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Abstract

In a recent study, Bai (Fixed-Effects Dynamic Panel Models, A Factor Analytical

Method. Econometrica 81, 285–314, 2013a) proposes a new factor analytic (FA) method

to the estimation of dynamic panel data models, which has the unique and very use-

ful property that it is completely bias-free. However, while certainly appealing, it is

restricted to fixed effects models without a unit root. In many situations of practical

relevance this is a rather restrictive consideration. The purpose of the current study is

therefore to extend the FA approach to cover models with multiple interactive effects

and a possible unit root.

JEL Classification: C12; C13; C33; C36.

Keywords: Interactive fixed effects; Dynamic panel data models; Unit root; Factor ana-

lytical method.

1 Introduction

Consider the panel data variable yi,t, observable for t = 1, ..., T time series and i = 1, ..., N

cross-sectional units. The data generating process (DGP) of this variable is assumed to be

given by the following dynamic panel data model:

yi,t = ci,t + ρyi,t−1 + ε i,t, (1)

∗The authors would like to thank Jörg Breitung, David Edgerton and Vasilis Sarafidis for many valuable
comments and suggestions.
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where ρ ∈ (−1, 1], y1,0 = ... = yN,0 = 0, ci,t is the common component of the data, and

ε i,t is an error term. Two specifications of ci,t will be considered; (C1) ci,t = λ′
iFt, and (C2)

ci,t = λ′
i(Ft − ρFt−1) for t = 2, ..., T and ci,1 = λ′

iF1, where Ft is an m × 1 vector of common

factors and λi is a conformable vector of loading coefficients. Both specifications presume

that m ≥ 1; if m = 0, we define ci,t = 0. The DGP that arises under C2 can be seen as

emanating from yi,t = λ′
iFt + si,t, where si,t = ρsi,t−1 + ε i,t, which differs only slightly from

the more common DGP under C1. Note in particular how C1 and C2 are indistinguishable

for |ρ| < 1. Since the analysis of C1 is simplest we therefore assume throughout this paper

that C1 holds whenever |ρ| < 1. The appropriate model to consider under ρ = 1 is less

obvious and in the present paper we therefore consider both.

Using the terminology of Bai (2009), (1) constitutes a fixed “interactive” effects model

under either C1 or C2, which is more general than many of the fixed effects models previ-

ously considered in the literature (see Bun and Sarafidis, 2013; Chudik and Pesaran, 2013,

for recent surveys). Suppose, for example, that Ft = 1, which implies that under C1, ci,t =

λ′
iFt = λi. This means that under the additional assumption of |ρ| < 1, (1) reduces to what

can only be described as the “classical” dynamic panel data model with unit-specific fixed

effects, which has attracted considerable attention in the literature. One reason for this is

the existence of the so-called “incidental parameters bias”, or “Nickell bias” (Nickell, 1981),

which arises because of the increasing number of fixed effects. In the classical micro panel

setting with T fixed and N → ∞ this bias is a severe problem, as in this case least squares

(LS) is inconsistent. This has led to the development of alternative estimators such as the

generalized method of moments (GMM) (see, for example, Arellano and Bond, 1991; Arel-

lano and Bover, 1995; Blundell and Bond, 1998), which is now the most common approach

in empirical work with dynamic panels.

This paper focuses on the case when T → ∞, which lessens the problem of bias. How-

ever, while consistent, the asymptotic distribution of the LS estimator is still miscentered

(see, for example, Hahn and Kuersteiner, 2002). In fact, all estimation approaches known to

us are biased in one way or another (see Moon et al., 2013, for an overview of this literature).

This includes GMM, which suffers from problems of weak instrumentation and instrument

proliferation (see, for example, Roodman, 2009).

The presence of bias has recently motivated Bai (2013a, b) to propose a new factor analyt-

ical (FA) approach to the estimation of (1). The name stems from the fact that the estimator,
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which is based on quasi-maximum likelihood (quasi-ML), coincides with the one used in

factor analysis (see, for example, Anderson and Amemiya, 1988). A key feature of FA is that

it does not require estimation of the individual effects themselves, but only estimation of

their second moment, Sλ = N−1 ∑N
i=1 λiλ

′
i.

1 Since under Ft = 1 this moment is just a scalar,

the incidental parameter problem caused by the fixed effects is effectively removed, leading

to an estimator that is completely bias-free. It is also instrumentation-free, which means that

the usual difficulties associated with weak instruments and instrument proliferation do not

arise in GMM. The work of Bai (2013a, b) is restricted to the classical setup with Ft = 1 and

|ρ| < 1, but is otherwise very general with regard to the idiosyncratic error term, ε i,t, which

is allowed to be both cross-section and time series heteroskedastic. Time-specific effects2,

non-zero initial values and predetermined regressors can also be accommodated.

In this paper we extend the work of Bai (2013a, b) to the case when Ft is not necessarily

just unity and ρ ∈ (−1, 1]. This is important for (at least) two reasons. One reason is that

while fixed effects are commonly used, there are many situations in which they are unlikely

to be sufficient. An example is the consumption model based on the life-cycle and rational-

expectation hypotheses, which predicts that consumers’ marginal utility of wealth should

vary over time. Other examples include asset pricing models that assume time-varying risk

premia, and models of economic growth in which the state of technology is assumed to

follow a linear trend (see Bai, 2009, Section 3, for additional motivating examples). In such

cases the fixed effects assumption is almost surely mistaken. The challenge from a theory

perspective is that the property of unbiasedness in the fixed effects case does not necessarily

carry over to the more general interactive effects model considered in this paper. Indeed,

even the introduction of a linear trend, which is arguably the simplest departure from fixed

effects, causes the LS bias to double in size regardless of of whether |ρ| < 1 or ρ = 1 (see

Phillips and Sul, 2007).

The extension to the model with interactive effects is related to the recent working paper

of Bai (2013c), which appeared after the first version of this paper was written. Bai (2013c)

considers a dynamic interactive effects model that is similar to (1) under C1 with |ρ| < 1

imposed, which is estimated by a version of the estimator considered here. The focus of this

paper, however, is on the relatively challenging unit root case, although we also consider

1In this sense, FA is very similar to the GMM approaches considered by Ahn et al. (2001, 2013) and Robertson
et al. (2010) in the fixed-T case.

2Time-specific effects amounts to setting Ft = (1, ηt)′ and λi = (αi, 1)′, such that ci,t = λ′
i Ft = αi + ηt.

3



the case when |ρ| < 1. Our extension holds considerable promise, from both applied and

theoretical viewpoints. From an applied point of view, even variables that on theoretical

grounds are expected to be stationary tend to be highly persistent, and the evidence that

they do not contain a unit root is weak, at best, as is evident from the large and increasing

literature on non-stationary panels (see Breitung and Pesaran, 2008; Baltagi, 2008, Chapter

12, for surveys of this literature). One would therefore not like to exclude the possibility of

unit roots when working with real data. From a theoretical point of view, the main problem

is the presence of bias, which is even more potent in the unit root case than under |ρ| < 1

(see, for example, Moon et al., 2013; Phillips and Sul, 2007). Indeed, as is now well under-

stood, in the unit root case the presence of deterministic terms in the fitted model affects the

asymptotic distribution of all estimators of ρ, and does so in both the time series and panel

contexts. In panels, this implies that different deterministic specifications have their own

bias expressions. For example, if the chosen specification involves structural break dummy

variables, then the bias depends on the location of the break(s). This poses serious problems

in implementation, as not only is there a need to bias-correct, but the appropriate correction

factors also critically depend on the particular model being estimated. Moreover, the com-

plexity of the calculations involved in obtaining these factors increases very quickly with

both the number and non-linearity of the fitted deterministic terms. Even for simple LS the

required moment calculations are in fact basically impossible, except in the simple case of

(at most) a linear trend. Researchers therefore typically only provide correction factors for

this case, thereby constraining the use of their estimators to panels that are characterized by

similarly simplistic deterministic behavior.

Our findings show that the “FA estimator” has a normal limit for all values of ρ, includ-

ing unity, and that it is unbiased.3 The limiting distribution of the estimator considered here

is thus continuous as ρ passes through unity, in contrast to what happens for most exist-

ing approaches. In fact, the only other estimator known to support asymptotically normal

inference for all values of ρ ∈ (−1, 1] in the current large-T context is the one of Han and

Phillips (2010). This estimator is only
√

NT-consistent, however, in contrast to FA, which is

(at least)
√

NT-consistent. The fact that FA is unbiased when ρ = 1 means that the standard

requirement of (at most) a liner trend is not needed, and the otherwise common bias cor-

3Bai (2013c), and Bai and Li (2012) refer to the estimator as a “(quasi-)ML estimator”. In this paper, however,
we follow Bai (2013a, b) and refer to it as an “FA estimator”.
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rection factors can be completely avoided. In terms of model specification, this means that

researchers can proceed just as in the classical regression context. Indeed, all one has to do

is to augment the test regression with whatever deterministic specification is felt to be ap-

propriate. The only requirement is that the chosen specification is general enough to include

the true one. Interestingly, the usual empirical problem of deciding on which deterministic

terms to include does not arise since the common factors, and hence also the deterministic

part of the model, can be treated as unknown. Our approach is therefore not only general,

but is in this sense also remarkably simple. However, this advantage is at the same time the

main drawback of the approach. In the unit root case it is usually desirable to restrict the de-

terministic part of the model (see Schmidt and Phillips, 1992), but since in FA deterministic

and stochastic factors are treated in the same manner, this is not possible without at the same

time also restricting the other factors. We therefore consider both C1 and C2 when ρ = 1 in

this paper.

2 Assumptions

It is useful to write (1) in vector notation. Let us therefore introduce yi = (yi,1, ..., yi,T)
′,

F = (F′
1, ..., F′

T)
′ and ε i = (ε i,1, ..., ε i,T)

′, where yi and ε i are T × 1, while F is T × m. Define

J =


0 0 0 . . . 0
1 0 0 . . . 0
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0

 , L =


0 0 0 . . . 0
1 0 0 . . . 0
ρ 1 0 . . . 0
...

. . . . . . . . .
...

ρT−2 . . . ρ 1 0

 ,

which are both T × T. It is useful to think of J and L as “lag” and “accumulation” matrices,

respectively. Let us further denote by ci = (ci,1, ..., ci,T)
′ the T × 1 vector of stacked observa-

tions on ci,t, which under C1 and C2 is given by ci = Fλi and ci = (IT − ρJ)Fλi, respectively.

In this notation,

yi = ci + ρJyi + ε i, (2)

which can be solved for yi, giving

yi = Γci + Γε i = Γui, (3)

where Γ = (IT − ρJ)−1 = IT + ρL and ui = ci + ε i. Note that L, and hence also Γ, are functions

of ρ. In order to emphasize this, we write L = L(ρ) and Γ = Γ(ρ) whenever appropriate.
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The conditions that we are going to be working under are summarized in Assumptions EPS,

F and LAM. Throughout, C < ∞, tr A and ||A|| =
√

tr (A′A) will be used to denote a

generic positive constant, and the trace and Frobenius (Euclidean) norm of the matrix A,

respectively.

Assumption EPS. ε i,t is independent and identically distributed (iid) across both i and t with

E(ε i,t) = E(ε3
i,t) = 0, E(ε2

i,t) = σ2 > 0, and σ−4E(ε4
i,t) = κ ≤ C.

Assumption F. If |ρ| < 1, then T−1F′F → ΣF, T−1F′L′F → Σ1
F, T−1F′LL′F → Σ2

F and

T−1F′L′LF → Σ3
F as T → ∞ for some m × m positive definite matrices ΣF, Σ1

F, Σ2
F and Σ3

F,

whereas if ρ = 1, then T−1F′F → ΣF, T−2F′L′F → Σ1
F, T−3F′LL′F → Σ2

F and T−3F′L′LF →

Σ3
F as T → ∞. In both cases, ||Ft|| ≤ C for all t.

Assumption LAM. ||λi|| ≤ C for all i, and Sλ → Σλ as N → ∞ for some m × m positive

definite matrix Σλ.

Remark 1. Assumption F is significantly less restrictive than the fixed effects assumption of

Bai (2013a, b). Although the way that Assumption F is stated supposes that F is fixed, this is

not necessary. F can also be random. In this case, we assume F to be independent of ε i,t for all

i and t, and also that Assumption F is satisfied in expectation, in the sense that the expected

value of the various sample moments are assumed to behave as in Assumption F. Moreover,

E(||Ft||4) ≤ C instead of ||Ft|| ≤ C. This means that there are basically no restrictions on F at

all. It can, for example, include both fixed and random elements, have nonzero mean and/or

arbitrary dynamics. As we discuss in Section 3, the required moment conditions should be

satisfied in most models of empirical relevance.

Remark 2. Since the focus in this paper is the treatment of F when ρ ∈ (−1, 1], in interest

of transparency of the results, some of the other assumptions are quite restrictive. Many

of these can, however, be relaxed in the way suggested by Bai (2013a, c). For example,

while Bai (2013b) requires that ε i,t is normal, in Bai (2013a, c) this assumption is relaxed

to allow for iid but not necessarily normal innovations. In this paper we do not assume

that ε i,t is normal, but do require that it has a symmetric distribution. The reason for this

is that the information matrix is no longer diagonal when E(ε3
i,t) ̸= 0, thus adding to the

complexity of an already quite complicated problem. Applications are not limited to models
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with symmetric innovations, however, since all the relevant second-order derivatives are

provided (see Appendix B). Similarly, although we follow Bai (2013b) here and assume that

ε i,t is homoskedastic, the results can be extended along the lines of Bai (2013a, c) to allow for

heteroskedasticity (over both time and cross-section). Nonzero initial values and regressors

that are exogenous can also be permitted (see Bai, 2013a, b).

3 Asymptotic results

We begin by considering the scenario when |ρ| < 1 and F is known. We then show how the

results are affected when ρ = 1 and/or F is unknown. Unless otherwise stated, we assume

throughout that m ≥ 1, and thus that there are at least some effects present. As mentioned

in Section 1, the analytical results under C1 are substantially simpler than those that apply

under C2. Since C1 and C2 are indistinguishable for all values of ρ but one, we will only be

using C1 whenever |ρ| < 1.

3.1 |ρ| < 1 and F known

When F is known the vector of parameters is given by θ = [(vech Sλ)
′, ρ, σ2]′ = (θ′1, θ′2)

′,

where θ1 = vech Sλ, θ2 = (ρ, σ2)′, and vech is the half-vec operator that eliminates all supra-

diagonal elements of A from vec A. The purpose of this paper is to make inference regarding

this vector, and in so doing we follow the FA approach of Bai (2013a, b, c), which is based on

the following “discrepancy” function (between Σ(θ) and Sy):

Q(θ) = log(|Σ(θ)|) + tr (SyΣ(θ)−1),

where |A| is the determinant of A, Sy = N−1 ∑N
i=1 yiy′i, Σ(θ) = σ2Γ(ρ)Λ(Sλ, σ2)Γ(ρ)′ and

Λ(Sλ, σ2) = IT + σ−2FSλF′. To simplify notation we may at times write Q, Σ and Λ for

Q(θ), Σ(θ) and Λ(Sλ, σ2), respectively. The objective function, denoted ℓ(θ), is just −N/2

times Q(θ);

ℓ(θ) = −N
2

Q(θ) = −N
2
[log(|Σ(θ)|) + tr (SyΣ(θ)−1)].

Remark 3. The objective function considered here is very similar to those considered by Bai

and Li (2012) in the context of a pure common factor model, Ahn et al. (2001, 2013) in the

context of a small-T static panel data regression model with (weakly) exogenous regressors,

7



and Robertson et al. (2010) in the context of a small-T dynamic panel data model. Note

in particular how, as in these other papers, θ does not contain λ1, ..., λN , but only Sλ. This

means that the dimension of θ remains fixed as N → ∞, which is also the reason for the

unbiasedness of FA in the fixed effects case (see Bai, 2013a, for a detailed discussion).

Let us define G(ρ) = Γ(ρ)−1SyΓ(ρ)−1′ and Λ̂(θ2) = IT + σ−2FŜλ(θ2)F′, where Ŝλ(θ2) =

σ2F−(σ−2G(ρ)− IT)F−′ and A− = (A′A)−1A′ for any matrix A. In Appendix A we show

that concentration with respect to Sλ leads to the following concentrated objective function:

ℓc(θ2) = −N
2

Qc(θ2), (4)

with

Qc(θ) = T log(σ2) + log(|Λ̂(θ2)|) + σ−2tr [G(ρ)Λ̂(θ2)
−1]

being the correspondingly concentrated discrepancy function. The objective is to maximize

ℓc(θ2) with respect to θ2. Let us therefore denote the true values of ρ, σ2 and κ by ρ0, σ2
0

and κ0, respectively. Let θ̂2 = (ρ̂, σ̂2)′ be the FA estimator of θ0
2 = (ρ0, σ2

0 )
′ obtained by

maximizing ℓc(θ2) over the parameter space Θ2 = {θ2 : ρ ∈ (−1, 1], σ2 > 0}, that is, θ̂2 =

arg maxθ2∈Θ2 ℓc(θ2). It is assumed that θ0
2 is an interior point in Θ2.

Lemma 1. Under C1, |ρ0| < 1, and Assumptions EPS, F and LAM,

(NT)−1ℓc(θ2) = −1
2

(
log(σ2) +

σ2
0

σ2

)
− σ2

0
2σ2 (ρ0 − ρ)2ω2

1 + Op((NT)−1/2) + Op(T−1 log(T)),

where ω2
1 = T−1tr (L0L′

0 + σ−2
0 SλF′L′

0MFL0F) ≥ 0, L0 = L(ρ0), MF = IT − PF and PF =

F(F′F)−1F′.

The second term in the expansion of (NT)−1ℓc(θ2) is obviously maximized at ρ = ρ0. The

derivative of the first term with respect to σ2 is given by −(1 − σ2
0 /σ2)/(2σ2), which attains

its maximum at σ2 = σ2
0 . This implies the consistency of θ̂2, that is, ||θ̂2 − θ0

2 || = op(1).

Interestingly, consistency does not require N → ∞, but holds also when N is fixed, provided

that T → ∞. Bai (2013a, b, c) provides results that are similar to Lemma 1 (see in particular

his Lemmas 2 and S.1). Unlike our Lemma 1, however, these results are based on letting

N, T → ∞. Moreover, is not apparent that the estimator is consistent also under a fixed N,

since the accuracy of approximation is not given by Bai (2013a, b, c).
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Theorem 1. Under the conditions of Lemma 1, as T → ∞ for any N, including N → ∞ with
√

NT−3/2 → 0,

H1/2(θ̂2 − θ0
2) ∼ N

(
02×1,

[
ω−2

1 0
0 σ4

0 (κ0 − 1)

])
,

where ∼ signifies asymptotic equivalence and Hp = diag(
√

NTp,
√

NT ).

According to Theorem 1 there is no asymptotic bias, despite the generality of the condi-

tions placed on F; (θ̂2 − θ0
2) is centered at zero even when scaled by

√
NT. The condition

that
√

NT−3/2 → 0 is the same as in Bai (2013a, b). What is new, however, is the fact that

asymptotic normality does not require N → ∞, but holds even when N is fixed. The magni-

tude of N is not irrelevant, though, as N → ∞ leads to an increase in the rate of consistency,

from
√

T to the
√

NT rate given in Theorem 1.

The covariance matrix given in Theorem 1 is different from the one reported by Bai

(2013b, Theorem S.2); what are here σ4
0 (κ0 − 1) and ω−2

1 are in Bai (2013b) 2σ4
0 and (1 − ρ2

0),

respectively. The first difference is due to the fact that the results reported in Bai (2013b) as-

sume that ε i,t is normally distributed. Under normality the two expressions coincide, since

in this case κ0 = 3, giving σ4
0 (κ0 − 1) = 2σ4

0 . The second difference is due to the general for-

mulation of F considered here, which includes the fixed effects consideration of Bai (2013a,

b) as a special case. In order to appreciate this, note first that by Proof of Lemma 1 (see

Appendix C), we have T−1tr (L0L′
0) = 1/(1 − ρ2

0) + O(T−1). Moreover, under fixed effects,

F = 1T = (1, ..., 1)′, a T × 1 vector of ones, suggesting that

T−1F′L′
0MFL0F = T−1F′L′

0L0F − T−1F′L′
0F(F′F)−1(F′L′

0F)′

= T−11′T L′
0L01T − (T−11′T L′

01T)(T−11′T L′
01T)

′,

where, by Proof of Lemma D.1, T−11′T L′
0L01T = 1/(1 − ρ0)2 + O(T−1) and T−11′T L′

01T =

1/(1 − ρ0) + O(T−1). Since the leading terms cancel out, T−1F′L′
0MFL0F = O(T−1), which

in turn implies

ω2
1 = T−1tr (L0L′

0 + σ−2
0 SλF′L′

0MFL0F) =
1

(1 − ρ2
0)

+ O(T−1).

The results reported in Theorem 1 are therefore identical to those reported in Theorem S.2 of

Bai (2013b) under normality.

Although the above discussion refers to the case where F = 1T, we expect T−1F′L′
0MFL0F

to be negligible in most other specifications of empirical relevance. In Appendix D we con-

sider as examples the cases where F consists of an intercept with a possible break, and where
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it consists of an intercept and (normalized) trend. In both cases, we show that the required

sample moments satisfy

T−1F′F = ΣF + O(T−1),

T−1F′L′
0F =

1
(1 − ρ0)

ΣF + O(T−1),

T−1F′L′
0L0F =

1
(1 − ρ0)2 ΣF + O(T−1),

with ΣF depending on the particular specification of F being considered. Hence, in these

cases the leading terms also cancel out, leading to T−1F′L′
0MFL0F = O(T−1).

Remark 4. The result given in Theorem 1 is similar to the one given in Theorem 2 of Bai

(2013c). One difference is that his analysis is based on an approximation where the depen-

dence on F, and hence also the presence of T−1F′L′
0MFL0F in ω2

1, is treated as negligible

(see Bai, 2013c, Theorem 1). Our Theorem 1 retains the dependence on F and is therefore

more accurate in this regard. In particular, and despite our best efforts, we have not been

able to prove that the dependence on F is in fact negligible in general. Moreover, as we ex-

plain in Section 3.2, when ρ0 = 1 the dependence on F becomes more apparent and in fact

drives some of the results. Another difference in comparison to Bai (2013c) is the method of

proof. The proof given in Appendix C is based on formal derivation and evaluation of all

the relevant derivatives, and is in fact interesting in itself.

3.2 ρ0 = 1 and F known

In the common factor strand of the so-called “second-generation” panel unit root literature

(see Breitung and Pesaran, 2008; Baltagi, 2008, Chapter 12) it is common to decompose F into

two parts; (i) a deterministic part, and (ii) a random part that is mean zero. While the latter

part is supposed to satisfy C1, the former is restricted as in C2 (see, for example, Moon and

Perron, 2004; Pesaran, 2007; Peasaran et al., 2013; Phillips and Sul, 2003). In our case, both

parts are given the same treatment, which is also the reason for considering both C1 and C2.

Note in particular how under ρ = 1,

yi,t =
t

∑
n=1

ci,n +
t

∑
n=1

ε i,n, (5)

where the first term on the right equals λ′
i ∑t

n=1 Fn in C1 and λ′
iFt in C2. For example, if

Ft = 1, while in C2 λ1, ..., λN represent fixed effects, in C1 they represent unit-specific trend
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slopes. Thus, while under C2 the interpretation of the loadings is the same for all values of

ρ, including unity, this is not the case under C1. This is also the main reason why determin-

istic terms are typically supposed to satisfy C2 in the previous literature (see Schmidt and

Phillips, 1992, for a discussion). On the other hand, if Ft is iid with zero mean and positive

definite covariance matrix, then ∑t
n=1 Fn represents a common stochastic trend, which is of

the same order of magnitude as ∑t
n=1 ε i,n. Under C2 the idiosyncratic part of the model will

thus tend to dominate, but under C1 this is not the case. That which is desirable about C1

(C2) when Ft is stochastic (deterministic) is therefore undesirable when Ft is deterministic

(stochastic). In this section we therefore consider both models.

We begin by considering the results under C1. The following lemma shows that θ̂2 is

consistent.

Lemma 2. Under C1, ρ0 = 1, and Assumptions EPS, F and LAM,

N−1T−3ℓc(θ2) = − 1
2T2

(
log(σ2) +

σ2
0

σ2

)
− σ2

0
2σ2 (ρ0 − ρ)2T−2ω2

1 + Op(T−2) + Op((NT)−1/2),

where T−2ω2
1 ≥ 0.

The result reported in Lemma 2 is similar to the one reported by Moon and Phillips (1999,

equation (8)) for the Gaussian log-likelihood function in the fixed effects near-unit root case.

A difference when compared to Lemma 1 is that in Lemma 2 the first term on the right-hand

side of N−1T−3ℓc(θ2) is negligible. This does not mean that σ̂2 is inconsistent, but merely

that it is consistent at a slower rate than ρ̂. This is shown in Theorem 2, which provides the

relevant asymptotic distribution.

Theorem 2. Under the conditions of Lemma 2, as N, T → ∞ with
√

NT−3/2 → 0,

H3/2(θ̂2 − θ0
2) ∼ N

(
02×1,

[
T2ω−2

1 0
0 σ4

0 (κ0 − 1)

])
.

Note how the rate of consistency of (ρ̂ − ρ0) is
√

NT3/2, which is higher than the usual

panel “superconsistency” rate of
√

NT. As mentioned in the above, the reason for this ex-

traordinarily fast rate of consistency is that under C1 and Assumption F, while ∑t
n=1 ε i,n =

Op(
√

T ), we have ||∑t
n=1 Fn|| ≤ ∑t

n=1 ||Fn|| = O(T). The asymptotic distribution is there-

fore dominated by the common component. In order to appreciate the effect of this we

look at T−2ω2
1 = T−3tr (L0L′

0 + σ−2
0 SλF′L′

0MFL0F), the inverse of the asymptotic variance of

11



√
NT3/2(ρ̂ − 1). While the first term is due to ∑t

n=1 ε i,n, the second term is due to ∑t
n=1 Fn. A

direct calculation shows that

T−2tr (L0L′
0) =

1
T2

T

∑
t=1

(T − t) =
∫ 1

v=0
(1 − v)dv + o(1) =

1
2
+ o(1),

implying that T−2ω2
1 = T−3tr (σ−2

0 SλF′L′
0MFL0F) + o(1). Earlier we showed that the effect

of F′L′
0MFL0F was negligible in the special case of |ρ0| < 1 and F = 1T. When ρ0 = 1 this

is no longer the case. Indeed, it is not difficult to see that with F = 1T and t = ⌊vT⌋ for

v ∈ [0, 1],

T−3F′L′
0MFL0F = T−31′T L′

0L01T − (T−21′T L′
01T)(T−21′T L′

01T)
′

=
2

T3

T

∑
t=2

(T − t)t −
(

1
T2

T−1

∑
t=1

(T − t)

)2

+ o(1)

= 2
∫ 1

v=0
(1 − v)vdv −

(∫ 1

v=0
(1 − v)dv

)2

+ o(1) =
1

12
+ o(1),

and therefore

T−2ω2
1 =

Sλ

12σ2
0
+ o(1).

Hence,
√

NT3/2(ρ̂ − 1) ∼ N(0, 12σ2
0 /Sλ) under F = 1T, a result that is again driven by the

common component.

Theorem 1 and the discussion that follows it make use of Assumption F, which is very

general. It is therefore interesting to consider a few special cases. Suppose for example

that m = 0, such that the model can be fitted without factors. In this case, T−2ω2
1 =

T−3tr (L0L′
0) = O(T−1), suggesting that the rate of consistency is reduced from

√
NT3/2

to
√

NT. In fact, since T−2tr (L0L′
0) → 1/2, it is not difficult to show that

√
NT(ρ̂ − 1) →d

N(0, 2) as N, T → ∞ with
√

NT−3/2 → 0, where →d signifies convergence in distribution,

which is in agreement with existing results for the ML and LS estimators of ρ0 (see, for exam-

ple, Levin and Lin, 1992, Theorem 3.2). If m > 0 but Ft is iid with zero mean and positive def-

inite covariance matrix, such that ∑t
n=1 ε i,n and ∑t

n=1 Fn are of the same order, then
√

NT(ρ̂ −

1) ∼ N(0, Tω−2
1 ). Moreover, since T−2tr (SλF′L′

0MFL0F) = T−2tr (SλF′L′
0L0F) + op(1) ≤ C

and T−2tr (L0L′
0) → 1/2, both the common and idiosyncratic components contribute to the

asymptotic distribution.

Remark 5. Theorem 2 requires that N, T → ∞ with
√

NT−3/2 → 0, which is stronger than

the corresponding condition in Theorem 1. The reason for this is the usual dependence on

12



Brownian motion as T → ∞ when ρ0 = 1, which is effectively smoothed out by passing

N → ∞, thereby enabling asymptotic normality.

The fact that T−3tr (SλF′L′
0MFL0F) under C1 drives the results is important, not only for

the rate of consistency, but also because of what it implies for λi. In the unit root literature it

is quite common to assume that C1 holds, but to restrict the order of the deterministic trend

polynomial to be the same under ρ0 = 1 as when |ρ0| < 1 (see, for example, Levin et al.,

2002). For example, it is assumed that λ1 = ... = λN = 0 when Ft = 1, for otherwise yi,t

would contain a linear trend. Unfortunately, this is not possible in FA, at least not under C1,

as the effect of Sλ on ω2
1 is non-negligible and Sλ → Σλ > 0 under Assumption LAM. Hence,

if Ft = ρ0 = 1, then yi,t must contain a linear trend, which is clearly very restrictive. With

this is mind, we now continue to the results obtained under C2.

The required derivatives and the resulting asymptotic derivations become extremely te-

dious under C2 due to the way that the inverse of Γ enters into the expressions. Intuitively

the extension of the above results for C1 to C2 follows from simply replacing F by Γ−1F. Note

in particular how the concentrated objective function has the same form as in (4) but with F

replaced by Γ−1F in Λ̂(θ2) and Ŝλ(θ2); hence, Λ̂(θ2) = IT + σ−2Γ(ρ)−1FŜλ(θ2)F′Γ(ρ)−1′ and

Ŝλ(θ2) = σ2(Γ(ρ)−1F)−(σ−2G(ρ)− IT)(Γ(ρ)−1F)−′.

Lemma 3. Under C2, ρ0 = 1, and Assumptions EPS, F and LAM,

N−1T−2ℓc(θ2) = − σ2
0

2σ2 (ρ0 − ρ)2T−2tr (L0L′
0) + Op(N−1/2) + Op(T−1).

The rate of consistency of ρ̂ under C2 is generally lower than under C1 as the normaliza-

tion of ℓc(θ2) with respect to N and T indicates. Theorem 3 confirms this.

Theorem 3. Under the conditions of Lemma 3, as N, T → ∞ with
√

NT−1 → 0,

H1(θ̂2 − θ0
2) ∼ N

(
02×1,

[
Tω−2

2 0
0 σ4

0 (κ0 − 1)

])
,

where ω2
2 = T−1tr (L0L′

0 + σ−2
0 SλF′Γ−1′L′

0MΓ−1FL0Γ−1F).

It can be shown that ||T−1F′Γ−1′L′
0MΓ−1FL0Γ−1F|| ≤ C, giving

T−1ω2
2 = T−2tr (L0L′

0 + σ−2
0 SλF′Γ−1′L′

0MΓ−1FL0Γ−1F) = T−2tr (L0L′
0) + o(1).
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Hence, since T−2tr (L0L′
0) → 1/2, we can show that

√
NT(ρ̂ − 1) →d N(0, 2) as N, T → ∞

with
√

NT−1 → 0, which is the same result as obtained under C1 with m = 0. Since F

is completely unrestricted here, the specification in C2 therefore leads to simplified results

when compared to C1. Note in particular how the asymptotic distribution does not depend

on Sλ. This means that the requirement that Sλ → Σλ > 0 is no longer necessary (a formal

proof is available upon request). Under C2 some (or indeed all) of the loadings may be zero

for all units, which was not possible under C1.

The fact that the limiting distribution is asymptotically invariant with respect to F is

wort discussion. As explained in Section 1, most existing estimators of ρ are biased in ways

that depend on the deterministic specification being fitted. Valid inference in these cases

therefore requires bias-correction. Typically these correction factors are only available for

the simple case of (at most) a linear trend, which obviously limits the applicability of these

estimators. Here we are also assuming that F is known. In practice, however, there is un-

certainty over F, and in such cases researchers have to adopt a liberal modeling strategy to

ensure that the deterministic behaviors of all the units are captured. The conventional speci-

fication with (at most) a linear is clearly inadequate if one allows for the possibility that some

of the units may be trending non-linearly. This will be the case when, for example, work-

ing with variables where trending behavior is evident, such as GDP, industrial production,

money supply and consumer or commodity prices. The invariance property of FA is there-

fore not only very convenient from an applied point of view (as there is no bias to correct

for), but also enables inference in cases previously not possible.

Remark 6. Hahn and Kuersteiner (2002) study the asymptotic distribution of the LS estima-

tor of ρ0 under C2 in the fixed effects unit root case. According to their Theorem 4, not only

is LS biased, but is asymptotic variance (51/5 ≈ 10) is also substantially higher then for FA

(2).

Remark 7. The requirement that
√

NT−1 → 0 is stronger than in Theorem 2. The reason for

this is the relatively slow rate of consistency in this case.

In Section 3.1 (|ρ0| < 1) we assumed that C1 held true. We then showed that the asymp-

totic distribution under ρ0 = 1 can be written in exactly the same way but with a different

rate of consistency. In this sense the results are continuous as ρ0 passes through unity. The

same is true under C2, that is, the asymptotic distribution of θ̂2 when |ρ0| < 1 is the same as

14



in Theorem 3 but with H1 and Tω−2
2 replaced by H1/2 and ω−2

2 , respectively (a formal proof

is available upon request).

The above results imply that normal inference is possible for all ρ0 ∈ (−1, 1] under both

C1 and C2. Consider C2. Denote by ω̂2
2 an estimator of ω2

2. This estimator can be based on

either numerical or analytical evaluation of the Hessian at θ2 = θ̂2 (the elements of which are

given in Appendix B), but it can also be based on direct estimation of asymptotic formula

for ω2
2, that is,

ω̂2
2 = T−1tr (L0L′

0 + σ̂−2Ŝ∗
λF′Γ̂−1′L′

0MΓ̂−1FL0Γ̂−1F),

where Γ̂ = Γ(ρ̂) and Ŝ∗
λ = Ŝλ(θ̂2). By using the results provided in Proof of Lemma 1, it

is not difficult to show that ||Ŝλ(θ
0
2) − Sλ|| = op(1). But we also have ||θ̂2 − θ0

2 || = op(1),

suggesting that, by the continuous mapping theorem, ||Ŝλ(θ̂2) − Ŝλ(θ
0
2)|| = op(1). Hence,

||Ŝλ(θ̂2)− Sλ|| ≤ ||Ŝλ(θ
0
2)− Sλ||+ ||Ŝλ(θ̂2)− Ŝλ(θ

0
2)|| = op(1), showing that Ŝ∗

λ is consistent

for Sλ (see also Bai, 2013a, Theorem 1; Bai, 2013b, Corollary S.1). A similar argument can be

used to show that ||Γ̂(ρ̂)−1 − Γ−1|| = op(1). Therefore, ω̂2
2 is a consistent estimator of ω2

2.

Regardless of how ω̂2 is constructed the FA-based t-statistic for testing H0 : ρ0 = ρ0 is given

by

t(ρ0) = ω̂2
√

NT(ρ̂ − ρ0).

The asymptotic distribution (as N, T → ∞) of this t-statistic under the null hypothesis is an

immediate consequence of the above results and is given by

t(ρ0) →d N(0, 1),

which holds for all values of ρ0 ∈ (−1, 1].4 Note in particular how t(ρ0) can be used as a unit

root test.

3.3 F unknown

The above presumes that F is known. This is not necessary. If F is unknown we de-

fine θ = [(vech Sλ)
′, ρ, σ2, (vec F)′]′ = (θ′1, θ′2)

′, where θ1 = vech Sλ is as before and θ2 =

[ρ, σ2, (vec F)′]′. Let us denote the true value of F by F0 = (F0
1 , ..., F0

T)
′, and the correspond-

ing estimator by F̂. The estimation of θ0
2 can proceed exactly as before. The main difference

4Note that the asymptotic distribution of t(ρ0) holds even if ρ0 = 1 so that the rate of consistency is faster
than the

√
NT rate used in normalization of (ρ̂ − ρ0). This is due to the “self-normalizing” property of t(ρ0). For

example, if ρ0 = 1 under C2, then t(ρ0) = ω̂
√

NT(ρ̂ − ρ0) =
√

T−1ω̂2
√

NT(ρ̂ − ρ0) →d N(0, 1).
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is that since now both λi and F are unknown there is an identification issue, which can be

resolved by imposing m2 restrictions (see, for example, Bai and Li, 2012, Section 4, for a

detailed discussion). In the Monte Carlo study of Section 4 this is accomplished by setting

F = (Im, G′)′, where G is (T − m)× m.

Proposition 1. Under C1 or C2, ρ0 ∈ (−1, 1] and Assumptions EPS, F and LAM, uniformly in t,

||F̂t − F0
t || = op(1).

In most applications the coefficient of interest is ρ0, not F, and in such cases the main

concern is how to control for F. For this reason we only provide a consistency result here, al-

though the asymptotic distribution of
√

N(F̂t − F0
t ) can be obtained as in Bai (2013c, Proposi-

tion 2). The fact that F can be treated as unknown means that applied researchers are spared

from the problem of having to decide on which deterministic components to include. For

example, if structural shifts are present, then there is no need for any a priori knowledge

regarding their locations, which are obtained as part of the estimation process.

Remark 8. Proposition 1 supposes that the number of factors, m, is known. However, the

asymptotic results also hold when m is replaced by a consistent estimator, m̂ say. Write

ρ̂(m) for ρ̂. Consider for simplicity the case when |ρ0| < 1. To see that ρ̂(m̂) has the same

asymptotic distribution as ρ̂ = ρ̂(m), consider

P(
√

NT[ρ̂(m̂)− ρ0] ≤ δ) = P(
√

NT[ρ̂(m̂)− ρ0] ≤ δ|m̂ = m)P(m̂ = m)

+ P(
√

NT[ρ̂(m̂)− ρ0] ≤ δ|m̂ ̸= m)P(m̂ ̸= m),

where δ > 0 is a small number. Because P(m̂ = m) → 1 and P(m̂ ̸= m) → 0, the second

term on the right-hand side converges to zero, and P(
√

NT(ρ̂(m̂) − ρ0) ≤ δ) = 1 + o(1).

Moreover, conditional on m̂ = m, ρ̂(m̂) = ρ̂(m). Thus,

|P(
√

NT[ρ̂(m̂)− ρ0] ≤ δ)− P(
√

NT[ρ̂(m)− ρ0] ≤ δ)| → 0.

Bai and Ng (2002) consider the problem of consistent estimation of m in the context of a pure

common factor model, and make several suggestions toward this end. It is conjectured that

these estimators are consistent also in the present setup.
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4 Monte Carlo results

A small-scale Monte Carlo simulation exercise was carried out to evaluate the small-sample

performance of FA. The DGP is given by (1), where ε i,t ∼ N(0, 1), λi ∼ U(1, 2) and ρ0 ∈

{0, 0.5, 0.95, 1}. Three DGP’s for Ft were considered:

F1. Ft = 1;

F2. Ft = (1, 0)′ if t < ⌊T/2⌋ and Ft = (1, 1)′ otherwise;

F3. Ft ∼ N(0, 1).

While we assume that Ft is known in F1 and F2, we treat Ft as an unknown parameter to

be estimated along with the other parameters of the model in F3. The estimation in F3 is

carried out in two steps. According to (3), under C1, yi = ΓFλi + Γε i, which is merely

a static common factor model for yi. The first step of the estimation procedure therefore

involves the use of the method of principal components to estimate G = ΓF. Since yi need

not be stationary, we follow Bai and Ng (2004), and apply the principal components method

to ∆yi,t rather than to yi,t. This gives an estimator of (the space spanned by) G in first-

differenced form, which is then accumulated to levels. In the second step, θ0
2 is estimated

conditional on the first-step estimator Ĝ of G. Under C2 and ρ0 = 1, G = F.

In addition to FA, in F1 the fixed effects LS estimator, the bias-adjusted LS (BALS) es-

timator of Hahn and Kuersteiner (2002), and the Anderson and Hsiao (1981) instrumental

variables (IV) estimator using both lagged levels (AHL) and differences (AHD) as instru-

ments are simulated. A large number of results were produced, but in interest of space we

focus on the bias and root mean squared error (RMSE) of ρ̂, and the size of a nominal 5%

level t-test. Some of the unreported results are described in the end of this section. The

number of replications was set to 5,000. All computational work was done in GAUSS 11.5

Table 1 presents the results for F1 when |ρ0| < 1. We see that the bias and RMSE of FA

is very small and that this is true for all the sample sizes considered. In fact, performance is

very good even for N and T as small as 10. The values of T and N are not irrelevant, however.

In particular, we see how the bias and RMSE tend to zero when T and/or N increase, which

agrees with the
√

NT-consistency of FA. As expected, this improvement in performance

5In implementing FA we used the BFGS algorithm for constrained optimization with non-negativity con-
straints on σ2.
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holds irrespectively of the relative expansion rate of T and N, and therefore even when N is

held fixed and only T increases. In fact, FA is uniformly better than the competing estimators

in terms of bias and RMSE. The performance of BALS is very similar, though, especially for

the larger values of N and/or T, which is consistent with the fact that both estimators are

asymptotically efficient (see Bai, 2013a, Section 4). We can also see that the size of the FA-

based t-test is close to the nominal 5% level for all values of ρ0 and sample sizes considered.

The same cannot be said about the other estimators, however. Indeed, AHL is consistently

undersized, and LS is consistently oversized. The results for AHD and BALS are generally

better, although there is a tendency for the distortions to vary quite markedly with ρ0; when

ρ0 = 0 the tests are oversized, whereas when ρ0 = 0.95 they are undersized.

Since most of the estimators considered are designed specifically for the fixed effects

case, we only consider FA in experiments F2 and F3. The results are reported in Table 2. The

first thing to note is that the performance in F2 and F3 is almost as good as in F1. In fact,

the results for F1 and F2 are almost identical. The results for F3 are slightly worse, which

is as expected since in small samples the estimation of F will lead to increased variance.

Performance is still very good, however, and gets better as N and/or T increases, which is

presumably a reflection of the consistency of F̂t.

The results for the case when ρ0 = 1 are summarized in Table 3. As expected in view

of the relatively high rate of consistency in this case, the results are generally much better

than when |ρ0| < 1; the bias and RMSE values are very close to zero, and the size distortions

are minimal. Comparing across the two specifications of the common component, we see

that the results for C1 are generally much better than those for C2, which is again due to

the difference in the rate of consistency. The only exception is F3 in which the results for C2

look best. The reason for this is that Ft ∼ N(0, 1) here, which, as we explained in Section 3.2,

implies that the rate of consistency under C1 is reduced from
√

NT3/2 to
√

NT. Looking next

across the three DGP’s considered for Ft under C2 we see that the results are very similar,

which we take as support for the theoretical prediction that FA should be asymptotically

invariant with respect to F.

As mentioned in the beginning of this section, the complete set of Monte Carlo results is

huge (they are available upon request). However, since most of the results are very similar

to the ones reported in Tables 1–3, we do not include them here, but only briefly describe

them. First, FA performs well even when ε i,t is drawn from a fat-tailed distribution. For
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example, the results based on drawing ε i,t from a t-distribution with seven degrees of free-

dom are almost indistinguishable from those reported in Tables 1–3. Second, performance is

not affected by the presence of heteroscedasticity provided FA is modified as outlined in Bai

(2013a), and that T and N are sufficiently large, which is accordance with our expectations.

Third, performance is also unaffected by the presence of time-specific fixed effects when

appropriately accounted for as explained in Bai (2013a). Fourth, under C2 the presence of

a unit root causes serious problems for the competing estimators, especially for AHL and

AHD, where the bias and RMSE results are hundreds of times larger than those found under

stationarity. LS and BALS perform better in terms of bias and RMSE, but their size distor-

tions are still unacceptably large with sizes that are close to 100% in the majority of cases.

The fact that the asymptotic distribution of the FA-based t-statistic is the same regardless of

the value taken by ρ0 is therefore a great advantage.

5 Conclusion

The FA approach of Bai (2013a, b) was extended to the case with interactive effects and a

possible unit root. It was shown that the estimator is unbiased and asymptotically normal

for all values of ρ0 ∈ (−1, 1]. The unbiasedness property not only makes the estimator easy

to compute, but also enables estimation and inference in situations previously not possible.

In FA the deterministic terms are treated as additional common factors that may be estimated

from the data. It was argued that while this makes for very simple implementation (in the

sense that no modeling of the deterministic component is required), it is also a drawback in

the unit root case when compared to other approaches that enable a separate treatment of

deterministic and random factors.
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Appendix A: Preliminaries

We start with some notation. It is convenient to write L = L(ρ) as L = (l1, ..., lT), where lt =

lt(ρ) = (0′t×1, 1, ρ, ..., ρT−1−t)′ is T × 1 and 0n×k is a n × k matrix of zeroes. In this notation,

Γ = IT + ρL and Γ−1 = IT − ρJ. Let Γ0 = IT + ρ0L0, where L0 = L(ρ0) = (l1,0, ..., lT,0). It

follows that

Γ−1Γ0 = (IT − ρJ)(IT + ρ0L0) = IT − ρJ + ρ0L0 − ρρ0 JL0 = IT + (ρ0 − ρ)L0.

At times it will be useful to be able to rewrite L0 as L0 = (l−T,0, ..., l−1,0)
′, where l−t,0 =

(ρT−1−t, ..., ρ, 1, 0′t×1)
′ is the reverse version of lt,0. Let A∗

t = ∑t
s=1 ρt−s

0 As for any m × 1 vector

As. In this notation, letting A = (A1, ..., AT)
′,

L0A =

 l′−T,0 A
...

l′−1,0A

 =


0′m×1

A′
1

...
∑T−1

s=1 ρT−1−s
0 A′

s

 =


0′m×1
A∗′

1
...

A∗′
T−1

 .

This result will be used frequently in the sequel.

The matrix treatment builds heavily on Abadir and Magnus (2005), especially the matrix

calculus. It is convenient to define the matrix derivative operator D, which is such that

if the matrix function F(x) is m × p and x is n × q, then D F(x) = ∂vec F(x)/∂(vec x)′ is

mp × nq. Hence, denoting by d the matrix differential, then d vec F(x) = F(x)d vec x, or

D F(x) = d vec F(x)/d vec x.

Throughout, A, B and C will be used to denote generic matrices. a, b and c denote generic

scalars.

Proof of (4).

Consider log(|Σ|) in Q(θ). By using |AB| = |A||B| and |Γ| = 1, we obtain |Σ| = |σ2Λ| =

(σ2)T|Λ|, and therefore

log(|Σ|) = T log(σ2) + log(|Λ|).

Making use of this, the definition of Sy, and then tr (AB) = tr (BA), we obtain

Q(θ) = T log(σ2) + log(|Λ(Sλ, σ2)|) + σ−2tr [G(ρ)Λ(Sλ, σ2)−1]

where G(ρ) = Γ(ρ)−1SyΓ(ρ)−1′.
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We now consider the first order condition with respect to Sλ. Since vec(ABC) = (C′ ⊗

A)vec B, we have D (FSλF′) = F ⊗ F′. By using this and D log |A| = [vec (A′−1)]′D A, we

obtain

D log(|Λ|) = [vec (Λ′−1)]′(F ⊗ F′).

The derivative of tr [G(ρ)Λ(Sλ, σ2)−1] is given by

D tr (GΛ−1) = −[vec (Λ−1GΛ−1)′]′(F ⊗ F′),

as follows from noting that D tr |AB−1| = −[vec (B−1 AB−1)′]′D B. Solving for Sλ from the

resulting first order condition gives

D log(|(IT + σ−2FŜλF′)|) + σ−2D tr (G(IT + σ−2FŜλF′)−1)

= [vec ((IT + σ−2FŜλF′)′−1)]′(F ⊗ F′)

− σ−2[vec ((IT + σ−2FŜλF′)−1G(IT + σ−2FŜλF′)−1)′]′(F ⊗ F′) = 0,

or IT + σ−2FŜλF′ = σ−2G, giving Ŝλ(θ2) = σ2F−(σ−2G(ρ)− IT)F−′, where A− = (A′A)−1A′

for any matrix A. Let Λ̂(θ2) = IT + σ−2FŜλ(θ2)F′. The concentrated discrepancy function is

Qc(θ) = T log(σ2) + log(|Λ̂(θ2)|) + σ−2tr [G(ρ)Λ̂(θ2)
−1],

as required. �

Appendix B: Derivatives

Derivatives under C1

The concentrated objective function is

ℓc(θ2) = −NT
2

log(σ2)− N
2

log(|Λ̂(θ2)|)−
N

2σ2 tr [G(ρ)Λ̂(θ2)
−1].

We begin by taking partial derivative with respect to ρ;

∂ℓc(θ2)

∂ρ
= −N

2
D log(|Λ̂(θ2)|)−

N
2σ2 D tr [G(ρ)Λ̂(θ2)

−1]. (A1)

Consider D log(|Λ̂(θ2)|). From

d Ŝλ(θ2) = σ2d [F−(σ−2G(ρ)− IT)F−′] = F−d G(ρ)F−′,

we have

d Λ̂(θ2) = d [IT + σ−2FŜλ(θ2)F′] = σ−2F[d Ŝλ(θ2)]F′ = σ−2FF−d G(ρ)F−′F′.
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Moreover, from d AB = (d A)B + A(d B) and d (A′) = (d A)′,

d G(ρ) = d [Γ(ρ)−1SyΓ(ρ)−1′] = [d Γ(ρ)−1]SyΓ(ρ)−1′ + Γ(ρ)−1Sy[d Γ(ρ)−1]′,

and so, via vec(ABC) = (C′ ⊗ A)vec B,

vec d G(ρ) = [Γ(ρ)−1 ⊗ d Γ(ρ)−1 + d Γ(ρ)−1 ⊗ Γ(ρ)−1]vec Sy.

Here,

d Γ(ρ)−1

dρ
=

d
dρ


1 0 0 . . . 0
−ρ 1 0 . . . 0
0 −ρ 1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 −ρ 1

 =


0 0 0 . . . 0
−1 0 0 . . . 0
0 −1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 −1 0

 = −J,

from which it follows that

D G(ρ) = −[Γ(ρ)−1 ⊗ J + J ⊗ Γ(ρ)−1]vec Sy = −C(ρ). (A2)

with an obvious definition of C(ρ). Hence, since vec d Λ̂(θ2) = σ−2(FF− ⊗ FF−)vec d G(ρ),

we can show that

D Λ̂(θ2) = σ−2(FF− ⊗ FF−)D G(ρ) = −σ−2(FF− ⊗ FF−)C(ρ). (A3)

Application of D log |A| = [vec (A′−1)]′D A now yields

D log(|Λ̂(θ2)|) = [vec (Λ̂(θ2)
′−1)]′D Λ̂(θ2) = −σ−2[vec (Λ̂(θ2)

−1)]′(FF− ⊗ FF−)C(ρ)

= −σ−2[vec (F−′F′Λ̂(θ2)
−1FF−)]′C(ρ) (A4)

where the second equality holds because Λ̂(θ2) is symmetric, while the third is due to

vec(ABC) = (C′ ⊗ A)vec B, or (vec B)′(C ⊗ A′) = [vec(ABC)]′.

In order to obtain D tr [G(ρ)Λ̂(θ2)−1] we use the fact that tr (A′B) = (vec A)′vec B, from

which it follows that

D tr [G(ρ)Λ̂(θ2)
−1] = (vec IT)

′D [G(ρ)Λ̂(θ2)
−1].

By using this, d AB = (d A)B + A(d B), vec(ABC) = (C′ ⊗ A)vec B, and the symmetry of

Λ̂(θ2),

D [G(ρ)Λ̂(θ2)
−1] = (Λ̂(θ2)

−1 ⊗ IT)D G(ρ) + (IT ⊗ G(ρ))D [Λ̂(θ2)
−1],

25



and, by further use of d A−1 = −A−1(d A)A−1 and (A ⊗ B)(C ⊗ D) = AC ⊗ BD, we obtain

D [Λ̂(θ2)
−1] = −[Λ̂(θ2)

−1 ⊗ Λ̂(θ2)
−1]D Λ̂(θ2)

= σ−2[Λ̂(θ2)
−1 ⊗ Λ̂(θ2)

−1](FF− ⊗ FF−)C(ρ)

= σ−2[Λ̂(θ2)
−1FF− ⊗ Λ̂(θ2)

−1FF−]C(ρ). (A5)

This implies

D tr [G(ρ)Λ̂(θ2)
−1]

= (vec IT)
′D [G(ρ)Λ̂(θ2)

−1]

= (vec IT)
′[(Λ̂(θ2)

−1 ⊗ IT)D G(ρ) + (IT ⊗ G(ρ))D (Λ̂(θ2)
−1)]

= (vec IT)
′[σ−2(IT ⊗ G(ρ))[Λ̂(θ2)

−1FF− ⊗ Λ̂(θ2)
−1FF−]− (Λ̂(θ2)

−1 ⊗ IT)]C(ρ)

= (vec IT)
′[σ−2(Λ̂(θ2)

−1FF− ⊗ G(ρ)Λ̂(θ2)
−1FF−)− (Λ̂(θ2)

−1 ⊗ IT)]C(ρ)

= [vec (σ−2F−′F′Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1FF− − Λ̂(θ2)
−1)]′C(ρ), (A6)

where the last equality follows from (vec B)′(C ⊗ A′) = [vec(ABC)]′, and the symmetry of

G. Define B(θ2) = F−′F′(Λ̂(θ2)−1 − σ−2Λ̂(θ2)−1G(ρ)Λ̂(θ2)−1)FF− + Λ̂(θ2)−1. Insertion of

this and above expression for D log(|Λ̂(θ2)|) into (A1) now yields

∂ℓc(θ2)

∂ρ
= −N

2
D log(|Λ̂(θ2)|)−

N
2σ2 D tr [G(ρ)Λ̂(θ2)

−1]

=
N

2σ2 [vec (F−′F′Λ̂(θ2)
−1FF−)]′C(ρ)

− N
2σ2 vec [σ−2F−′F′Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1FF− − Λ̂(θ2)

−1]′C(ρ)

=
N

2σ2 [vec B(θ2)]
′C(ρ), (A7)

as required.

∂ℓc(θ2)/∂σ2 can be obtained using exactly the same arguments as for ∂ℓc(θ2)/∂ρ. From

Ŝλ(θ2) = σ2F−(σ−2G(ρ)− IT)F−′, we obtain

Λ̂(θ2) = IT + σ−2FŜλ(θ2)F′ = IT + σ−2FF−G(ρ)F−′F′ − FF−F−′F′, (A8)

and therefore,

d Λ̂(θ2) = −σ−4FF−G(ρ)F−′F′,

from which it follows that

D Λ̂(θ2) = −σ−4(FF− ⊗ FF−)vec G(ρ). (A9)
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Hence,

D log(|Λ̂(θ2)|) = −σ−4[vec (F−′F′Λ̂(θ2)
−1FF−)]′vec G(ρ), (A10)

D [Λ̂(θ2)
−1] = σ−4[Λ̂(θ2)

−1FF− ⊗ Λ̂(θ2)
−1FF−]vec G(ρ), (A11)

which in turn implies

D tr [G(ρ)Λ̂(θ2)
−1] = (vec IT)

′(IT ⊗ G(ρ))D (Λ̂(θ2)
−1)

= σ−4(vec IT)
′(IT ⊗ G(ρ))[Λ̂(θ2)

−1FF− ⊗ Λ̂(θ2)
−1FF−]vec G(ρ)

= σ−4(vec IT)
′[Λ̂(θ2)

−1FF− ⊗ G(ρ)Λ̂(θ2)
−1FF−]vec G(ρ)

= σ−4vec [F−′F′Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1FF−]′vec G(ρ), (A12)

Hence, since

D σ−2tr [G(ρ)Λ̂(θ2)
−1] = −σ−4tr [G(ρ)Λ̂(θ2)

−1] + σ−2D tr [G(ρ)Λ̂(θ2)
−1],

we can show that

∂ℓc(θ2)

∂σ2

= −NT
2σ2 − N

2
D log(|Λ̂(θ2)|) +

N
2σ4 tr [G(ρ)Λ̂(θ2)

−1]− N
2σ2 D tr [G(ρ)Λ̂(θ2)

−1]

= −NT
2σ2 +

N
2

σ−4[vec (F−′F′Λ̂(θ2)
−1FF−)]′vec G(ρ) +

N
2σ4 [vec (Λ̂(θ2)

−1)]′vec G(ρ)

− N
2σ2 σ−4vec [F−′F′Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1FF−]′vec G(ρ)

= −NT
2σ2 +

N
2σ4 [vec B(θ2)]

′vec G(ρ). (A13)

Consider ∂2ℓc(θ2)/(∂ρ)2. The starting point is

2σ2

N
∂ℓc(θ2)

∂ρ
= [vec B(θ2)]

′C(ρ). (A14)

Since vec B(θ2) and C(ρ) are vectors, we can apply D A′B = B′(D A) + A′(D B) to obtain

2σ2

N
∂2ℓc(θ2)

(∂ρ)2 = C(ρ)′D vec B(θ2) + [vec B(θ2)]
′D C(ρ). (A15)

We start with D C(ρ), which is simplest. Indeed, from d (A ⊗ B) = (d A)⊗ B + A ⊗ (d B)

and d Γ(ρ)−1/d ρ = −J,

D C(ρ) = D [Γ(ρ)−1 ⊗ J + J ⊗ Γ(ρ)−1]vec Sy = −2(J ⊗ J)vec Sy. (A16)
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Consider D vec B(θ2). We have

vec B(θ2)

= vec [F−′F′(Λ̂(θ2)
−1 − σ−2Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1)FF− + Λ̂(θ2)

−1]

= (F−′F′ ⊗ F−′F′)(vec [Λ̂(θ2)
−1]− σ−2vec [Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1]) + vec [Λ̂(θ2)

−1],

implying

D vec B(θ2) = (F−′F′ ⊗ F−′F′)(D [Λ̂(θ2)
−1]− σ−2D [Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1]) + D [Λ̂(θ2)

−1],

where, by repeated use of d AB = (d A)B + A(d B),

d [Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1]

= [d Λ̂(θ2)
−1]G(ρ)Λ̂(θ2)

−1 + Λ̂(θ2)
−1d [G(ρ)Λ̂(θ2)

−1]

= [d Λ̂(θ2)
−1]G(ρ)Λ̂(θ2)

−1 + Λ̂(θ2)
−1([d G(ρ)]Λ̂(θ2)

−1 + G(ρ)[d Λ̂(θ2)
−1]).

Hence,

D [Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1]

= [Λ̂(θ2)
−1G(ρ)⊗ IT + IT ⊗ Λ̂(θ2)

−1G(ρ)][D Λ̂(θ2)
−1] + [Λ̂(θ2)

−1 ⊗ Λ̂(θ2)
−1][D G(ρ)]

= σ−2[Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1FF− ⊗ Λ̂(θ2)
−1FF−]C(ρ)

+ σ−2[Λ̂(θ2)
−1FF− ⊗ Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1FF−]C(ρ)

− [Λ̂(θ2)
−1 ⊗ Λ̂(θ2)

−1]C(ρ), (A17)

where we have used D [Λ̂(θ2)−1] = σ−2[Λ̂(θ2)−1FF− ⊗ Λ̂(θ2)−1FF−]C(ρ) and D G(ρ) =

−C(ρ). It follows that

D vec B(θ2) = (F−′F′ ⊗ F−′F′)D [Λ̂(θ2)
−1]

− σ−2(F−′F′ ⊗ F−′F′)D [Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1] + D [Λ̂(θ2)
−1]

= σ−2[F−′F′Λ̂(θ2)
−1FF− ⊗ F−′F′Λ̂(θ2)

−1FF−]C(ρ)

− σ−4[F−′F′Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1FF− ⊗ F−′F′Λ̂(θ2)
−1FF−]C(ρ)

− σ−4[F−′F′Λ̂(θ2)
−1FF− ⊗ F−′F′Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1FF−]C(ρ)

+ σ−2[F−′F′Λ̂(θ2)
−1 ⊗ F−′F′Λ̂(θ2)

−1]C(ρ)

+ σ−2[Λ̂(θ2)
−1FF− ⊗ Λ̂(θ2)

−1FF−]C(ρ), (A18)
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which in turn implies

2σ2

N
∂2ℓc(θ2)

(∂ρ)2

= σ−2C(ρ)′[F−′F′Λ̂(θ2)
−1FF− ⊗ F−′F′Λ̂(θ2)

−1FF−]C(ρ)

− σ−4C(ρ)′[F−′F′Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1FF− ⊗ F−′F′Λ̂(θ2)
−1FF−]C(ρ)

− σ−4C(ρ)′[F−′F′Λ̂(θ2)
−1FF− ⊗ F−′F′Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1FF−]C(ρ)

+ σ−2C(ρ)′[F−′F′Λ̂(θ2)
−1 ⊗ F−′F′Λ̂(θ2)

−1]C(ρ)

+ σ−2C(ρ)′[Λ̂(θ2)
−1FF− ⊗ Λ̂(θ2)

−1FF−]C(ρ)

− 2[vec B(θ2)]
′(J ⊗ J)vec Sy. (A19)

For ∂2ℓc(θ2)/(∂σ2)2,

∂2ℓc(θ2)

(∂σ2)2 =
NT
2σ4 − N

σ6 [vec B(θ2)]
′vec G(ρ) +

N
2σ4 [vec G(ρ)]′D vec B(θ2), (A20)

where

D vec B(θ2)

= (F−′F′ ⊗ F−′F′)(D [Λ̂(θ2)
−1]− σ−2D [Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1]) + D [Λ̂(θ2)

−1]

= σ−4[F−′F′Λ̂(θ2)
−1FF− ⊗ F−′F′Λ̂(θ2)

−1FF−]vec G(ρ)

− σ−6[F−′F′Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1FF− ⊗ F−′F′Λ̂(θ2)
−1FF−]vec G(ρ)

− σ−6[F−′F′Λ̂(θ2)
−1FF− ⊗ F−′F′Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1FF−]vec G(ρ)

+ σ−4[Λ̂(θ2)
−1FF− ⊗ Λ̂(θ2)

−1FF−]vec G(ρ), (A21)

as follows from noting that

D [Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1]

= [Λ̂(θ2)
−1G(ρ)⊗ IT + IT ⊗ Λ̂(θ2)

−1G(ρ)]D Λ̂(θ2)
−1

= σ−4[Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1FF− ⊗ Λ̂(θ2)
−1FF−]vec G(ρ)

+ σ−4[Λ̂(θ2)
−1FF− ⊗ Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1FF−]vec G(ρ).
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Insertion into the expression for ∂2ℓc(θ2)/(∂σ2)2 yields

∂2ℓc(θ2)

(∂σ2)2

=
NT
2σ4 − N

σ6 [vec B(θ2)]
′vec G(ρ)

+
N

2σ8 [vec G(ρ)]′[F−′F′Λ̂(θ2)
−1FF− ⊗ F−′F′Λ̂(θ2)

−1FF−]vec G(ρ)

− N
2σ10 [vec G(ρ)]′[F−′F′Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1FF− ⊗ F−′F′Λ̂(θ2)

−1FF−]vec G(ρ)

− N
2σ10 [vec G(ρ)]′[F−′F′Λ̂(θ2)

−1FF− ⊗ F−′F′Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1FF−]vec G(ρ)

+
N

2σ8 [vec G(ρ)]′[Λ̂(θ2)
−1FF− ⊗ Λ̂(θ2)

−1FF−]vec G(ρ). (A22)

It remains to consider ∂2ℓc(θ2)/(∂ρ∂σ2). Taking partial derivative of ∂ℓc(θ2)/∂ρ with

respect to σ2,

∂2ℓc(θ2)

∂ρ∂σ2 = − N
2σ4 [vec B(θ2)]

′C(ρ) +
N

2σ2 C(ρ)′D vec B(θ2)

= − N
2σ4 [vec B(θ2)]

′C(ρ)

+
N

2σ6 C(ρ)′[F−′F′Λ̂(θ2)
−1FF− ⊗ F−′F′Λ̂(θ2)

−1FF−]vec G(ρ)

− N
2σ8 C(ρ)′[F−′F′Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1FF− ⊗ F−′F′Λ̂(θ2)

−1FF−]vec G(ρ)

− N
2σ8 C(ρ)′[F−′F′Λ̂(θ2)

−1FF− ⊗ F−′F′Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1FF−]vec G(ρ)

+
N

2σ6 C(ρ)′[Λ̂(θ2)
−1FF− ⊗ Λ̂(θ2)

−1FF−]vec G(ρ). (A23)

This establishes the last of the required derivatives under C1.

Derivatives under C2

The concentrated objective function has the same form as before, except that F should be

replaced by Γ−1F. Hence, if we let Λ̂(θ2) = IT + σ−2Γ(ρ)−1FŜλ(θ2)F′Γ(ρ)−1′ and Ŝλ(θ2) =

σ2(Γ(ρ)−1F)−(σ−2G(ρ)− IT)(Γ(ρ)−1F)−′, then

ℓc(θ2) = −NT
2

log(σ2)− N
2

log(|Λ̂(θ2)|)−
N

2σ2 tr [G(ρ)Λ̂(θ2)
−1],

and therefore

∂ℓc(θ2)

∂ρ
= −N

2
D log(|Λ̂(θ2)|)−

N
2σ2 D tr [G(ρ)Λ̂(θ2)

−1].
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Consider D log(|Λ̂(θ2)|). Repeated use of d AB = (d A)B + A(d B) yields

d Ŝλ(θ2) = σ2d [(Γ(ρ)−1F)−(σ−2G(ρ)− IT)(Γ(ρ)−1F)−′]

= σ2[d (Γ(ρ)−1F)−](σ−2G(ρ)− IT)(Γ(ρ)−1F)−′

+ σ2(Γ(ρ)−1F)−[d (σ−2G(ρ)− IT)](Γ(ρ)−1F)−′

+ σ2(Γ(ρ)−1F)−(σ−2G(ρ)− IT)[d (Γ(ρ)−1F)−′]. (A24)

Letting H(ρ) = F′Γ(ρ)−1′Γ(ρ)−1F, we have

d (Γ(ρ)−1F)− = d H(ρ)−1F′Γ(ρ)−1′ = [d H(ρ)−1]F′Γ(ρ)−1′ + H(ρ)−1F′d Γ(ρ)−1′.

From d A−1 = −A−1(d A)A−1, vec(ABC) = (C′ ⊗ A)vec B and the symmetry of H(ρ),

D H(ρ)−1 = −[H(ρ)−1 ⊗ H(ρ)−1]D H(ρ),

where

d H(ρ) = F′[(d Γ(ρ)−1′)Γ(ρ)−1 + Γ(ρ)−1′(d Γ(ρ)−1)]F,

and therefore, by further use of vec(ABC) = (C′ ⊗ A)vec B, d (A′) = (d A)′ and A′ ⊗ B′ =

(A ⊗ B)′,

D H(ρ) = (F′Γ(ρ)−1′ ⊗ F′)D Γ(ρ)−1′ + (F′ ⊗ F′Γ(ρ)−1′)D Γ(ρ)−1

= −(Γ(ρ)−1F ⊗ F)′vec J′ − (F ⊗ Γ(ρ)−1F)′vec J. (A25)

Hence, since (A ⊗ B)(C ⊗ D) = AC ⊗ BD and d Γ(ρ)−1/d ρ = −J,

D H(ρ)−1

= [H(ρ)−1 ⊗ H(ρ)−1][(F′Γ(ρ)−1′ ⊗ F′)vec J′ + (F′ ⊗ F′Γ(ρ)−1′)vec J]

= (H(ρ)−1F′Γ(ρ)−1′ ⊗ H(ρ)−1F′)vec J′ + (H(ρ)−1F′ ⊗ H(ρ)−1F′Γ(ρ)−1′)vec J,

which in turn implies, via A ⊗ B + A ⊗ C = A ⊗ (B + C),

D (Γ(ρ)−1F)− = (Γ(ρ)−1F ⊗ Im)D H(ρ)−1 − (IT ⊗ H(ρ)−1F′)vec J′

= (Γ(ρ)−1FH(ρ)−1F′Γ(ρ)−1′ ⊗ H(ρ)−1F′)vec J′

+ (Γ(ρ)−1FH(ρ)−1F′ ⊗ H(ρ)−1F′Γ(ρ)−1′)vec J − (IT ⊗ H(ρ)−1F′)vec J′

= [(Γ(ρ)−1FH(ρ)−1F′Γ(ρ)−1′ − IT)⊗ H(ρ)−1F′]vec J′

+ (Γ(ρ)−1FH(ρ)−1F′ ⊗ H(ρ)−1F′Γ(ρ)−1′)vec J. (A26)
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From this we can further deduce that

D (Γ(ρ)−1F)−′ = (H(ρ)−1F′Γ(ρ)−1′ ⊗ Γ(ρ)−1FH(ρ)−1F′)vec J′

+ [H(ρ)−1F′ ⊗ (Γ(ρ)−1FH(ρ)−1F′Γ(ρ)−1′ − IT)]vec J. (A27)

Also, from the results for C1, D G(ρ) = −C(ρ) = C0(ρ) = −[Γ(ρ)−1 ⊗ J + J ⊗ Γ(ρ)−1]vec Sy.

Insertion of this, D (Γ(ρ)−1F)− and D (Γ(ρ)−1F)−′ into D Ŝλ(θ2) now yields

D Ŝλ(θ2)

= σ2[(Γ(ρ)−1F)−(σ−2G(ρ)− IT)⊗ Im]D (Γ(ρ)−1F)−

+ [(Γ(ρ)−1F)− ⊗ (Γ(ρ)−1F)−]D G(ρ)

+ σ2[Im ⊗ (Γ(ρ)−1F)−(σ−2G(ρ)− IT)]D (Γ(ρ)−1F)−′

= σ2[(Γ(ρ)−1F)−(σ−2G(ρ)− IT)(Γ(ρ)−1FH(ρ)−1F′Γ(ρ)−1′ − IT)⊗ H(ρ)−1F′]vec J′

+ σ2[(Γ(ρ)−1F)−(σ−2G(ρ)− IT)Γ(ρ)−1FH(ρ)−1F′ ⊗ H(ρ)−1F′Γ(ρ)−1′]vec J

+ [(Γ(ρ)−1F)− ⊗ (Γ(ρ)−1F)−]C0(ρ)

+ σ2[H(ρ)−1F′Γ(ρ)−1′ ⊗ (Γ(ρ)−1F)−(σ−2G(ρ)− IT)Γ(ρ)−1FH(ρ)−1F′]vec J′

+ σ2[H(ρ)−1F′ ⊗ (Γ(ρ)−1F)−(σ−2G(ρ)− IT)(Γ(ρ)−1FH(ρ)−1F′Γ(ρ)−1′ − IT)]vec J.

Suppressing for simplicity any dependence on θ2, defining V = V(ρ) = Γ−1FH−1, and

using A ⊗ B + A ⊗ C = A ⊗ (B + C), a(A ⊗ B) = aA ⊗ B = A ⊗ aB, A′ ⊗ B′ = (A ⊗ B)′,

V ′Γ−1Sy = V ′GΓ′ and H−1F′ = V ′Γ′,

D Ŝλ

= σ2[V ′(σ−2G − IT)(VF′Γ−1′ − IT)⊗ H−1F′]vec J′

+ σ2[H−1F′ ⊗ V ′(σ−2G − IT)(VF′Γ−1′ − IT)]vec J

+ σ2[V ′(σ−2G − IT)VF′ ⊗ V ′]vec J + σ2[V ′ ⊗ V ′(σ−2G − IT)VF′]vec J′ + (V ′ ⊗ V ′)C0

= (V ⊗ V)′[Γ′ ⊗ (G − σ2 IT)(VF′Γ−1′ − IT)]vec J

+ (V ⊗ V)′[(G − σ2 IT)(VF′Γ−1′ − IT)⊗ Γ′]vec J′

+ (V ⊗ V)′[(G − σ2 IT)VF′ ⊗ IT]vec J + (V ⊗ V)′[IT ⊗ (G − σ2 IT)VF′]vec J′

+ (V ⊗ V)′C0,
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where

[Γ′ ⊗ (G − σ2 IT)(VF′Γ−1′ − IT)]vec J

= vec [(G − σ2 IT)(VF′Γ−1′ − IT)JΓ]

= vec [Γ−1SyΓ−1′(VF′Γ−1′ − IT)JΓ]− σ2vec [(VF′Γ−1′ − IT)JΓ]

= [Γ′ J′(VF′Γ−1′ − IT)Γ−1 ⊗ Γ−1]vec Sy − σ2vec [(VF′Γ−1′ − IT)JΓ].

and

[(G − σ2 IT)VF′ ⊗ IT]vec J

= vec [JFV ′(G − σ2 IT)] = vec (JFV ′G)− σ2vec (JFV ′)

= vec (JFV ′Γ−1SyΓ−1′)− σ2vec (JFV ′) = (Γ−1 ⊗ JFV ′Γ−1)vec Sy − σ2vec (JFV ′).

Similar calculations reveal that,

[(G − σ2 IT)(VF′Γ−1′ − IT)⊗ Γ′]vec J′

= [Γ−1 ⊗ Γ′ J′(VF′Γ−1′ − IT)Γ−1]vec Sy − σ2vec [Γ′ J′(Γ−1FV ′ − IT)],

and

[IT ⊗ (G − σ2 IT)VF′]vec J′ = (JFV ′Γ−1 ⊗ Γ−1)vec Sy − σ2vec (VF′ J′).

Hence, letting

C1 = [(Γ′ J′(VF′Γ−1′ − IT) + JFV ′)Γ−1 ⊗ Γ−1]vec Sy − σ2vec [(VF′Γ−1′ − IT)JΓ + VF′ J′],

C2 = [Γ−1 ⊗ (Γ′ J′(VF′Γ−1′ − IT) + JFV ′)Γ−1]vec Sy − σ2vec [Γ′ J′(Γ−1FV ′ − IT) + JFV ′],

which are both functions of θ2, we obtain

D Ŝλ = (V ⊗ V)′(C0 + C1 + C2). (A28)

Let us now consider Λ̂(θ2) = IT + σ−2Γ(ρ)−1FŜλ(θ2)F′Γ(ρ)−1′;

d Λ̂(θ2) = σ−2d [Γ(ρ)−1FŜλ(θ2)F′Γ(ρ)−1′]

= σ−2[d Γ(ρ)−1]FŜλ(θ2)F′Γ(ρ)−1′ + σ−2Γ(ρ)−1F[d Ŝλ(θ2)]F′Γ(ρ)−1′

+ σ−2Γ(ρ)−1FŜλ(θ2)F′[d Γ(ρ)−1′],
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from which it follows that

D Λ̂(θ2) = σ−2[Γ(ρ)−1FŜλ(θ2)F′ ⊗ IT]D Γ(ρ)−1 + σ−2[Γ(ρ)−1F ⊗ Γ(ρ)−1F]D Ŝλ(θ2)

+ σ−2[IT ⊗ Γ(ρ)−1FŜλ(θ2)F′]D Γ(ρ)−1′

= −σ−2[Γ(ρ)−1FŜλ(θ2)F′ ⊗ IT]vec J + σ−2[Γ(ρ)−1F ⊗ Γ(ρ)−1F]D Ŝλ(θ2)

− σ−2[IT ⊗ Γ(ρ)−1FŜλ(θ2)F′]vec J′. (A29)

Use of Ŝλ = (Γ−1F)−(G − σ2 IT)(Γ−1F)−′ = V ′(G − σ2 IT)V and noting that Γ−1FV ′ is sym-

metric,

D Λ̂ = −σ−2[Γ−1FV ′(G − σ2 IT)VF′ ⊗ IT]vec J − σ−2[IT ⊗ Γ−1FV ′(G − σ2 IT)VF′]vec J′

+ σ−2(Γ−1F ⊗ Γ−1F)(V ⊗ V)′(C0 + C1 + C2).

From V ′V = H−1,

[Γ−1FV ′(G − σ2 IT)VF′ ⊗ IT]vec J

= vec [JFV ′(G − σ2 IT)VF′Γ−1′] = vec (JFV ′GVF′Γ−1′)− σ2vec (JFV ′VF′Γ−1′)

= vec (JFV ′Γ−1SyΓ−1′VF′Γ−1′)− σ2vec (JFV ′)

= (Γ−1 ⊗ J)(FV ′Γ−1 ⊗ FV ′Γ−1)vec Sy − σ2vec (JFV ′),

and, by following the same steps,

[IT ⊗ Γ−1FV ′(G − σ2 IT)VF′]vec J′

= (J ⊗ Γ−1)(FV ′Γ−1 ⊗ FV ′Γ−1)vec Sy − σ2vec (VF′ J′).

Hence, defining

C3(θ2) = C3 = (Γ−1 ⊗ J + J ⊗ Γ−1)(FV ′Γ−1 ⊗ FV ′Γ−1)vec Sy − σ2vec (JFV ′ + VF′ J′),

we have

D Λ̂ = −σ−2[−(Γ−1FV ′ ⊗ Γ−1FV ′)(C0 + C1 + C2) + C3] = −σ−2C, (A30)

with an implicit definition of C = C(θ2). Application of D log |A| = [vec (A′−1)]′D A now

yields

D log(|Λ̂(θ2)|) = [vec (Λ̂(θ2)
′−1)]′D Λ̂(θ2) = −σ−2[vec (Λ̂(θ2)

−1)]′C(θ2). (A31)
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The tr [G(ρ)Λ̂(θ2)−1] term has the same form as before. We can therefore make use of the

results reported in Proof of Lemma A.1 to arrive at

D tr [G(ρ)Λ̂(θ2)
−1] = (vec IT)

′D [G(ρ)Λ̂(θ2)
−1]

= (vec IT)
′[(Λ̂(θ2)

−1 ⊗ IT)D G(ρ) + (IT ⊗ G(ρ))D (Λ̂(θ2)
−1)],

where, via d A−1 = −A−1(d A)A−1,

D [Λ̂(θ2)
−1] = −[Λ̂(θ2)

−1 ⊗ Λ̂(θ2)
−1]D Λ̂(θ2) = σ−2[Λ̂(θ2)

−1 ⊗ Λ̂(θ2)
−1]C(θ2). (A32)

Hence, since (vec B)′(C ⊗ A′) = [vec(ABC)]′,

D tr [G(ρ)Λ̂(θ2)
−1]

= (vec IT)
′[(Λ̂(θ2)

−1 ⊗ IT)D G(ρ) + (IT ⊗ G(ρ))D (Λ̂(θ2)
−1)]

= (vec IT)
′(Λ̂(θ2)

−1 ⊗ IT)C0(ρ) + σ−2(vec IT)
′(IT ⊗ G(ρ))[Λ̂(θ2)

−1 ⊗ Λ̂(θ2)
−1]C(θ2)

= [vec (Λ̂(θ2)
−1)]′C0(ρ) + σ−2[vec (Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1)]′C(θ2) (A33)

The above results lead to the following expression for ∂ℓc(θ2)/∂ρ:

∂ℓc(θ2)

∂ρ
= −N

2
D log(|Λ̂(θ2)|)−

N
2σ2 D tr [G(ρ)Λ̂(θ2)

−1]

=
N

2σ2 [vec (Λ̂(θ2)
−1)]′C(θ2)−

N
2σ2 [vec (Λ̂(θ2)

−1)]′C0(ρ)

− N
2σ2 σ−2[vec (Λ̂(θ2)

−1G(ρ)Λ̂(θ2)
−1)]′C(θ2)

= − N
2σ2 [(vec B1(θ2))

′C0(ρ)− (vec B2(θ2))
′C(θ2)], (A34)

where

B1(θ2) = Λ̂(θ2)
−1,

B2(θ2) = σ−2Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1 − Λ̂(θ2)
−1.

Consider ∂2ℓc(θ2)/(∂ρ)2. As before, the starting point is

2σ2

N
∂ℓc(θ2)

∂ρ
= −[(vec B1(θ2))

′C0(ρ)− (vec B2(θ2))
′C(θ2)].

From D A′B = B′(D A) + A′(D B),

2σ2

N
∂2ℓc(θ2)

(∂ρ)2 = −C0(ρ)
′D B1(θ2)− [vec B1(θ2)]

′D C0(ρ)− C(θ2)
′D B2(θ2)

− [vec B2(θ2)]
′D C(θ2). (A35)
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We have already shown that D B1(θ2) = D [Λ̂(θ2)−1] = σ−2[Λ̂(θ2)−1 ⊗ Λ̂(θ2)−1]C(θ2) and

D C0(ρ) = −D C(ρ) = 2(J ⊗ J)vec Sy. Let us consider D B2(θ2);

D B2(θ2) = σ−2D [Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1]− D [Λ̂(θ2)
−1].

Since the second term on the right is already known, we only need to consider the first term,

which has the same form as under C1. As in that case,

D [Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1]

= [Λ̂(θ2)
−1G(ρ)⊗ IT + IT ⊗ Λ̂(θ2)

−1G(ρ)][D Λ̂(θ2)
−1] + [Λ̂(θ2)

−1 ⊗ Λ̂(θ2)
−1][D G(ρ)]

= σ−2[Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1 ⊗ Λ̂(θ2)
−1 + Λ̂(θ2)

−1 ⊗ Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1]C(θ2)

+ [Λ̂(θ2)
−1 ⊗ Λ̂(θ2)

−1]C0(ρ), (A36)

showing that, suppressing again the dependence on θ2,

D B2

= σ−2D [Λ̂−1GΛ̂−1]− D (Λ̂−1)

= σ−4(Λ̂−1GΛ̂−1 ⊗ Λ̂−1 + Λ̂−1 ⊗ Λ̂−1GΛ̂−1)C + σ−2(Λ̂−1 ⊗ Λ̂−1)C0

− σ−2(Λ̂−1 ⊗ Λ̂−1)C

= σ−4(Λ̂−1 ⊗ Λ̂−1)(GΛ̂−1 ⊗ IT + IT ⊗ GΛ̂−1 − σ2 IT2)C + σ−2(Λ̂−1 ⊗ Λ̂−1)C0. (A37)

The only term missing now in ∂2ℓc(θ2)/(∂ρ)2 is D C(θ2). When evaluating this term it is

convenient to write C0, C1, C2 and C3 in vectorized matrix format;

Ck = vec (ck),

where

c0 = −(JΓG + GΓ′ J′),

c1 = G((Γ−1FV ′ − IT)JΓ + VF′ J′)− σ2(VF′Γ−1′ − IT)JΓ − σ2VF′ J′,

c2 = (Γ′ J′(VF′Γ−1′ − IT) + JFV ′)G − σ2Γ′ J′(Γ−1FV ′ − IT)− σ2 JFV ′,

c3 = JFV ′GVF′Γ−1′ + Γ−1FV ′GVF′ J′ − σ2 JFV ′ − σ2VF′ J′.

In this notation

C = −(Γ−1FV ′ ⊗ Γ−1FV ′)(C0 + C1 + C2) + C3

= −vec [Γ−1FV ′(c0 + c1 + c2)VF′Γ−1′] + C3, (A38)
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leading to the following expression for D C(θ2):

D C = −D [Γ−1FV ′(c0 + c1 + c2)VF′Γ−1′] + D C3. (A39)

Here

d [Γ−1FV ′(c0 + c1 + c2)VF′Γ−1′]

= (d Γ−1)FV ′(c0 + c1 + c2)VF′Γ−1′ + Γ−1F(d V ′)(c0 + c1 + c2)VF′Γ−1′

+ Γ−1FV ′[d (c0 + c1 + c2)]VF′Γ−1′ + Γ−1FV ′(c0 + c1 + c2)(d V)F′Γ−1′

+ Γ−1FV ′(c0 + c1 + c2)VF′(d Γ−1′),

and therefore

D [Γ−1FV ′(c0 + c1 + c2)VF′Γ−1′]

= [Γ−1FV ′(c0 + c1 + c2)
′VF′ ⊗ IT]D Γ−1 + [Γ−1FV ′(c0 + c1 + c2)

′ ⊗ Γ−1F]D V ′

+ [Γ−1FV ′ ⊗ Γ−1FV ′]D (c0 + c1 + c2) + [Γ−1F ⊗ Γ−1FV ′(c0 + c1 + c2)]D V

+ [IT ⊗ Γ−1FV ′(c0 + c1 + c2)VF′]D Γ−1′, (A40)

where all the required derivatives are known, except for D (c0 + c1 + c2). Let us there-

fore consider D c0. Since d vec c0 = d C0, we have that D c0 = D C0 = 2(J ⊗ J)vec Sy =

2vec (JSy J′) = 2vec (JΓGΓ′ J′). For D c1 = D C1, we use

d c1 = (d G)((Γ−1FV ′ − IT)JΓ + VF′ J′) + G[d ((Γ−1FV ′ − IT)JΓ + VF′ J′)]

− σ2[d (VF′Γ−1′ − IT)]JΓ − σ2(VF′Γ−1′ − IT)J(d Γ)− σ2(d V)F′ J′,

from which it follows that

D c1 = [(Γ′ J′(VF′Γ−1′ − IT) + JFV ′)⊗ IT]D G + (IT ⊗ G)D ((Γ−1FV ′ − IT)JΓ + VF′ J′)

− σ2(Γ′ J′ ⊗ IT)D (VF′Γ−1′ − IT)− σ2[IT ⊗ (VF′Γ−1′ − IT)J]D Γ

− σ2(JF ⊗ IT)D V. (A41)

Here

d ((Γ−1FV ′ − IT)JΓ + VF′ J′) = [d (Γ−1FV ′ − IT)]JΓ + (Γ−1FV ′ − IT)J(d Γ) + (d V)F′ J′.

giving

D ((Γ−1FV ′ − IT)JΓ + VF′ J′) = (Γ′ J′ ⊗ IT)D (Γ−1FV ′ − IT)

+ [IT ⊗ (Γ−1FV ′ − IT)J]D Γ + (JF ⊗ IT)D V.
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Let PΓ−1F = Γ−1FH−1F′Γ−1′ and MΓ−1F = IT − PΓ−1F. In this notation,

D V = D (Γ−1F′H−1) = (H−1F ⊗ IT)D Γ−1 + (IT ⊗ Γ−1F)D H−1

= −(H−1F′ ⊗ IT)vec J

+ (IT ⊗ Γ−1F)[(H−1F′Γ−1′ ⊗ H−1F′)vec J′ + (H−1F′ ⊗ H−1F′Γ−1′)vec J]

= (H−1F′Γ−1′ ⊗ Γ−1FH−1F′)vec J′ + [H−1F′ ⊗ (Γ−1FH−1F′Γ−1′ − IT)]vec J

= (H−1F′Γ−1′ ⊗ Γ−1FH−1F′)vec J′ − (H−1F′ ⊗ MΓ−1F)vec J. (A42)

and therefore

D V ′ = (Γ−1FH−1F′ ⊗ H−1F′Γ−1′)vec J − (MΓ−1F ⊗ H−1F′)vec J′, (A43)

from which we obtain

D (Γ−1FV ′ − IT)

= (VF′ ⊗ IT)D Γ−1 + (IT ⊗ Γ−1F)D V ′

= (Γ−1FH−1F′ ⊗ PΓ−1F − VF′ ⊗ IT)vec J − (MΓ−1F ⊗ Γ−1FH−1F′)vec J′

= −(VF′ ⊗ MΓ−1F)vec J − (MΓ−1F ⊗ PΓ−1FΓ′)vec J′,

and

D (VF′Γ−1′ − IT) = −(MΓ−1F ⊗ VF′)vec J′ − (PΓ−1FΓ′ ⊗ MΓ−1F)vec J.

But we also have

d Γ(ρ)
dρ

=
d

dρ


1 0 . . . 0

ρ 1
. . .

...
...

. . . . . . 0
ρT−1 . . . ρ 1

 =


0 0 0 . . . 0
1 0 0 . . . 0

2ρ 1 0 . . . 0
...

. . . . . . . . .
...

(T − 1)ρT−2 . . . 2ρ 1 0

 = Γ(ρ)JΓ(ρ),

such that

D Γ(ρ) = vec [Γ(ρ)JΓ(ρ)] = [Γ(ρ)′ ⊗ Γ(ρ)]vec J. (A44)
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By adding these results,

D ((Γ−1FV ′ − IT)JΓ + VF′ J′)

= −(Γ′ J′VF′ ⊗ MΓ−1F)vec J − (Γ′ J′MΓ−1F ⊗ PΓ−1FΓ′)vec J′

+ [IT ⊗ (Γ−1FV ′ − IT)J](Γ′ ⊗ Γ)vec J + (JFH−1F′Γ−1′ ⊗ PΓ−1FΓ′)vec J′

− (JFH−1F′ ⊗ MΓ−1F)vec J

= −[(Γ′ J′ + JΓ)PΓ−1FΓ′ ⊗ MΓ−1F]vec J + [(JΓPΓ−1F − Γ′ J′MΓ−1F)⊗ PΓ−1FΓ′]vec J′

− (IT ⊗ MΓ−1F J)(Γ′ ⊗ Γ)vec J,

which can in turn be inserted into the expression for D c1 giving

D c1

= −[(Γ′ J′MΓ−1F − JFV ′)⊗ IT]C0

− [(Γ′ J′ + JΓ)PΓ−1FΓ′ ⊗ GMΓ−1F]vec J + σ2[(Γ′ J′ + JΓ)PΓ−1FΓ′ ⊗ MΓ−1F]vec J

+ [(JΓPΓ−1F − Γ′ J′MΓ−1F)⊗ GPΓ−1FΓ′]vec J′ − σ2[(JΓPΓ−1F − Γ′ J′MΓ−1F)⊗ PΓ−1FΓ′]vec J′

− [IT ⊗ GMΓ−1F J](Γ′ ⊗ Γ)vec J + σ2[IT ⊗ MΓ−1F J](Γ′ ⊗ Γ)vec J

= [(JΓPΓ−1F − Γ′ J′MΓ−1F)⊗ IT]C0 − [(Γ′ J′ + JΓ)PΓ−1FΓ′ ⊗ (G − σ2 IT)MΓ−1F]vec J

+ [(JΓPΓ−1F − Γ′ J′MΓ−1F)⊗ (G − σ2 IT)PΓ−1FΓ′]vec J′

− [Γ′ ⊗ (G − σ2 IT)MΓ−1F JΓ]vec J, (A45)

and because of symmetry we also have

D c2 = [IT ⊗ (JΓPΓ−1F − Γ′ J′MΓ−1F)]C0 − [(G − σ2 IT)MΓ−1F ⊗ (Γ′ J′ + JΓ)PΓ−1FΓ′]vec J′

+ [(G − σ2 IT)PΓ−1FΓ′ ⊗ (JΓPΓ−1F − Γ′ J′MΓ−1F)]vec J

− [(G − σ2 IT)MΓ−1F JΓ ⊗ Γ′]vec J′. (A46)
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It follows that

D (c0 + c1 + c2)

= D C0 + [(JΓPΓ−1F − Γ′ J′MΓ−1F)⊗ IT + IT ⊗ (JΓPΓ−1F − Γ′ J′MΓ−1F)]C0

− [Γ′ ⊗ (G − σ2 IT)MΓ−1F JΓ]vec J − [(G − σ2 IT)MΓ−1F JΓ ⊗ Γ′]vec J′

− [(Γ′ J′ + JΓ)PΓ−1FΓ′ ⊗ (G − σ2 IT)MΓ−1F]vec J

− [(G − σ2 IT)MΓ−1F ⊗ (Γ′ J′ + JΓ)PΓ−1FΓ′]vec J′

+ [(G − σ2 IT)PΓ−1FΓ′ ⊗ (JΓPΓ−1F − Γ′ J′MΓ−1F)]vec J

+ [(JΓPΓ−1F − Γ′ J′MΓ−1F)⊗ (G − σ2 IT)PΓ−1FΓ′]vec J′.

Insertion into (A40) now gives

D [Γ−1FV ′(c0 + c1 + c2)VF′Γ−1′]

= [Γ−1FV ′(c0 + c1 + c2)
′VF′ ⊗ IT]D Γ−1 + [Γ−1FV ′(c0 + c1 + c2)

′ ⊗ Γ−1F]D V ′

+ [Γ−1FV ′ ⊗ Γ−1FV ′]D (c0 + c1 + c2) + [Γ−1F ⊗ Γ−1FV ′(c0 + c1 + c2)]D V

+ [IT ⊗ Γ−1FV ′(c0 + c1 + c2)VF′]D Γ−1′

= −[PΓ−1F(c0 + c1 + c2)
′PΓ−1FΓ′ ⊗ MΓ−1F]vec J

− [PΓ−1F(c0 + c1 + c2)
′MΓ−1F ⊗ PΓ−1FΓ′]vec J′

+ [PΓ−1F ⊗ PΓ−1F]D C0

+ [PΓ−1F(JΓPΓ−1F − Γ′ J′MΓ−1F)⊗ PΓ−1F + PΓ−1F ⊗ PΓ−1F(JΓPΓ−1F − Γ′ J′MΓ−1F)]C0

− [PΓ−1FΓ′ ⊗ PΓ−1FGMΓ−1F JΓ]vec J

− [PΓ−1FGMΓ−1F JΓ ⊗ PΓ−1FΓ′]vec J′

− [PΓ−1F(Γ
′ J′ + JΓ)PΓ−1FΓ′ ⊗ PΓ−1FGMΓ−1F]vec J

− [PΓ−1FGMΓ−1F ⊗ PΓ−1F(Γ
′ J′ + JΓ)PΓ−1FΓ′]vec J′

+ [PΓ−1F(G − σ2 IT)PΓ−1FΓ′ ⊗ PΓ−1F(JΓPΓ−1F − Γ′ J′MΓ−1F)]vec J

+ [PΓ−1F(JΓPΓ−1F − Γ′ J′MΓ−1F)⊗ PΓ−1F(G − σ2 IT)PΓ−1FΓ′]vec J′

− [MΓ−1F ⊗ PΓ−1F(c0 + c1 + c2)PΓ−1FΓ′]vec J′

− [PΓ−1FΓ′ ⊗ PΓ−1F(c0 + c1 + c2)MΓ−1F]vec J. (A47)

It remains to consider D C3, which we expand as follows:

D C3 = D (JFV ′GVF′Γ−1′) + D (Γ−1FV ′GVF′ J′)− σ2D (JFV ′)− σ2D (VF′ J′), (A48)
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where

d (JFV ′GVF′Γ−1′) = JF(d V ′)GVF′Γ−1′ + JFV ′(d G)VF′Γ−1′ + JFV ′G(d V)F′Γ−1′

+ JFV ′GVF′(d Γ−1′)

giving

D (JFV ′GVF′Γ−1′)

= (Γ−1FV ′G ⊗ JF)D V ′ + (Γ−1FV ′ ⊗ JFV ′)D G + (Γ−1F ⊗ JFV ′G)D V

+ (IT ⊗ JFV ′GVF′)D Γ−1′

= (PΓ−1FGPΓ−1FΓ′ ⊗ JΓPΓ−1F)vec J − (PΓ−1FGMΓ−1F ⊗ JΓPΓ−1FΓ′)vec J′

+ (PΓ−1F ⊗ JΓPΓ−1FGPΓ−1FΓ′)vec J′ − (PΓ−1FΓ′ ⊗ JΓPΓ−1FGMΓ−1F)vec J

− (IT ⊗ JΓPΓ−1FGPΓ−1FΓ′)vec J′ + (PΓ−1F ⊗ JΓPΓ−1F)C0

= (PΓ−1FGPΓ−1FΓ′ ⊗ JΓPΓ−1F)vec J − (PΓ−1FGMΓ−1F ⊗ JΓPΓ−1FΓ′)vec J′

− (MΓ−1F ⊗ JΓPΓ−1FGPΓ−1FΓ′)vec J′ − (PΓ−1FΓ′ ⊗ JΓPΓ−1FGMΓ−1F)vec J

+ (PΓ−1F ⊗ JΓPΓ−1F)C0.

The matrix product in second term of D C3 is just the transpose of the product in the first

term. Hence,

D (Γ−1FV ′GVF′ J′)

= (JΓPΓ−1F ⊗ PΓ−1FGPΓ−1FΓ′)vec J′ − (JΓPΓ−1FΓ′ ⊗ PΓ−1FGMΓ−1F)vec J

− (JΓPΓ−1FGPΓ−1FΓ′ ⊗ MΓ−1F)vec J − (JΓPΓ−1FGMΓ−1F ⊗ PΓ−1FΓ′)vec J′

+ (JΓPΓ−1F ⊗ PΓ−1F)C0.

The third and fourth terms are given by

D (JFV ′) = (IT ⊗ JF)D V ′

= (Γ−1FH−1F′ ⊗ JFH−1F′Γ−1′)vec J − (MΓ−1F ⊗ JFH−1F′)vec J′

= (PΓ−1FΓ′ ⊗ JΓPΓ−1F)vec J − (MΓ−1F ⊗ JΓPΓ−1FΓ′)vec J′,

and

D (VF′ J′) = (JΓPΓ−1F ⊗ PΓ−1FΓ′)vec J′ − (JΓPΓ−1FΓ′ ⊗ MΓ−1F)vec J,
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respectively. Insertion into (A48) gives, after simplification,

D C3 = (IT ⊗ JΓPΓ−1F − JΓ ⊗ MΓ−1F)(PΓ−1F(G − σ2 IT)PΓ−1FΓ′ ⊗ IT)vec J

+ (JΓPΓ−1F ⊗ IT − MΓ−1F ⊗ JΓ)(IT ⊗ PΓ−1F(G − σ2 IT)PΓ−1FΓ′)vec J′

− (IT ⊗ JΓ + JΓ ⊗ IT)(PΓ−1FGMΓ−1F ⊗ PΓ−1FΓ′)vec J′

− (IT ⊗ JΓ + JΓ ⊗ IT)(PΓ−1FΓ′ ⊗ PΓ−1FGMΓ−1F)vec J

+ (IT ⊗ JΓ + JΓ ⊗ IT)(PΓ−1F ⊗ PΓ−1F)C0. (A49)

The corresponding expression for D C in (A39) can be obtained by using this and the result

for D [Γ−1FV ′(c0 + c1 + c2)VF′Γ−1′]. The expression for D C, together with those for C0, D B1,

B1, D C0, C, D B2 and B2, can in turn be inserted into (A35) to obtain the required expression

for ∂2ℓc(θ2)/(∂ρ)2.

∂2ℓc(θ2)/(∂ρ∂σ2) remains. Note that

2σ2

N
∂2ℓc(θ2)

∂ρ∂σ2 = −C0(ρ)
′D B1(θ2)− C(θ2)

′D B2(θ2)− [vec B2(θ2)]
′D C(θ2). (A50)

As under C1,

D B1(θ2) = D [Λ̂(θ2)
−1] = σ−4[Λ̂(θ2)

−1PΓ−1F ⊗ Λ̂(θ2)
−1PΓ−1F]vec G(ρ). (A51)

Also,

d B2(θ2) = d [σ−2Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1]− d [Λ̂(θ2)
−1]

= (d σ−2)Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1 + σ−2d [Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1]− d [Λ̂(θ2)
−1]

= σ−2Λ̂(θ2)
−1G(ρ)Λ̂(θ2)

−1 + σ−2[d Λ̂(θ2)
−1]G(ρ)Λ̂(θ2)

−1

+ σ−2Λ̂(θ2)
−1G(ρ)d [Λ̂(θ2)

−1]− d [Λ̂(θ2)
−1].

from which we obtain

D B2(θ2) = −σ−4[Λ̂(θ2)
−1 ⊗ Λ̂(θ2)

−1]vec G(ρ) + σ−2[Λ̂(θ2)
−1G(ρ)⊗ IT]D Λ̂(θ2)

−1

+ σ−2[IT ⊗ Λ̂(θ2)
−1G(ρ)]D [Λ̂(θ2)

−1]− D [Λ̂(θ2)
−1],

or, suppressing the dependence on θ2,

D B2 = −σ−4(Λ̂−1 ⊗ Λ̂−1)vec G + [σ−2(Λ̂−1G ⊗ IT) + σ−2(IT ⊗ Λ̂−1G)− IT2 ]D (Λ̂−1)

= −σ−4(Λ̂−1 ⊗ Λ̂−1)vec G + [σ−2(Λ̂−1G ⊗ IT) + σ−2(IT ⊗ Λ̂−1G)− IT2 ]

× (Λ̂−1PΓ−1F ⊗ Λ̂−1PΓ−1F)vec G. (A52)
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For C, since C1, C2 and C3 are already in vector format, we have

D C1 = −σ−2vec [(VF′Γ−1′ − IT)JΓ + VF′ J′] = −σ−2vec (PΓ−1FΓ′ J′ − MΓ−1F JΓ),(A53)

D C2 = −σ−2vec [Γ′ J′(Γ−1FV ′ − IT) + JFV ′] = −σ−2vec (JΓPΓ−1F − Γ′ J′MΓ−1F),(A54)

D C3 = −σ−2vec (JFV ′ + VF′ J′) = −σ−2vec (JΓPΓ−1F + PΓ−1FΓ′ J′). (A55)

With D C0 = 0T2×1, this yields

D C = −(Γ−1FV ′ ⊗ Γ−1FV ′)D (C1 + C2) + D C3

= σ−2(PΓ−1F ⊗ PΓ−1F)vec (PΓ−1FΓ′ J′ − MΓ−1F JΓ + JΓPΓ−1F − Γ′ J′MΓ−1F)

− σ−2vec (JΓPΓ−1F + PΓ−1FΓ′ J′)

= σ−2(PΓ−1F ⊗ PΓ−1F)(IT ⊗ PΓ−1FΓ′ − MΓ−1F ⊗ Γ′)vec J′

+ σ−2(PΓ−1F ⊗ PΓ−1F)(PΓ−1FΓ′ ⊗ IT − Γ′ ⊗ MΓ−1F)vec J

− σ−2(PΓ−1FΓ′ ⊗ IT)vec J − σ−2(IT ⊗ PΓ−1FΓ′)vec J′

= σ−2(PΓ−1F ⊗ PΓ−1FΓ′)vec J′ + σ−2(PΓ−1FΓ′ ⊗ PΓ−1F)vec J

− σ−2(PΓ−1FΓ′ ⊗ IT)vec J − σ−2(IT ⊗ PΓ−1FΓ′)vec J′

= −σ−2(MΓ−1F ⊗ PΓ−1FΓ′)vec J′ − σ−2(PΓ−1FΓ′ ⊗ MΓ−1F)vec J. (A56)

The required expression for ∂2ℓc(θ2)/(∂ρ∂σ2) is implied by this.

Appendix C: Proofs of main results

Proof of Lemma 1.

Let K = K(θ2) = (σ2Ŝλ(θ2)−1 + F′F)−1. Application of (A + CBC′)−1 = A−1 − A−1C(B−1 +

C′A−1C)−1C′A−1 to Λ̂−1 yields

Λ̂−1 = IT − F(σ2Ŝ−1
λ + F′F)−1F′ = IT − FKF′.

Since tr (A + B) = tr A + tr B and tr (AB) = tr (BA), we can show that

Qc = T log(σ2) + log(|Λ̂|) + σ−2tr G − σ−2tr (GFKF′), (A57)

where G = G(ρ) = Γ(ρ)−1SyΓ(ρ)−1′.

In order to establish the required result we need to evaluate each of the right-hand side

terms of (A150). We begin with σ−2tr (GFKF′). By the definition of F−,

Ŝλ = σ2F−(σ−2G − IT)F−′ = σ2(F′F)−1F′(σ−2G − IT)F(F′F)−1

= (F′F)−1F′GF(F′F)−1 − σ2(F′F)−1. (A58)

43



By using this and (A + CBC′)−1 = A−1 − A−1C(B−1 + C′A−1C)−1C′A−1 we obtain

K = (σ2Ŝ−1
λ + F′F)−1 = (F′F)−1 − (F′F)−1(σ−2Ŝλ + (F′F)−1)−1(F′F)−1

= (F′F)−1 − σ2(F′GF)−1, (A59)

suggesting that

tr (GFKF′) = tr (F′GFK) = tr [F′GF((F′F)−1 − σ2(F′GF)−1)]

= tr [F′GF(F′F)−1]− σ2tr Im = tr [F′GF(F′F)−1]− σ2m. (A60)

Consider F′GF. In particular, let us consider Sy. Clearly, this quantity only depends on the

true values of ρ and σ2, ρ0 and σ2
0 . Hence, writing Γ0 for Γ(ρ0), we have

Sy = Γ0SuΓ′
0 = Γ0

1
N

N

∑
i=1

(Fλi + ε i)(Fλi + ε i)
′Γ′

0

= Γ0(σ
2
0 IT + FSλF′)Γ′

0 + Γ0
1
N

N

∑
i=1

Fλiε
′
iΓ

′
0 + Γ0

1
N

N

∑
i=1

ε iλ
′
iF

′Γ′
0

+ Γ0
1
N

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ′
0, (A61)

where the third equality follows from adding and subtracting σ2
0 Γ0Γ′

0. It follows that

T−2F′GF = T−2F′Γ−1SyΓ−1′F = T−1F′Γ−1Γ0SuΓ′
0Γ−1′F

= T−2F′Γ−1Γ0(σ
2
0 IT + FSλF′)Γ′

0Γ−1′F + T−1F′Γ−1Γ0
1

NT

N

∑
i=1

Fλiε
′
iΓ

′
0Γ−1′F

+ T−1F′Γ−1Γ0
1

NT

N

∑
i=1

ε iλ
′
iF

′Γ′
0Γ−1′F

+ T−1F′Γ−1Γ0
1

NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ′
0Γ−1′F, (A62)

We now evaluate each term on the right-hand side. The first term can be expanded in the

following fashion:

T−2F′Γ−1Γ0(σ
2
0 IT + FSλF′)Γ′

0Γ−1′F

= σ2
0 T−2F′Γ−1Γ0Γ′

0Γ−1′F + T−2F′Γ−1Γ0FSλF′Γ′
0Γ−1′F. (A63)

Consider T−2F′Γ−1Γ0Γ′
0Γ−1′F. From Γ−1Γ0 = IT +(ρ0 − ρ)L0, ||AB|| ≤ ||A||||B||, ||A+ B|| ≤

||A||+ ||B||, and the assumed properties of the moments in F and L0, we obtain

||T−1F′Γ−1Γ0Γ′
0Γ−1′F||

= ||T−1F′[IT + (ρ0 − ρ)L0][IT + (ρ0 − ρ)L0]
′F||

≤ ||T−1F′F||+ 2|ρ0 − ρ|||T−1F′L′
0F||+ (ρ0 − ρ)2||T−1F′L0L′

0F|| ≤ C,
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implying

||T−2F′Γ−1Γ0Γ′
0Γ−1′F|| = O(T−1).

As for the second term on the right-hand side of (A63), by substitution of Γ−1Γ0 = IT + (ρ0 −

ρ)L0,

F′Γ−1Γ0FSλF′Γ′
0Γ−1′F = F′[IT + (ρ0 − ρ)L0]FSλF′[IT + (ρ0 − ρ)L0]

′F

= F′FSλF′F + (ρ0 − ρ)F′FSλF′L′
0F + (ρ0 − ρ)F′L0FSλF′F

+ (ρ0 − ρ)2F′L0FSλF′L′
0F, (A64)

which can be substituted back into (A63), giving

T−2F′Γ−1Γ0(σ
2
0 IT + FSλF′)Γ′

0Γ−1′F

= σ2
0 T−2F′Γ−1Γ0Γ′

0Γ−1′F + T−2F′Γ−1Γ0FSλF′Γ′
0Γ−1′F

= (T−1F′F)Sλ(T−1F′F) + (ρ0 − ρ)(T−1F′F)SλT−1F′L′
0F

+ (ρ0 − ρ)T−1F′L0FSλ(T−1F′F) + (ρ0 − ρ)2T−1F′L0FSλT−1F′L′
0F + O(T−1). (A65)

The effect of the second term on the right of (A62) can be deduced from∣∣∣∣∣
∣∣∣∣∣T−1F′Γ−1Γ0F

1
NT

N

∑
i=1

λiε
′
iΓ

′
0Γ−1′F

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣T−1F′[IT + (ρ0 − ρ)L0]F

1
NT

N

∑
i=1

λiε
′
i[IT + (ρ0 − ρ)L0]

′F

∣∣∣∣∣
∣∣∣∣∣

≤ ||T−1F′F||
∣∣∣∣∣
∣∣∣∣∣ 1

NT

N

∑
i=1

λiε
′
iF

∣∣∣∣∣
∣∣∣∣∣+ |ρ0 − ρ|||T−1F′F||

∣∣∣∣∣
∣∣∣∣∣ 1

NT

N

∑
i=1

λiε
′
iL

′
0F

∣∣∣∣∣
∣∣∣∣∣

+ |ρ0 − ρ|||T−1F′L0F||
∣∣∣∣∣
∣∣∣∣∣ 1

NT

N

∑
i=1

λiε
′
iF

∣∣∣∣∣
∣∣∣∣∣+ (ρ0 − ρ)2||T−1F′L0F||

∣∣∣∣∣
∣∣∣∣∣ 1

NT

N

∑
i=1

λiε
′
iL

′
0F

∣∣∣∣∣
∣∣∣∣∣.

By using E(ε iε
′
i) = σ2

0 IT and the fact that ε′iFF′ε j is just a scalar,

E

∣∣∣∣∣
∣∣∣∣∣ 1√

NT

N

∑
i=1

λiε
′
iF

∣∣∣∣∣
∣∣∣∣∣
2


=
1

NT

N

∑
i=1

N

∑
j=1

E[tr(λiε
′
iFF′ε jλ

′
j)] =

1
NT

N

∑
i=1

N

∑
j=1

E(ε′iFF′ε j)tr(λiλ
′
j)

=
1

NT

N

∑
i=1

N

∑
j=1

tr[E(ε jε
′
i)FF′]tr(λiλ

′
j) =

1
NT

N

∑
i=1

tr[E(ε iε
′
i)FF′]tr(λiλ

′
i)

= σ2
0 tr(T−1F′F)tr(Sλ) ≤ C,
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and by repeated use of the same argument,

E

∣∣∣∣∣
∣∣∣∣∣ 1√

NT

N

∑
i=1

λiε
′
iL

′
0F

∣∣∣∣∣
∣∣∣∣∣
2
 = σ2

0 tr(T−1F′L0L′
0F)tr(Sλ) ≤ C,

suggesting that ||(NT)−1/2 ∑N
i=1 λiε

′
iF|| and ||(NT)−1/2 ∑N

i=1 λiε
′
iL

′
0F|| are Op(1). The order

of the second term on the right-hand side of (A62) is therefore given by∣∣∣∣∣
∣∣∣∣∣T−1F′Γ−1Γ0F

1
NT

N

∑
i=1

λiε
′
iΓ

′
0Γ−1′F

∣∣∣∣∣
∣∣∣∣∣ = Op((NT)−1/2). (A66)

The effect of the third term is of the same order.

It remains to consider the fourth term, which can be expanded in the following fashion:

T−1F′Γ−1Γ0
1

NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ′
0Γ−1′F

= T−1F′[IT + (ρ0 − ρ)L0]
1

NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)[IT + (ρ0 − ρ)L0]
′F

= T−1F′ 1
NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)F + (ρ0 − ρ)T−1F′ 1
NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)L′
0F

+ (ρ0 − ρ)T−1F′L0
1

NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)F

+ (ρ0 − ρ)2T−1F′L0
1

NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)L′
0F. (A67)

Consider the first term on the right-hand side. We have

E

∣∣∣∣∣
∣∣∣∣∣ 1√

NT

N

∑
i=1

F′(ε iε
′
i − σ2

0 IT)F

∣∣∣∣∣
∣∣∣∣∣
2


=
1

NT2

N

∑
i=1

N

∑
j=1

tr(E[F′(ε iε
′
i − σ2

0 IT)FF′(ε jε
′
j − σ2

0 IT)F])

=
1

NT2

N

∑
i=1

tr(E[F′(ε iε
′
i − σ2

0 IT)FF′(ε iε
′
i − σ2

0 IT)F])

+
1

NT2

N

∑
i=1

N

∑
j ̸=i

tr(F′E[(ε iε
′
i − σ2

0 IT)]FF′E[(ε jε
′
j − σ2

0 IT)]F)

=
1

NT2

N

∑
i=1

tr[F′E(ε iε
′
iFF′ε iε

′
i)F − σ2

0 F′FF′E(ε iε
′
i)F − 2σ2

0 F′E(ε iε
′
i)FF′F + σ4

0 F′FF′F]

=
1

NT2

N

∑
i=1

tr[F′E(ε iε
′
iFF′ε iε

′
i)F − σ4

0 F′FF′F] (A68)
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Here,

tr[F′E(ε iε
′
iFF′ε iε

′
i)F]

= E(tr[F′ε iε
′
iFF′ε iε

′
iF]) = E[(ε′iFF′ε i)

2] = E

( T

∑
t=1

T

∑
s=1

ε i,tε i,sF′
t Fs

)2


=
T

∑
t=1

T

∑
s=1

T

∑
m=1

T

∑
n=1

E(ε i,tε i,sε i,mε i,n)F′
t FsF′

mFn

=
T

∑
t=1

T

∑
m=1

T

∑
n=1

E(ε i,tε i,tε i,mε i,n)F′
t FtF′

mFn +
T

∑
t=1

t−1

∑
s=1

T

∑
m=1

T

∑
n=1

E(ε i,tε i,sε i,mε i,n)F′
t FsF′

mFn

+
T

∑
t=1

T

∑
s=t+1

T

∑
m=1

T

∑
n=1

E(ε i,tε i,sε i,mε i,n)F′
t FsF′

mFn

= κ0

T

∑
t=1

F′
t FtF′

t Ft + 4σ4
0

T

∑
t=1

t−1

∑
s=1

F′
t FsF′

s Ft + 2σ4
0

T

∑
s=n+1

s−1

∑
n=1

F′
nFsF′

s Fn,

as follows from nothing that

T

∑
t=1

T

∑
m=1

T

∑
n=1

E(ε i,tε i,tε i,mε i,n)F′
t FtF′

mFn

=
T

∑
t=1

T

∑
m=1

E(ε i,tε i,tε i,mε i,m)F′
t FtF′

mFm +
T

∑
t=1

T

∑
m=1

m−1

∑
n=1

E(ε i,tε i,tε i,mε i,n)F′
t FtF′

mFn

+
T

∑
t=1

T

∑
m=1

T

∑
n=m+1

E(ε i,tε i,tε i,mε i,n)F′
t FtF′

mFn

=
T

∑
t=1

T

∑
m=1

E(ε i,tε i,tε i,mε i,m)F′
t FtF′

mFm

=
T

∑
t=1

E(ε4
i,t)F′

t FtF′
t Ft + 2

T

∑
t=1

t−1

∑
m=1

E(ε2
i,t)E(ε2

i,m)F′
t FtF′

mFm

= κ0

T

∑
t=1

F′
t FtF′

t Ft + 2σ4
0

T

∑
t=1

t−1

∑
m=1

F′
t FtF′

mFm,
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T

∑
t=1

t−1

∑
s=1

T

∑
m=1

T

∑
n=1

E(ε i,tε i,sε i,mε i,n)F′
t FsF′

mFn

=
T

∑
t=1

t−1

∑
s=1

T

∑
n=1

E(ε i,tε i,sε i,sε i,n)F′
t FsF′

s Fn +
T

∑
t=1

t−1

∑
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∑
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T

∑
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E(ε i,tε i,sε i,mε i,n)F′
t FsF′

mFn

+
T

∑
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∑
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T

∑
m=s+1

T

∑
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E(ε i,tε i,sε i,mε i,n)F′
t FsF′

mFn

=
T

∑
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∑
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T

∑
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s Fn +
T

∑
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∑
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T

∑
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T

∑
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E(ε i,tε i,sε i,mε i,n)F′
t FsF′

mFn

=
T

∑
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∑
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E(ε i,tε i,sε i,sε i,t)F′
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s Ft
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T

∑
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∑
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T

∑
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E(ε i,tε i,sε i,mε i,s)F′
t FsF′
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T

∑
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∑
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T

∑
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∑
n=1

E(ε i,tε i,sε i,mε i,n)F′
t FsF′

mFn

+
T

∑
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t−1

∑
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T

∑
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T

∑
n=s+1

E(ε i,tε i,sε i,mε i,n)F′
t FsF′

mFn
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∑
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∑
s=1

E(ε2
i,t)E(ε2
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t FsF′

s Ft = 2σ4
0

T

∑
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∑
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s Ft,
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and

T

∑
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T

∑
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T

∑
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∑
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E(ε i,tε i,sε i,mε i,n)F′
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mFn
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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t FsF′

mFn
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∑
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T
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∑
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∑
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∑
m=1

E(ε i,mε i,sε i,mε i,s)F′
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T

∑
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T

∑
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T

∑
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T

∑
n=1

E(ε i,tε i,sε i,mε i,n)F′
t FsF′

mFn

=
T

∑
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T
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s Fs +
T

∑
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T
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∑
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E(ε i,tε i,sε i,sε i,n)F′
t FsF′

s Fn

+
T

∑
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T

∑
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T

∑
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E(ε i,tε i,sε i,sε i,n)F′
t FsF′

s Fn +
T

∑
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s−1

∑
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+
T

∑
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T

∑
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T

∑
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E(ε i,tε i,sε i,mε i,m)F′
t FsF′

mFm +
T

∑
t=1

T

∑
s=t+1

T

∑
m=s+1

m−1

∑
n=1

E(ε i,tε i,sε i,mε i,n)F′
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mFn

+
T

∑
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T

∑
s=t+1

T

∑
m=s+1

T

∑
n=m+1

E(ε i,tε i,sε i,mε i,n)F′
t FsF′

mFn

= 2
T

∑
s=n+1

s−1

∑
n=1

E(ε2
i,n)E(ε2

i,s)F′
nFsF′

s Fn = 2σ4
0

T

∑
s=n+1

s−1

∑
n=1

F′
nFsF′

s Fn.

Hence, since

tr(F′FF′F) =
T

∑
t=1

T

∑
s=1

tr(FtF′
t FsF′

s) =
T

∑
t=1

T

∑
s=1

F′
s FtF′

t Fs =
T

∑
t=1

F′
t FtF′

t Ft + 2
T

∑
t=1

t−1

∑
s=1

F′
s FtF′

t Fs,

we can show that

E

∣∣∣∣∣
∣∣∣∣∣ 1√

NT

N

∑
i=1

F′(ε iε
′
i − σ2

0 IT)F

∣∣∣∣∣
∣∣∣∣∣
2


=
1

NT2

N

∑
i=1

tr[F′E(ε iε
′
iFF′ε iε

′
i)F − σ4

0 F′FF′F]

= (κ0 − σ4
0 )

T

∑
t=1

F′
t FtF′

t Ft + 2σ4
0

(
T

∑
t=1

t−1

∑
s=1

F′
t FsF′

s Ft +
T

∑
s=n+1

s−1

∑
n=1

F′
nFsF′

s Fn

)
≤ C,

implying∣∣∣∣∣
∣∣∣∣∣ 1

NT2

N

∑
i=1

F′(ε iε
′
i − σ2

0 IT)F

∣∣∣∣∣
∣∣∣∣∣ = Op(N−1/2T−1). (A69)
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Multiplication by L0 does not affect this result. The other terms in (A67) are therefore of the

same order. Therefore,∣∣∣∣∣
∣∣∣∣∣T−1F′Γ−1Γ0

1
NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ′
0Γ−1′F

∣∣∣∣∣
∣∣∣∣∣ = Op(N−1/2T−1). (A70)

Hence, by adding the results, and using Op(N−1/2T−1) < Op((NT)−1/2),

T−2F′GF

= T−2F′Γ−1Γ0FSλF′Γ′
0Γ−1′F + O(T−1) + Op((NT)−1/2)

= (T−1F′F)Sλ(T−1F′F) + (ρ0 − ρ)(T−1F′F)SλT−1F′L′
0F + (ρ0 − ρ)T−1F′L0FSλ(T−1F′F)

+ (ρ0 − ρ)2T−1F′L0FSλT−1F′L′
0F + O(T−1) + Op((NT)−1/2), (A71)

which in turn implies

T−1tr (GFKF′)

= tr [T−2F′GF(T−1F′F)−1]− σ2T−1m

= tr [T−2F′Γ−1Γ0FSλF′Γ′
0Γ−1′F(T−1F′F)−1] + O(T−1) + Op((NT)−1/2)

= tr [(T−1F′F)Sλ(T−1F′F)(T−1F′F)−1] + (ρ0 − ρ)tr [(T−1F′F)SλT−1F′L′
0F(T−1F′F)−1]

+ (ρ0 − ρ)tr [T−1F′L0FSλ(T−1F′F)(T−1F′F)−1]

+ (ρ0 − ρ)2tr [T−1F′L0FSλT−1F′L′
0F(T−1F′F)−1] + O(T−1) + Op((NT)−1/2)

= tr [(T−1F′F)Sλ] + 2(ρ0 − ρ)tr (T−1F′L0FSλ)

+ (ρ0 − ρ)2tr [T−1F′L0FSλT−1F′L′
0F(T−1F′F)−1] + O(T−1) + Op((NT)−1/2). (A72)

Next, consider tr G, the third term in Qc. By using the above results regarding the order

of the cross-sectional sums in ε iλ
′
i and (ε iε

′
i − σ2

0 IT), we can show that

T−1tr G

= T−1tr (Γ−1SyΓ−1′)

= T−1tr [Γ−1Γ0(σ
2
0 IT + FSλF′)Γ′

0Γ−1′] + T−1tr

(
Γ−1Γ0

1
N

N

∑
i=1

Fλiε
′
iΓ

′
0Γ−1′

)

+ T−1tr

(
Γ−1Γ0

1
N

N

∑
i=1

ε iλ
′
iF

′Γ′
0Γ−1′

)

+ T−1tr

(
Γ−1Γ0

1
N

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ′
0Γ−1′

)
= T−1tr [Γ−1Γ0(σ

2
0 IT + FSλF′)Γ′

0Γ−1′] + Op((NT)−1/2). (A73)
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For the remaining term, via T−1tr IT = 1, tr L0 = tr L′
0 = 0,

T−1tr [Γ−1Γ0(σ
2
0 IT + FSλF′)Γ′

0Γ−1′]

= T−1tr ([IT + (ρ0 − ρ)L0](σ
2
0 IT + FSλF′)[IT + (ρ0 − ρ)L0]

′)

= T−1tr (σ2
0 IT + FSλF′) + (ρ0 − ρ)T−1tr [(σ2

0 IT + FSλF′)L′
0]

+ (ρ0 − ρ)T−1tr [L0(σ
2
0 IT + FSλF′)] + (ρ0 − ρ)2T−1tr [L0(σ

2
0 IT + FSλF′)L′

0]

= σ2
0 [1 + (ρ0 − ρ)2T−1tr (L0L′

0)] + T−1tr (FSλF′) + (ρ0 − ρ)T−1tr (FSλF′L′
0)

+ (ρ0 − ρ)T−1tr (L0FSλF′) + (ρ0 − ρ)2T−1tr (L0FSλF′L′
0)

= σ2
0 [1 + (ρ0 − ρ)2tr (T−1L0L′

0)] + tr (T−1F′FSλ) + 2(ρ0 − ρ)tr (T−1F′L0FSλ)

+ (ρ0 − ρ)2tr (T−1F′L′
0L0FSλ),

giving

T−1tr G = σ2
0 [1 + (ρ0 − ρ)2tr (T−1L0L′

0)] + tr (T−1F′FSλ) + 2(ρ0 − ρ)tr (T−1F′L0FSλ)

+ (ρ0 − ρ)2tr (T−1F′L′
0L0FSλ) + O((NT)−1/2). (A74)

The order of the second term in Qc is given by

T−1 log(|Λ̂|) = T−1 log(|IT + σ−2FŜλF′|) = Op(T−1 log(T)), (A75)

as is clear from noting that

T−1||FŜλF′|| = T−1||F[σ2F−(σ−2G − IT)F−′]F||

= σ2T−1||F(F′F)−1F′(σ−2G − IT)F(F′F)−1F′||

≤ T−1||F(F′F)−1F′GF(F′F)−1F′||+ σ2T−1||F(F′F)−1F′||

= ||T−2F′GF(T−1F′F)−1||+ σ2T−1||Im|| = Op(1).
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Hence, by putting everything together, with O(T−1) < Op(T−1 log(T)),

T−1Qc

= log(σ2) + T−1 log(|Λ̂|) + σ−2T−1tr G − σ−2T−1tr (GFKF′)

= log(σ2) + σ−2T−1tr G − σ−2T−1tr (GFKF′) + Op(T−1 log(T))

= log(σ2) + σ−2σ2
0 [1 + (ρ0 − ρ)2tr (T−1L0L′

0)] + σ−2tr (T−1F′FSλ)

+ 2σ−2(ρ0 − ρ)tr (T−1F′L0FSλ) + σ−2(ρ0 − ρ)2tr (T−1F′L′
0L0FSλ)

− σ−2tr [(T−1F′F)Sλ]− 2σ−2(ρ0 − ρ)tr (T−1F′L0FSλ)

− σ−2(ρ0 − ρ)2tr [T−1F′L0FSλT−1F′L′
0F(T−1F′F)−1] + Op((NT)−1/2) + Op(T−1 log(T))

= log(σ2) + σ−2σ2
0 + σ−2(ρ0 − ρ)2[σ2

0 tr (T−1L0L′
0) + tr (T−1F′L′

0L0FSλ)

− tr (T−1F′L0FSλT−1F′L′
0F(T−1F′F)−1)] + Op((NT)−1/2) + Op(T−1 log(T))

= log(σ2) + σ−2σ2
0 + σ−2σ2

0 (ρ0 − ρ)2ω2
1 + Op((NT)−1/2) + Op(T−1 log(T)), (A76)

where ω2
1 = T−1tr (L0L′

0 + σ−2
0 SλF′L′

0MFL0F), MF = IT − PF and PF = F(F′F)−1F′. If A

and B are positive semidefinite, then 0 ≤ tr (AB) ≤ (tr A)(tr B). Since MF is idempotent,

T−1F′L′
0MFL0F positive semidefinite. Hence, because Sλ is positive definite too, we have

that tr (SλT−1F′L′
0MFL0F) ≥ 0. By using this and

T−1tr (L0L′
0) =

1
T

T

∑
t=1

tr (lt,0l′t,0) =
1
T

T

∑
t=1

T−t

∑
n=0

ρ2n
0 =

1
T(1 − ρ2

0)

T

∑
t=1

(1 − ρ
2(T+1−t)
0 )

=
1

(1 − ρ2
0)

+ O(T−1), (A77)

from which it follows that tr (T−1L0L′
0) > 0, we obtain ω2

1 ≥ 0. Hence,

(NT)−1ℓc = − 1
2T

Qc

= −1
2

(
log(σ2) +

σ2
0

σ2

)
− σ2

0
2σ2 (ρ0 − ρ)2ω2

1 + Op((NT)−1/2)

+ Op(T−1 log(T)), (A78)

as required for the proof. �

Lemma C.1. Under C1, |ρ0| < 1, and Assumptions EPS, F and LAM, as T → ∞ for any N,

including N → ∞, provided that
√

NT−3/2 → 0,

H−1
1/2

∂ℓc(θ0
2)

∂θ2
∼ N

(
02×1,

[
ω2

1 0
0 (κ0−1)

4σ4
0

])
,
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where Hp = diag(
√

NTp,
√

NT ), ω2
1 = T−1tr (L0L′

0 + σ−2
0 SλF′L′

0MFL0F), MF = IT − PF and

PF = F(F′F)−1F′.

Proof of Lemma C.1.

We have

2σ2
0

N
∂ℓc(θ0

2)

∂ρ
= [vec B(θ0

2)]
′C(ρ0), (A79)

where G(ρ0) = Γ−1
0 SyΓ−1′

0 and Λ̂(θ0
2) = IT + σ−2

0 FŜλ(θ
0
2)F′. Consider C(ρ0). From Sy =

Γ0SuΓ′
0, we have vec Sy = (Γ0 ⊗ Γ0)vec Su. Note that JΓ0 = L0. Hence, since (A ⊗ B)(C ⊗

D) = AC ⊗ BD and (C′ ⊗ A)vec B = vec(ABC),

C(ρ0) = (Γ−1
0 ⊗ J + J ⊗ Γ−1

0 )vec Sy = (Γ−1
0 ⊗ J + J ⊗ Γ−1

0 )(Γ0 ⊗ Γ0)vec Su

= (IT ⊗ L0 + L0 ⊗ IT)vec Su = vec (L0Su + SuL′
0). (A80)

By using this and tr (A′B) = (vec A)′vec B, we obtain

2σ2
0√

NT
∂ℓc(θ0

2)

∂ρ
=

√
NT−1/2tr [B(θ0

2)
′(L0Su + SuL′

0)]. (A81)

Consider B(θ0
2). Let K0 = K(θ0

2) = (σ2
0 Ŝλ(θ

0
2)

−1 + F′F)−1 = (F′F)−1 −σ2
0 T−2(T−2F′G(ρ0)F)−1,

such that Λ̂(θ0
2)

−1 = IT − FK0F′ (see Proof of Lemma 1). This implies

F−′F′Λ̂(θ0
2)

−1FF− = F(F′F)−1F′(IT − FK0F′)F(F′F)−1F′ = F((F′F)−1 − K0)F′

= σ2
0 T−2F(T−2F′G(ρ0)F)−1F′, (A82)

and

F−′F′Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1FF−

= F(F′F)−1F′(IT − FK0F′)G(ρ0)(IT − FK0F′)F(F′F)−1F′

= F(F′F)−1F′(G(ρ0)− G(ρ0)FK0F′ − FK0F′G(ρ0) + FK0F′G(ρ0)FK0F′)F(F′F)−1F′

= F((F′F)−1 − K0)F′G(ρ0)F((F′F)−1 − K0)F′

= σ4
0 T−2F(T−2F′G(ρ0)F)−1F′, (A83)

suggesting that B(θ0
2) simplifies to

B(θ0
2) = F−′F′(Λ̂(θ0

2)
−1 − σ−2

0 Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1)FF− + Λ̂(θ0
2)

−1

= σ2
0 T−2F(T−2F′G(ρ0)F)−1F′ − σ−2

0 σ4
0 T−2F(T−2F′G(ρ0)F)−1F′ + Λ̂(θ0

2)
−1

= Λ̂(θ0
2)

−1. (A84)
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Therefore,

2σ2
0√

NT
∂ℓc(θ0

2)

∂ρ
=

√
NT−1/2tr [B(θ0

2)
′(L0Su + SuL′

0)]

=
√

NT−1/2tr [Λ̂(θ0
2)

−1(L0Su + SuL′
0)] = Q. (A85)

Note that tr (SuL′
0) = tr (L0Su), as is clear from using tr A = tr A′ and the symmetry Su. But

K0 is symmetric too, and therefore tr (K0F′SuL′
0F) = tr (F′L0SuFK0) = tr (K0F′L0SuF), which

in turn implies that tr [FK0F′(L0Su + SuL′
0)] = tr [K0F′(L0Su + SuL′

0)F] = 2tr (K0F′L0SuF).

By using this and Λ̂(θ0
2)

−1 = IT − FK0F′, we obtain

Q =
√

NT−1/2tr [Λ̂(θ0
2)

−1(L0Su + SuL′
0)]

=
√

NT−1/2tr [(IT − FK0F′)(L0Su + SuL′
0)]

=
√

NT−1/2tr [L0Su + SuL′
0 − FK0F′(L0Su + SuL′

0)]

= 2
√

NT−1/2[tr (L0Su)− tr (K0F′L0SuF)] = 2(Q1 − Q2), (A86)

with implicit definitions of Q1 and Q2.

Consider Q1, which, via tr (A + B) = tr A + tr B and tr (AB) = tr (BA), can be expanded

in the following fashion:

Q1 =
√

NT−1/2tr (L0Su)

=
1√
NT

N

∑
i=1

[tr (L0Fλiλ
′
iF

′) + tr (L0Fλiε
′
i) + tr (L0ε iλ

′
iF

′) + tr (L0ε iε
′
i)]

=
1√
NT

N

∑
i=1

[tr (λ′
iF

′L0Fλi) + tr (ε′iL0Fλi) + tr (λ′
iF

′L0ε i) + tr (ε′iL0ε i)]

= Q11 + Q11 + Q12, (A87)

where

Q11 =
1√
NT

N

∑
i=1

λ′
iF

′L0Fλi,

Q12 =
1√
NT

N

∑
i=1

(ε′iL0Fλi + λ′
iF

′L0ε i),

Q13 =
1√
NT

N

∑
i=1

ε′iL0ε i.

From λ′
iF

′L0Fλi = tr (λ′
iF

′L0Fλi) = tr (λiλ
′
iF

′L0F), Q11 can be written as

Q11 =
1√
NT

N

∑
i=1

λ′
iF

′L0Fλi =

√
N√
T

1
N

N

∑
i=1

tr (λiλ
′
iF

′L0F)

=
√

NT−1/2tr (SλF′L0F). (A88)
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Consider Q12, where T−1/2ε′iL0F and T−1/2F′L0ε i are clearly mean zero, and, by a central

limit theorem (CLT), also normal. As for the variance of these normals, by using E(ε iε
′
i) =

σ2
0 IT, we have

E[(ε′iL0Fλi + λ′
iF

′L0ε i)
2]

= E(λ′
iF

′L′
0ε iε

′
iL0Fλi) + 2E(λ′

iF
′L0ε iε

′
iL0Fλi) + E(λ′

iF
′L0ε iε

′
iL

′
0Fλi)

= σ2
0 λ′

iF
′(L′

0L0 + 2L0L0 + L0L′
0)Fλi,

suggesting that

E(Q2
12) = E

( 1√
NT

N

∑
i=1

(ε′iL0Fλi + λ′
iF

′L0ε i)

)2


=
1

NT

N

∑
i=1

N

∑
j=1

E[(ε′iL0Fλi + λ′
iF

′L0ε i)(ε
′
jL0Fλj + λ′

jF
′L0ε j)]

=
1

NT

N

∑
i=1

E[(ε′iL0Fλi + λ′
iF

′L0ε i)
2]

=
1

NT

N

∑
i=1

λ′
iF

′E(L′
0ε iε

′
iL0 + 2L0ε iε

′
iL0 + L0ε iε

′
iL

′
0)Fλi

= σ2
0

1
NT

N

∑
i=1

λ′
iF

′(L′
0L0 + 2L0L0 + L0L′

0)Fλi

= σ2
0 tr [SλT−1F′(L′

0L0 + 2L0L0 + L0L′
0)F] = Σ12

Hence, using ∼ to signify asymptotic equivalence,

Q12 ∼ N(0, Σ12), (A89)

which holds for any N, including N → ∞, provided that T → ∞.

When evaluating Q13 it is useful to write ε′iL0ε i = ∑T
t=2 ε i,tε

∗
i,t−1, where ε∗i,t is as in Ap-

pendix A. Clearly,

1
T

T

∑
t=2

E[(ε∗i,t−1)
2] = T−1E[tr (ε′iL

′
0L0ε i)] = T−1tr [E(ε iε

′
i)L′

0L0] = σ2
0 T−1tr (L0L′

0),

from which we obtain

T−1E[(ε′iL0ε i)
2] =

1
T

T

∑
t=2

T

∑
s=2

E(ε i,tε i,sε
∗
i,t−1ε∗i,s−1)

=
1
T

T

∑
t=2

E(ε2
i,t)E[(ε∗i,t−1)

2] +
2
T

T

∑
t=3

t−1

∑
s=2

E(ε i,t)E(ε i,sε
∗
i,t−1ε∗i,s−1)

= σ2
0

1
T

T

∑
t=2

E[(ε∗i,t−1)
2] = σ4

0 T−1tr (L0L′
0) = Σ13.
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Hence, by a CLT for martingale difference sequences,

T−1/2ε′iL0ε i ∼ N(0, Σ13) (A90)

as T → ∞. This means that

Q13 =
1√
NT

N

∑
i=1

ε′iL0ε i ∼ N(0, Σ13) (A91)

as T → ∞ for any N, including N → ∞.

Let us now consider the covariance between Q12 and Q13. Note first that if k ≥ t,

E(ε i,tε
∗
i,t−1ε∗i,k−1)

=
t−1

∑
s=1

k−1

∑
n=1

ρ
t+k−(2+n+s)
0 E(ε i,tε i,sε i,n)

=
t−1

∑
s=1

ρ
t+k−(2+t+s)
0 E(ε2

i,t)E(ε i,s) +
t−1

∑
s=1

k−1

∑
n=t+1

ρ
t+k−(2+n+s)
0 E(ε i,t)E(ε i,s)E(ε i,n)

+
t−1

∑
s=1

t−1

∑
n=1

ρ
t+k−(2+n+s)
0 E(ε i,t)E(ε i,sε i,n) = 0,

whereas if k < t, then

E(ε i,tε
∗
i,t−1ε∗i,k−1) =

t−1

∑
s=1

k−1

∑
n=1

ρ
t+k−(2+n+s)
0 E(ε i,t)E(ε i,sε i,n) = 0,

suggesting

E(F′L0ε iε
′
iL0ε i) =

T

∑
k=2

T

∑
t=2

FkE(ε i,tε
∗
i,t−1ε∗i,k−1)

=
T

∑
t=3

t−1

∑
k=2

FkE(ε i,t)E(ε∗i,t−1ε∗i,k−1) +
T

∑
t=2

T

∑
k=t

FkE(ε i,tε
∗
i,t−1ε∗i,k−1) = 0.

Moreover,

E(ε′iL0ε iε
′
iL0F) =

T

∑
k=2

T

∑
t=2

E(ε i,tε
∗
i,t−1ε i,k)F∗′

k−1

=
T

∑
t=2

E(ε2
i,t)E(ε∗i,t−1)F∗′

t−1 +
T

∑
t=3

t−1

∑
k=2

E(ε i,t)E(ε∗i,t−1ε i,k)F∗′
k−1

+
T

∑
t=2

T

∑
k=t+1

E(ε i,tε
∗
i,t−1)E(ε i,k)F∗′

k−1 = 0.

Therefore, E[ε′iL0ε i(ε
′
iL0Fλi + λ′

iF
′L0ε i)] = 0, suggesting that

E(Q12Q13) =
1

NT

N

∑
i=1

E[ε′iL0ε i(ε
′
iL0Fλi + λ′

iF
′L0ε i)] = 0. (A92)
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Hence, putting everything together,

Q1 − Q11 = Q12 + Q13 ∼ N(0, Σ12 + Σ13). (A93)

Next, consider Q2;

Q2 =
√

NT−1/2tr (K0F′L0SuF)

=
1√
NT

N

∑
i=1

[tr (K0F′L0Fλiλ
′
iF

′F) + tr (K0F′L0Fλiε
′
iF) + tr (K0F′L0ε iλ

′
iF

′F)

+ tr (K0F′L0ε iε
′
iF)]

=
1√
NT

N

∑
i=1

[tr (λ′
iF

′FK0F′L0Fλi) + tr (ε′iFK0F′L0Fλi) + tr (λ′
iF

′FK0F′L0ε i)

+ tr (K0F′L0ε iε
′
iF)]

= Q21 + Q22 + Q23, (A94)

with

Q21 =
1√
NT

N

∑
i=1

λ′
iF

′FK0F′L0Fλi,

Q22 =
1√
NT

N

∑
i=1

(ε′iFK0F′L0Fλi + λ′
iF

′FK0F′L0ε i),

Q23 =
1√
NT

N

∑
i=1

tr (K0F′L0ε iε
′
iF).

From Proof of Lemma 1, T−2F′G(ρ0)F = (T−1F′F)Sλ(T−1F′F) + O(T−1) + Op((NT)−1/2),

and therefore

TK0 = (T−1F′F)−1 − σ2
0 T−1(T−2F′G(ρ0)F)−1

= (T−1F′F)−1 − σ2
0 T−1(T−1F′F)−1S−1

λ (T−1F′F)−1 + O(T−2)

+ Op(N−1/2T−3/2). (A95)

Here, ||(T−1F′F)−1S−1
λ (T−1F′F)−1|| = Op(1), which means that (A95) may be written as

TK0 = (T−1F′F)−1 + O(T−1). (A96)
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Substitution of (A95) into the expression for Q21 yields

Q21 =
1√
NT

N

∑
i=1

λ′
iT

−1F′F(TK0)F′L0Fλi

=
1√
NT

N

∑
i=1

λ′
iF

′L0Fλi

− σ2
0

√
N√
T

1
N

N

∑
i=1

λ′
iS

−1
λ (T−1F′F)−1T−1F′L0Fλi + O(

√
NT−5/2) + Op(T−2)

= Q11 −
√

NT−1/2σ2
0 tr (PFL0) + O(

√
NT−5/2) + Op(T−2), (A97)

where the last equality holds, because

σ2
0

1
N

N

∑
i=1

λ′
iS

−1
λ (T−1F′F)−1T−1F′L0Fλi = σ2

0
1
N

N

∑
i=1

tr [λ′
iS

−1
λ (T−1F′F)−1T−1F′L0Fλi]

= σ2
0 tr [(T−1F′F)−1T−1F′L0F]

= σ2
0 tr (PFL0),

with PF = F(F′F)−1F′.

Consider Q22. This term is mean zero and, by a CLT, also asymptotically normal. As for

the variance, via TK0 = (T−1F′F)−1 + O(T−1),

T−1E[(ε′iFK0F′L0Fλi + λ′
iF

′FK0F′L0ε i)
2]

= T−1λiF′L′
0FK0F′E(ε iε

′
i)FK0F′L0Fλi + 2T−1λ′

iF
′FK0F′L0E(ε iε

′
i)FK0F′L0Fλi

+ T−1λ′
iF

′FK0F′L0E(ε iε
′
i)L′

0FK0F′Fλi

= σ2
0 λiT−1F′L′

0F(TK0)T−1F′F(TK0)T−1F′L0Fλi

+ 2σ2
0 λ′

iT
−1F′F(TK0)T−1F′L0F(TK0)T−1F′L0Fλi

+ σ2
0 λ′

iT
−1F′F(TK0)T−1F′L0L′

0F(TK0)T−1F′Fλi

= σ2
0 λ′

iT
−1F′L′

0F(T−1F′F)−1T−1F′L0Fλi + 2σ2
0 λ′

iT
−1F′L0F(T−1F′F)−1T−1F′L0Fλi

+ σ2
0 λ′

iT
−1F′L0L′

0Fλi + O(T−1).

Hence, letting

Σ22 = σ2
0

1
N

N

∑
i=1

E[λ′
iT

−1F′[L′
0F(F′F)−1F′L0 + 2L0F(F′F)−1F′L0 + L0L′

0]Fλi]

= σ2
0

1
N

N

∑
i=1

tr (λ′
iT

−1F′[L′
0F(F′F)−1F′L0 + 2L0F(F′F)−1F′L0 + L0L′

0]Fλi)

= σ2
0 tr [SλT−1F′(L′

0PFL0 + 2L0PFL0 + L0L′
0)F],
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we can show that

Q22 =
1√
NT

N

∑
i=1

(ε′iFK0F′L0Fλi + λ′
iF

′FK0F′L0ε i) ∼ N(0, Σ22), (A98)

which again only requires T → ∞; N may be fixed but can also tend to infinity.

For Q23,

E(K0F′L0ε iε
′
iF) = σ2

0 (TK0)T−1F′L0F = σ2
0 (T

−1F′F)−1T−1F′L0F + O(T−1),

giving

Q23 =
1√
NT

N

∑
i=1

tr (K0F′L0ε iε
′
iF)

= σ2
0

√
NT−1/2tr (K0F′L0F) +

1√
NT

N

∑
i=1

tr [K0(F′L0ε iε
′
iF − σ2

0 F′L0F)]

=
√

NT−1/2σ2
0 tr [(T−1F′F)−1T−1F′L0F]

+ T−1/2tr

(
TK0

1√
N

N

∑
i=1

(T−1F′L0ε iε
′
iF − σ2

0 T−1F′L0F)

)
+ Op(

√
NT−3/2)

=
√

NT−1/2σ2
0 tr (PFL0) + Op(T−1/2) + Op(

√
NT−3/2). (A99)

The results for Q21 and Q23 implies

Q21 + Q23

= Q11 −
√

NT−1/2σ2
0 tr (PFL0) +

√
NT−1/2σ2

0 tr (PFL0) + Op(T−1/2) + Op(
√

NT−3/2)

= Q11 + Op(T−1/2) + Op(
√

NT−3/2). (A100)

Hence, if we assume that N is fixed or N → ∞ with
√

NT−3/2 = o(1), provided that T → ∞,

then

Q2 = Q21 + Q22 + Q23 = Q11 + Q22 + Op(T−1/2) + Op(
√

NT−3/2)

∼ Q11 + N(0, Σ22). (A101)

Q1 and Q2 are not uncorrelated. Note in particular how

E[(Q1 − Q11)(Q2 − Q11)] = E[(Q12 + Q13)Q22] + o(1) = E(Q12Q22) + o(1),

where the first equality requires
√

NT−3/2 = o(1) for the remainder to be negligible. The

last equality is due to the fact that E(Q13Q22) = 0. In order to see that this is so, write

E(Q13Q22) =
1

NT

N

∑
i=1

E[ε′iL0ε i(ε
′
iFK0F′L0Fλi + λ′

iF
′FK0F′L0ε i)]

=
1

NT

N

∑
i=1

[E(ε′iL0ε iε
′
iFK0F′L0Fλi) + E(λ′

iF
′FK0F′L0ε iε

′
iL0ε i)],
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where we know from before that E(F′L0ε iε
′
iL0ε i) = 0, suggesting that the second term is

zero. We can similarly show that

E(ε′iL0ε iε
′
iF) =

T

∑
k=2

T

∑
t=2

E(ε i,tε
∗
i,t−1ε i,k)F′

k

=
T

∑
t=2

E(ε2
i,t)E(ε∗i,t−1)F′

t +
T

∑
t=3

t−1

∑
k=2

E(ε i,t)E(ε∗i,t−1ε i,k)F′
k

+
T

∑
t=2

T

∑
k=t+1

E(ε i,tε
∗
i,t−1)E(ε i,k)F′

k = 0,

showing that the first term is zero too. In sum, therefore,

E(Q13Q22) = 0. (A102)

For E(Q12Q22),

E(Q12Q22)

=
1

NT

N

∑
i=1

E[(ε′iL0Fλi + λ′
iF

′L0ε i)(ε
′
iFK0F′L0Fλi + λ′

iF
′FK0F′L0ε i)]

=
1

NT

N

∑
i=1

E(λ′
iF

′L′
0ε iε

′
iFK0F′L0Fλi + λ′

iF
′L0ε iε

′
iFK0F′L0Fλi + λ′

iF
′L′

0ε iε
′
iL

′
0FK0F′Fλi

+ λ′
iF

′L0ε iε
′
iL

′
0FK0F′Fλi),

where

1
NT

N

∑
i=1

E(λ′
iF

′L′
0ε iε

′
iFK0F′L0Fλi)

=
1

NT

N

∑
i=1

λ′
iF

′L′
0E(ε iε

′
i)FK0F′L0Fλi

= σ2
0

1
N

N

∑
i=1

λ′
iT

−1F′L′
0F(TK0)T−1F′L0Fλi

= σ2
0

1
N

N

∑
i=1

tr [λ′
iT

−1F′L′
0F(T−1F′F)−1T−1F′L0Fλi] + O(T−1)

= σ2
0 tr (SλT−1F′L′

0PFL0F) + O(T−1),

and, by the same steps,

1
NT

N

∑
i=1

E(λ′
iF

′L0ε iε
′
iFK0F′L0Fλi) = σ2

0 tr (SλT−1F′L0PFL0F) + O(T−1),

1
NT

N

∑
i=1

E(λ′
iF

′L′
0ε iε

′
iL

′
0FK0F′Fλi) = σ2

0 tr (SλT−1F′L′
0L′

0PFF) + O(T−1),

1
NT

N

∑
i=1

E(λ′
iF

′L0ε iε
′
iL

′
0FK0F′Fλi) = σ2

0 tr (SλT−1F′L0L′
0PFF) + O(T−1).
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It follows that

E(Q12Q22) = σ2
0 tr [SλT−1F′(L′

0PFL0 + L0PFL0 + L′
0L′

0PF + L0L′
0PF)F] + O(T−1), (A103)

and so we obtain

E[(Q1 − Q11)(Q2 − Q11)]

= E(Q12Q22) + o(1)

= σ2
0 tr [SλT−1F′(L′

0PFL0 + L0PFL0 + L′
0L′

0PF + L0L′
0PF)F] + o(1), (A104)

Hence, by combining the results,

E[(Q1 − Q2)
2]

= E[((Q1 − Q11)− (Q2 − Q11))
2]

= E[(Q1 − Q11)
2] + E[(Q2 − Q11)

2]− 2E[(Q1 − Q11)(Q2 − Q11)]

= Σ12 + Σ13 + Σ22 − 2E(Q12Q22) + o(1)

= σ2
0 tr [SλT−1F′(L′

0L0 + 2L0L0 + L0L′
0)F] + σ4

0 T−1tr (L0L′
0)

+ σ2
0 tr [SλT−1F′(L′

0PFL0 + 2L0PFL0 + L0L′
0)F]

− 2σ2
0 tr [SλT−1F′(L′

0PFL0 + L0PFL0 + L′
0L′

0PF + L0L′
0PF)F] + o(1)

= σ4
0 T−1tr (L0L′

0)

+ σ2
0 tr [SλT−1F′(L′

0L0 + 2L0L0 + 2L0L′
0 − L′

0PFL0 − 2L′
0L′

0PF − 2L0L′
0PF)F] + o(1)

= σ4
0 T−1tr (L0L′

0) + σ2
0 tr [SλT−1F′(L′

0MFL0 + 2MFL0L0 + 2L0L′
0MF)F] + o(1)

= T−1tr (σ4
0 L0L′

0 + σ2
0 SλF′L′

0MFL0F) + o(1) = σ4
0 ω2

1 + o(1), (A105)

where ω2
1 = T−1tr (L0L′

0 + σ−2
0 SλF′L′

0MFL0F). The sixth equality is a direct consequence of

tr (SλT−1F′L′
0L′

0PFF) = tr (SλT−1F′PFL0L0F), while the seventh is due to F′MF = 0m×T and

MFF = 0T×m.

Thus, putting everything together,

Q1 − Q2 = Q11 + Q12 + Q13 − (Q11 + Q22) + Op(T−1/2) + Op(
√

NT−3/2)

= Q12 + Q13 − Q22 + Op(T−1/2) + Op(
√

NT−3/2)

∼ N(0, σ4
0 ω2

1), (A106)

which holds for T → ∞ and any N, including N → ∞, provided that
√

NT−3/2 = o(1). The

implication of this result is that

1√
NT

∂ℓc(θ0
2)

∂ρ
=

1
2σ2

0
Q = σ−2

0 (Q1 − Q2) ∼ N(0, ω2
1). (A107)
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Next, consider ∂ℓc(θ0
2)/∂σ2, which we write as

∂ℓc(θ0
2)

∂σ2 = −NT
2σ2

0
+

N
2σ4

0
[vec B(θ0

2)]
′vec G(ρ0) = −NT

2σ2
0
+

N
2σ4

0
tr [B(θ0

2)G(ρ0)], (A108)

where we know from before that B(θ0
2) = Λ̂(θ0

2)
−1 = IT − FK0F′ = IT − F(F′F)−1F′ +

σ2
0 T−2F(T−2F′G(ρ0)F)−1F′, suggesting

tr [Λ̂(θ0
2)

−1G(ρ0)]

= tr G(ρ0)− tr [F(F′F)−1F′G(ρ0)] + σ2
0 tr [T−2F(T−2F′G(ρ0)F)−1F′G(ρ0)]

= tr G(ρ0)− tr [(F′F)−1F′G(ρ0)F] + σ2
0 tr I2,

which can be substituted back into ∂ℓc(θ0
2)/∂σ2;

∂ℓc(θ0
2)

∂σ2 = −NT
2σ2

0
+

N
2σ4

0
tr [B(θ0

2)G(ρ0)]

= −N(T − 2)
2σ2

0
+

N
2σ4

0
(tr G(ρ0)− tr [(F′F)−1F′G(ρ0)F])

=
N

2σ4
0
(tr [G(ρ0)− σ2

0 IT]− tr [(F′F)−1F′G(ρ0)F − σ2
0 I2]). (A109)

Clearly, G(ρ0) = Γ−1
0 SyΓ−1′

0 = Γ−1
0 (Γ0SuΓ′

0)Γ
−1′
0 = Su, from which it follows that

tr [(F′F)−1F′G(ρ0)F − σ2
0 I2] = tr [(F′F)−1F′SuF − σ2

0 I2]

=
1
N

N

∑
i=1

(λ′
iF

′Fλi + 2ε′iFλi + tr [(F′F)−1F′ε iε
′
iF − σ2

0 I2]),

tr [G(ρ0)− σ2
0 IT] = tr (Su − σ2

0 IT)

=
1
N

N

∑
i=1

[λ′
iF

′Fλi + 2ε′iFλi + tr (ε iε
′
i − σ2

0 IT)].

By using E[(ε2
i,t − σ2

0 )
2] = E(ε4

i,t − 2σ2
0 ε2

i,t + σ4
0 ) = E(ε4

i,t)− σ4
0 , it is possible to show that, by a

CLT, as N → ∞ or T → ∞, or both,

1√
NT

N

∑
i=1

tr (ε iε
′
i − σ2

0 IT) =
1√
NT

N

∑
i=1

(ε′iε i − σ2
0 T) =

1√
NT

N

∑
i=1

T

∑
t=1

(ε2
i,t − σ2

0 )

→d N(0, E(ε4
i,t)− σ4

0 ).

But we also have

1√
N

N

∑
i=1

tr [(F′F)−1F′ε iε
′
iF − σ2

0 I2] =
1√
N

N

∑
i=1

tr [(T−1F′F)−1T−1F′ε iε
′
iF − σ2

0 I2] = Op(1),
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and therefore, with κ0 = σ−4
0 E(ε4

i,t),

1√
NT

∂ℓc(θ0
2)

∂σ2 =
1

2σ4
0

1√
NT

N

∑
i=1

[tr (ε iε
′
i − σ2

0 IT)− tr ((F′F)−1F′ε iε
′
iF − σ2

0 I2)]

=
1

2σ4
0

1√
NT

N

∑
i=1

T

∑
t=1

(ε2
i,t − σ2

0 ) + Op(T−1/2)

→d N
(

0,
(κ0 − 1)

4σ4
0

)
, (A110)

which requires T → ∞, but not necessarily N → ∞.

In what remains we show that

1
NT

E
(

∂ℓc(θ0
2)

∂σ2
∂ℓc(θ0

2)

∂ρ

)
=

1
2σ6

0

1√
NT

N

∑
i=1

T

∑
t=1

E[(ε2
i,t − σ2

0 )(Q12 + Q13 − Q22)] + Op(T−1/2) + Op(
√

NT−3/2)

= Op(T−1/2) + Op(
√

NT−3/2). (A111)

The proof begins by the following observation:

T

∑
t=1

T

∑
s=2

E[(ε2
i,t − σ2

0 )ε i,sε
∗
i,s−1] =

T

∑
t=2

E[(ε2
i,t − σ2

0 )ε i,t]E(ε∗i,t−1) +
T

∑
t=3

t−1

∑
s=2

E(ε2
i,t − σ2

0 )E(ε i,sε
∗
i,s−1)

+
T

∑
t=1

T

∑
s=t+1

E(ε i,s)E[(ε2
i,t − σ2

0 )ε
∗
i,s−1] = 0,

suggesting that (NT)−1/2∂ℓc(θ0
2)/∂σ2 is uncorrelated with Q13. But we also have

T

∑
t=1

T

∑
s=2

E[(ε2
i,t − σ2

0 )ε
∗
i,s−1Fs] =

T

∑
t=2

E(ε2
i,t − σ2

0 )E(ε∗i,t−1)Ft +
T

∑
t=3

t−1

∑
s=2

E(ε2
i,t − σ2

0 )E(ε∗i,s−1)Fs

+
T

∑
t=1

T

∑
s=t+1

FsE[(ε2
i,t − σ2

0 )ε
∗
i,s−1] =

T

∑
t=1

T

∑
s=t+1

FsE(ε2
i,tε

∗
i,s−1),

T

∑
t=1

T

∑
s=2

E[(ε2
i,t − σ2

0 )ε i,sF∗
s−1] =

T

∑
t=2

E[(ε2
i,t − σ2

0 )ε i,t]F∗
t−1 +

T

∑
t=3

t−1

∑
s=2

E(ε2
i,t − σ2

0 )E(ε i,s)F∗
i,s−1

+
T

∑
t=1

T

∑
s=t+1

E(ε i,s)E(ε2
i,t − σ2

0 )F∗
i,s−1 =

T

∑
t=2

E(ε3
i,t)F∗

t−1,

which are both zero if E(ε3
i,t) = 0. Hence, under this condition ,(NT)−1/2∂ℓc(θ0

2)/∂σ2 is not

only uncorrelated with Q13, but also with Q12 and Q22. It follows that (NT)−1/2∂ℓc(θ0
2)/∂σ2

and (NT)−1/2∂ℓc(θ0
2)/∂ρ are asymptotically uncorrelated, and hence independent by nor-

mality. Therefore,

1√
NT

 ∂ℓc(θ0
2)

∂ρ
∂ℓc(θ0

2)
∂σ2

 ∼ N

(
02×1,

[
ω2

1 0
0 (κ0−1)

4σ4
0

])
(A112)
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as T → ∞ and any N, including N → ∞, provided that
√

NT−3/2 = o(1). �

Lemma C.2. Under C1, |ρ0| < 1, and Assumptions EPS, F and LAM,

−H−1
1/2

∂2ℓc(θ0
2)

∂θ2(∂θ2)′
H−1

1/2 =

[
ω2

1 0
0 1

2σ4
0

]
+ Op(T−1) + Op((NT)−1/2).

Proof of Lemma C.2.

Write

2σ2
0

NT
∂2ℓc(θ0

2)

(∂ρ)2 = U1 + ... + U6, (A113)

where

U1 = σ−2
0 T−1C(ρ0)

′[F−′F′Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1FF−]C(ρ0),

U2 = −σ−4
0 T−1C(ρ0)

′[F−′F′Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1FF−]C(ρ0),

U3 = −σ−4
0 T−1C(ρ0)

′[F−′F′Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1FF−]C(ρ0),

U4 = σ−2
0 T−1C(ρ0)

′[F−′F′Λ̂(θ0
2)

−1 ⊗ F−′F′Λ̂(θ0
2)

−1]C(ρ0),

U5 = σ−2
0 T−1C(ρ0)

′[Λ̂(θ0
2)

−1FF− ⊗ Λ̂(θ0
2)

−1FF−]C(ρ0),

U6 = −2T−1[vec B(θ0
2)]

′(J ⊗ J)vec Sy.

From Proof of Lemma C.1, C(ρ0) = vec (L0Su + SuL′
0). By using this, (C′ ⊗ A)vec B =

vec(ABC) and tr (A′B) = (vec A)′vec B, we obtain

U1 = σ−2
0 T−1C(ρ0)

′[F−′F′Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1FF−]C(ρ0)

= σ−2
0 T−1C(ρ0)

′vec [F−′F′Λ̂(θ0
2)

−1FF−(L0Su + SuL′
0)F−′F′Λ̂(θ0

2)
−1FF−]

= σ−2
0 T−1tr [(L0Su + SuL′

0)
′F−′F′Λ̂(θ0

2)
−1FF−(L0Su + SuL′

0)F−′F′Λ̂(θ0
2)

−1FF−].

From Proof of Lemma C.1, we further learn that F−′F′Λ̂(θ0
2)

−1FF− = σ2
0 T−2F(T−2F′G(ρ0)F)−1F′.

Also,

T−2F′L0SuF =
1

NT2

N

∑
i=1

(F′L0Fλiλ
′
iF

′F + F′L0Fλiε
′
iF + F′L0ε iλ

′
iF

′F + F′L0ε iε
′
iF)

=
1

NT2

N

∑
i=1

F′L0Fλiλ
′
iF

′F + (NT)−1/2(T−1F′L0F)
1√
NT

N

∑
i=1

λiε
′
iF

+ (NT)−1/2 1√
NT

N

∑
i=1

F′L0ε iλ
′
i(T−1F′F) +

1
T

1
NT

N

∑
i=1

F′L0ε iε
′
iF

= T−2F′L0FSλF′F + Op((NT)−1/2) + Op(T−1). (A114)
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The limit of T−2F′SuL′
0F is just the transpose of this, suggesting that

T−2F′(L0Su + SuL′
0)

′F

= T−2F′SuL′
0F + T−2F′L0SuF

= T−2(F′L0FSλF′F + F′FSλF′L′
0F) + Op((NT)−1/2) + Op(T−1). (A115)

By using this and the fact that T−1F′L0F and T−1F′F are bounded by assumption, we can

show that ||T−2F′(L0Su + SuL′
0)

′F|| = Op(1). But ||T−2F′G(ρ0)F|| is of the same order, and

therefore

U1 = T−1σ2
0 tr [T−2F′(L0Su + SuL′

0)
′F(T−2F′G(ρ0)F)−1T−2F′(L0Su + SuL′

0)F

× (T−2F′G(ρ0)F)−1] = Op(T−1). (A116)

Consider U2. By using the results reported in Proof of Lemma C.1 for F−′F′Λ̂(θ0
2)

−1FF−

and F−′F′Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1FF−, we obtain

U2

= −σ−4
0 T−1C(ρ0)

′[F−′F′Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1FF−]C(ρ0),

= −σ−4
0 T−1C(ρ0)

′vec [F−′F′Λ̂(θ0
2)

−1FF−(L0Su + SuL′
0)F−′F′Λ̂(θ0

2)
−1G(ρ0)Λ̂(θ0

2)
−1FF−]

= −σ−4
0 T−1tr [(L0Su + SuL′

0)
′F−′F′Λ̂(θ0

2)
−1FF−(L0Su + SuL′

0)

× F−′F′Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1FF−]

= −σ2
0 T−1tr [T−2F′(L0Su + SuL′

0)
′F(T−2F′G(ρ0)F)−1T−2F′(L0Su + SuL′

0)F

× (T−2F′G(ρ0)F)−1] = −U1, (A117)

and it is not difficult to see that, U3 = U2 = −U1. Moreover,

F−′F′Λ̂(θ0
2)

−1 = F(F′F)−1F′(IT − FK0F′) = F((F′F)−1 − K0)F′

= σ2
0 T−2F(T−2F′G(ρ0)F)−1F′ = Λ̂(θ0

2)
−1FF−,

suggesting

U4 = σ−2
0 T−1C(ρ0)

′[F−′F′Λ̂(θ0
2)

−1 ⊗ F−′F′Λ̂(θ0
2)

−1]C(ρ0)

= σ−2
0 T−1C(ρ0)

′vec [F−′F′Λ̂(θ0
2)

−1(L0Su + SuL′
0)Λ̂(θ0

2)
−1FF−]

= σ2
0 T−1tr [T−2F′(L0Su + SuL′

0)
′F(T−2F′G(ρ0)F)−1T−2F′(L0Su + SuL′

0)F

× (T−2F′G(ρ0)F)−1] = U1, (A118)
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which is true also for U5, that is, U5 = U1.

It remains to consider U6. From JΓ0 = L0 and (C′ ⊗ A)vec B = vec(ABC),

(J ⊗ J)vec Sy = (J ⊗ J)(Γ0 ⊗ Γ0)vec Su = (L0 ⊗ L0)vec Su = vec (L0SuL′
0).

Also, Λ̂(θ0
2)

−1 = IT − F(F′F)−1F′ + σ2
0 T−2F(T−2F′G(ρ0)F)−1F′, which we can use to show

that

U6 = −2T−1[vec B(θ0
2)]

′(J ⊗ J)vec Sy

= −2T−1tr [(F−′F′Λ̂(θ0
2)

−1FF− − σ−2
0 F−′F′Λ̂(θ0

2)
−1G(ρ0)Λ̂(θ0

2)
−1FF− + Λ̂(θ2)

−1)

× L0SuL′
0]

= −2T−1tr [(IT − F(F′F)−1F′ + σ2
0 T−2F(T−2F′G(ρ0)F)−1F′)L0SuL′

0]

= −2tr (T−1L0SuL′
0) + 2tr [((T−1F′F)−1 − σ2

0 T−1(T−2F′G(ρ0)F)−1)T−2F′L0SuL′
0F]

= −2tr (T−1L0SuL′
0) + 2tr [(T−1F′F)−1T−2F′L0SuL′

0F] + Op(T−1).

Here

T−2F′L0SuL′
0F

=
1

NT2

N

∑
i=1

(F′L0Fλiλ
′
iF

′L′
0F + F′L0Fλiε

′
iL

′
0F + F′L0ε iλ

′
iF

′L′
0F + F′L0ε iε

′
iL

′
0F)

=
1

NT2

N

∑
i=1

F′L0Fλiλ
′
iF

′L′
0F + (NT)−1/2(T−1F′L0F)

1√
NT

N

∑
i=1

λiε
′
iL

′
0F

+
1√
NT

1√
NT

N

∑
i=1

F′L0ε iλ
′
i(T

−1F′L′
0F) +

1
T

1
NT

N

∑
i=1

F′L0ε iε
′
iL

′
0F

= T−2F′L0FSλF′L′
0F + Op((NT)−1/2) + Op(T−1), (A119)

and therefore

tr [(T−1F′F)−1T−2F′L0SuL′
0F]

= tr [(T−1F′F)−1T−2F′L0FSλF′L′
0F] + Op((NT)−1/2) + Op(T−1)

= tr (SλF′L′
0PFL0F) + Op((NT)−1/2) + Op(T−1).

For tr (T−1L0SuL′
0), we use that T−1/2ε′iL

′
0L0Fλi = T−1/2 ∑T

t=2 ε∗i,t−1F∗′
t−1λi, which is asymp-

totically normal as T → ∞, suggesting that (NT)−1/2 ∑N
i=1 ε′iL

′
0L0Fλi = Op(1) for any N,

including N → ∞, provided that T → ∞. But the same is true for (NT)−1/2 ∑N
i=1 tr [L0(ε iε

′
i −

σ2
0 IT)L′

0], because T−1/2tr [L0(ε iε
′
i − σ2

0 IT)L′
0] = T−1/2 ∑T

t=2[(ε
∗
i,t−1)

2 − σ2
0 (T − 1)−1tr (L0L′

0)]
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is asymptotically normal too. It follows that

tr (T−1L0SuL′
0)

=
1

NT

N

∑
i=1

[tr (L0Fλiλ
′
iF

′L′
0) + 2tr (L0Fλiε

′
iL

′
0) + tr (L0ε iε

′
iL

′
0)]

=
1
N

N

∑
i=1

tr (λiλ
′
iT

−1F′L′
0L0F) +

1√
NT

2√
NT

N

∑
i=1

ε′iL
′
0L0Fλi

+ σ2
0 tr (T−1L′

0L0) +
1√
NT

1√
NT

N

∑
i=1

tr [(ε iε
′
i − σ2

0 IT)L′
0L0]

= tr (SλT−1F′L′
0L0F) + σ2

0 tr (T−1L′
0L0) + Op((NT)−1/2), (A120)

from which the following result for U6 is obtained:

U6 = −2tr (T−1L0SuL′
0) + 2tr [(T−1F′F)−1T−2F′L0SuL′

0F] + Op(T−1)

= −2T−1tr (σ2
0 L′

0L0 + SλF′L′
0MFL0F) + Op(T−1) + Op((NT)−1/2). (A121)

Hence,

− 1
NT

∂2ℓc(θ0
2)

(∂ρ)2 = − 1
2σ2

0
(U1 + ... + U6) = − 1

2σ2
0
(U1 + U6) = − 1

2σ2
0

U6 + Op(T−1)

= T−1tr (L′
0L0 + σ−2

0 SλF′L′
0MFL0F) + Op(T−1) + Op((NT)−1/2)

= ω2
1 + Op(T−1) + Op((NT)−1/2). (A122)

Next, consider ∂2ℓc(θ0
2)/(∂σ2)2, which we write as

2σ4
0

NT
∂2ℓc(θ2)

(∂σ2)2 = P1 + ... + P5, (A123)

with

P1 = 1 − 2σ−2
0 T−1[vec B(θ0

2)]
′vec G(ρ0),

P2 = σ−4
0 T−1[vec G(ρ0)]

′[F−′F′Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1FF−]vec G(ρ0),

P3 = −σ−6
0 T−1[vec G(ρ0)]

′[F−′F′Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1FF−]

× vec G(ρ0),

P4 = −σ−6
0 T−1[vec G(ρ0)]

′[F−′F′Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1FF−]

× vec G(ρ0),

P5 = σ−4
0 T−1[vec G(ρ0)]

′[Λ̂(θ0
2)

−1FF− ⊗ Λ̂(θ0
2)

−1FF−]vec G(ρ0).

67



From Proof of Lemma 1,

T−1tr [Λ̂(θ0
2)

−1G(ρ0)] = tr [T−1G(ρ0)]− tr [(T−1F′F)−1T−2F′G(ρ0)F] + σ2
0 T−1tr I2

= σ2
0 + tr (SλT−1F′F)− tr (SλT−1F′F) + σ2

0 T−1tr I2 + Op(T−1)

= σ2
0 + Op(T−1),

leading to the following result for P1:

P1 = 1 − 2σ−2
0 T−1[vec B(θ0

2)]
′vec G(ρ0) = 1 − 2σ−2

0 T−1tr [B(θ0
2)G(ρ0)],

= 1 − 2σ−2
0 T−1tr [Λ̂(θ0

2)
−1G(ρ0)] = −1 + Op(T−1). (A124)

For P2, via F−′F′Λ̂(θ0
2)

−1FF− = σ2
0 T−2F(T−2F′G(ρ0)F)−1F′,

P2 = σ−4
0 T−1[vec G(ρ0)]

′[F−′F′Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1FF−]vec G(ρ0)

= σ−4
0 T−1[vec G(ρ0)]

′vec [F−′F′Λ̂(θ0
2)

−1FF−G(ρ0)F−′F′Λ̂(θ0
2)

−1FF−]

= σ−4
0 T−1tr [G(ρ0)F−′F′Λ̂(θ0

2)
−1FF−G(ρ0)F−′F′Λ̂(θ0

2)
−1FF−]

= T−1tr [G(ρ0)T−2F(T−2F′G(ρ0)F)−1F′G(ρ0)T−2F(T−2F′G(ρ0)F)−1F′]

= T−1tr I2, (A125)

whereas for P3,

P3 = −σ−6
0 T−1[vec G(ρ0)]

′[F−′F′Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1FF−]

× vec G(ρ0)

= −σ−6
0 T−1[vec G(ρ0)]

′[F−′F′Λ̂(θ0
2)

−1FF−G(ρ0)F−′F′Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1FF−]

= −T−1tr [G(ρ0)T−2F(T−2F′G(ρ0)F)−1F′G(ρ0)T−2F(T−2F′G(ρ0)F)−1F′]

= −T−1tr I2 = −P2. (A126)

We can similarly show that P4 = −P2 and P5 = P2. Therefore,

− 1
NT

∂2ℓc(θ0
2)

(∂σ2)2 = − 1
2σ4

0
(P1 + ... + P5) = − 1

2σ4
0

P1 + Op(T−1) =
1

2σ4
0
+ Op(T−1). (A127)

∂2ℓc(θ0
2)/(∂ρ∂σ2) satisfies

2σ4
0

NT
∂2ℓc(θ0

2)

∂ρ∂σ2 = R1 + ... + R5,
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where

R1 = −T−1[vec B(θ0
2)]

′C(ρ0),

R2 = σ−2
0 T−1C(ρ0)

′[F−′F′Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1FF−]vec G(ρ0),

R3 = −σ−4
0 T−1C(ρ0)

′[F−′F′Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1FF−]vec G(ρ0),

R4 = −σ−4
0 T−1C(ρ0)

′[F−′F′Λ̂(θ0
2)

−1FF− ⊗ F−′F′Λ̂(θ0
2)

−1G(ρ0)Λ̂(θ0
2)

−1FF−]vec G(ρ0),

R5 = σ−2
0 T−1C(ρ0)

′[Λ̂(θ0
2)

−1FF− ⊗ Λ̂(θ0
2)

−1FF−]vec G(ρ0).

As in ∂2ℓc(θ0
2)/(∂σ2)2, the first term in the expansion is also the dominant term. We therefore

focus on this. From C(ρ0) = vec (L0Su + SuL′
0),

R1 = −T−1[vec B(θ0
2)]

′C(ρ0) = −T−1tr [Λ̂(θ0
2)

−1(L0Su + SuL′
0)]

= −T−1tr [(IT − F(F′F)−1F′ + σ2
0 T−2F(T−2F′G(ρ0)F)−1F′)(L0Su + SuL′

0)]

= −2tr (T−1L0Su) + 2tr [(T−1F′F)−1T−2F′L0SuF]

− 2σ2
0 T−1tr [(T−2F′G(ρ0)F)−1T−2F′L0SuF]

= −2tr (T−1L0Su) + 2tr [(T−1F′F)−1T−2F′L0SuF] + Op(T−1).

Here

tr (T−1L0Su) =
1

NT

N

∑
i=1

[tr (λiλ
′
iF

′L0F) + tr (L0Fλiε
′
i) + tr (L0ε iλ

′
iF

′) + tr (L0ε iε
′
i)]

= tr (SλT−1F′L0F) + Op((NT)−1/2), (A128)

suggesting that, with T−2F′L0SuF = T−2F′L0FSλF′F + Op((NT)−1/2) + Op(T−1),

R1 = −2tr (T−1L0Su) + 2tr [(T−1F′F)−1T−2F′L0SuF] + Op(T−1)

= −2tr (SλT−1F′L0F) + 2tr (SλT−1F′L0F) + Op(T−1) + Op((NT)−1/2)

= Op(T−1) + Op((NT)−1/2). (A129)

The other terms are all of smaller order in magnitude than this. Therefore,

2σ4
0

NT
∂2ℓc(θ0

2)

∂ρ∂σ2 = Op(T−1) + Op((NT)−1/2), (A130)

as was to be shown. This completes the proof of the lemma. �

Proof of Theorem 1.
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In view of Lemmas C.1 and C.2, the proof of Theorem 1 follows by standard arguments (see,

for example, Amemiya, 1985, Chapter 4). It can be shown that the third-order derivative of

ℓc(θ0
2) is bounded. By using this and Taylor expansion of ℓc(θ2) about θ2 = θ0

2 ;

ℓc(θ2) = ℓc(θ
0
2) +

∂ℓc(θ0
2)

∂θ′2
(θ2 − θ0

2) +
1
2
(θ2 − θ0

2)
′ ∂

2ℓc(θ0
2)

∂θ2∂θ′2
(θ2 − θ0

2) + Op((NT)−1/2), (A131)

suggesting that

NT[ℓc(θ2)(ρ)− ℓc(θ
0
2)] =

√
NT

∂ℓc(θ0
2)

∂θ′2

√
NT(θ2 − θ0

2)

+
1
2

√
NT(θ2 − θ0

2)
′ ∂

2ℓc(θ0
2)

∂θ2∂θ′2

√
NT(θ2 − θ0

2) + Op((NT)−1/2).

θ̂2 is the minimizer of NT[ℓc(θ2)− ℓc(θ0
2)]. Thus, treating this as a function of

√
NT(θ2 − θ0

2),

we obtain the following first order condition:

√
NT

∂ℓc(θ0
2)

∂θ′2

√
NT(θ2 − θ0

2)

+
1
2

√
NT(θ2 − θ0

2)
′ ∂

2ℓc(θ0
2)

∂θ2∂θ′2

√
NT(θ2 − θ0

2) + Op((NT)−1/2) = 0,

implying

√
NT(θ̂2 − θ0

2) = −
(

1
NT

∂2ℓc(θ0
2)

∂θ2∂θ′2

)−1 1√
NT

∂ℓc(θ0
2)

∂θ′2
+ Op((NT)−1/2). (A132)

The required result is now a direct consequence of Lemmas C.1 and C.2. �

Proof of Lemma 2.

The proof of Lemma 2 follows from simple manipulations of Proof of Lemma 1. In particular,

since ρ0 = 1 affects the order of all quantities involving L0, all the results involving such

terms will have to be reevaluated.

We start by considering T−4F′GF (earlier T−2F′GF), which has the same expansion as in

(A62), repeated here for convenience;

T−4F′GF = T−4F′Γ−1SyΓ−1′F = T−4F′Γ−1Γ0SuΓ′
0Γ−1′F

= T−4F′Γ−1Γ0(σ
2
0 IT + FSλF′)Γ′

0Γ−1′F + T−3F′Γ−1Γ0
1

NT

N

∑
i=1

Fλiε
′
iΓ

′
0Γ−1′F

+ T−3F′Γ−1Γ0
1

NT

N

∑
i=1

ε iλ
′
iF

′Γ′
0Γ−1′F

+ T−3F′Γ−1Γ0
1

NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ′
0Γ−1′F.
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By using the known orders of the sample moments in F and L0,

T−4F′Γ−1Γ0(σ
2
0 IT + FSλF′)Γ′

0Γ−1′F

= σ2
0 T−4F′Γ−1Γ0Γ′

0Γ−1′F + T−4F′Γ−1Γ0FSλF′Γ′
0Γ−1′F

= T−2(T−1F′F)Sλ(T−1F′F) + T−1(ρ0 − ρ)T−1F′FSλT−2F′L′
0F

+ T−1(ρ0 − ρ)T−2F′L0FSλT−1F′F + (ρ0 − ρ)2T−2F′L0FSλT−2F′L′
0F + O(T−2).

Also,

T−3F′Γ−1Γ0F
1

NT

N

∑
i=1

λiε
′
iΓ

′
0Γ−1′F

= T−3F′[IT + (ρ0 − ρ)L0]F
1

NT

N

∑
i=1

λiε
′
i[IT + (ρ0 − ρ)L0]

′F

= N−1/2T−5/2(T−1F′F)
1√
NT

N

∑
i=1

λiε
′
iF

+ N−1/2T−3/2(ρ0 − ρ)(T−1F′F)
1√

NT3/2

N

∑
i=1

λiε
′
iL

′
0F

+ N−1/2T−3/2(ρ0 − ρ)(T−2F′L0F)
1√
NT

N

∑
i=1

λiε
′
iF

+ (NT)−1/2(ρ0 − ρ)2(T−2F′L0F)
1√

NT3/2

N

∑
i=1

λiε
′
iL

′
0F,

whose order is determined by the last term on the right-hand side. By using the fact that

ε′iL
′
0FF′L0ε j is a scalar we can show that the normalized sum in this term is Op(1);

E

∣∣∣∣∣
∣∣∣∣∣ 1√

NT3/2

N

∑
i=1

λiε
′
iL

′
0F

∣∣∣∣∣
∣∣∣∣∣
2


=
1

NT3

N

∑
i=1

N

∑
j=1

E[tr(λiε
′
iL

′
0FF′L0ε jλj)] =

1
NT3

N

∑
i=1

N

∑
j=1

E(ε′iL
′
0FF′L0ε j)λ

′
iλj

=
1

NT3

N

∑
i=1

N

∑
j=1

tr[F′L0E(ε jε
′
i)L′

0F]λ′
iλj = σ2

0
1

NT3

N

∑
i=1

tr(F′L0L′
0F)λ′

iλi

= σ2
0 tr(T−3F′L0L′

0F)tr(Sλ) ≤ C.

Hence,∣∣∣∣∣
∣∣∣∣∣T−3F′Γ−1Γ0F

1
NT

N

∑
i=1

λiε
′
iΓ

′
0Γ−1′F

∣∣∣∣∣
∣∣∣∣∣ = Op((NT)−1/2), (A133)
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Moreover,∣∣∣∣∣
∣∣∣∣∣T−4F′Γ−1Γ0

1
N

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ′
0Γ−1′F

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣T−4F′[IT + (ρ0 − ρ)L0]

1
N

N

∑
i=1

(ε iε
′
i − σ2

0 IT)[IT + (ρ0 − ρ)L0]
′F

∣∣∣∣∣
∣∣∣∣∣

≤ N−1/2T−3

∣∣∣∣∣
∣∣∣∣∣F′ 1√

NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)F

∣∣∣∣∣
∣∣∣∣∣

+ 2N−1/2T−5/2|ρ0 − ρ|
∣∣∣∣∣
∣∣∣∣∣F′ 1√

NT3/2

N

∑
i=1

(ε iε
′
i − σ2

0 IT)L′
0F

∣∣∣∣∣
∣∣∣∣∣

+ N−1/2T−1(ρ0 − ρ)2

∣∣∣∣∣
∣∣∣∣∣F′L0

1√
NT3

N

∑
i=1

(ε iε
′
i − σ2

0 IT)L′
0F

∣∣∣∣∣
∣∣∣∣∣

= Op(N−1/2T−1),

which holds because each of the three terms are Op(1), as follows from using the same steps

as in Proof of Lemma 1.

Insertion of the above results into the expression for T−4F′GF yields

T−4F′GF = T−2(T−1F′F)Sλ(T−1F′F) + T−1(ρ0 − ρ)T−1F′FSλT−2F′L′
0F

+ T−1(ρ0 − ρ)T−2F′L0FSλT−1F′F + (ρ0 − ρ)2T−2F′L0FSλT−2F′L′
0F

+ O(T−2) + O((NT)−1/2), (A134)

which in turn implies

T−3tr (GFKF′)

= tr [T−4F′GF(T−1F′F)−1] + O(T−3)

= T−2tr (T−1F′FSλT−1F′F) + T−1(ρ0 − ρ)tr (T−1F′FSλT−2F′L′
0F)

+ T−1(ρ0 − ρ)tr (T−2F′L0FSλT−1F′F) + (ρ0 − ρ)2tr (T−2F′L0FSλT−2F′L′
0F)

+ O(T−2) + O((NT)−1/2). (A135)

For tr G, by the same expansion as in (A73), and then the above results to evaluate the
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order of the three last terms,

T−3tr G = T−3tr (Γ−1SyΓ−1′)

= T−3tr [Γ−1Γ0(σ
2
0 IT + FSλF′)Γ′

0Γ−1′] + O((NT)−1/2)

= T−2σ2
0 [1 + (ρ0 − ρ)2tr (T−1L0L′

0)] + T−2tr (T−1F′FSλ)

+ 2T−1(ρ0 − ρ)tr (T−2F′L0FSλ) + (ρ0 − ρ)2tr (T−3F′L′
0L0FSλ)

+ O((NT)−1/2). (A136)

Note that the three first terms in this expression are actually O(T−1). The order of T−1 log(|Λ̂|)

is the same as when |ρ0| < 1 (see (A75)). By using this, the above results regarding T−3tr G

and T−3tr (GFKF′), and the same algebra as in (A76),

T−3Qc = T−2 log(σ2) + T−3 log(|Λ̂|) + σ−2T−3tr G − σ−2T−3tr (GFKF′)

= σ−2T−3tr G − σ−2T−3tr (GFKF′) + Op(T−2)

= T−2[log(σ2) + σ−2σ2
0 + σ−2σ2

0 (ρ0 − ρ)2ω2
1]

+ Op((NT)−1/2) + Op(T−2), (A137)

which in turn implies

N−1T−3ℓc = − 1
2T3 Qc

= − 1
2T2

(
log(σ2) +

σ2
0

σ2

)
− σ2

0
2σ2 (ρ0 − ρ)2T−2ω2

1

+ Op(T−2) + Op((NT)−1/2), (A138)

where T−2ω2
1 ≥ 0. �

Lemma C.3. Under C1, ρ0 = 1, and Assumptions EPS, F and LAM, as T → ∞ for any N,

including N → ∞, provided that
√

NT−3/2 → 0,

H−1
3/2

∂ℓc(θ0
2)

∂θ2
∼ N

(
02×1,

[
T−2ω2

1 0
0 (κ0−1)

4σ4
0

])
.

Proof of Lemma C.3.

This proof is almost identical to that of Lemma C.1, and hence only essential details are

given. All variable definitions are the same as in Proof of Lemma C.1. Because of the change

of normalization of ∂ℓc(θ0
2)/∂ρ from (NT)−1/2 to N−1/2T−3/2 the relevant quantity is no
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longer Q but T−1Q. Consider T−1Q1. As in Proof of Lemma C.1, the mean of this quantity

is zero. For the variance, from Proof of Lemma C.1,

E[(T−1Q2
12)] = σ2

0 tr [SλT−3F′(L′
0L0 + 2L0L0 + L0L′

0)F] = T−2Σ12,

and therefore

T−1Q12 ∼ N(0, T−2Σ12), (A139)

which holds for T → ∞ and any N, including N → ∞, as in Lemma C.1. T−1/2Q13 is mean

zero too, and with variance

T−2E[(ε′iL0ε i)
2] = σ4

0 T−2tr (L0L′
0) = T−1Σ13 ≤ C,

suggesting that T−1/2Q13 = Op(1). Hence,

T−1(Q1 − Q11) = T−1(Q12 + Q13) = T−1Q12 + Op(T−1/2) ∼ N(0, T−2Σ12). (A140)

T−1Q2 requires more work. TK0 is the same as before; TK0 = (T−1F′F)−1 + O(T−1).

Therefore, all remainder terms that are driven by this result have the same order as in Proof

of Lemma C.1. This implies

T−1Q21 = T−1Q11 −
√

NT−3/2σ2
0 tr (PFL0) + O(

√
NT−5/2) + Op(T−2). (A141)

Consider T−1Q22, whose variance is given by

T−3E[(ε′iFK0F′L0Fλi + λ′
iF

′FK0F′L0ε i)
2]

= σ2
0 λiT−2F′L′

0F(TK0)T−1F′F(TK0)T−2F′L0Fλi

+ 2σ2
0 λ′

iT
−1F′F(TK0)T−2F′L0F(TK0)T−2F′L0Fλi

+ σ2
0 λ′

iT
−1F′F(TK0)T−3F′L0L′

0F(TK0)T−1F′Fλi

= σ2
0 λ′

iT
−2F′L′

0F(T−1F′F)−1T−2F′L0Fλi + 2σ2
0 λ′

iT
−2F′L0F(T−1F′F)−1T−2F′L0Fλi

+ σ2
0 λ′

iT
−3F′L0L′

0Fλi + O(T−1).

Hence, noting that T−2Σ22 = σ2
0 tr [SλT−3F′(L′

0PFL0 + 2L0PFL0 + L0L′
0)F], we have

T−1Q22 =
1√

NT3/2

N

∑
i=1

(ε′iFK0F′L0Fλi + λ′
iF

′FK0F′L0ε i) ∼ N(0, T−2Σ22) (A142)

as N, T → ∞. The reason for the large-N requirement here is that L0ε i is a random walk,

suggesting a nonstandard limiting distribution for T−1Q22 as T → ∞ with N fixed.

74



T−1Q23 can be expanded in the same was as in Proof of Lemma C.1;

T−1Q23 =
1√

NT3/2

N

∑
i=1

tr (K0F′L0ε iε
′
iF)

= σ2
0

√
NT−3/2tr (K0F′L0F) +

1√
NT3/2

N

∑
i=1

tr [K0(F′L0ε iε
′
iF − σ2

0 F′L0F)]

=
√

NT−3/2σ2
0 tr [(T−1F′F)−1T−1F′L0F]

+ T−1/2tr

(
TK0

1√
NT2

N

∑
i=1

(F′L0ε iε
′
iF − σ2

0 F′L0F)

)
+ Op(

√
NT−3/2)

=
√

NT−3/2σ2
0 tr (PFL0) + Op(T−1/2) + Op(

√
NT−3/2). (A143)

Hence,

T−1(Q21 + Q23)

= T−1Q11 −
√

NT−3/2σ2
0 tr (PFL0) +

√
NT−3/2σ2

0 tr (PFL0) + Op(T−1/2) + Op(
√

NT−3/2)

= T−1Q11 + Op(T−1/2) + Op(
√

NT−3/2), (A144)

which in turn implies, provided that
√

NT−3/2 → 0 as N, T → ∞,

T−1Q2 = T−1(Q21 + Q22 + Q23) = T−1(Q11 + Q22) + Op(T−1/2) + Op(
√

NT−3/2)

∼ T−1Q11 + N(0, T−2Σ22). (A145)

Except for the rescaling by T the correlation between T−1Q1 and T−1Q2 is the same as in

Proof of Lemma C.1, that is,

T−2E[(Q1 − Q11)(Q2 − Q11)]

= σ2
0 tr [SλT−3F′(L′

0PFL0 + L0PFL0 + L′
0L′

0PF + L0L′
0PF)F] + o(1), (A146)

The above results, together with the same algebra used in Proof of Lemma C.1,

T−2E[(Q1 − Q2)
2]

= T−2E[((Q1 − Q11)− (Q2 − Q11))
2]

= T−2E[(Q1 − Q11)
2] + T−2E[(Q2 − Q11)

2]− 2T−2E[(Q1 − Q11)(Q2 − Q11)]

= T−2Σ12 + T−2Σ13 + T−2Σ22 − 2T−2E[(Q1 − Q11)(Q2 − Q11)] + o(1)

= σ4
0 T−2ω2

1 + o(1), (A147)
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which is just T−2 times the result obtained in Lemma C.1. Note also that the effect of T−2Σ13

in T−2ω2
1 is O(T−1). We consequently obtain

T−1(Q1 − Q2) = T−1[Q11 + Q12 + Q13 − (Q11 + Q22)] + Op(T−1/2) + Op(
√

NT−3/2)

= T−1(Q12 + Q13 − Q22) + Op(T−1/2) + Op(
√

NT−3/2)

∼ N(0, σ4
0 T−2ω2

1) (A148)

as N, T → ∞ with
√

NT−3/2 → 0. Insertion into N−1/2T−3/2∂ℓc(θ0
2)/∂ρ gives

1√
NT3/2

∂ℓc(θ0
2)

∂ρ
= σ−2

0 T−1(Q1 − Q2) ∼ N(0, T−2ω2
1). (A149)

This establishes the desired result for ∂ℓc(θ0
2)/∂ρ.

The result for ∂ℓc(θ0
2)/∂ρ is a consequence of the fact that ∂ℓc(θ0

2)/∂ρ does not depend on

L0. Moreover, by using exactly the same calculations as in Proof of Lemma C.1 we can show

that the expected value of the normalized cross-derivative is zero. �

Lemma C.4. Under C1, ρ0 = 1, and Assumptions EPS, F and LAM, as T → ∞ for any N,

including N → ∞,

−H−1
3/2

∂2ℓc(θ0
2)

∂θ2(∂θ2)′
H−1

3/2 =

[
T−2ω2

1 0
0 1

2σ2
0

]
+ Op(T−1) + Op((NT)−1/2).

Proof of Lemma C.4.

This proof is analogous to that of Lemma C.2. The only change is the rescaling by T, the

effect of which can be traced out following the steps as in Proof of Lemma C.3. �

Proof of Theorem 2.

In view of Lemmas C.3 and C.4 the desired result follows by the same line of argumentation

used in Proof of Theorem 1. �

Proof of Lemma 3.

From the first-order condition with respect to Sλ we obtain the following slightly modi-

fied expression for Λ̂(θ2): Λ̂(θ2) = IT + σ−2Γ(ρ)−1FŜλ(θ2)F′Γ(ρ)−1′. Letting K = K(θ2) =

(σ2Ŝλ(θ2)−1 + F′Γ(ρ)−1′Γ(ρ)−1F)−1, this implies

Λ̂−1 = IT − Γ−1F(σ2Ŝ−1
λ + F′Γ−1′Γ−1F)−1F′Γ−1′ = IT − Γ−1FKF′Γ−1′,
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and therefore

Qc = T log(σ2) + log(|Λ̂|) + σ−2tr G − σ−2tr (GΓ−1FKF′Γ−1′),

where G = G(ρ) = Γ(ρ)−1SyΓ(ρ)−1′ is as before.

Consider σ−2tr (GΓ−1FKF′Γ−1′). As in Proof of Lemma 1,

Ŝλ = σ2(Γ−1F)−(σ−2G − IT)(Γ−1F)−′

= (F′Γ−1′Γ−1F)−1F′Γ−1′GΓ−1F(F′Γ−1′Γ−1F)−1 − σ2(F′Γ−1′Γ−1F)−1, (A150)

which in turn implies

K = (σ2Ŝ−1
λ + F′Γ−1′Γ−1F)−1 = (F′Γ−1′Γ−1F)−1 − σ2(F′Γ−1′GΓ−1F)−1, (A151)

suggesting that

tr (GΓ−1FKF′Γ−1′) = tr (F′Γ−1′GΓ−1FK)

= tr [F′Γ−1′GΓ−1F((F′Γ−1′Γ−1F)−1 − σ2(F′Γ−1′GΓ−1F)−1)]

= tr [F′Γ−1′GΓ−1F(F′Γ−1′Γ−1F)−1]− σ2tr Im

= tr [F′Γ−1′GΓ−1F(F′Γ−1′Γ−1F)−1]− σ2m. (A152)

Consider F′Γ−1′GΓ−1F = F′Γ−1′Γ−1SyΓ−1′Γ−1F, where Sy can be expanded in the usual

fashion as

Sy = Γ0SuΓ′
0 = Γ0

1
N

N

∑
i=1

(Γ−1
0 Fλi + ε i)(Γ−1

0 Fλi + ε i)
′Γ′

0

= σ2
0 Γ0Γ′

0 + FSλF′ +
1
N

N

∑
i=1

Fλiε
′
iΓ

′
0 + Γ0

1
N

N

∑
i=1

ε iλ
′
iF

′

+ Γ0
1
N

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ′
0. (A153)

Hence,

T−3F′Γ−1′GΓ−1F

= T−3F′Γ−1′Γ−1SyΓ−1′Γ−1F

= σ2
0 T−3F′Γ−1′Γ−1Γ0Γ′

0Γ−1′Γ−1F + T−3F′Γ−1′Γ−1FSλF′Γ−1′Γ−1F

+ T−3F′Γ−1′Γ−1 1
N

N

∑
i=1

Fλiε
′
iΓ

′
0Γ−1′Γ−1F + T−3F′Γ−1′Γ−1Γ0

1
N

N

∑
i=1

ε iλ
′
iF

′Γ−1′Γ−1F

+ T−3F′Γ−1′Γ−1Γ0
1
N

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ′
0Γ−1′Γ−1F, (A154)
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where

T−3F′Γ−1′Γ−1Γ0Γ′
0Γ−1′Γ−1F

= T−3F′Γ−1′[IT + (ρ0 − ρ)L0][IT + (ρ0 − ρ)L0]
′Γ−1F

= T−3F′Γ−1′Γ−1F + (ρ0 − ρ)T−3F′Γ−1′(L0 + L′
0)Γ

−1F + (ρ0 − ρ)2T−3F′Γ−1′L0L′
0Γ−1F.

Consider the T-rowed matrix A = (A1, ..., AT)
′. If ρ = ρ0 = 1, Γ−1A = (A1, ∆A2..., ∆AT)

′,

whereas if ρ = ρ0 = 0, then Γ−1A = A. This suggests that the (norm of) above sample

moments are minimized for ρ = ρ0 = 1 and maximized for ρ = 0, in which case the orders

are the same as in Proof of Lemma 2. Hence, ||T−1F′Γ−1′Γ−1F||, ||T−2F′Γ−1′(L0 + L′
0)Γ

−1F||

and ||T−3F′Γ−1′L0L′
0Γ−1F|| are all O(1), suggesting that

T−3F′Γ−1′Γ−1Γ0Γ′
0Γ−1′Γ−1F = (ρ0 − ρ)2T−3F′Γ−1′L0L′

0Γ−1F + O(T−1), (A155)

and, by the same argument,

||T−3F′Γ−1′Γ−1FSλF′Γ−1′Γ−1F|| ≤ T−1||T−1F′Γ−1′Γ−1F||2||Sλ|| = O(T−1). (A156)

Setting again ρ = 0, we can also show that∣∣∣∣∣
∣∣∣∣∣T−3F′Γ−1′Γ−1F

1
N

N

∑
i=1

λiε
′
iΓ

′
0Γ−1′Γ−1F

∣∣∣∣∣
∣∣∣∣∣

≤ ||T−1F′Γ−1′Γ−1F||
∣∣∣∣∣
∣∣∣∣∣ 1

NT2

N

∑
i=1

λiε
′
i[IT + (ρ0 − ρ)L0]

′Γ−1F

∣∣∣∣∣
∣∣∣∣∣

≤ N−1/2T−3/2||T−1F′Γ−1′Γ−1F||
∣∣∣∣∣
∣∣∣∣∣ 1√

NT

N

∑
i=1

λiε
′
iΓ

−1F

∣∣∣∣∣
∣∣∣∣∣

+ (NT)−1/2|ρ0 − ρ|||T−1F′Γ−1′Γ−1F||
∣∣∣∣∣
∣∣∣∣∣ 1√

NT3/2

N

∑
i=1

λiε
′
iL

′
0Γ−1F

∣∣∣∣∣
∣∣∣∣∣

= Op((NT)−1/2), (A157)
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and ∣∣∣∣∣
∣∣∣∣∣T−3F′Γ−1′Γ−1Γ0

1
NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ′
0Γ−1′Γ−1F

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣T−3F′Γ−1′[IT + (ρ0 − ρ)L0]

1
N

N

∑
i=1

(ε iε
′
i − σ2

0 IT)[IT + (ρ0 − ρ)L0]
′Γ−1F

∣∣∣∣∣
∣∣∣∣∣

≤ N−1/2T−2

∣∣∣∣∣
∣∣∣∣∣F′Γ−1′ 1√

NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ−1F

∣∣∣∣∣
∣∣∣∣∣

+ 2N−1/2T−3/2|ρ0 − ρ|
∣∣∣∣∣
∣∣∣∣∣F′Γ−1′ 1√

NT3/2

N

∑
i=1

(ε iε
′
i − σ2

0 IT)L′
0Γ−1F

∣∣∣∣∣
∣∣∣∣∣

+ N−1/2|ρ0 − ρ|2
∣∣∣∣∣
∣∣∣∣∣F′Γ−1′L0

1√
NT3

N

∑
i=1

(ε iε
′
i − σ2

0 IT)L′
0Γ−1F

∣∣∣∣∣
∣∣∣∣∣ = Op(N−1/2). (A158)

It follows that

T−3F′Γ−1′GΓ−1F = σ2
0 (ρ0 − ρ)2T−3F′Γ−1′L0L′

0Γ−1F + O(T−1) + Op(N−1/2), (A159)

which can be substituted back into tr (GΓ−1FKF′Γ−1′), giving

T−2tr (GΓ−1FKF′Γ−1′)

= tr [T−3F′Γ−1′GΓ−1F(T−1F′Γ−1′Γ−1F)−1]− σ2T−2m

= σ2
0 (ρ0 − ρ)2tr [T−3F′Γ−1′L0L′

0Γ−1F(T−1F′Γ−1′Γ−1F)−1] + O(T−1) + Op(N−1/2).(A160)

Next, consider tr G. Since T−2tr (Γ−1Γ0Γ′
0Γ−1′) = (ρ0 − ρ)2T−2tr (L0L′

0) + O(T−1),

T−2tr G = T−2tr (Γ−1SyΓ−1′)

= T−2σ2
0 tr (Γ−1Γ0Γ′

0Γ−1′) + T−1tr (T−1F′Γ−1′Γ−1FSλ)

+ 2(NT)−1/2tr

(
1√

NT3/2

N

∑
i=1

Γ−1Fλiε
′
iΓ

′
0Γ−1′

)

+ N−1/2tr

(
1√
NT2

N

∑
i=1

Γ−1Γ0(ε iε
′
i − σ2

0 IT)Γ′
0Γ−1′

)
= σ2

0 (ρ0 − ρ)2T−2tr (L0L′
0) + Op(T−1)

+ Op(N−1/2). (A161)
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Hence, by adding the results,

T−2Qc

= T−1 log(σ2) + T−2 log(|Λ̂|) + σ−2T−2tr G − σ−2T−2tr (GΓ−1FKF′Γ−1′)

= σ−2T−2tr G − σ−2T−2tr (F′Γ−1′GΓ−1FK) + Op(T−1)

= σ−2σ2
0 (ρ0 − ρ)2T−2tr (L0L′

0)

− σ−2σ2
0 (ρ0 − ρ)2tr [T−3F′Γ−1′L0L′

0Γ−1F(T−1F′Γ−1′Γ−1F)−1] + Op(T−1) + Op(N−1/2)

= σ−2σ2
0 (ρ0 − ρ)2T−2tr (L′

0MΓ−1FL0) + Op(T−1) + Op(N−1/2),

with an obvious definition of MΓ−1F. In particular, note how for any T × m matrix A =

(A1, ..., AT)
′,

L′
0Γ−1 A = L′

0


A′

1
(∆A2)′

...
(∆AT)

′

 =


A′

T − A′
1

...
A′

T − A′
T−1

0′m×1

 = 1T A′
T − A.

Hence, since ||T−1(1T F′
T − F)′(1T F′

T − F)|| ≤ 2||T−1FT1′T1T F′
T|| + 2||T−1F′F|| = O(1), we

can show that

T−2tr (L′
0MΓ−1FL0)

= T−2tr (L0L′
0)− T−2tr [L′

0Γ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′L0]

= T−2tr (L0L′
0)− T−2tr [T−1(1T F′

T − F)′(1T F′
T − F)(T−1F′Γ−1′Γ−1F)−1]

= T−2tr (L0L′
0) + O(T−2)

It follows that

T−2Qc = σ−2σ2
0 (ρ0 − ρ)2T−2tr (L0L′

0) + Op(T−1) + Op(N−1/2),

which in turn implies

N−1T−2ℓc = − 1
2T2 Qc = − σ2

0
2σ2 (ρ0 − ρ)2T−2tr (L0L′

0) + Op(N−1/2) + Op(T−1), (A162)

as was to be shown. �

Lemma C.5. Under C2, ρ0 = 1, and Assumptions EPS, F and LAM, as N, T → ∞ with
√

NT−1 → 0,

H−1
1

∂ℓc(θ0
2)

∂θ2
∼ N

(
02×1,

[
T−1ω2

2 0
0 (κ0−1)

4σ4
0

])
.
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Proof of Lemma C.5.

In this proof we set θ2 = θ0
2 . Therefore, to simplify notation, functions such as Γ(ρ0) and

C(θ0
2) will be written Γ and C, respectively. Analogous to Proof of Lemma C.1 and using the

results provided in Appendix B, we may write

2σ2
0√

NT
∂ℓc

∂ρ
=

√
NT−1tr (B′

2c − B′
1c0), (A163)

where

B1 = Λ̂−1,

B2 = σ−2
0 Λ̂−1GΛ̂−1 − Λ̂−1,

c = −PΓ−1F(c0 + c1 + c2)PΓ−1F + c3,

c0 = −(L0Su + SuL′
0),

c1 = (Su − σ2
0 IT)PΓ−1FL′

0 − (Su − σ2
0 IT)MΓ−1FL0,

c2 = L0PΓ−1F(Su − σ2
0 IT)− L′

0MΓ−1F(Su − σ2
0 IT),

c3 = L0PΓ−1F(Su − σ2
0 IT)PΓ−1F + PΓ−1F(Su − σ2

0 IT)PΓ−1FL′
0.

where MA = IT − A(A′A)−1 A′ = IT − PA for any T-rowed matrix A, G = Γ−1SyΓ−1′,

Λ̂ = IT + σ−2
0 Γ−1FŜλF′Γ−1′ and Ŝλ = σ2

0 (Γ
−1F)−(σ−2

0 G − IT)(Γ−1F)−′. Here c1, ..., c3 are as

in Appendix B with θ2 = θ0
2 imposed, which implies JΓ = L0 and G = Γ−1SyΓ−1′ = Su.

Consider −
√

NT−1tr (B′
1c0), the second term on the right-hand side of (A163). Since

B1 = Λ̂−1 = IT − Γ−1FKF′Γ−1′ (see Proof of Lemma 1) and c0 = −(L0Su + SuL′
0) are both

symmetric,

−
√

NT−1tr (B′
1c0) =

√
NT−1tr [Λ̂−1(L0Su + SuL′

0)] = 2
√

NT−1tr (Λ̂−1L0Su)

= 2
√

NT−1tr [(IT − Γ−1FKF′Γ−1′)L0Su]

= 2
√

NT−1tr (L0Su − KF′Γ−1′L0SuΓ−1F)

= 2T−1/2(Q1 − Q2), (A164)

where Q1 is the same as in Proof of Lemma C.1. The only difference is that F in Q11, Q12 and

Q13 is premultiplied by Γ−1. The asymptotic distribution of T−1/2Q1 under ρ0 = 1 can be

obtained by using exactly the same steps as in Proof of Lemma 2, and can be shown to be

T−1/2(Q1 − Q11) ∼ N(0, T−1(Σ12 + Σ13)), (A165)
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where

Q11 =
1√
NT

N

∑
i=1

λ′
iF

′Γ−1′L0Γ−1Fλi,

Σ13 = σ4
0 T−1tr (L0L′

0),

Σ12 = σ2
0 tr [SλT−1F′Γ−1′(L′

0L0 + 2L0L0 + L0L′
0)Γ

−1F].

This result, which requires N, T → ∞, is similar to the one given in Proof of Lemma C.4,

except that now the effect of Q13 is no longer negligible.

The analysis of Q2 differs from before. Note in particular how

T−1/2Q2 =
√

NT−1tr (KF′Γ−1′L0SuΓ−1F)

=
1√
NT

N

∑
i=1

[tr (λ′
iF

′Γ−1′Γ−1FKF′Γ−1′L0Γ−1Fλi) + tr (ε′iΓ
−1FKF′Γ−1′L0Γ−1Fλi)

+ tr (λ′
iF

′Γ−1′Γ−1FKF′Γ−1′L0ε i) + tr (KF′Γ−1′L0ε iε
′
iΓ

−1F)]

= T−1/2(Q21 + Q22 + Q23), (A166)

with

Q21 =
1√
NT

N

∑
i=1

λ′
iF

′Γ−1′Γ−1FKF′Γ−1′L0Γ−1Fλi,

Q22 =
1√
NT

N

∑
i=1

(ε′iΓ
−1FKF′Γ−1′L0Γ−1Fλi + λ′

iF
′Γ−1′Γ−1FKF′Γ−1′L0ε i),

Q23 =
1√
NT

N

∑
i=1

tr (KF′Γ−1′L0ε iε
′
iΓ

−1F),

which are the same as in Proof of Lemma C.1, except for the premultiplication of F by Γ−1.

From Proof of Lemma 3, under ρ = ρ0, ||T−3F′Γ−1′GΓ−1F|| = O(T−1) + Op(N−1/2), and

therefore, by Taylor expanding the inverse,

TK = (T−1F′Γ−1′Γ−1F)−1 − σ2
0 T−2(T−3F′Γ−1′GΓ−1F)−1

= (T−1F′Γ−1′Γ−1F)−1 + O(T−3) + Op(N−1/2T−2). (A167)

Substitution into the expression for Q21 yields

T−1/2Q21 =
1√
N

N

∑
i=1

λ′
iT

−1F′Γ−1′Γ−1F(TK)T−1F′Γ−1′L0Γ−1Fλi

= Q11 + O(
√

NT−3) + Op(T−2). (A168)

The last equality makes use of the fact that L0Γ−1 = J, and therefore T−1F′Γ−1′L0Γ−1F =

T−1F′Γ−1′ JF = T−1 ∑T
t=2 ∆FtF′

t−1 = O(1).
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The analysis of Q22 is similar to that in Proof of Lemma C.1, as is the end result;

T−1/2Q22 ∼ N(0, T−1Σ22),

where

Σ22 = σ2
0 tr [SλT−1F′Γ−1′(L′

0PΓ−1FL0 + 2L0PΓ−1FL0 + L0L′
0)Γ

−1F],

which requires T → ∞ with N fixed or N → ∞.

For Q23,

T−1/2Q23 =
1√
NT

N

∑
i=1

tr (KF′Γ−1′L0ε iε
′
iΓ

−1F)

= σ2
0

√
NT−1/2tr (KF′Γ−1′L0Γ−1F)

+
1√
NT

N

∑
i=1

tr [K(F′Γ−1′L0ε iε
′
iΓ

−1F − σ2
0 F′Γ−1′L0Γ−1F)]

=
√

NT−1σ2
0 tr [(T−1F′Γ−1′Γ−1F)−1T−1F′Γ−1′L0Γ−1F]

+ T−1/2tr

(
TK

1√
NT3/2

N

∑
i=1

(F′Γ−1′L0ε iε
′
iΓ

−1F − σ2
0 F′Γ−1′L0Γ−1F)

)
+ Op(

√
NT−4) + Op(T−3) = Op(

√
NT−1) + Op(T−1/2), (A169)

which is op(1), provided that
√

NT−1 = o(1). Hence, if we assume that T → ∞ with N fixed

or N → ∞ such that
√

NT−1 = o(1), then

Q2 = Q21 + Q22 + Q23 = Q11 + Q22 + Op(T−1/2) + Op(
√

NT−1)

∼ Q11 + N(0, Σ22). (A170)

The correlation between T−1/2Q1 and T−1/2Q2 is the same as in Proof of Lemma C.1,

with F replaced by Γ−1F;

T−1E[(Q1 − Q11)(Q2 − Q11)]

= σ2
0 tr [SλT−2F′Γ−1′(L′

0PΓ−1FL0 + L0PΓ−1FL0 + L′
0L′

0PΓ−1F + L0L′
0PΓ−1F)Γ

−1F]

+ o(1), (A171)

which we can use to show that

T−1E[(Q1 − Q2)
2] = T−2tr (σ4

0 L0L′
0 + σ2

0 SλF′Γ−1′L′
0MΓ−1FL0Γ−1F) + o(1)

= σ4
0 T−1ω2

2 + o(1). (A172)
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where ω2
2 = T−1tr (L0L′

0 + σ−2
0 SλF′Γ−1′L′

0MΓ−1FL0Γ−1F). Hence,

−1
2

√
NT−1tr (B′

1c0) = T−1/2(Q1 − Q2) ∼ N(0, σ4
0 T−1ω2

2), (A173)

as N, T → ∞ with
√

NT−1 = o(1).

Let us now consider
√

NT−1tr (B′
2c), the first term in (A163). From Λ̂−1 = IT −Γ−1FKF′Γ−1′,

K = (F′Γ−1′Γ−1F)−1 − σ2
0 (F′Γ−1′GΓ−1F)−1, and the idempotency of PΓ−1F,

PΓ−1FΛ̂−1GΛ̂−1PΓ−1F

= PΓ−1F(IT − Γ−1FKF′Γ−1′)G(IT − Γ−1FKF′Γ−1′)PΓ−1F

= PΓ−1FGPΓ−1F − σ−2
0 PΓ−1FGΓ−1FKF′Γ−1′PΓ−1F

− PΓ−1FΓ−1FKF′Γ−1′GPΓ−1F + σ−2
0 PΓ−1FΓ−1FKF′Γ−1′GΓ−1FKF′Γ−1′PΓ−1F

= PΓ−1FGPΓ−1F − PΓ−1FGΓ−1FKF′Γ−1′PΓ−1F

− PΓ−1FΓ−1FKF′Γ−1′GPΓ−1F + PΓ−1FΓ−1FKF′Γ−1′GΓ−1FKF′Γ−1′PΓ−1F

= PΓ−1FGPΓ−1F − PΓ−1FGΓ−1F[(F′Γ−1′Γ−1F)−1 − σ2
0 (F′Γ−1′GΓ−1F)−1]F′Γ−1′PΓ−1F

− PΓ−1FΓ−1F[(F′Γ−1′Γ−1F)−1 − σ2
0 (F′Γ−1′GΓ−1F)−1]F′Γ−1′GPΓ−1F

+ PΓ−1FΓ−1F[(F′Γ−1′Γ−1F)−1 − σ2
0 (F′Γ−1′GΓ−1F)−1]F′Γ−1′G

× Γ−1F[(F′Γ−1′Γ−1F)−1 − σ2
0 (F′Γ−1′GΓ−1F)−1]F′Γ−1′PΓ−1F

= PΓ−1FGPΓ−1F − PΓ−1FGΓ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′PΓ−1F

+ σ2
0 PΓ−1FGΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′PΓ−1F

− PΓ−1FΓ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′GPΓ−1F

+ σ2
0 PΓ−1FΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′GPΓ−1F

+ PΓ−1FΓ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′GΓ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′PΓ−1F

− σ2
0 PΓ−1FΓ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′GΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′PΓ−1F

− σ2
0 PΓ−1FΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′GΓ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′PΓ−1F

+ σ4
0 PΓ−1FΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′GΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′PΓ−1F

= σ4
0 PΓ−1FΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′PΓ−1F,
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and

PΓ−1FΛ̂−1PΓ−1F

= PΓ−1F(IT − Γ−1FKF′Γ−1′)PΓ−1F

= PΓ−1FPΓ−1F − PΓ−1FΓ−1F[(F′Γ−1′Γ−1F)−1 − σ2
0 (F′Γ−1′GΓ−1F)−1]F′Γ−1′PΓ−1F

= σ2
0 PΓ−1FΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′PΓ−1F.

We similarly have

PΓ−1FΛ̂−1GΛ̂−1L0PΓ−1F

= PΓ−1FGL0PΓ−1F − PΓ−1FGΓ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′L0PΓ−1F

+ σ2
0 PΓ−1FGΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′L0PΓ−1F

− PΓ−1FΓ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′GL0PΓ−1F

+ σ2
0 PΓ−1FΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′GL0PΓ−1F

+ PΓ−1FΓ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′GΓ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′L0PΓ−1F

− σ2
0 PΓ−1FΓ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′GΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′L0PΓ−1F

− σ2
0 PΓ−1FΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′GΓ−1F(F′Γ−1′Γ−1F)−1F′Γ−1′L0PΓ−1F

+ σ4
0 PΓ−1FΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′GΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′L0PΓ−1F

= σ2PΓ−1F[Γ
−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′G − IT]L0PΓ−1F

+ σ4
0 PΓ−1FΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′L0PΓ−1F,

and

PΓ−1FΛ̂−1L0PΓ−1F = σ2
0 PΓ−1FΓ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′L0PΓ−1F.
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It follows that

tr (B′
2c)

= tr [(σ−2
0 Λ̂−1GΛ̂−1 − Λ̂−1)c3]

− tr [PΓ−1F(σ
−2
0 Λ̂−1GΛ̂−1 − Λ̂−1)PΓ−1F(c0 + c1 + c2)]

= tr [(σ−2
0 Λ̂−1GΛ̂−1 − Λ̂−1)c3]

= tr [(σ−2
0 Λ̂−1GΛ̂−1 − Λ̂−1)(L0PΓ−1F(Su − σ2

0 IT)PΓ−1F + PΓ−1F(Su − σ2
0 IT)PΓ−1FL′

0)]

= 2tr [PΓ−1F(σ
−2
0 Λ̂−1GΛ̂−1 − Λ̂−1)L0PΓ−1F(Su − σ2

0 IT)]

= −2tr [PΓ−1F(IT − Γ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′G)L0PΓ−1F(Su − σ2
0 IT)]

= −2tr [PΓ−1F MΓ−1FL0PΓ−1F(Su − σ2
0 IT)]

− 2tr [PΓ−1F(PΓ−1F − Γ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′G)L0PΓ−1F(Su − σ2
0 IT)]

= −2tr [PΓ−1F(PΓ−1F − Γ−1F(F′Γ−1′GΓ−1F)−1F′Γ−1′G)L0PΓ−1F(Su − σ2
0 IT)].

By adding and subtracting terms, and noting that G = Su,

(F′Γ−1′Γ−1F)−1F′Γ−1′ − (F′Γ−1′GΓ−1F)−1F′Γ−1′G

= [(σ2
0 F′Γ−1′Γ−1F)−1 − (F′Γ−1′GΓ−1F)−1]σ2

0 F′Γ−1′ − (F′Γ−1′GΓ−1F)−1F′Γ−1′(G − σ2
0 IT)

= (F′Γ−1′GΓ−1F)−1F′Γ−1′(G − σ2
0 IT)Γ−1F(σ2

0 F′Γ−1′Γ−1F)−1σ2
0 F′Γ−1′

− (F′Γ−1′GΓ−1F)−1F′Γ−1′(G − σ2
0 IT)

= −(F′Γ−1′SuΓ−1F)−1F′Γ−1′(Su − σ2
0 IT)MΓ−1F,

which, together with IT + L0 = Γ and MΓ−1FPΓ−1F = 0T×T, gives

√
NT−1tr (B′

2c)

= −2
√

NT−1tr [PΓ−1FΓ−1F((F′Γ−1′Γ−1F)−1F′Γ−1′ − (F′Γ−1′GΓ−1F)−1F′Γ−1′G)

× L0PΓ−1F(Su − σ2
0 IT)]

= 2
√

NT−1tr [Γ−1F(F′Γ−1′SuΓ−1F)−1F′Γ−1′(Su − σ2
0 IT)MΓ−1FL0PΓ−1F(Su − σ2

0 IT)]

= 2N−1/2T−1tr [(T−1F′Γ−1′SuΓ−1F)−1

× T−1F′Γ−1′√N(Su − σ2
0 IT)MΓ−1FΓPΓ−1F

√
N(Su − σ2

0 IT)Γ−1F]

= Op(N−1/2T−1). (A174)
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By adding the results

1√
NT

∂ℓc

∂ρ
=

1
2σ2

0

√
NT−1tr (B′

2c − B′
1c0) = − 1

2σ2
0

√
NT−1tr (B′

1c0) + Op(N−1/2T−1)

= − 1
σ2

0
T−1/2(Q1 − Q2) ∼ N(0, T−1ω2

2) (A175)

as N, T → ∞ with
√

NT−1 = o(1).

Since ∂ℓc/∂σ2 is unaffected by the rescaling of F by Γ−1F, the asymptotic distribution

of (NT)−1/2∂ℓc/∂σ2 is the unaffected too, as is its covariance with N−1/2T−1∂ℓc/∂ρ. This

completes the proof. �

Lemma C.6. Under C2, ρ0 = 1, and Assumptions EPS, F and LAM, as N, T → ∞,

−H−1
1

∂2ℓc(θ0
2)

∂θ2(∂θ2)′
H−1

1 =

[
T−1ω2

2 0
0 1

2σ4
0

]
+ op(1).

Proof of Lemma C.6.

The proof of Lemma C.6 is tedious, yet straightforward, following the same steps as in Proof

of Lemma C.2. It is therefore omitted. �

Proof of Proposition 1.

In this proof we only consider the case when |ρ0| < 1 (under C1); the results for the case

when ρ0 = 1 are analogous (after suitable rescaling by T; see Proof of Lemma 2). The proof

proceeds as follows. We begin by deriving the appropriate limit of (NT)−1ℓc. We then show

that the leading term of this limit is minimized for F = F0, where F0 is the true value of F.

The first part of the proof is very similar to that of Lemma 1; hence, only essential details

are given. Consider F′GF = F′Γ−1SyΓ−1′F. Using F0 to denote the true value of F, Sy may

be expanded as

Sy = Γ0
1
N

N

∑
i=1

(F0λi + ε i)(F0λi + ε i)
′Γ′

0

= Γ0(σ
2
0 IT + F0SλF0′)Γ′

0 + Γ0
1
N

N

∑
i=1

F0λiε
′
iΓ

′
0 + Γ0

1
N

N

∑
i=1

ε iλ
′
iF

0′Γ′
0

+ Γ0
1
N

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ′
0, (A176)

87



giving

T−2F′GF = T−1F′Γ−1(T−1Sy)Γ−1′F

= T−2F′Γ−1Γ0(σ
2
0 IT + F0SλF0′)Γ′

0Γ−1′F + T−1F′Γ−1Γ0
1

NT

N

∑
i=1

F0λiε
′
iΓ

′
0Γ−1′F

+ T−1F′Γ−1Γ0
1

NT

N

∑
i=1

ε iλ
′
iF

0′Γ′
0Γ−1′F

+ T−1F′Γ−1Γ0
1

NT

N

∑
i=1

(ε iε
′
i − σ2

0 IT)Γ′
0Γ−1′F. (A177)

The first term on the right is

T−2F′Γ−1Γ0(σ
2
0 IT + F0SλF0′)Γ′

0Γ−1′F

= σ2
0 T−2F′Γ−1Γ0Γ′

0Γ−1′F + T−2F′Γ−1Γ0F0SλF0′Γ′
0Γ−1′F,

where we know from Proof of Lemma 1 that T−2F′Γ−1Γ0Γ′
0Γ−1′F = O(T−1). But we also

have

F′Γ−1Γ0F0SλF0′Γ′
0Γ−1′F = F′[IT + (ρ0 − ρ)L0]F0SλF0′[IT + (ρ0 − ρ)L0]

′F

= F′F0SλF0′F + (ρ0 − ρ)F′F0SλF0′L′
0F + (ρ0 − ρ)F′L0F0SλF0′F

+ (ρ0 − ρ)2F′L0F0SλF0′L′
0F,

and therefore

T−2F′Γ−1Γ0(σ
2
0 IT + F0SλF0′)Γ′

0Γ−1′F

= (T−1F′F0)Sλ(T−1F0′F) + (ρ0 − ρ)(T−1F′F0)SλT−1F0′L′
0F

+ (ρ0 − ρ)T−1F′L0F0Sλ(T−1F0′F) + (ρ0 − ρ)2T−1F′L0F0SλT−1F0′L′
0F + O(T−1). (A178)

By using the same arguments as in Proof of Lemma 1, while the second and third terms on

the right of (A177) are Op((NT)−1/2), the fourth term is Op(N−1/2T−1). It follows that

T−2F′GF = (T−1F′F0)Sλ(T−1F0′F) + (ρ0 − ρ)(T−1F′F0)SλT−1F0′L′
0F

+ (ρ0 − ρ)T−1F′L0F0Sλ(T−1F0′F)

+ (ρ0 − ρ)2T−1F′L0F0SλT−1F0′L′
0F + O(T−1) + Op((NT)−1/2), (A179)
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which in turn implies

T−1tr (GFKF′)

= tr [T−2F′GF(T−1F′F)−1]− σ2T−1m

= tr [T−2F′Γ−1Γ0F0SλF0′Γ′
0Γ−1′F(T−1F′F)−1] + O(T−1) + Op((NT)−1/2)

= tr [(T−1F′F0)Sλ(T−1F0′F)(T−1F′F)−1] + (ρ0 − ρ)tr [(T−1F′F0)SλT−1F0′L′
0F(T−1F′F)−1]

+ (ρ0 − ρ)tr [T−1F′L0F0Sλ(T−1F0′F)(T−1F′F)−1]

+ (ρ0 − ρ)2tr [T−1F′L0FSλT−1F′L′
0F(T−1F′F)−1] + O(T−1) + Op((NT)−1/2)

= tr (SλT−1F0′PFF0) + 2(ρ0 − ρ)tr (SλT−1F0′PFL0F0)

+ (ρ0 − ρ)2tr (SλT−1F′L′
0PFL0F) + O(T−1) + Op((NT)−1/2). (A180)

For tr G, by the arguments of the proof of Lemma 1,

T−1tr G = T−1tr (Γ−1SyΓ−1′) = T−1tr [Γ−1Γ0(σ
2
0 IT + FSλF′)Γ′

0Γ−1′] + op(1)

= σ2
0 [1 + (ρ0 − ρ)2tr (T−1L0L′

0)] + tr (SλT−1F0′F0) + 2(ρ0 − ρ)tr (SλT−1F0′L0F0)

+ (ρ0 − ρ)2tr (SλT−1F′L′
0L0F0) + O(T−1). (A181)

By using this and the fact that T−1 log(|Λ̂|) = Op(T−1 log(T)) (see Proof of Lemma 1), we

obtain

T−1Qc

= log(σ2) + T−1 log(|Λ̂|) + σ−2T−1tr G − σ−2T−1tr (GFKF′)

= log(σ2) + σ−2T−1tr G − σ−2T−1tr (GFKF′) + Op(T−1 log(T))

= log(σ2) + σ−2σ2
0 [1 + (ρ0 − ρ)2tr (T−1L0L′

0)] + σ−2tr (SλT−1F0′F0)

+ 2σ−2(ρ0 − ρ)tr (SλT−1F0′L0F0) + σ−2(ρ0 − ρ)2tr (SλT−1F′L′
0L0F0)

− σ−2tr (SλT−1F0′PFF0)− 2σ−2(ρ0 − ρ)tr (SλT−1F0′PFL0F0)

− σ−2(ρ0 − ρ)2tr (SλT−1F′L′
0PFL0F) + Op((NT)−1/2) + Op(T−1 log(T))

= log(σ2) + σ−2σ2
0 [1 + (ρ0 − ρ)2tr (T−1L0L′

0)] + σ−2tr (SλT−1F0′MFF0)

+ 2σ−2(ρ0 − ρ)tr (SλT−1F0′MFL0F0) + σ−2(ρ0 − ρ)2tr (SλT−1F′L′
0MFL0F0)

+ Op((NT)−1/2) + Op(T−1 log(T)). (A182)

As in Lemma 1 we can show that all four terms involving the trace are nonnegative. Hence,

since tr (SλT−1F0′MFF0) = tr (SλT−1F0′MFL0F0) = 0 for F = F0, Qc (ℓc) is minimized (max-

imized) for F = F0. This completes the proof of the proposition. �
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Appendix D: Additional results

In Lemmas D.1 and D.2 we report the limits of T−1F′F, T−1F′L′
0F and T−1F′L′

0L0F in two

cases with a specific F and |ρ| < 1 (under C1). These limits are useful for evaluating ω2
1.

In the first case, F is made up of an intercept subject to a single structural break at time

TB = ⌊τT⌋, where τ ∈ (0, 1) is the break fraction and ⌊x⌋ is the integer part of x. That is,

F = (1T, DTB), where 1T = (1, ..., 1)′ is a T × 1 vector of ones and DTB = (1′TB
, 0′(T−TB)×1)

′. In

the second case, F is made up of an intercept and (normalized) time trend; F = (1T, T−1τT),

where τT = (1, ..., T)′.

Lemma D.1. Suppose that F = (1T, DTB). Under |ρ0| < 1 and Assumption F,

T−1F′F = ΣF + O(T−1),

T−1F′L′
0F =

1
(1 − ρ0)

ΣF + O(T−1),

T−1F′L′
0L0F =

1
(1 − ρ0)2 ΣF + O(T−1),

where

ΣF =

[
1 τ

τ τ

]
.

Proof of Lemma D.1.

The first result is easy;

T−1F′F =
1
T

[
1′T1T 1′TDTB

D′
TB

1T D′
TB

DTB

]
=

[
1 τ

τ τ

]
+ O(T−1) = ΣF + O(T−1). (A183)

Consider T−1F′L′
0F. According to the ratio test, if limt→∞ |at+1/at| < 1, then ∑T

t=0 at is

convergent. Hence, since |ρt+1
0 /ρt

0| = |ρ0| < 1, ∑T
t=0 ρt

0 converges, as does ∑T
t=0 ρ2t

0 . Specifi-

cally, ∑T
t=0 ρt

0 = (1 − ρT+1
0 )/(1 − ρ0) → 1/(1 − ρ0) and ∑T

t=0 ρ2t
0 = (1 − ρ

2(T+1)
0 )/(1 − ρ2

0) →

1/(1 − ρ2
0) as T → ∞. Also, for any sequence {at}T

t=1, ∑T
t=1 ∑T+1

s=t+1 as−(t+1) = ∑T−1
t=0 (T − t)at.

It follows that

T−11′T L′
01T =

1
T

T

∑
t=1

l′t,01T =
1
T

T−1

∑
t=1

T

∑
s=t+1

ρ
s−(t+1)
0 =

1
T

T−2

∑
t=0

(T − 1 − t)ρt
0

=
(T − 1)

T

T−1

∑
t=0

ρt
0 −

1
T

T−1

∑
t=0

tρt
0 =

(T − 1)
T

T−1

∑
t=0

ρt
0 + O(T−1)

=
1

(1 − ρ0)
+ O(T−1),
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and, similarly, since l′t,0DTB = 0 for all t = TB + 1, ..., T,

T−11′T L′
0DTB

=
1
T

T

∑
t=1

l′t,0DTB =
1
T

TB

∑
t=1

l′t,0DTB =
1
T

TB−1

∑
t=1

TB

∑
s=t+1

ρ
s−(t+1)
0 =

1
T

TB−2

∑
t=0

(TB − 1 − t)ρt
0

=
(TB − 1)

T

TB−1

∑
t=0

ρt
0 + O(T−1) =

τ

(1 − ρ0)
+ O(T−1).

Consider ∑T
t=0 tρt

0. Since |(t + 1)ρt+1
0 /(tρt

0)| = [(t + 1)/t]|ρ0| → |ρ0| < 1, ∑T
t=1 tρt

0 con-

verges. Moreover, ρT−TB
0 = ρ

⌊(1−τ)T⌋
0 → 0 and ∑T−TB

t=0 ρt
0 = (1 − ρT−TB+1

0 )/(1 − ρ0) =

(1 − ρ
⌊(1−τ)T⌋+1
0 )/(1 − ρ0) → 1/(1 − ρ0). These results imply

T−1D′
TB

L′
01T =

1
T

TB

∑
t=1

l′t,01T =
1
T

TB−1

∑
t=1

T

∑
s=t+1

ρ
s−(t+1)
0

=
(TB − 1)

T

T−TB

∑
t=0

ρt
0 +

1
T

TB−3

∑
t=0

(TB − 2 − t)ρT−TB+1+t
0

=
(TB − 1)

T

T−TB

∑
t=0

ρt
0 + ρT−TB+1

0
(TB − 2)

T

TB−3

∑
t=0

ρt
0 − ρT−TB+1

0
1
T

TB−3

∑
t=0

tρt
0

=
(TB − 1)

T

T−TB

∑
t=0

ρt
0 + O(T−1) =

τ

(1 − ρ0)
+ O(T−1),

T−1D′
TB

L′
0DTB =

1
T

TB

∑
t=1

l′t,0DTB =
1
T

TB−1

∑
t=1

TB

∑
s=t+1

ρ
s−(t+1)
0 =

τ

(1 − ρ0)
+ O(T−1).

Therefore,

T−1F′L′
0F = T−1

[
1′T L′

01T 1′T L′
0DTB

D′
TB

L′
01T D′

TB
L′

0DTB

]

=
1

(1 − ρ0)

[
1 τ

τ τ

]
+ O(T−1) =

1
(1 − ρ0)

ΣF + O(T−1). (A184)

It remains to consider

T−1F′L′
0L0F =

1
T

[
1′T L′

0L01T 1′T L′
0L0DTB

D′
TB

L′
0L01T D′

TB
L′

0L0DTB

]
.
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Note that l′t,0ls,0 = ∑T
n=t+1 ρ

2n−(t+s+2)
0 = ∑T−1−t

n=0 ρ2n+t−s
0 for t ≥ s, suggesting

T−11′T L′
0L01T =

1
T

T

∑
t=1

T

∑
s=1

l′t,0ls,0 =
1
T

T

∑
t=1

l′t,0lt,0 +
2
T

T

∑
t=2

t−1

∑
s=1

l′t,0ls,0

=
1
T

T

∑
t=1

T−1−t

∑
n=0

ρ2n
0 +

2
T

T

∑
t=2

t−1

∑
s=1

ρt−s
0

T−1−t

∑
n=0

ρ2n
0

=
1

T(1 − ρ2
0)

T

∑
t=1

(1 − ρ
2(T−t)
0 ) +

2
T(1 − ρ2

0)

T

∑
t=2

t−1

∑
s=1

ρt−s
0 (1 − ρ

2(T−t)
0 )

=
1

(1 − ρ2
0)

− 1
T(1 − ρ2

0)

T

∑
t=1

ρ
2(T−t)
0 +

2
T(1 − ρ2

0)

T

∑
t=2

t−1

∑
s=1

ρt−s
0

− 2
T(1 − ρ2

0)

T

∑
t=2

ρ
2(T−t)
0

t−1

∑
s=1

ρt−s
0

=
1

(1 − ρ2
0)

− 1
T(1 − ρ2

0)

T−1

∑
t=0

ρ2t
0 +

2ρ0

T(1 − ρ2
0)

T−2

∑
t=0

(T − 1 − t)ρt
0

− 2
T(1 − ρ2

0)

T

∑
t=2

ρ
2(T−t)
0

t−1

∑
s=1

ρs
0

=
1

(1 − ρ2
0)

+
2ρ0

T(1 − ρ2
0)

T−2

∑
t=0

(T − 1 − t)ρt
0 + O(T−1)

=
1

(1 − ρ2
0)

+
2ρ0

(1 − ρ2
0)(1 − ρ0)

+ O(T−1)

=
(1 + ρ0)

(1 − ρ2
0)(1 − ρ0)

+ O(T−1) =
1

(1 − ρ0)2 + O(T−1).

Moreover, since again ρTB
0 → 0, TB/T → τ, and ∑TB

t=1 ρt
0 and ∑TB

t=1 tρt
0 are convergent,

1
T

T

∑
t=TB+1

TB

∑
s=1

l′t,0ls,0

=
1
T

T

∑
t=TB+1

TB

∑
s=1

ρt−s
0

T−1−t

∑
n=0

ρ2n
0 =

1
T(1 − ρ2

0)

T

∑
t=TB+1

TB

∑
s=1

ρt−s
0 (1 − ρ

2(T−t)
0 )

=
1

T(1 − ρ2
0)

T

∑
t=TB+1

TB

∑
s=1

ρt−s
0 + O(T−1)

=
1

T(1 − ρ2
0)

TBρTB
0 +

1
T(1 − ρ2

0)

TB−1

∑
s=1

tρt
0 +

1
T(1 − ρ2

0)

TB−1

∑
t=1

(TB − t)ρTB+t
0 + O(T−1)

=
1

T(1 − ρ2
0)

ρTB
0

TB−1

∑
t=1

(TB − t)ρt
0 + O(T−1) =

1
T(1 − ρ2

0)
ρTB

0 TB

TB−1

∑
t=1

ρt
0 + O(T−1)

= O(T−1),
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and therefore

T−11′T L′
0L0DTB =

1
T

T

∑
t=1

TB

∑
s=1

l′t,0ls,0 =
1
T

T

∑
t=TB+1

TB

∑
s=1

l′t,0ls,0 +
1
T

TB

∑
t=1

TB

∑
s=1

l′t,0ls,0

=
1
T

T

∑
t=TB+1

TB

∑
s=1

ρt−s
0

T−1−t

∑
n=0

ρ2n
0 +

1
T

TB

∑
t=1

TB

∑
s=1

l′t,0ls,0

=
τ

(1 − ρ2
0)

+
2τρ0

(1 − ρ2
0)(1 − ρ0)

+ O(T−1) =
τ

(1 − ρ0)2 + O(T−1),

T−1D′
TB

L′
0L0DTB =

1
T

TB

∑
t=1

TB

∑
s=1

l′t,0ls,0 =
τ

(1 − ρ0)2 + O(T−1).

It follows that

T−1F′L′
0L0F =

1
(1 − ρ0)2 ΣF + O(T−1), (A185)

and so we are done. �

Lemma D.2. Suppose that F = (1T, T−1τT). Under |ρ0| < 1 and Assumption F the results of

Lemma D.1 hold, but with ΣF given by

ΣF =

[
1 1/2

1/2 1/3

]
.

Proof of Lemma D.2.

For T−1F′F,

T−1F′F = T−1

[
1′T1T T−11′TτT

T−1τ′
T1T T−2τ′

TτT

]
=

1
T

T

∑
t=1

[
1 T−1t

T−1t T−2t2

]
= ΣF + O(T−1), (A186)

where

ΣF =
∫ 1

0

[
1 r
r r2

]
dr =

[
1 1/2

1/2 1/3

]
, (A187)

with r ∈ [0, 1] being the limit of T−1t. The order of the error of approximation follows from

sup1≤t≤T sup(t−1)/T≤r≤t/T |(T−1t)k − rk| = O(T−1) for all k < ∞.

Consider

T−1F′L′
0F = T−1

[
1′T L′

01T T−11′T L′
0τT

T−1τ′
T L′

01T T−2τ′
T L′

0τT

]
,

where T−11′T L′
01T is know from Lemma D.2. Let us therefore consider T−21′T L′

0τT. Since

|(t + 1)ρt+1
0 /(tρt

0)| = [(t + 1)/t]|ρ0| → |ρ0| < 1, ∑T
t=1 tρt

0 converges, as do ∑T
t=1 ρt

0, ∑T
t=1 t2ρt

0,
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∑T
t=1 ρ2t

0 and ∑T
t=1 tρ2t

0 . By using these results and ∑T
t=1 t = T(T + 1)/2, we obtain

T−21′T L′
0τT

=
1

T2

T

∑
t=1

l′t,0τT =
1

T2

T−1

∑
t=1

T

∑
s=t+1

sρ
s−(t+1)
0 =

1
T2

T−2

∑
t=0

T

∑
s=t+2

sρt
0 =

1
T2

T−2

∑
t=0

T−1−t

∑
s=1

(s + t + 1)ρt
0

=
1

T2

T−2

∑
t=0

T−1−t

∑
s=1

sρt
0 +

1
T2

T−2

∑
t=0

(t + 1)(T − 1 − t)ρt
0

=
1

T2

T−2

∑
t=0

(T − 1 − t)(T − t)
2

ρt
0 +

1
T2

T−2

∑
t=0

(t + 1)(T − 1 − t)ρt
0

=
(T − 1)

2T

T−2

∑
t=0

ρt
0 −

(2T − 1)
2T2

T−2

∑
t=0

tρt
0 +

1
2T2

T−2

∑
t=0

t2ρt
0 +

1
T2

T−2

∑
t=0

(t + 1)(T − 1 − t)ρt
0

=
(T − 1)

2T

T−2

∑
t=0

ρt
0 + O(T−1) =

1
2(1 − ρ0)

+ O(T−1),

and by further use of ∑T
t=1 t2 = T(T + 1)(2T + 1)/6,

T−2τ′
T L′

01T =
1

T2

T

∑
t=1

tl′t,01T =
1

T2

T−1

∑
t=1

T

∑
s=t+1

tρs−(t+1)
0 =

1
T2

T−2

∑
t=0

T−1−t

∑
s=1

sρt
0

=
(T − 1)

2T

T−2

∑
t=0

ρt
0 + O(T−1) =

1
2(1 − ρ0)

+ O(T−1),

T−3τ′
T L′

0τT =
1

T3

T

∑
t=1

tl′t,0τT =
1

T3

T−1

∑
t=1

T

∑
s=t+1

tsρ
s−(t+1)
0 =

1
T3

T−2

∑
t=0

T

∑
s=t+2

(s − 1 − t)(s − t)ρt
0

=
1

T3

T−2

∑
t=0

T−1−t

∑
s=1

s(s + 1)ρt
0 =

1
T3

T−2

∑
t=0

T−1−t

∑
s=1

s2ρt
0 +

1
T3

T−2

∑
t=0

(T − 1 − t)ρt
0

=
1

T3

T−2

∑
t=0

T−1−t

∑
s=1

s2ρt
0 + O(T−2)

=
1

T3

T−2

∑
t=0

(T − 1 − t)(T − t)[2(T − 1 − t) + 1]
6

ρt
0 + O(T−2)

=
1
3

T−2

∑
t=0

ρt
0 + O(T−1) =

1
3(1 − ρ0)

+ O(T−1).

Therefore,

T−1F′L′
0F =

[
T−11′T L′

01T T−21′T L′
0τT

T−2τ′
T L′

01T T−3τ′
T L′

0τT

]

=
1

(1 − ρ0)

[
1 1/2

1/2 1/3

]
+ O(T−1) =

1
(1 − ρ0)

ΣF + O(T−1). (A188)

Finally, consider T−1F′L′
0L0F. Since ∑T

t=1 t2ρ
2(T−t)
0 and ∑T

t=1 tρ2(T−t)
0 are convergent by
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the ratio test,

1
T3

T

∑
t=2

tρ2(T−t)
0

t−1

∑
s=1

sρt−s
0

=
1

T3

T

∑
t=2

tρ2(T−t)
0

t−1

∑
s=1

(t − s)ρs
0

=
1

T3

T

∑
t=2

t2ρ
2(T−t)
0

t−1

∑
s=1

ρs
0 −

1
T3

T

∑
t=2

tρ2(T−t)
0

t−1

∑
s=1

sρs
0

=
1

T3(1 − ρ0)

T

∑
t=2

t2ρ
2(T−t)
0 (1 − ρt

0)−
1

T3

T

∑
t=2

tρ2(T−t)
0

t−1

∑
s=1

sρs
0 = O(T−2).

This implies

T−3τ′
T L′

0L0τT

=
1

T3

T

∑
t=1

T

∑
s=1

tsl′t,0ls,0 =
1

T3

T

∑
t=1

t2l′t,0lt,0 +
2

T3

T

∑
t=2

t−1

∑
s=1

tsl′t,0ls,0

=
1

T3

T

∑
t=1

t2
T−1−t

∑
n=0

ρ2n
0 +

2
T3

T

∑
t=2

t−1

∑
s=1

tsρt−s
0

T−1−t

∑
n=0

ρ2n
0

=
1

T3(1 − ρ2
0)

T

∑
t=1

t2(1 − ρ
2(T−t)
0 ) +

2
T3(1 − ρ2

0)

T

∑
t=2

t−1

∑
s=1

tsρt−s
0 (1 − ρ

2(T−t)
0 )

=
1

T3(1 − ρ2
0)

T(T + 1)(2T + 1)
6

− 1
T3(1 − ρ2

0)

T

∑
t=1

t2ρ
2(T−t)
0 +

2
T3(1 − ρ2

0)

T

∑
t=2

t
t−1

∑
s=1

sρt−s
0

− 2
T3(1 − ρ2

0)

T

∑
t=2

tρ2(T−t)
0

t−1

∑
s=1

sρt−s
0

=
1

3(1 − ρ2
0)

+
2ρ0

3(1 − ρ2
0)(1 − ρ0)

+ O(T−1)

=
1 + ρ0

3(1 − ρ2
0)(1 − ρ0)

+ O(T−1) =
1

3(1 − ρ0)2 + O(T−1),

where the last equality holds because

1
T3

T

∑
t=2

t
t−1

∑
s=1

sρt−s
0 =

1
T3

T

∑
t=2

t
t−1

∑
s=1

(t − s)ρs
0 =

1
T3

T

∑
t=2

t2
t−1

∑
s=1

ρs
0 −

1
T3

T

∑
t=2

t
t−1

∑
s=1

sρs
0

=
ρ0

T3

T

∑
t=2

t2
t−2

∑
s=0

ρs
0 + O(T−1) =

ρ0

T3(1 − ρ0)

T

∑
t=2

t2(1 − ρt−1
0 ) + O(T−1)

=
ρ0

3(1 − ρ0)
+ O(T−1).

The same steps can be used to show that

T−2τ′
T L′

0L01T = T−21′T L′
0L0τT =

1
2(1 − ρ0)2 + O(T−1).
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giving

T−1F′L′
0L0F =

1
(1 − ρ0)2 ΣF + O(T−1). (A189)

as required. �
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