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An Approximate Auction∗

Jim Ingebretsen Carlson†

Abstract

This paper presents an auction procedure which is of particular interest when short
execution times are of importance. It is based on a method for approximating the
bidders’ preferences over two types of items when complementarity between the two
may exist. In particular, linear approximations of the bidders’ indifference curves
are made. The resulting approximated preference relation is shown to be complete
and transitive at any given price vector. It is shown that an approximated Walrasian
equilibrium always exists if the approximated preferences of the bidders comply with
the gross substitutes condition. Said condition also ensures that the set of approx-
imated equilibrium prices forms a complete lattice. A process is proposed which is
shown to always reach the smallest approximated Walrasian price vector.

Keywords: Approximate auction; one-round auction; non-quasi-linear preferences;
approximated preferences.
JEL classification: D44.

1 Introduction

Auctions are extensively used as a way to determine who gets to buy what and to which
price. Governments commonly use auctions as a mean to sell treasury bills and compa-
nies that are to be privatized. The growth of e-commerce highlights the common use of
auctions. At sites such as eBay and eBid it is possible to find a wide range of items be-
ing auctioned, the latter having over 4 million daily listings1. A single auction may be of
great economic importance. The auction for telecom licenses, which was conducted by the
British government during two months in 2000, serves as such an example as it generated
34 billion dollars (Binmore and Klemperer, 2002). For reasons such as these, the study of
auctions is important.

∗I want to thank Federico Echenique, Jörgen Kratz, Jens Gudmundsson, and especially Tommy An-
dersson for their helpful comments and suggestions. Financial support from the “Jan Wallander and Tom
Hedelius Foundation” (P2012-0107:1) is gratefully acknowledged.
†Department of Economics, Lund University, P.O. Box 7082, 222 07 Lund, Sweden

(e-mail: jim.ingebretsen carlson@nek.lu.se)
1http://blog.ebid.net/about/ retrieved at 24/01-2015
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It is not uncommon for a seller to simultaneously auction multiple items. Spectrum
licenses are often divided into smaller geographical areas rather than one countrywide
license and a company can be sold as several divisions rather than one entity. In recent
years, the literature on multi-item auctions and in particular combinatorial auctions has
grown substantially. In a unit-demand setting, Demange et al. (1986) propose a multi-item
auction, which is Pareto efficient and strategy-proof. Key to their result is to find the unique
minimal Walrasian equilibrium price vector, its existence being guaranteed by the lattice
structure of equilibrium prices (Demange and Gale, 1985; Shapley and Shubik, 1971), and
to allocate the items in accordance with this price. Allowing bidders to demand multiple
units of items, the problem becomes more complex. For homogeneous items, Ausubel
(2004) presents an ascending-bid auction, which is efficient and where the outcome of the
auction coincides with the outcome of the Vickrey auction. Extending to heterogeneous
items, Gul and Stacchetti (2000) design a generalized version of Demange et al. (1986)’s
auction, which also terminates at the unique minimal Walrasian equilibrium price vector2.
In their setting, the existence of a Walrasian equilibrium is guaranteed when bidders have
gross substitute preferences. The gross substitutes condition was introduced by Kelso and
Crawford (1982) and is utilized by Ausubel (2006), who suggests a multi-item auction that
reaches the Vickrey-Clarkes-Groves outcome and therefore is incentive compatible. By
limiting the class of preferences, Bikhchandani et al. (2011) propose a dynamic process
with the novelty that it is computable in pseudo polynomial- or polynomial time. Sun and
Yang (2006, 2009) introduce the gross substitutes and complements condition, which allows
for some complementarity in the bidders’ preferences. The authors show that this condition
is sufficient for the existence of competitive equilibrium and propose two auction processes
that always finds an equilibrium price vector. Ausubel and Milgrom (2002) suggest an
ascending-bid proxy auction: Each bidder reports a valuation for each package and then
commits to bid straightforwardly according to these reports. When bidders have quasi-
linear preferences in money and goods are substitutes, the outcome of the proxy auction
coincides with the Vickrey auction and sincere bidding is a Nash equilibrium. By allowing
prices to differ across packages and bidders, authors such as de Vries et al. (2007) and
Mishra and Parkes (2007) have proposed auction processes that reach the VCG outcome
for general valuations.

A possible problem with many auction formats is that execution times can be long.
The auction for British telecom licenses, in the year 2000, serves as such an example as it
took two months to conduct. A reason for long execution times may be that the prices of
some items are either only increased or only decreased in many auction processes3. This
may result in a time-consuming process as the starting prices have to be set far below or
far above the final prices to make sure that the desired final prices are actually reached.
In some cases, however, short execution times of auctions are very important. This can be

2Auction processes converging to the unique minimal equilibrium price vector is common in the lit-
erature, see e.g. Andersson et al. (2013); Andersson and Erlanson (2013); Mishra and Talman (2010);
Sankaran (1994).

3For auction processes that may be both ascending and descending see e.g. Andersson and Erlanson
(2013); Ausubel (2006); Erlanson (2014); Grigorieva et al. (2007).
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exemplified by the Product-mix auction designed to help the Bank of England during the
bank run in the autumn of 2007. Due to the outbreak of the financial crisis, the Bank of
England wished to allocate loans to commercial banks in a very rapid fashion. Klemperer
(2010) proposed a single-round auction for allocating two different types of loans to the
banks. The idea was that bidders submitted a number of bids consisting of two prices
(interest rates), one for each type of loan, and a quantity (same for both loans), which
served as an approximation of the bidders’ demand. Based on the supplied quantities of
the two loans, prices were determined and the bidders were awarded the loans which gave
them the highest, non-negative, profit. In this way, the central bank allocated the loans
using a one-round auction. This paper relates to Klemperer’s work as a one-round auction
is proposed.

Common to the papers mentioned earlier is the assumption that bidders have quasi-
linear preferences in money. Such an assumption may be restrictive as it implies that
bidders neither exhibit risk-aversion, experience wealth effects, nor face financing- or budget
constraints. If bidders’ preferences are in fact non-linear in money we may, by taking this
into account, improve the outcome of an auction. This paper will allow for non-linearity
in the bidders’ preferences. Optimal auctions, where bidders exhibit risk-aversion, have
been studied by Maskin and Riley (1984) and Matthews (1987). Morimoto and Serizawa
(2014) analyze allocation rules for multiple indivisible items, allowing bidders to have non-
linear preferences in money and unit-demand. Ausubel and Milgrom (2002) also propose
a generalized proxy auction, where the seller and the bidders have non-linear but strict
preferences over all offers made in the bidding process. This auction is embedded in the
matching with contracts model by Hatfield and Milgrom (2005).

Thus far, two problems have been identified: Auctions may take a long time to conduct
and bidders may not have quasi-linear preferences in money. This paper will aim at solving
these two problems. In particular, this paper proposes a way to conduct a one-round combi-
natorial auction when the participating bidders may have non-linear preferences in money.
The way this is done is by having each bidder report two vectors of prices, which will be
used to construct an approximated preference relation for each bidder. The proposed one-
round auction process is then shown to be efficient with respect to these approximations.
More specifically, the auctioneer wishes to sell multiple copies of two types of items and
the bidders are interested in acquiring a package, which consists of at most one item of
each type. The approximation procedure starts with each bidder reporting two vectors of
prices, where each vector consists of one price for each package. The prices reported in each
vector should represent prices which makes the bidder indifferent between the packages. It
is required that one vector is strictly greater than the other. Based on this information, all
prices which makes the bidder indifferent between any two packages are approximated in
a linear fashion. In other words, linear approximations of the bidders’ indifference curves
are made. In this way, the approximated indifference curves form an approximation of a
bidder’s true preference relation.

As suggested above, linear approximations of bidders preferences are not uncommon.
Andersson and Andersson (2009) investigate the error of the outcome that a quasi-linear
approximation of bidders’ preferences might give rise to in a house allocation problem
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with money. Their results suggest that quasi-linear approximations of the bidders’ true
preferences work fairly well. The quasi-linear preferences are contained in the class of
preferences corresponding to the approximation procedure of this paper. In particular, if
a bidder has quasi-linear preferences in money and reports truthfully, the approximated
preference relation will coincide with the true preference relation of the bidder.

It is shown that the approximated preference relation of each bidder is complete and
transitive at any price vector. Given the approximated preference relations of the bidders,
it is of interest to know whether it is always possible to find an equilibrium assignment.
In addition to theoretical interest, equilibrium assignments are particularly important in
e.g. spectrum auctions as governments typically want all regions of the country to have
coverage. As the bidders’ approximated preferences do not necessarily coincide with their
true preferences, the equilibrium concept analyzed in this paper is denoted an approximated
Walrasian equilibrium. It is shown that imposing the gross substitutes condition on the
approximated preference relations of the bidders is sufficient for the set of approximated
Walrasian equilibrium prices to be non-empty. Moreover, the gross substitutes condition
also ensures that the set of approximated Walrasian equilibrium prices forms a complete
lattice and hence contains a unique minimal element. The auction process is described as
an English auction, but as all information is gathered at one point in time, the process can
be executed quickly as a one-round auction. The price trajectory will in part be determined
by the bidders’ aggregate requirement of the various packages at different prices. It is shown
that given any prices of the two types of items, there exists an assignment such that each
bidder is assigned a package that she demands if and only if the aggregate requirement for
any package, at the given prices, is weakly less than the number of available quantities of
that package. Making use of this fact for determining when the process should stop raising
prices, it is shown that the proposed process always converges to the unique minimal
approximated Walrasian equilibrium price vector. Unique minimal equilibrium prices may
be of particular importance when the auctioneer is concerned of consumer welfare. A
government selling spectrum licenses may be interested in assuring low consumer prices.
Selling the licenses for the smallest equilibrium prices may aid in achieving this as the
resulting producer costs are relatively low.

The paper is outlined as follows. Section 2 introduces the basic model and some def-
initions. The approximation procedure is described in Section 3. In Section 4, results
concerning the existence of approximated Walrasian equilibrium are presented. Section 5
contains a description of the auction process and related results. Section 6 concludes the
paper. All proofs are collected in the appendix.

2 The model

A finite number of bidders, collected in the set N = {1, 2, . . . , n}, participate in the auction.
A seller wishes to auction two types of indivisible items, called a and b,4 of which there

4To simplify the notation we let a and b denote both the item and a set containing the item, i.e., a ≡ {a}
and b ≡ {b}.
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may exist multiple copies. Let qa ≥ 1 and qb ≥ 1 denote the finite integer number of copies
of each type of item. Copies of the same type are to be sold for some uniform price pa
or pb depending on the type. In order to sell the items, the seller requires at least some
prices ra ≥ 0 and rb ≥ 0 for each type of item. Such prices are referred to as the seller’s
reservation prices and imply that pa ≥ ra and pb ≥ rb. Each bidder has the outside option
of not acquire anything in the auction. The outside option is illustrated by a null-item,
which is denoted 0 and is equal to the empty set. The price of the null-item is normalized to
0 so p0 = r0 = 0. Each bidder is assumed to be interested in acquiring at most one copy of
item a and b respectively. Let ab = {a, b} be the combination of one item of each type and
let pab denote its price. The sets of items which the bidders are interested in purchasing are
collected in I = {0, a, b, ab} and any element x ∈ I is referred to as a package. A bidder’s
preferences over the packages are assumed to be determined by the utility generated from
consuming the packages and their prices. A consumption bundle is therefore defined to
be a pair consisting of a package and a price. For any given prices of the packages, the
bidders are hence interested in consuming at least one of the consumption bundles (0, 0),
(a, pa), (b, pb), or (ab, pab). Each bidder i ∈ N has a preference relation, denoted Ri, over
all possible consumption bundles. Ri is assumed to be complete, transitive, continuous,
and finite. Let Pi be the strict relation and Ii the indifference relation associated with Ri.
The preference relation of any bidder i ∈ N is assumed to satisfy price monotonicity, that
is, for any package x ∈ I and any two prices p′x, p

′′
x ∈ R, if p′x > p′′x, then (x, p′′x)Pi(x, p

′
x).

Finally, any bidder is assumed to be indifferent between any two identical consumption
bundles. An objective of the auction is to find an assignment of the items to the bidders
such that any bidder is assigned either 0, a, b, or ab. While any number of bidders can
be assigned the null-item, an assignment needs to be such that the number of assigned
items of any type, a or b, does not exceed the available number of copies of the type.
Formally, let µ : N → I be an assignment such that #Na ≤ qa and #Nb ≤ qb, where
Na = {i ∈ N | µ(i) ∈ {a, ab}} and Nb = {i ∈ N | µ(i) ∈ {b, ab}}, and where µ(i) denotes
the assignment of bidder i ∈ N .

3 Approximation

In order to approximate the true preference relation, Ri, of any bidder i ∈ N , the bidder
makes two reports. The first report, denoted v, consists of one price vj ∈ R for each package
j ∈ {a, b, ab}. Recalling that the price of the null-item is normalized to 0, these reported
prices should be such that the bidder is indifferent between the consumption bundles (0, 0),
(a, va), (b, vb), and, (ab, vab). The second report, z, consists of some other prices zj < vj,
which makes the bidder indifferent between the consumption bundles (a, za), (b, zb), and
(ab, zab). It should be emphasized that any price reported for ab need not necessarily
equal the sum of the prices reported for the individual items. It can be noted that the
assumptions on Ri guarantee the existence of prices which fulfill the requirements of the
reports. Assuming that the bidders report truthfully, the two reports will be used to make
linear approximations of all prices which makes the bidder indifferent between any two
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different packages together with those prices. These approximations will be referred to as
a bidder’s approximated indifference curves.

The approximated indifference curves will be constructed under the restriction that
pab = pa + pb. The package ab will therefore be sold for pab = pa + pb and no price
discrimination is hence allowed. In line with this, four constants are defined based on
the two reports: αv = vab − vb, αz = zab − zb, βv = vab − va, and βz = zab − za. A
constant αj, where j ∈ {v, z}, is interpreted as a price for item a, which would make the
bidder indifferent between the consumption bundles (b, jb) and (ab, αj + jb). βj has the
corresponding interpretation for a price of item b. In this way, six pairs of prices, (pa, pb),
are extracted with the help of which the approximated indifference curves between any two
packages, except 0, are constructed.

In the following, a number of formal concepts will be introduced. In order to ease the
understanding of the approximation procedure, an example will accompany these concepts.
The example is depicted in Figures 1 - 4 and is based on that a bidder i makes the following
reports of v and z:

a b ab αj βj

v 10 8 14 6 4
z 6 5 10 5 4

From the reported prices it follows that αv = 6, βv = 4, αz = 5, and βz = 4. As-
suming truthful reports, two pairs of prices (10, 8) and (6, 5) are obtained such that
(a, pa)Ii(b, pb) for bidder i. In addition, (10, 4) and (6, 4) are interpreted as prices for which
(a, pa)Ii(ab, pa + pb) and for (6, 8) and (5, 5) it follows that (b, pb)Ii(ab, pa + pb). These six
pairs of prices are shown in Figure 1 and will be the basis for the linear approximation of
the bidder’s indifference curves.

In order to construct the approximated indifference curve between the packages a and
b in general, the two pairs of prices (va, vb) and (za, zb) are used in defining the following
linear function:

f1(pa) = yb + (pa − za)
(
vb − zb
va − za

)
(1)

Figure 1

pa
5 6 10

pb

4
5

8

Figure 2

pa
5 6 10

pb

4
5

8 f1

f2

f3
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(va, vb) = (10, 8) and (za, zb) = (6, 5) in our example, and f1 is depicted in Figure 2.
Similarly, the pairs of prices (va, βv) and (za, βz) are used to construct the approximated
indifference curve between the packages a and ab, while (αv, vb) and (αz, zb) are used for b
and ab, in the following way:

f2(pa) = βz + (pa − za)
(
βv − βz
va − za

)
(2)

f3(pb) = αz + (pb − zb)
(
αv − αz
vb − zb

)
(3)

The construction of these three approximated indifference curves for the bidder of our
example is displayed in Figure 2. Though not depicted, it should be emphasized that the
approximated indifference curves are defined for any pa, pb ∈ R. Finally, the approximated
indifference curves between 0 and any other package x is given by vx.

By combining an approximated indifference curve with price monotonicity, prices which
make the bidder strictly prefer one consumption bundle over another consumption bundle
can be approximated. For example, as a bidder reports that she is indifferent between
(a, va) and (b, vb), it follows by price monotonicity that the bidder strictly prefers (a, pa) to
(b, pb) if pa ≤ va and pb > vb or pa < va and pb ≥ vb. Similarly, prices pa and pb for which
the bidder would strictly prefer (b, pb) to (a, pa) are found by reversing the inequality signs.
By applying this reasoning to any pair of prices (pa, pb) for which f1(pa) = pb is true, all
pairs of prices that generate strict preferences between (a, pa) and (b, pb) are approximated.
Returning to the example, Figure 3 depicts strict preferences between the consumption
bundles (a, pa) and (b, pb). (a, pa) is strictly preferred to (b, pb) for any pair of prices above
and to the left of f1 whereas (b, pb) is strictly preferred to (a, pa) for any pair of prices
below and to the right of f1. By applying this reasoning to any two consumption bundles
containing different packages, the approximated indifference curves and price monotonicity
approximate the true preferences of a bidder. Let %i denote the approximated preference
relation of any bidder i ∈ N . Furthermore, �i and ∼i are the strict- and indifference
relations associated with %i.

In order for the approximated preference relation of a bidder to be meaningful, it is
important that, at any given prices of the items, a consistent ranking of the consumption
bundles can be constructed. Proposition 1 ensures that this is the case.

Figure 3

pa
5 6 10

pb

4
5

8 f1
(a, pa)

(b, pb)

Figure 4

pa
5 6 10

pb

4
5

8

(ab, pab)

(a, pa)

(b, pb)

(0, 0)
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Proposition 1. For any given prices of the items, the approximated preference relation of
each bidder i ∈ N is complete and transitive.

The rational approximated preference relation of the bidder in our example is depicted in
Figure 4. Figure 4 also shows the combination of prices for which a certain consumption
bundle is uniquely most preferred.

For a bidder whose preferences are quasi-linear in money, her indifference curves are
linear. If prices are reported truthfully, the resulting approximated indifference curves will
coincide with the true indifference curves of the bidder. The bidder’s approximated- and
true preferences will therefore coincide and the quasi-linear preferences are thus contained
in the class of preferences corresponding to the approximation procedure described in this
section.

4 Existence

Given the approximated preference relations of the bidders, it is of interest to know whether
it is always possible to find an equilibrium assignment. A commonly analyzed equilibrium
concept is Walrasian equilibrium. However, as the approximated preference relations do
not necessarily coincide with the true preferences of the bidders, the equilibrium concept
is denoted an approximated Walrasian equilibrium. In order to define this formally, let a
price vector be denoted by p = (p0, pa, pb) ∈ R3, which contains one price for each type of
item. Furthermore, the approximated demand correspondence of a bidder i ∈ N is defined
as Di(p) = {x ∈ I | (x, px) %i (y, py) for all y ∈ I} at any p. If x ∈ Di(p), then package
x is said to be demanded by bidder i ∈ N .

Definition 1. The pair 〈p, µ〉 constitutes an approximated Walrasian equilibrium if: (i)
µ(i) ∈ Di(p) for all i ∈ N and (ii) if #Nx < qx for some x ∈ ab, then px = rx.

Thus, a price vector p and an assignment µ constitute an approximated Walrasian equi-
librium if each bidder is assigned a package which she demands and if a copy of an item
remains unassigned, then the price of said item needs to equal the seller’s reservation price
for the item.

An approximated Walrasian equilibrium does not always exist. For an excelent example,
see Milgrom (2000) and recall that the quasi-linear preferences are a special case of the
approximated preferences of this paper. However, requiring substitutability in the bidders’
preferences has been shown to guarantee the existence of equilibrium assignments in the
standard model. Kelso and Crawford (1982) required firms’ preferences over workers to
comply with the gross substitutes condition to show the existence of a core allocation. This
in turn implies that a Walrasian equilibrium exists in Gul and Stacchetti (1999, 2000). Sun
and Yang (2006) showed that the more general gross substitutes and complements condition
guarantees the existence of competitive equilibrium. Analyzing the simultaneous ascending
auction, Milgrom (2000) showed that if objects are mutual substitutes for the bidders, then
the objects can be allocated in accordance with a competitive equilibrium. Similarly in
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the matching with contracts model, a stable allocation exists if hospitals view contracts as
substitutes (Hatfield and Milgrom, 2005).

Following Kelso and Crawford (1982), the gross substitutes condition is defined as:

Definition 2. The approximated preference relation, %i, of any bidder i ∈ N , fulfills the
gross substitutes condition if for any two price vectors p′ ≥ p and any x ∈ Di(p), there
exists y ∈ Di(p

′) such that {w ∈ x | pw = p′w} ⊆ y.

The gross substitutes condition implies that a bidder’s demand for an item does not
decrease as the prices of any other items are raised. Let P = {p ∈ R3

+ | ∃µ s.t
〈p, µ〉 is an approximated Walrasian equilibrium} be the set of approximated equilibrium
prices. Proposition 2 asserts that if the approximated preference relations of each bidder
comply with the gross substitutes condition, then there exists an approximated Walrasian
equilibrium.

Proposition 2. If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N , then the set of approximated equilibrium prices, P, is non-
empty.

It turns out that the gross substitutes condition also guarantees that P forms a complete
lattice. For any two price vectors p′, p′′ ∈ R3, let the meet p′ ∧ p′′ be defined as a vector
s ∈ R3 with elements sj = min{p′j, p′′j}. Similarly, let the join p′ ∨ p′′ be a vector h ∈ R3

with elements hj = max{p′j, p′′j}. Any S ⊆ R3 forms a complete lattice if for each p′, p′′ ∈ S,
s, h ∈ S.

Proposition 3. If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N , then P forms a complete lattice.

Proposition 3 implies that P contains a unique minimal element. Let this unique minimal
approximated Walrasian equilibrium price vector be denoted pmin.

5 Process

The proposed process is described as an English auction and prices will thus never be
decreased. However, as each bidder can report v and z at one point in time, the auctioneer
can construct the approximated preference relations of each bidder and then use the auction
process proposed in this paper to find an approximated Walrasian equilibrium price vector
in a one-round fashion. Following Gul and Stacchetti (2000), the process will use the
bidders’ requirement of the different packages in order to, at least partly, determine how
prices should be increased.

Definition 3. The requirement function Ki : I × R3 → N0 for each i ∈ N is defined by:

Ki(x, p) = min
y∈Di(p)

#(x ∩ y).
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Let KN(x, p) =
∑

i∈N Ki(x, p) be the bidders’ aggregate requirement of any x ∈ I at
some p. Proposition 4, below, justifies the interest in the requirement function. Most
importantly, it asserts that when, at some p, the bidders’ aggregate requirement for each
package is weakly less than the number of existing copies of the items contained in the
package, it is possible to assign each bidder a package that she demands. Hence, the first
condition for an approximated Walrasian equilibrium is fulfilled at p. As any bidder’s
requirement of the null-object always equals zero, let q0 = 0 and naturally qab = qa + qb.

Proposition 4. For a given price vector p, there exists an assignment µ such that µ(i) ∈
Di(p) for all bidders i ∈ N if and only if KN(x, p) ≤ qx for all x ∈ I.

Hence, if KN(x, p) > qx for some package x ∈ I, then there is more demand for the items
contained in x, at p, than the number of available copies of x. To determine the net demand
for any package at some price vector p, in terms of aggregate requirement, the function
g : I × R3 → Z : g(x, p) = KN(x, p)− qx is defined. Packages with most net demand at p
are collected in O(p) = {x ∈ I | g(x, p) ≥ g(y, p) for all y ∈ I}.

Lemma 1. O(p) has a unique minimal element with respect to cardinality denoted O∗(p).

Lemma 1 is important for describing the process as whenever O∗(p) 6= 0 in any step of
the process, the prices of the items contained in O∗(p) will be the main focus of the price
increase.

A price increase consists of one part determining how much the prices are increased
relative to each other and a second part deciding the magnitude. For the first part,
δ(p) ∈ R3

+ is introduced, which has elements δx(p) for each x ∈ {0, a, b} and p. Let pt

denote the price vector at step t of the process. The magnitude of a price increase at
any step t is then given by ε(t) = sup{e | O∗(pt + eδ(pt)) = O∗(p

t)}. In Step 2 of the
process, prices of the items contained in O∗(p) are raised by equal amounts. However, as
the approximated preferences of the bidders are not necessarily quasi-linear, such a price
increase may not always be possible. To solve this problem, let x 6= y for x, y ∈ ab, and
lx(t) = inf{δx(pt) ∈ R+ | δ0(pt) = 0, δy(p

t) = 1, and ε(t) > 0} is defined. lx(t) and δ(p) are
used to determine the relative price increase of the items.

Process 1. Set t = 0 and let p0 = r
Step 1: If O∗(p

t) = 0 set pt = pT and stop. Otherwise, go to step 2.
Step 2: Let δx(p

t) = 1 if x ∈ O∗(pt) and 0 otherwise.

If =

{
ε(t) 6= 0, let pt+1 = pt + ε(t)δ(pt) and set t := t+ 1 and go to step 1.

ε(t) = 0, go to step 3.

Step 3: Let δ0 = 0 and

if =

{
a, ab ∈ O∗(pt), then δa(p

t) = 1 and δb(p
t) = lb(t).

b ∈ O∗(pt), then δa(p
t) = la(t) and δb(p

t) = 1.

10



Let pt+1 = pt + ε(t)δ(pt) and set t := t+ 1 and go to step 1.

Assuming that the bidders’ preferences fulfill the gross substitutes condition, Lemma 2
asserts that the auction process does not get stuck at any step t < T .

Lemma 2. If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N and ε(t) = 0 in step 2 of process 1, then ε(t) > 0 in step 3 of
process 1.

As O∗(p
T ) = 0, Proposition 4 ensures that the first condition for pT to yield an ap-

proximated Walrasian equilibrium is fulfilled. Assuming that each bidder’s approximated
preference relation complies with the gross substitutes condition, Theorem 1 states that
the process always converges to the unique minimal approximated Walrasian equilibrium
price vector.

Theorem 1. If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N , then Process 1 always terminates at pT = pmin.

6 Concluding remarks

This paper has provided a procedure for approximating a bidder’s preferences over two
types of items when complementarity between the two may exist. A one-round auction is
proposed which is shown to always converge to the unique minimal approximated Walrasian
equilibrium price vector. The auction process is efficient with respect to the approximated
preferences of the bidders. It would therefore be of interest to evaluate the performance
of the auction procedure in relation to the bidders’ true preferences. Another more com-
plicated question is whether a perhaps similar approximation procedure can be applied to
a more general setting, where bidders are interested in more than two items. Finally, the
approximation procedure described in this paper assumes that bidders report truthfully
and the auction process is not strategy-proof. Finding a strategy-proof way of conducting
a one-round auction, when bidders preferences are not necessarily quasi-linear, would be
of great interest and importance.

7 Appendix A: Proofs Related to the Approximation

For proving Proposition 1, completeness of %i for any i ∈ N will be shown in Lemma
3. Then Lemma 4, which is of technical nature, will be proven to aid in the proof of the
transitivity of %i. Transitivity of %i will be shown in Lemma 5.

Let the consumption set of a bidder be Z = I × R+ and any consumption bundle is a
pair (x, px) ∈ Z. Let Z(p) denote the consumption set at any p = (p0, pa, pb) ∈ R3. For
any bidder i ∈ N , %i is complete if for any given p and for all (x, px), (y, py) ∈ Z(p), we
have that (x, py) %i (y, py) or (y, py) %i (x, px) (or both). Let I+ = {a, b, ab}.

11



Lemma 3. For any given prices of the items, the approximated preference relation of each
bidder i ∈ N is complete.

Proof of lemma 3. Fix p = (p0, pa, pb). Then as any bidder is assumed to be indifferent
between two identical consumption bundles, we need to show that any pair of the four
distinct consumption bundles available at p are related by %i. By the requirements on the
bids we know that (x, vx) ∼i (0, 0) for any x ∈ I+. Assume that px ≤ vx. Then it follows
by price monotonicity that (x, px) % (x, vx) ∼i (0, 0). By construction, fi(pj) = pik, for
i = 1, 2, 3, are some prices of j, k ∈ ab, which would make the bidder indifferent between
any two packages x 6= y where x, y ∈ I+. Assume that pij ≤ pj for i = 1, 2, 3, which by
price monotonicity implies that (x, px) % (x, pix) ∼i (y, piy) ∼i (y, py), where the identity
of the two packages depend on the identity of i. By replacing ≤ with ≥ in the arguments
above, the same conclusion is derived by symmetry.

While completeness of the approximated preference relations could be established by
only considering one indifference curve at a time, transitivity depends on the construction
of different indifference curves. Therefore, it is important to know the relationship of the
approximated indifference curves. Let ci be the intercept, mi the slope of fi for i = 1, 2, 3,
c4 = zb − αz

m3
, and m4 = 1

m3
. We start by noting that since vj > zj for j ∈ ab, it is always

the case that m1 = vb−zb
va−za > 0.

Lemma 4. The linearly approximated indifference curves have the following relationship:

i. If mj 6= mk for some j, k = 1, 2, 4, then m1 6= m2 6= m4

ii. If m1 6= m2 6= m4, then there exist unique p∗a ∈ R and p∗b ∈ R such that f1(p
∗
a) =

f2(p
∗
a) = p∗b and f3(p

∗
b) = p∗a.

iii. If m3 > 0 and m1 6= m2 6= m4, then l > m1 > k for l, k ∈ {m2,m4} ⊂ R2 where l 6= k.

iv. mj > −1 for j = 2, 3.

v. If m2 > m1, then m2 > m1 > m4 > 0.

vi. If m1 = m2 = m4, then l ≤ c1 ≤ k for l, k ∈ {c2, c4} ⊂ R2 where l 6= k.

vii. If cj 6= ck for some j, k = 1, 2, 4, then c1 6= c2 6= c4

Proof. i. By symmetry it is enough to consider one case. Let m1 6= m4 and to derive a
contradiction we assume that m2 = m1 6= m4, which is equivalent to βv−βz

va−za = vb−zb
va−za 6=

vb−zb
αv−αz

.
Therefore, βv − βz = vb− zb and va− za 6= αv −αz. By the definition of the four constants
βv, αv, βz, and αz we know that

βv + va = αv + vb (4)

and
βz + za = αz + zb (5)
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Using equations (4) and (5) to replace αv and αz we get that βv − βz 6= vb − zb, which is a
contradiction.

ii. As any fi is a linear function for i = 1, 2, 3 and m1 6= m2, there must exist a unique
p∗a where f1 = f2. f1 and f2 are defined by equation (1) and (2) respectively. This gives:

p∗a =
za(vb − βv) + va(βz − zb)

vb − zb − βv + βz
(6)

Naturally since m1 6= m2 we have vb − zb 6= βv − βz and vb − zb − βv + βz 6= 0. Replacing
pa in equation (1) by (6) gives:

p∗b =
vbβz − zbβv

vb − zb − βv + βz
(7)

We proceed by showing that p∗a and p∗b can be found for f1 and f3 as well. Replacing pb in
(3) by (1) gives:

p′a =
zaαv − αzva

αv − αz − va + za
(8)

As m1 6= m4 it is ensured that αv − αz − va + za 6= 0. Replacing p′a in equation (1) by (8)
gives:

p′b =
zb(αv − va) + vb(za − αz)

αv − αz − va + za
(9)

By using equation (4) in (8) as well as (5) in (9) we get p′a = p∗a and p′b = p∗b .
iii. First note that if m3 > 0, then m4 > 0. As m1 6= m2 6= m4 we either have

m1 > mj or m1 < mj for some j = 2, 4. By symmetry it is enough to consider one case.
Let m1 > m4, then m1 = vb−zb

va−za >
vb−zb
αv−αz

= m4 > 0. As vb > zb by construction we have
αv−αz > va− za. Using equation (4) and (5) to replace αv and αz we get βv−βz > vb− zb
and thus m2 = βv−βz

va−za > m1 = vb−zb
va−za .

iv. As we have a requirement on the reports that vab > zab we get vab = va + βv =
vb + αv > za + βz = zb + αz = zab or va − za > βz − βv and vb − zb > αz − αv. Therefore,
1 > βz−βv

va−za and 1 > αz−αv

vb−zb
or equivalently, −1 < m2 = βv−βz

va−za and −1 < m3 = αv−αz

vb−zb
.

v. m2 > m1 gives that βv−βz
va−za > vb−zb

va−za > 0 or βv − βz > vb − zb. Moreover, m2 > m1

implies that m2 6= m1 6= m4. Applying (4) and (5) to α and βz gives that αv − αz >
va − za > 0 and thus m3 = αv−αz

vb−zb
> 0. The rest follows from point iii of this lemma.

vi. Let m1 = m2 = 1
m3

= m and then either c1 ≤ l or c1 ≥ l for l = c2, c4. By symmetry
it is enough to consider when c1 ≥ c2, which implies c1 = zb− za ∗m ≥ βz − za ∗m = c2 or
zb ≥ βz. Using (5) to replace βz gives za ≥ αz and thus c4 = zb−αz ∗m ≥ zb− za ∗m = c1.

vii. If l 6= c1 for l = c2, c4, then by symmetry it is enough to consider one case: Let
c2 6= c1, which implies za 6= αz. Using (5) to replace αz gives βz 6= zb and hence c4 6= c1.
By point vi. of this lemma we must have c2 6= c1 6= c4. If c2 6= c4, then by point vi. of this
lemma we have l ≥ c1 ≥ k with at least one weak inequality being a strict inequality and
we can use the same argument as before.
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For any bidder i ∈ N , %i is transitive if for any given p and for all
(x, px), (y, py), (w, pw) ∈ Z(p), (x, px) %i (y, py) and (y, py) %i (w, pw) imply that
(x, px) %i (w, pw).

Lemma 5. For any given prices of the items, the approximated preference relation of each
bidder i ∈ N is transitive.

Proof. As (x, px) ∼i (x, px) at any p for any (x, px) ∈ Z(p) it is assumed that x 6= y 6= w.
Transitivity in any other case follows by completeness. Fix some p = (p0, pa, pb). We start
by considering the case when x, y, w ∈ I+ and then proceed to where one of x, y, or w is
equal to the null-item 0. By point i. of Lemma 4 it follows that either m1 = m2 = m4 or
m1 6= m2 6= m4. These will have to be treated separately. Assume m1 6= m2 6= m4 and by
point ii. of Lemma 4 there exist p∗a and p∗b such that (a, p∗a) ∼i (b, p∗b) ∼i (ab, p∗a + p∗b). Let
x 6= y for x, y ∈ {b, ab}, then we will show the following:

If for any i ∈ N (a, pa) %i (x, px) and either (i) (x, px) %i (y, py) or (ii) (y, py) %i (a, pa) at
some p, then (i) (y, py) �i (a, pa) or (ii) (x, px) �i (y, py).

By symmetry, the following arguments apply when %i and � are replaced by �i and ⊀i

respectively. Let fX be the indifference curve between a and x and fY be the indifference
curve between y and a. Note that X, Y ∈ {1, 2} and X 6= Y as x 6= y. Moreover, let
fX(pa) = pXb , fY (pa) = pYb and f3(pb) = p3a.

Let V 6= W for V,W ∈ {%i,�i}. In order to derive a contradiction, assume that
(a, pa) %i (x, px), (x, px)W (y, py), and (y, py)V (a, pa) for any i ∈ N at some p. By price
monotonicity it follows that pXb ≤ pb ≤ pYb and, depending on the identity of the packages,
either p3a ≥ pa or p3a ≤ pa, with some weak inequality being a strict inequality.

It will now be shown that p∗a 6= pa. If pa = p∗a, then p∗b 6= pb since otherwise (a, pa) ∼i
(b, pb) ∼i (ab, pa+pb), which contradicts the assumption that bidder i ∈ N is not indifferent
between the three consumption bundles. Combining pXb ≤ pb ≤ pYb with p∗b 6= pb we get
that either pXb 6= p∗b and/or pYb 6= p∗b . This together with pa = p∗a imply that the slopes

mX =
pXb −p

∗
b

pa−p∗a
and/or mY =

pYb −p
∗
b

pa−p∗a
would be undefined. This contradicts the requirement on

the bids that va > za. Hence, pa 6= p∗a.
Assume that pa > p∗a. Symmetric arguments, to the ones presented below, can be used

when pa < p∗a. As m1 6= m2 by assumption, it follows that mY =
pYb −p

∗
b

pa−p∗a
> mX =

pXb −p
∗
b

pa−p∗a
.

Case 1: y = b. Then m1 > m2 and either m3 = p3a−p∗a
pb−p∗b

or m3 = p∗a−p3a
p∗b−pb

. By price

monotonicity y = b requires that p3a ≥ pa > p∗a, which implies that we must have p∗b 6= pb
as m3 would otherwise be undefined, contradicting that vb > zb. If pb > p∗b , then m1 =
pYb −p

∗
b

pa−p∗a
> m4 =

pb−p∗b
p3a−p∗a

> 0, which contradicts point iii. of Lemma 4. If p∗b > pb, then we

must have that m1 =
pYb −p

∗
b

pa−p∗a
> 0 >

p∗b−pb
p∗a−p3a

= m4 =
pb−p∗b
p3a−p∗a

≥ m2 =
pXb −p

∗
b

pa−p∗a
. By point iv. of

Lemma 4 m3 > −1 and we have −1 > m4 ≥ m2. This is a contradiction of point iv. of
Lemma 4.
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Case 2: y = ab. Now p3a ≤ pa and m2 > m1 =
pXb −p

∗
b

pa−p∗a
> 0, which requires pb ≥ pXb > p∗b .

Then it follows by point v. of Lemma 4 that m1 =
pXb −p

∗
b

pa−p∗a
> m4 =

pb−p∗b
p3a−p∗a

> 0. This in

turn requires p∗b < pb ≤ pXb and p∗a < pa ≤ p3a with some weak inequality being a strict
inequality, which is a contradiction.

Next the case when m1 = m2 = m4 = m is considered, which implies that we can

rewrite f3(pb) = p3A = c3 + pb ∗ m3 as pb = − c3
m3

+ p3a
m3

. Note that c4 = − c3
m3

and thus

pb = c4 + p3a ∗m. Let x 6= y 6= w for x, y, w ∈ I+, then the following will be shown:

If (x, px) %i (y, py) and (y, py) %i (w, pw) for any i ∈ N at some p, then (w, pw) �i (x, px).

To derive a contradiction assume that (x, px) %i (y, py), (y, py) %i (w, pw), and (w, pw) �i
(x, px) for some i ∈ N at some p. Note that by price monotonicity we either have: (i)
f1(pa) = p1b ≤ pb ≤ p2b = f2(pa) and f3(pb) = p3a ≤ pa or (ii) f1(pa) = p1b ≥ pb ≥ p2b = f2(pa)
and f3(pb) = p3a ≥ pa, with at least one weak inequality being a strict inequality. By
symmetry it is enough to consider one case. Assume that the three consumption bundles
are related such that f1(pa) = p1b ≤ pb ≤ p2b = f2(pa) and f3(pb) = p3a ≤ pa, with at least
one weak inequality being a strict inequality. From this it follows that p1b = c1 + pa ∗m ≤
pb = c4 + p3a ∗m ≤ c4 + pa ∗m and p1b = c1 + pa ∗m ≤ p2b = c2 + pa ∗m. Thus, c1 ≤ c4
and c1 ≤ c2. However, as at least one of the three previous mentioned weak inequalities
is a strict inequality we must have that cj 6= ck for some j 6= k where j, k ∈ {1, 2, 4}.
Therefore, c1 6= c2 6= c4 by point vii. of Lemma 4. Hence, c1 < c4 and c1 < c2, which is a
contradiction of point vi. of Lemma 4.

Finally, the case when x, y, w ∈ I and where one of x, y, or w is equal to the null-item 0
is considered. By the requirements of the reports we know that (0, 0) ∼i (a, va) ∼i (b, vb) ∼i
(ab, vab) for any i ∈ N . Let x 6= y for x, y ∈ ab and l 6= k 6= w for l, k, w ∈ {0, x, ab}, then
we will show the following:

1. If (x, px) %i (0, 0) and either (i) (y, py) %i (x, px) or (ii) (0, 0) %i (y, py) for any i ∈ N
at some p, then (i) (0, 0) �i (y, py) or (ii) (y, py) �i (x, px).

2. If (l, pl) %i (k, pk) and (k, pk) %i (w, pw) for any i ∈ N at some p, then (w, pw) �i

(l, pl)

Once again, let V 6= W for V,W ∈ {%i,�i}.
1. To derive a contradiction we assume that (x, px) %i (0, 0), (y, py)V (x, px), and

(0, 0)W (y, py). Combining we have: (y, py)V (x, px) %i (0, 0) ∼i (y, vy)W (y, py). By price
monotonicity we have py ≤ vy ≤ py, with at least one of the weak inequalities being a strict
inequality.

2. Note that pab = px+py. Let fX denote the indifference curve between x and ab and let
mX denote its slope. Moreover, let fX(px) = pXy for some px. Assume that (l, pl) %i (k, pk),
(k, pk) %i (w, pw), and (w, pw) �i (l, pl) at some p. By price monotonicity we either have:
pXy ≥ py, px ≤ vx, and px + py ≥ vab, or pXy ≤ py, px ≥ vx, and px + py ≤ xab, with at least
one weak inequality being a strict inequality as (w, pw) �i (l, pl). By symmetry it is enough
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to consider one case. So assume the consumption bundles are related such that pXy ≥ py,
px ≤ vx, and px + py ≥ vab, with at least one weak inequality being a strict inequality. By
the requirements of the bids we know that vab = vx + η, where η is equal to either αv or βv
depending on the identity of x. Hence, px + py ≥ vx + η. Therefore, py − η ≥ vx − px and
pXy − η ≥ vx − px ≥ 0. If vx = px, then pXy = η as fX(vx) = η by construction. From this
it follows that py = η as 0 = pXy − η ≥ py − η ≥ 0. Therefore, pXy = py and px + py = vab.
Since some of the three weak inequalities above must be a strict inequality, it must be
that px < vx, which is a contradiction. Hence, vx > px and as fX(vx) = η we must have

mX = η−pYx
vx−px . Since py−η ≥ vx−px and pXy ≥ py by assumption, we have mX ≤ −1, which

is a contradiction.

Proposition 1. For any given prices of the items, the approximated preference relation of
each bidder i ∈ N is complete and transitive.

Proof. Lemma 3 and Lemma 5 together imply Proposition 1

8 Appendix B: Proofs Related to Existence

In the following sections, it is assumed that the gross substitutes condition is fulfilled for
%i for any i ∈ N and if x ⊂ y, then x is a proper subset of y. An item is said to be in
excess demand if there are more bidders demanding a package containing the item than the
number of copies of the item. Similarly, an item is said to be in under demand if there are
less bidders demanding a package containing the item than the existing number of copies
of the item.

Proposition 2. If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N , then the set of approximated equilibrium prices, P, is non-
empty.

Proof. We start by noting that it is always possible to set pa, pb, and thus p, sufficiently
high such that it is possible to construct an assignment µ where µ(i) ∈ Di(p) for all x ∈ ab.
Let C = {p ∈ R3 | ∃µ s.t. µ(i) ∈ Di(p) for all i ∈ N}, which we know is non-empty.
Moreover, P ⊂ C. To derive a contradiction it is assumed that P = ∅. From this it follows
that for each p ∈ C there exists some assignment µ associated with p such that #Nx < qx
and px > rx for at least some x ∈ ab and where µ(i) ∈ Di(p) for all i ∈ N . Let µp denote
an assignment at some price vector p and A(p) = {µ | µ(i) ∈ Di(p) for all i ∈ N} be the
set of assignments such that each bidder is assigned a package she demands at price vector
p. Let r = (r0, ra, rb). As p ≥ r, it follows that C contains some minimal element. Denote
such a minimal element by s. The idea of the proof is to show that if P = ∅, then s cannot
be a minimal element of C.

If pb = rb for some p ∈ C, then sb = rb for some s and it must be that #Na < qa and
sa > ra for any µs ∈ A(j). By symmetry, the following arguments hold when b and a
are interchanged. For this part of the proof, price monotonicity and the continuity of the
approximated indifference curves will imply that s cannot be a minimal element of C. Let
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p′ ≤ s be such that p′b = sb = rb, and ra ≤ p′a < sa. By price monotonicity, the demand for
item b has weakly decreased at p′ as compared to at s. Moreover, as p′b = rb = sb we know
that there does not exist excess demand for item b at p′. Since p′ /∈ C, it is required that
there exist at least some bidder k ∈ N for whom µp′ /∈ Dk(p

′) at any µp′ . Since the demand
for item a has weakly increased at any p′, in comparison to s, it must always be possible
to find some p′ and µp′ where either #Na = qa, if p′a > ra, or #Na ≤ qa, if p′a = ra, and
where µp′(i) ∈ Di(p

′) for all i ∈ N . Because if there exists excess demand for item a at any
p′ ≤ s and under demand at s, then there exist at least two bidders who did not demand
any package containing a at s and who only demand packages containing a at p′. Collect
these bidders in the set F . By price monotonicity and since the approximated indifference
curves are continuous, there must exist some price vector p′′ such that p′ < p′′ < s for each
bidder i ∈ F where the bidder is indifferent between a package containing a and another
package not containing a. As item a is in under demand at s, there must exist some p′′

where it is possible to assign µs(j) to each j ∈ N \{i}, and in particular to each j ∈ F \{i},
and w ⊃ a to some i ∈ F . Therefore, µp′′(i) ∈ Di(p

′′) for all i ∈ N and p′′ ∈ C, which
contradicts the minimality of s.

Now assume that px > rx for all x ∈ ab and p ∈ C, which implies that there exists
at least some minimal element s ∈ C such that p′ /∈ C for any p′ ≤ s where p′x < sx for
some x ∈ ab. Once again, at s we know that #Nx < qx for at least some x ∈ ab at any
µs ∈ A(s). Assume that #Na < qa and #Nb ≤ qb for some µs ∈ A(s). By symmetry, the
following arguments can be used if a and b are interchanged. Let p′ be a price vector such
that ra < p′a < sa and p′b = sb. As p′ /∈ C we know that µp′(i) /∈ Di(p

′) for some i ∈ N and
there exists excess demand for item a and/or b.

Assume that item b is in excess demand at p′. Since the demand for item a is weakly
lower at s, by price monotonicity, and b must belong to at least some demanded package
at s for any bidder who demands any package w ⊇ b at p′ by gross substitutes, it follows
that b must be in excess demand at s as well. This contradicts that s ∈ C.

So, it must be that a is the item in excess demand at p′. If #Na < qa for all µs ∈ A(s),
then the same argument as for the case when sb = rb = p′b can be used to generate a
contradiction. Therefore, #Na < qa for some assignment µ′s ∈ A(s) and #Na = qa,
#Nb < qb for some other assignment µ′′s ∈ A(s) as s /∈ P . If #Nb < qb for all µs ∈ A,
then we can use symmetric arguments to case when sb = rb = p′b in order to derive a
contradiction. It must therefore be that #Na < qa and #Nb = qb at µ′s.

In this part it will be shown that it must be possible to find some p′ ≤ s such that
p′ ∈ C. More specifically, it will be shown that an assignment µp′ can be constructed such
that µp′(i) ∈ Di(p

′) for all i ∈ N . To see this, note that for any bidder i ∈ N who only
demands one package, the price decrease can always be made sufficiently small such that
Di(p

′) = Di(s). For any bidder i ∈ N for whom 0, x ∈ Di(s), where x ∈ {a, b, ab}, then
either the gross substitutes condition is violated in the case when x = ab as Di(p) = 0
for any p ≥ s where px > sx for some x ∈ ab, or it is possible to make the price decrease
sufficiently small such that x ∈ Di(p

′) for any such bidder. Note that µi(s) = x at any
µs ∈ A(s) for any such bidder i ∈ N as s ∈ P otherwise. Therefore, it is possible to
construct µp′ such that µs(i) = µp′(i) = x for any bidder i ∈ N discussed above. Moreover,
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any bidder who is indifferent between x ∈ ab and ab at s must have µs(i) = ab at any
µs ∈ A(s) as p ∈ P otherwise. For any price decrease sufficiently small it follows that
Di(p

′) ⊆ Di(s
′). Hence, it is possible to let µp′(i) ⊆ µs(i) for any such bidder i ∈ N .

The only bidders left to consider are the ones who are indifferent between a and b. Note
that some such bidder must exist as #Na < qa and #Nb = qb for µ′s and #Na = qa and
#Nb < qb for µ′′s . Collect each such bidder in the set S. As µp′(i) ⊆ µs(i) for all i ∈ N \ S
and #Nx < qx for some x ∈ ab at s, it follows that, at p′, there are more copies of item a
and b to assign to the bidders in S than number of bidders contained in S. As each bidder
i ∈ S wishes to be assigned only one item at s and prices can always be lowered sufficiently
little such that Di(p

′) ⊆ Di(s) for any i ∈ S, there must exist some p′ where µp′(i) ∈ Di(p
′)

for all i ∈ S.
More specifically, let f i1 be the approximated indifference curve between item a and b

for any bidder i ∈ S and mi
1 its slope. let T = {mi

1 | i ∈ S} and as any mi
1 ∈ R+, the

elements in T can be ordered from smallest to greatest. Let k = #{i ∈ S | µ′s(i) = b}. As
#Na < qa and #Nb = qb for µ′s and #Na = qa and #Nb < qb, it must be that k ≥ 1. Pick
the kth element from T and denote the corresponding approximated indifference curve by
fk1 . As µi(p

′) = µi(s) for all i ∈ N \ S it follows that k is the number of copies of b which
are possible to assign to any bidder i ∈ S at p′. Furthermore, #S − k + 1 is the number
of copies of a which can be assigned at p′. By lowering prices along fk1 sufficiently little,
it must by price monotonicity be that (b, pb) �i (a, pa) for a maximum of k − 1 bidders
i ∈ S, (a, pa) �i (b, pb) for a maximum of #S− k bidders i ∈ S, and (a, pa) ∼i (b, pb) for at
least 1 bidder i ∈ S. As there are more copies of item a and b to assign to the bidders in
S than number of bidders contained in S at p′ and no bidder requires ab, it is possible to
let µp′(i) ∈ Di(p

′) for all i ∈ S. Therefore, µp′(i) ∈ Di(p
′) for all i ∈ N , which contradicts

the minimality of s.

Lemma 6 will be used in the proof of Proposition 3.

Lemma 6. For any two price vectors p and p′ where px > p′x and p′y ≥ py for x, y ∈ ab
and x 6= y, if for some i ∈ N , x ⊆ w for some w ∈ Di(p), then x ⊆ w′ for all w′ ∈ Di(p

′).

Proof. Let the price vector p′′ be defined as p′′j = max{pj, p′j} for all j ∈ {0, a, b}. Since
p′′x = px we know by gross substitutes that there exists some w ∈ Di(p

′′) such that x ⊆ w.
By price monotonicity (w, p′w) �i (w, p′′w) %i (o, p′′o) ∼i (o, p′o) for any o ∈ I for which x * o.
Therefore, x ∈ w′ for all w′ ∈ Di(p

′).

Proposition 3. If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N , then P forms a complete lattice.

Proof. It will first be shown that if p′, p′′ ∈ P , then s ∈ P and then that h ∈ P as well.
Combining this with the fact that P is bounded from below by the seller’s reservation
prices and from above by some bidder’s report v, we can conclude that P forms a complete
lattice.

By definition p0 = 0 for any p, so pa and pb are the prices of interest. If #Nx < qx for
some x ∈ ab at some p′ ∈ P , then we must have px = rx for all p ∈ P . Therefore, for any
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p′, p′′ ∈ P , s ∈ P . Now let 〈p′, µ′〉 and 〈p′′, µ′′〉 be two distinct approximated Walrasian
equilibria where p′ and p′′ are such that p′a > p′′a > ra and p′′b > p′b > rb. Hence, #Na = qa
and #Nb = qb for both µ′ and µ′′. Let µp be an assignment associated with the price vector
p. It will first be shown that µ′(i) = µ′′(i) for all i ∈ N and secondly that it is possible
to let µ′(i) = µ′′(i) = µs(i) = µh(i) for all i ∈ N . Therefore, 〈s, µs〉 and 〈h, µh〉 are two
approximated Walrasian equilibria.

If µ′(i) = a for any i ∈ N , then a ⊆ µ′′(i) by Lemma 6. In order to derive a contra-
diction, assume ab ∈ Di(p

′′), which by Lemma 6 implies that b ⊆ w for all w ∈ Di(p
′),

which is a contradiction. Hence, µ′(i) = a implies that µ′′(i) = a. Now assume µ′′(i) = a
and µ′(i) 6= a. Since #Na = qa and #Nb = qb under both µ′ and µ′′, there has to exist
some j ∈ N \ {i} such that either a ⊆ µ′(j) and a * µ′′(j), or b ⊆ µ′′(j) and b * µ′(j),
which we know by Lemma 6 does not exist. Therefore, µ′′(i) = a implies that µ′(i) = a.
If µ′(i) = ab, then a ⊆ µ′′(i) by Lemma 6, which, by using the same arguments as before,
implies that µ′′(i) = ab. By symmetry the above arguments apply for the case when a
and b, together with the assignments, are interchanged. The previous arguments together
imply that if µ′(i) = 0 then µ′′(i) = 0.

Now to the second part. For any i ∈ N for whom µ′(i) = µ′′(i) = y for any y ∈ {0, a, b}
we know by price monotonicity that (y, sy) %i (x, sx) for any x ∈ {0, a, b}. In order to derive
a contradiction assume that (ab, sa+sb) �i (y, sy). By gross substitutes a ⊆ w for some w ∈
Di(p

′′) and b ⊆ w for some w ∈ Di(p
′). From Lemma 6 it follows that ab = Di(p

′′) = Di(p
′),

which is a contradiction. Finally, for any i ∈ N for whom µ′(i) = µ′′(i) = ab, it follows by
price monotonicity that (ab, sa+sb) �i (0, 0), (ab, sa+sb) �i (ab, p′a+p

′
b) %i (b, p′b) ∼i (b, sb),

and (ab, sa+sb) �i (ab, p′′a+p′′b ) %i (a, p′′a) ∼i (a, sa). It is therefore possible to let µ(i) = ab.
Therefore, s ∈ P .

Lastly it will be shown that h ∈ P as well. For any i ∈ N for whom µ′(i) = µ′′(i) = y
for any y ∈ {0, a, b} we know by price monotonicity that (y, hy) %i (x, hx) for any x ∈ I.
If µ′(i) = µ′′(i) = ab, then a ∈ w and b ∈ w′ for some w,w′ ∈ Di(h) by gross substitutes.
Assume ab /∈ Di(h) and a, b ∈ Di(h). However, for any price vector p such that pa < ha
and pb = hb it follows by price monotonicity that for a price decrease sufficiently small,
b /∈ Di(p), which contradicts the gross substitutes condition. Thus, h ∈ P .

9 Appendix C: Proofs Related to the Process

For many of the proofs in this section, the following sets of packages are introduced: Let
Ca = {a, ab, {a, ab}}, Cb = {b, ab, {b, ab}} and Ca,b = {{a, b}, {a, b, ab}}. The reason for
this is that the approximated demand correspondence of any bidder who demands some
package x 6= 0, at some p, is a subset of at least one of Ca, Cb, and Ca,b. Therefore, at any
price vector p, it is possible to collect any bidder who demands at least some package x 6= 0
into at least one of the following sets: Let Da(p) = {i ∈ N | Di(p) ∈ Ca}, Db(p) = {i ∈
N | Di(p) ∈ Cb}, Da,b(p) = {i ∈ N | Di(p) ∈ Ca,b}, and Dab(p) = {i ∈ N | Di(p) = {ab}}.
These sets will be very useful in many of the proofs in this section.

Proposition 4. For a given price vector p, there exists an assignment µ such that µ(i) ∈
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Di(p) for all bidders i ∈ N if and only if KN(x, p) ≤ qx for all x ∈ I.

Proof. We start by showing the if part of Proposition 4: If there exists an assignment µ for
some price vector p such that µ(i) ∈ Di(p) for all i ∈ N , then KN(x, p) ≤ qx for all x ∈ I.

We know that KN(0, p) ≤ q0 for all p. Note that if Ki(a, p) = 1 for some i ∈ N , then
i ∈ Da(p). Thus, KN(a, p) = #Da(p). Since µ(i) ∈ Di(p) ∀i ∈ N , it is implied that
Da(p) ⊆ Na. As #Na ≤ qa by assumption, it therefore follows that KN(a, p) = #Da(p) ≤
#Na ≤ qa. KN(b, p) ≤ qb by symmetrical arguments.

We can also note that KN(ab, p) = #Da(p) + #Db(p) + #Da,b(p) since Ki(ab, p) = 1
for any i ∈ N whenever Di(p) ∈ Ca ∪ Cb ∪ Ca,b \ ab, Ki(ab, p) = 2 whenever Di(p) = ab,
and Da(p) ∩ Db(p) ∩ Da,b(p) = Dab(p). Since µ is such that µ(i) ∈ Di(p) for all i ∈ N
by assumption, it follows that Da(p) ∪ Db(p) ∪ Da,b(p) = Na ∪ Nb and Dab(p) ⊆ Na ∩ Nb.
Therefore, KN(ab, p) = #Da(p) + #Db(p) + #Da,b(p) ≤ #Na + #Nb ≤ qa + qb = qab.

We continue by showing the only if part of Proposition 4: If KN(x, p) ≤ qx for all x ∈ I at
some p, then there exists an assignment µ such that µ(i) ∈ Di(p) for all i ∈ N .

As KN(x, p) ≤ qx for all x ∈ I, we know from before that #Da(p) ≤ qa, #Db(p) ≤ qb
and #Da(p)+ #Db(p)+ #Da,b(p) ≤ qa+ qb. Assume that at some price vector p there does
not exist a µ such that µ(i) ∈ Di(p) for all i ∈ N , which implies that for all assignments
there exists at least one bidder i ∈ N such that µ(i) /∈ Di(p). Denote this bidder by k.
Note that we can always let µ(k) = 0 so k ∈ Da(p)∪Db(p)∪Da,b(p). Moreover, if µ(k) = ab,
then it is possible to remove items in order for µ(k) ∈ Dk(p). If there would exist a group
of bidders S ⊆ N for which µ(i) /∈ Di(p) for all i ∈ S, then the following arguments would
apply to each bidder i ∈ S individually.

We will focus our attention on an assignment, denoted µ, for which #Nx ≤ qx for
all x ∈ ab, and where each bidder j ∈ N \ {k} is matched to a minimal element, w.r.t
cardinality, of her demand correspondence. We will show, by way of contradiction, that
it is always possible to construct µ such that each bidder is assigned something which she
demands. As µ(k) 6= ab, and µ(j) = ab if and only if j ∈ Dab(p) for all j ∈ N \ {k} we
know that Dab(p) ⊇ Na ∩Nb.

Obviously, it cannot be that #Nx < qx for all x ∈ ab. Let x 6= y for x, y ∈ ab. There
are two cases to consider:

Case 1: #Nl = ql for all l ∈ {a, b}. We cannot have µ(k) = 0 because then Da(p) ∪
Db(p)∪Da,b(p) ⊃ Na ∪Nb and KN(ab, p) = #Da(p) + #Db(p) + #Da,b(p) > #Na + #Nb =
qa + qb = qab. Therefore, µ(k) = x and hence y ⊆ w for all w ∈ Dk(p), as we otherwise
would have µ(k) ∈ Dk(p). From this it follows that k ∈ Dy and as y * µ(k) it must either
be that k ∈ Dab(p) ⊃ Na ∩Nb, in which case KN(ab, p) = #Da(p) + #Db(p) + #Da,b(p) >
#Na + #Nb = qa + qb = qab, or k ∈ Dy(p) \ Dab(p), which implies that there does not
exist a bidder j ∈ Da,b(p) such that y ⊆ µ(j). If this was true, it would be possible
to switch the assignment between bidder k and bidder j yielding µ(i) ∈ Di(p) for all
i ∈ N . As y * µ(j) for all j ∈ Da,b(p), and k ∈ Dy, it follows that Ny ⊂ Dy, and thus
KN(y, p) = #Dy(p) > #Ny = qy, which is a contradiction.
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Case 2: #Nx < qx and #Ny = qy. Now we can always let µ(i) = x and if Nx = qx in
consequence of this, we are back in case 1. As µ(k) = x /∈ Dk(p) we know that y ∈ w for
all w ∈ Dk(p), and k ∈ Dy. As #Nx < qx it is implied that there does not exist a bidder
j ∈ Da,b(p) such that y ∈ µ(j) because then it would be possible to switch the assignment
between bidder k and bidder j. Therefore, Ny ⊂ Dy, and KN(y, p) = #Dy > #Ny = qy.

Lemma 1. O(p) has a unique minimal element with respect to cardinality denoted O∗(p).

Proof. By the construction of O(p) we know that g(x, p) = g(y, p) for all x, y ∈ O(p). Since
#0 < #a = #b < #ab, we need to show that a, b ∈ O∗(p) can never be true.

We will start by showing that if x ⊆ y for any x, y ∈ I, then Ki(x) ≤ Ki(y) for each
i ∈ N . To derive a contradiction, assume that x ⊆ y and Ki(x) > Ki(y) for some i ∈ N ,
which is equivalent to

min
w∈Di(p)

#(x ∩ w) > min
w∈Di(p)

#(y ∩ w)

Let w1 ∈ arg minw∈Di(p) #(x ∩w) and w2 ∈ arg minw∈Di(p) #(y ∩w). If w1 = w2 = w, then
#(x ∩ w) > #(y ∩ w) implies that x * y. If, on the other hand, w1 6= w2, then it must be
that #(x ∩ w2) ≥ #(x ∩ w1) > #(y ∩ w2), which in turn implies that x * y.

We will now show that Ki(ab, p) ≥ Ki(a, p) + Ki(b, p) for each i ∈ N . Since a ⊆ ab
and b ⊆ ab it follows, by the above, that Ki(ab, p) ≥ max{Ki(a, p), Ki(b, p)}. Assume that
Ki(ab, p) < Ki(a, p) + Ki(b, p) for some i ∈ N at some p. As Ki(a, p), Ki(b, p) ∈ {0, 1}
we must have that Ki(a, p) = Ki(b, p) = 1. However, Ki(a, p) = Ki(b, p) = 1 implies that
Di(p) = ab and thus that Ki(ab, p) = Ki(a, p) +Ki(b, p) for each i ∈ N .

Ki(ab, p) ≥ Ki(a, p) + Ki(b, p) for each i ∈ N implies that KN(ab, p) ≥ KN(a, p) +
KN(b, p) as well as g(ab, p) ≥ g(a, p) + g(b, p). Since g(0, p) = 0 for all p we have that if
O∗(p) = 0, then g(x, p) ≤ 0 for all x ∈ I. So, if a, b ∈ O∗(p), then g(a, p) = g(b, p) = s for
some s > 0 and g(ab, p) ≥ 2s by the arguments above. This implies that O(p) = O∗(p) =
ab, which is a contradiction.

Lemma 2. If ε(t) = 0 in step 2 of process 1, then ε(t) > 0 in step 3 of process 1.

Proof. By construction of Process 1, we know that 0 = O∗(p
t) if and only if t = T . So

assume that t < T , O∗(p
t) = x for some x ∈ I \ 0 and that ε(pt) = 0 in step 2. It will be

shown that at any pt there always exist some e > 0 and δ(pt) such that O∗(p
t + eδ(pt)) =

O∗(p
t), and hence ε(pt) > 0.

If x = O∗(p
t) ∈ ab, then by gross substitutes and price monotonicity it must be that

by only raising the price of item y, the demand for x is weakly increased and the demand
for the other packages contained in I \ 0 are weakly decreased. As a consequence, the
aggregate requirement of x weakly increases as well. Therefore, if δ0(p

t) = 0, δx(p
t) = 1,

and δy(p
t) = ∞, then O∗(p

t + eδ(pt)) = O∗(p
t) for some e > 0 sufficiently small in step 3

of the process and there exists ε(t) > 0.
Assume O∗(p

t) = ab. The idea of this part of the proof is to construct a particular
price vector p′ ≥ pt and to show that the requirement for ab = O∗(p

t) is greater than for
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any other package at p′. To simplify notation, let S = Da,b(pt) = {i ∈ N | Di(p) ∈ Ca,b}.
Furthermore, let qSx (p) = qx−KN\S(x, p) for any x ∈ ab at some p. Let p′ be a price vector
such that p′x > ptx for at least some x ∈ ab. Note that Ki(ab, p

t) = Ki(a, p
t) +Ki(b, p

t), for
any i ∈ N \ S at any pt and that for any p′ ≥ pt it is possible to make the price increase
sufficiently small such that Ki(ab, p

′) = Ki(a, p
′) + Ki(b, p

′) and Ki(x, p
′) ≥ Ki(x, p

t) for
any x ∈ I. Therefore, at any such p′ it must be that qSa (p′) ≤ qSa (pt) and qSb (p′) ≤ qSb (pt).
Moreover, for any i ∈ S we have Ki(ab, p

t) = 1, Ki(x, p
t) = 0 for any x ∈ I \ab. Therefore,

g(ab, pt) = #S − qSa (pt)− qSb (pt).
It will now be shown that for any p′ ≥ pt, where the price increase is sufficiently small,

Di(p
′) 6= {ab} for any i ∈ S. If ab /∈ Di(p

t) for any i ∈ S, then any such p′ ≥ pt can
be found by making the price increase sufficiently small. If Di(p

t) = {a, b, ab} however,
then Di(p

′) = {ab} would violate the gross substitutes condition. It can be noted that
pt is the price vector where the three approximated indifference curves, f1, f2, and f3,
intersect for bidder i ∈ S. If Di(p

′) = ab for some p′ ≥ pt, then p′x > ptx for all x ∈ ab
and we must by price monotonicity have that f2(p

′
a) = p′′b > p′b, and f3(p

′
b) = p′′a > p′a.

Therefore, m2 =
p′′b−p

t
b

p′a−pta
> m4 =

p′b−p
t
b

p′′a−pta
> 0. Let c be a price vector such that f2(ca) = cb and

ca + cb = vab. Since m2 > m4 it must be that f3(cb) = c′a > ca and Di(c) = {a, ab, 0}. Let
c′′ be a price vector such that c′′a = ca and c′′b = cb + γ for some γ > 0. Then we must have
Di(c

′′) = 0 for some γ > 0 sufficiently small as it is always possible to find c′′ such that
f3(c

′′
b ) = c′′′a > c′′a, c

′′
a + c′′b > vab, and f2(c

′′
a) = c′′′b > c′′b , which by price monotonicity implies

that (0, 0) ∼i (ab, vab) �i (ab, c′′a + c′′b ) �i (x, c′′x) for x ∈ ab. However, this contradicts the
gross substitutes condition as a * w for any w ∈ Di(c

′′).
As Di(p

′) 6= ab for any i ∈ S and p′ ≥ p, where the price increase is sufficiently small,
it must be possible to construct p′ such that Ki(ab, p

′) = 1, for any i ∈ S. Therefore,

0 < g(ab, pt) = #S − qSa (pt)− qSb (pt) ≤ #S − qSa (p′)− qSb (p′) = g(ab, p′).

The strict inequality follows from O∗(p
t) = ab and the weak inequality from the fact that

qSx (p′) ≤ qSx (pt) for x ∈ ab and some p′ ≥ pt. So, if qSx (pt) < 0 for all x ∈ ab, then
g(ab, p′) = #S − qSa (p′)− qSb (p′) > #S − qSx (p′) ≥ g(x, p′) and x ∈ ab. The weak inequality
follows from that Ki(x, p

′) ∈ {0, 1} for any i ∈ S. There are two cases two consider:
Case 1: qSa (pt) ≥ 0 and qSb (pt) ≥ 0. For g(ab, pt) > 0 it has to be that #S > qSa (pt) +

qSb (pt). As before, we have 0 < g(ab, pt) = #S − qSa (pt) − qSb (pt) ≤ g(ab, p′). Let mi
1

be the slope of f i1 for bidder i ∈ S, and note that f1(p
t
a) = ptb for all i ∈ S. Define

T = {mi
1 ∈ R | i ∈ S} and let n = qSa (pt) + 1. Pick the nth element from T , which we

denote mn
1 . Let δ0(p

t) = 0, δb(p
t) = mn

1 , and δa(p
t) = 1. By increasing the prices by

p′ = pt + eδ(pt) for some e > 0 sufficiently small, we must by price monotonicity have that
(a, p′a) �i (b, p′b) for a maximum of qSa (pt) bidders who belong to S, (b, p′b) �i (a, p′a) for a
maximum of #S − qSa (pt) − 1 bidders who belong to S, and (a, p′a) ∼i (b, p′b) for at least
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one bidder i ∈ S. Therefore,

g(a, p′) ≤qSa (pt)− qSa (p′)

<#S − qSb (pt)− qSa (p′)

≤#S − qSb (p′)− qSa (p′)

=g(ab, p′)

The first weak inequality follows from the fact that Di(p
′) 6= ab for any i ∈ S. The strict

inequality follows from #S−qSb (pt) > qSa (pt). Moreover, g(b, p′) ≤ #S−qSa (pt)−1−qSb (p′) <
#S − qSa (p′) − qSb (p′) = g(ab, p′). Hence, O∗(p

′) = ab, and there exist e, δ(pt) such that
ε(t) > 0 in step 3 of the process.

Case 2: qSa (pt) ≥ 0 and qSb (pt) < 0. For g(ab, pt) > 0 we need g(ab, pt) = #S − qSa (pt)−
qSb (pt) > −qSb (pt) = g(b, pt), or #S > qSa (pt). Moreover, #S > qSa (pt) ≥ qSa (p′) from before.
Let p′ be such that p′a = pta and p′b = ptb + γ. Then for some γ > 0 sufficiently small it
must by price monotonicity be that (a, p′a) �i (b, p′b) for all i ∈ S. Combining this with
Di(p

′) 6= ab for any i ∈ S we have, g(a, p′) = #S−qSa (p′) < #S−qSa (p′)−qSb (p′) = g(ab, p′),
and g(b, p′) = −qSb (p′) < #S − qSa (p′) − qSb (p′) = g(ab, p′) since #S > qSa (p′). Hence,
O∗(p

′) = ab, and there exist e, δ(pt) such that ε(t) > 0 in step 3 of the process. Symmetric
arguments can be used if qSb (pt) ≥ 0 and qSa (pt) < 0.

The proof of Theorem 1 will be decomposed into Lemma 7 and Lemma 9. Lemma 8
will aid in the proof of Lemma 9.

Lemma 7. pmin ≤ pT

Proof. It will be shown that for any p ≤ pmin, for which px < pminx for some x ∈ ab, it must
be that O∗(p) 6= 0. As the prices are bounded from below by the seller’s reservation prices
it is assumed that pminx > rx for at least some x ∈ ab. p is constructed such that px < pminx

for at least some x ∈ ab. Thus, p /∈ P .
If it is possible to construct some assignment µp at price vector p such that #Nx = qx

for any x ∈ ab, or alternatively #Nx < qx for any x ∈ ab for which px = rx, then there
must exist i ∈ N for whom µp(i) /∈ Di(p) as p ∈ P otherwise. p ∈ P would contradict the
minimality of pmin. By Proposition 4 it follows that KN(x, p) > qx for some package x ∈ I
and since KN(0, p) ≤ q0 for all p it must be that O∗(p) 6= 0.

Now assume, in order to derive a contradiction, that µp can only be constructed such
that #Nx < qx and px > rx for at least some x ∈ ab and that µ(i) ∈ Di(p) for all
i ∈ N . Then it must be possible to find a price vector p′ ≤ p where an assignment can
be constructed such that µ(i) ∈ Di(p

′) for all i ∈ N and #Nw = qw for any w ∈ ab
for which p′w > rw and #Nw ≤ qw for any w ∈ ab for which p′w = rw. To see this it
can be noted that, by price monotonicity, the demand for any w ∈ ab weakly increases
as pw is decreased. Therefore, by decreasing px to p′x it must be possible to find a price
vector p′ and an assignment such that either p′x > rx and #Nx = qx or p′x = rx and
#Nx ≤ qx. Furthermore, the demand for the other item y ∈ ab, for which y 6= x, has
weakly decreased. Therefore, #Ny ≤ qy, p

′
y ≥ ry. Moreover, µ(i) ∈ Di(p

′) for all i ∈ N as
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there would otherwise exist excess demand for item x, which could be eliminated by raising
its price, as there was no excess demand at p. If #Ny < qy and p′y > ry, then the price of
item y can be decreased in the same manner. By repeating this process, it must be possible
to find some p′ ≤ p, where an assignment can be constructed, such that µ(i) ∈ Di(p

′) for
all i ∈ N and #Nx = qx for any x ∈ ab for which p′x > rx and #Nx ≤ qx for any x ∈ ab
for which p′x = rx. This implies however that p′ ∈ P , contradicting the minimality of pmin.
There therefore exists i ∈ N such that µ(i) /∈ Di(p) and by Proposition 4 it follows that
KN(x, p) > qx for some package x ∈ I and since KN(0, p) ≤ q0 for all p it must be that
O∗(p) 6= 0.

For Lemma 8 let x 6= y for x, y ∈ ab.

Lemma 8. If for any two price vectors p and p′ where p′x > px, p′y = py, and y ⊆ w for
all w ∈ Di(p) and some i ∈ N , then y ⊆ w for all w ∈ Di(p

′)

Proof. By symmetry it is enough to consider when x = a and y = b. If b ∈ Di(p) for any
i ∈ N , then (b, p′b) �i (k, p′k) for all k ∈ I \ b by price monotonicity. If ab = Di(p), then
f2(pa) = p2b > pb by price monotonicity. If, to derive a contradiction, a ∈ Di(p

′), then

f2(p
′
a) = p′2b ≤ p′b = pb and m2 =

p′2b −p
2
b

p′a−pa
< 0. Let p′′ be a price vector where p′′a = pa and

p′′b = pb + γ for some γ > 0 sufficiently small such that Di(p
′′) = ab as well. As m2 < 0

there exists a price vector k, for which ka < p′a and kb = p′′b , where f2(ka) = k2b < kb and
hence (a, ka) �i (ab, kab). Moreover, as a ∈ Di(p

′) and ka < p′a and kb > p′b we must by
price monotonicity have (a, ka) �i (x, px) for x ∈ {b, 0} as well. Hence, Di(k) = a, which
contradicts the gross substitutes condition since b /∈ w for any w ∈ Di(l).

Now we will show that ab = Di(p) implies that (b, p′b) �i (0, 0). Assume (0, 0) %i (b, p′b),
which by price monotonicity implies that p′b = pb ≥ vb. For some price vector k such that
kb = pb + γ and ka = pa for some γ > 0 sufficiently small we must have Di(k) = ab
as well. Let k′ be a price vector where k′b = kb and k′a > ka kuch that k′b + k′a > vab.
From the previous arguments we know that a /∈ Di(k

′). Therefore, 0 = Di(k
′). This

however, violates the gross substitutes condition since b /∈ w for any w ∈ Di(k
′). Hence,

(b, kb) �i (0, 0), which concludes the proof.

Lemma 9. pT ≤ pmin

Proof. To derive a contradiction assume that pt ≤ pmin for some t < T but pt+1
x > pminx for

some x ∈ ab. Denote the unique minimal set in excess demand at time t by O∗(p
t). We

know that there must exist some t and e ∈ [0, ε(t)) such that p′(e) = pt + eδ(pt) ≤ pmin.
As e < ε(t), it follows that O∗(p

t) = O∗(p
′(e)) 6= 0. Let c(p) = {x ∈ ab | px = pminx } for

any p. Moreover, let c1 = O∗(p
′(e)) ∩ c(p′(e)) and c2 = O∗(p

′(e)) \ c1. We start by noting
that if g(x, p′(e)) > 0 for x ∈ ab, then KN(x, p) = #Dx(p′(e)) > qx. There are two cases
to consider:

Case 1: c1 6= ∅. If g(c1, p
′(e)) > 0, then either c1 = ab, in which case pmin /∈ P , or c1 ∈

ab, which implies that KN(c1, p
′(e)) = #Dc1(p′(e)) > qc1 . As c1 ⊆ w for all w ∈ Di(p

′(e))
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for all i ∈ Dc1(p′(e)), it follows by Lemma 8 that c1 ⊆ w for all w ∈ Di(p
min) for any such

bidder i as well. Therefore, KN(c1, p
min) ≥ KN(c1, p

′(e)) and hence g(c1, p
min) > 0, which

contradicts that pmin ∈ P .
Now assume that g(c1, p

′(e)) ≤ 0, which implies that c1 ∈ ab and O∗(p
′(e)) = ab. To

simplify let c1 = a and c2 = b. By symmetry, the following arguments can be used when
a and b are interchanged. It will now be shown that g(a, pmin) > 0. To see this we start
by noting that as a, b ∈ Di(p

′(e)) for all i ∈ Da,b(p′(e)), it follows that Ki(ab, p
′(e)) = 1 for

any such bidder i ∈ N . Therefore, it follows that g(ab, p′(e)) = #Da,b(p′(e)) + g(a, p′(e)) +
g(b, p′(e)) and we know that #Da,b(p′(e)) ≥ 1 since O∗(p

′(e)) = ab and g(a, p′(e)) ≤ 0.
Moreover, as O∗(p

′(e)) = ab we know that #Da,b(p′(e))+g(a, p′(e))+g(b, p′(e)) > g(b, p′(e))
or #Da,b(p′(e)) + g(a, p′(e)) > 0. By gross substitutes and price monotonicity it must be
that Ki(a, p

min) ≥ Ki(a, (p
′(e))) for all i ∈ N . In particular, since a, b ∈ Di(p

′(e)) for all i ∈
Da,b(p′(e)), it follows that Ki(a, p

′(e)) = 0 and by gross substitutes and price monotonicity
that Ki(a, p

min) = 1 for any such bidder i ∈ Da,b(p′(e)). As #Da,b(p′(e)) + g(a, p′(e)) > 0,
it must be that g(a, pmin) ≥ #Da,b(p′(e)) + g(a, p′(e)) > 0, which is a contradiction.

Case 2: c1 = ∅ and c(p′(e)) 6= ∅. As c1 = ∅ and c(p′(e)) 6= ∅ it must be that e, δ(pt) and
ε(t) are generated in step 3 of Process 1. Furthermore, c2 = O∗(p

′(e)) 6= ∅ and O∗(p
′(e)) 6=

ab because if O∗(p
′(e)) = ab, then c1 6= ∅. For simplicity we can let c2 = O∗(p

′(e)) = a
but symmetric arguments apply if c2 = b. Let p′′ be defined as p′′b = pminb = p′b(e) and
p′′a = p′a(e) + γ for some γ > 0 sufficiently small such that p′′a < pmina . As e was generated
in step 3 and O∗(p

t) = a = O∗(p
′(e)), we know that δ0 = 0, δa(p

t) = 1, and δb(p
t) = lb(t),

where lb(t) = min{δb(pt) ∈ R+ | δ0(pt) = 0, δa(p
t) = 1, and ε(t) > 0}. More importantly,

as ε(t) = 0 in step 2 of Process 1, O∗(p
′(e)) 6= O∗(p

′′).
Note that as p′′b = pminb and p′′a < pmina , we know by Lemma 7 that O∗(p

′′) 6= 0. If
O∗(p

′′) = b, then pmin /∈ P as g(b, pmin) > 0 by the gross substitutes condition. Thus,
O∗(p

′′) = ab, which implies that g(ab, p′′) > g(a, p′′) or #Da,b(p′′) + g(a, p′′) + g(b, p′′) >
g(a, p′′) and hence #Da,b(p′′) + g(b, p′′) > 0. Since a, b ∈ Di(p

′′) for all i ∈ Da,b(p′′) we
know by price monotonicity that a /∈ Di(p

min) and by Lemma 8 that b ∈ Di(p
min) for

all i ∈ Da,b(p′′) as well. Furthermore, Ki(b, p
min) ≥ Ki(b, p

′′) for any i ∈ N \ Da,b(p′′).
Therefore, g(b, pmin) > 0, and/or g(ab, pmin) > 0, which contradicts that pmin ∈ P .

Theorem 1. Process 1 always terminates at pT = pmin.

Proof. Lemma 7 and Lemma 9 together imply Theorem 1.
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