— 96 0800 01000 0S OI
08 9IET0  €9¥0°0— g9 TI6IT0 SEI00— T9 10CT0 81000 O O
ed
I'6  S0000 00000 8%  THO0'0  0000°0 69 0S000 10000 00T 00T
9% 90000 00000 0'S /5000 00000 6'S 1000 10000 00T 00CT
L% 01000 00000 6F  SZ000 T10000— TS 86000 00000 0S 00T
'S 85000 20000— TS /PI00  €000°0— 0S 10200 T10000— OI 00
0'S  £0000 00000 TS 65000 00000 I'Z 12000 10000 002 00T
6% 600000 00000 €6 6000 T000°0— 9 66000 000000 00T 00T
6%  F1000 00000 ¢F  S0I00 T000°0— 8% 9€1000 00000 0S 00T
'S #8000 000070 96 TIT00 20000 ¥'S /8200  €0000 0T 00T
L% 60000 00000 0S  €8000 T000°0— 9/ 66000 00000 00T 0S
¢S €1000 00000 6%  CIT00 €000°0— 'S 661000 <0000— 00T  0S
8% 02000 00000 €S 9¥I00  000°0— 0S  T6I00 00000 0S  0S
TS L1100 10000 €S €6200 20000 6F 9600 80000 OI  0S
€6 02000 T000°0— L% 18100  1000°0— 8% 8100  F0000 00T OI
6F  £2000 00000 0S  8¥200  €000°0— 9% 9000  F0000 00T OI
¢¥  TH00'0 00000 7S 97€00  8000°0— 9% T€P00 L0000 0S  OI
09 S¥T00  T000'0— 9 G900 01000— 'S 65800 90000 0T  OI
4|
o715 SN seig 9715 SN seig 9715 IS seid I N
g6'0 = 0d go=0d 0=0d

1> [00] uoum e pue 74 1oy SyNSar azis 94G Puv ASINR ‘Serd 7 2148l

98



"}sa1 9y} jo uoneue[dxs ue 10§ g pue [ Sa[qe[, 995 .fwz\ = U pue [ g = 7 10§
(17130 — 7)1y = 1 ‘gD ur seazaym “I11y = 15 se pajerauad st jusuodwod uowwon ayy ‘1D Uf 970N

8C'S  €000°0 00000 1°'¢ 460000 00000 "¢ €000°0 00000  00C 00T
88F 01000 00000 98y 01000 00000 £y 010000 00000 00T o0O0C
¢r's 02000  TO000— 84F% 12000 T1000°0— 90'¢  T1¢000 TO0000— 0s 00C
g'¢ 80100 ¥0000— 80F% 1€100 6000°0— 8¥  ZI10'0 90000— O  00C
8C'S  £Z000°0 T1000°0— ¢0's  £0000  TO0O0— 81'S  £Z000°0 1000°0— 00C 00T
8¢'G V1000 1000°0— 8¢’ G100°0 T1000°0— ¥9'¢  G1000 T000°0— 00T 001
84'G  6¢00°0 €0000— ¢S 0€000  €0000— 84'G  6¢000 €0000— 09 00T
8¢’ <¢G100 ¥1000— V¥ 16100 G2000— 9's 89100 61000— OT 001
8¢ 01000 T0000— 9¢'¢  0100°0 T0000— 8%'¢ 01000 T0000— 00C O0OS
¥4'S 12000 €0000— ¥€'9 12000 €0000— 8¢'¢  1¢000 <¢0000— 00T 0OS
s 1¥000  ¥000°0— ¥I's  €¥000 S000°0— ¢g  Tv00'0  S0000— 0S8 0S
¥'s  81¢00 GC000— 8¥'¢ 84200 €¥000— 88% 1¥¢00 £€000— OT 09
4L 82000 £000°0— 9¢'9  £200'0  £000°0— 9¢'9 L2000 £0000— 00C OT
91'8 45000 91000— 8¢9 Ge000 ST000— g9  ¥$9000 S100°0— 00T O
¥I'8 L1100  1€000— ¢09 8I100 <¢c000— ¥9 <CIT00 0€000— 05 O
9Z 88900 ZE€100— v <0010 ¥6200— g€ 96900 98100— 01 0t
(48]
6'c 60000 T1000°0— ¢S 10000 00000 8% 000000 00000  00C 00C
6'c 91000 <0000— L'y <0000 00000 Ly 100000 00000 00T o00C
¥y 0€00°0  <000°0— 9% %0000 00000 Ly €00000 00000 0s  00C
g€ 96100 9€000— 6y  6¥000 1000°0— 1'¢  8¢000 00000 0L  00c
g€ €100'0 <000°0— Sy 10000  0000°0 ¥ 100000 00000  00C 00T
8¢ §d00'0 ¥0000— Ly <0000 00000 €y <0000 000000 00T OOT
0¥ €000 90000— Svy 90000 00000 6y  S9000°0  0000°0 0s 001
gC 66200 99000— 'S 120000 00000 9'¢  $5000 00000 0T o0t
6'c  0¢000 ¥0000— 6% 10000 00000 €¥ 100000 00000 00C 0S
9¢  8€000 60000— 1'g  €000°0 00000 €g <0000 00000 00T 0s
0% 99000 <1000— 8% 80000 00000 ¥¥  £0000 00000 0s 09
LT €8¥0°0 €CI00— €g 66000 10000 'S ¥2000 10000 ()8 09
g6 89000 92000— €g 20000 00000 €¥v <0000 00000 00C O
€6  €€100 €9000— 6% 90000 00000 1's 60000 00000 00T OT
9z 0€200 S8000— 9v 81000 00000 67  €1000 00000 0s 01
06 0e¥1'0 €¥S900— £'S 90200 T0000— €g ¢9100 10000 ()8 (08
10
9Z15  HSINY setd 9Z15  HSINY setd 9ZIs  HSINY setd ) N
e cd 14

"I = 00 udyM g~ 10§ SINSI ZIS %G PUe FSIAY ‘Serd € d[qeL

99



