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Solow Sustainability with Varying Population Levels

Abstract

We take up three variants of Solow [1974], each with population change
endogenous. When each model exhibits sustainability the same three condi-
tions are satisfied: (i) investment in produced capital is funded by resource
rents plus "extra" saving, (ii) "extra" saving funds the same two gaps re-
lated to poppulation increase and (iii) Hotelling’s Rule is satisfied. We
focus attention on condition (ii) here. The Stollery variant involves warm-
ing caused by current hydrocarbon extraction.

e key words: sustainability; population increase; funding gaps

e JEL classification: Q010; Q320; Q290

1. Introduction

Asheim et. al. (2007) re-worked Solow sustainability (Solow (1974)) with an
endogenous population level changing over time. We derive a population-change
condition for a variant of that model, an equilibrium condition which ”re-appears”
for two variants of Solow (1974), namely the model of Stollery (1998) with a global
warming level endogenous and that of d’Autume and Schubert (2008) with the
resource stock yielding utility at each date. The familiar Solow (1974) reduces to
three conditions (i) invest resource rents to accumulate produced capital (ii) invoke
Hotelling’s Rule for efficient use of exhaustible resource stock capital and (iii)

require aggregate consumption to be unchanging. Sustainability in this model is

1l



achieved when conditions (i) and (ii) are satisfied.! Here with population changing
in Solow (1974) with the passing of time, there is a fourth condition, (iv) the
efficient use "extra” or ”supplementary” savings; that is, savings that is above
that from current exhaustible resource rent. [[ This condition on "efficient” use of
the supplementary savings reduces to the equation for "équilibrium” population
change and is the subject of this contribution.]] We first take up Solow (1974)
with the population level changing and observe the new condition for sustainability
involving ”efficient” use of "extra” saving. We observe how this equation "reduces"
to the equation of "equilibrium population change". We then turn to sustainability
in the variants of d’Autume-Schubert and Stollery, each now extended, with an
endogenous population level changing over time. Population was unchanging in

the versions of d’Autume-Schubert and Stollery that have already been published.

2. The Model

First, the Solow model with the level of population changing. Current population
comprises workers who are also consumers and people can be drawn into the model
of tossed out of the model at no direct cost.? Extra people are available "on the
sidelines” at any date and are drawn in or tossed out by planner, herself in the
background. We are of course concerned with admissable population levels for
each date. The objective function in the first model is unchanging per capita

consumption. Production is governed by a neo-classical production funtion: @ =

!See Buchholz, Dasgupta and Mitra (2005).

2 Arrow, Dasgupta and Maler (2003) take up sustainability with population governed by a
given growth function. Population in our model is a number of people that a planner can impose
at any date. This is analogous to the static problem of Meade in which an optimal number of
people for the economy is invoked or lands by helicopter. In our model the Meade approach for
a single date operates over an infinity of dates, an "optimal” population analogous to Meade’s,
but at each date. Of course if the model is asking for population of decline we assume that
the ”optimally” discarded people can indeed be removed from the model or the model economy
"freely”. We report on Meade’s optimal population problem in Appendix 2.



F(K,R,N) for ) aggregate output in the economy at date ¢, K is the current
stock of produced capital, R is the current input of the exhaustible resource (R =
—8, for S the current stock of the homogeneous input remaining), and N is the
current population size (all people are working). Current aggregate consumption
C satisfies C = Q — K, for K current investment and augmentation in K. There
is no decay in K. Novel here is the form of savings-investment (invest resource

rents plus some extra resource, s@, with s and @ varying over time):3
K = RFg + sQ, (1)

i.e rent plus "extra” savings sQ is used for current investment. (Note that capital
S refers to the exhaustible stock at a point of time and non-capital s refers to
a level of ”extra” saving at a point in time going to current investment in K )
Observe then

dK /dt = d[RFg]dt + d[sQ]/dLt. (2)

Dynamic efficiency in exhaustible resource use is governed by (Hotelling Rule):
FxFr = Fr. (3)

Fy and Fg are partial derivatives for K and R respectively

We proceed to derive our new condition for sustainability with population
endogenous. Per capita consumption unchanging defines sustainability for this
model. We draw on the equations above in the analysis of per capita consumption

evolving, i.e. in

d[g} =G CN ()

3In Solow (1974) current saving and investment equalled current exhaustible resource rents
alone.




We proceed to isolate a population-change function which is associated with %

unchanging. First we have

C = Q—dK/dt
= FxK + FrR+ FyN — [RFp+ RFg + d[sQ]/dt] ... (using (2))
= FxFrR— RFgp+ FxsQ + FyN — d[sQ]/dt... (using (1), the savings rule)
= FgsQ+ FyN —d[sQ]/dt ... (using (3), the Hotelling rule).

Hence, given our expression for C, (4) becomes

C ClN
Hence, given sustainability (d [£] /dt = 0), we see that the right side of (5) must
equal zero. We have then sustainability (with the population change) governed

by sQFx = d[sQ]/dt + {[$& — Fny]N}. This in turn can be written as sQ =
w DTy QU Recall that d[sQ]/dt = d[K — RFg]/dt. Hence our equation of

Fi

interest becomes

C — Fy][dN/dt]  d|K — RFg)/dt
sq = = EVIONI) AR — Rt 6
Equation (6) can be read as: in sustainable development, sQ covers a labor value
gap, {§ - Fn}N]/Fx | plus a resource rent gap, d[K — RFg|/dt]/ Fx. We might
refer to (6) as "the two gap condition”. The Ff is the rental price of a unit of
K. Thus Fk is here translating terms expressed in units of ), into units of K.

Along the ”growth” path, sQ is supplying units of K to ”close” the two gaps.
c

j;FKNﬂ and i&&ﬁ!ﬂ are in units of K.° The identical two-gap relation re-

appears in the same exact form when sustainability prevails in the models of

1The temptation to infer that the equilibrium path has Fyy — % = 0and FgsQ—d[pQ]/dt =0

is not correct since % is unchanging and we cannot contemplate a solution with Fy unchanging.

SFor the special case of N set at zero, we have sQ = Fg xd[sQ)]/dt, i.e. value sQ unchanging.



d’Autume-Schubert and Stollery, with population endogenous, taken up below.
Our inference now is that, for our model of Solow (1974) with population varying,
((a)ie. d[$] /dt = 0), and (b) K = RFg+sQ, and (c) Hotelling rule, imply that
our new condition, equation (6), is satisfied.® These same three conditions imply
equation (6) for the d’Autume-Schubert and Stollery variants of Solow (1974)
taken up below. (6) expresses how extra saving, s@ is allocated, given population
increasing. [[Asheim et. al. (2007) point out that s@ must equal N[K/N] for the
analysis to move forward. N[K/N] is the current capital per worker that must be
supplied to N currently new workers. One might refer to it as the drag on current
K posed by N currently new workers.

A MAIN RESULT

Given sQ = N[K/N], Q@ = K*RPN'~*~# with o and § positive and a+5 = 1,
and K(t)/Q(t) = z(0)[1 + pt], (z(0) = o/u), equation (6) reduces to

nKFyx =[C - (1-a—8)Qn+dnK]/dt,
which can be written as
na@ = [C - Qn — (—a — B)Qn + d[nK]/dt,

which can be written as
anBQn+hK+nK

Also, sQ = K — RFg = K + SFpg, the value of net investments. Then our equation (6) means
that the present value of net investments is constant, but not necessarily equal to zero. This
is the rule discussed in Dixit, Hammond and Hoel (1980): Thanks to Geir Asheim for this
instructive observation. The two gaps have a certain mutual independence. '

§For the basic Solow (1974) model, Buchholz, Swapan Dasgupta, and Mitra (2005) establish
that any two of (a) K = RFg, (b) Hotelling Rule and (c) dN/dt = 0 imply the third relation.

For the special case of N set at zero, we have sQ = Fi = d[sQ]/dt, i.e. value s() unchanging.
Also, sQ = K — RFp = K + S§Fg, the value of net investments. Then our equation (6) means
that the present value of net investments is constant, but not necessarily equal to zero. This
is the rule discussed in Dixit, Hammond and Hoel (1980). Thanks to Geir Asheim for this
instructive observation.



which becomes

no_ ZfQ
n K
_ B
z(0)[1 + ut]
- B
(o/p)[1 + pi]
We now hypothesize that N(t) = N(0)(1 + ut)¥, n and ¢ positive, or that pop-
ulation motion is quasi-arithmetic. This implies that % . ﬁ Hence the right

side equals the left side of our equation if /0 equals unity. This is true, as in
equation (12) of Asheim et. al. (2007).

Hence the inference that the population motion is quasi-arithmetic when (a)
the production function is Cobb-Douglas (b) "extra" investment s@) is taken to
be nK or N[K/N], and (c) the K(t)/Q(t) is linear in time. Rougly speaking, our

new equation, namely (6), is defining "equilibrium population dynamics". ||

3. The Resource Stock in the Utility Function

We turn to a Solow model with population varying and with the current stock of
the exhaustible resource yielding utility. That is, we are dealing with d’Autume
and Schubert (2008) with population varying. The utility function is then u(£, 5).
The stock placed here might be standing for a conservation interest by households.
Investment is funded by resource rent plus extra saving ((1) above). For this

model, the Hotelling Rule takes the form (see the Appendix):

FxFp— Fp= [Nus]/[ug)] (7)

or

FicFn — Fr=us/Z for Z = %{{(")u/@[%]}‘ (8)



We proceed to locate a condition on population that is compatible with du($,S)/dt =

0, sustainability per person in effect. First we have
C = Q-dK/dt

— FyFgrR— RFg+ NFy —d[sQ]/dt + sQF ... (using (1))

_ BNus | Npy — dlsQl/dt + sQFk ... (using (7).

Yeg

Then du(%,.5)/dt becomes

usR N CN 1

N yg) N NN N{_;J[SQ]/dt‘FSQFK}]—I-uSS. (9)

Since S = —R, (9) reduces to %u[%l [Fn — gl + u[%]%{—d[sQ]/dt +5QFk} =0

€ _pdN/e ¢ _RF : :

or s@) = b r’}}t[_dw Y | dk j}:’?” 4 the same as equation (6) above. We infer that
C _ pylldN/di] < RF . .

sQ = & rilim/dr] + 4K ‘f’:’?wt when (1) du(%,S)/dt =0 (2) K is funded with

resource rents plus extra saving and (3) the appropriate "Hotelling Rule" prevails.

[[ We proceed to specify sQ as nK and our production function as K* R N1 ~a=A),

= e :
W substitute in sQ = & f;l‘[_dmmi + dIK—;f.:RW

to get
nKFg =[C—(1 —a— B)QIn + nK +nK.
Since C — Q = K and K Fx = a@, we have
aQn = —Kn + aQn + Qn + nK +nk

which gives us

n__—B

n (K/Q)

This equation is the same as its counterpart above for the Solow (1974) model
with population. We cannot go farther at this point because we do not have an
expression for K/Q. We have no reason to believe that the population dynamics
are characterized by a quasi-arithmetic function. We do infer that his equation is

defining "equilibrium population change" for the d’Autume-Schubert model. i



4. Extraction and Warming (Stolley (1998))

Another Solow variant has current extraction, R(t) causing the current tempera-
ture, W(t) to rise (Stollery (1998)). Here we introduce population-change to the
Hartwick-Mitra (2020) version of the Stollery model. Higher temperature affects
utility, u(%, W) negatively, as well as current output, @ = F(K,R, N,W). The
given temperature-rise relation is specified as

— ={R (10)

with R current extraction from the depleting stock, S. That is R = —S. £ is a
positive constant. As above, we assume that current resource rents RFg plus

"extra” investment s@) constitute payment for current investment, K. That is
K =sQ+ RFg (11)

As above, we also use the derivative dK /dt = RFg + RFg + d[sQ]/dt.
The dynamic efficiency condition on resource use (Hotelling Rule) is

uz Fw + Nuy J * W =0 for Z = C/N. (12)

Uz

FyFr— Fr+ {

We proceed to examine d[u(%, W)]/dt and search for a current condition on pop-
ulation dynamics and s that ”solves” the model.
We start with
C =Q—dK/dt.
Using the production function and (11) we get
C = FxK+ FrR+ FyN + FywW — RFp — RFg — d[sQ]/dt

== FKRFR— RFR+NFN +WFW —d[SQ]/dt+FKSQ

"See Hartwick and Mitra (2020) for this condition.




and d E’\—;} /dt = —]]:7[R'FKFR—RFR+NFN+WFW—d[sQ] /dt+FxsQ)—(N/N?)C].

Thus, using (10), we get

dlu(

Q

N’

W)l/dt

uz%[RFKFR — REgp + NFy + WFy — d[sQ]/dt + FxsQ
—(N/N)C] + uwW.
uz%[{RFKFR — RFR} + {NFy — (N/N)C — d[sQ]/dt + FxsQ}]

1 .
+{’U,ZNFW + UW}W

U‘Z%[{RFKFR — RFp} + {NFy — (N/N)C — d[sQ]/dt + FxsQ}
+{Fw + Nuw [uz}W]

uZ]‘IV[{RFKFR — RER} + {NFy — (N/N)C — d[sQ]/dt + FxsQ}
+{[uzFw + Nuw|/uz} * EWR]

uZ%[{RFKFR — RFg} + {[uzFw + Nuw]/uz} * EWR]

sz {[Fw— (O/M)IN = [dlsQ)/dt + FicsQl}.

Now [{RFxFr — RFg} + {{uzFw + Nuw]/uz} * EWR] = 0 because it is the
Hotelling Rule for this model. Hence we have dlu($,W)]/dt = 0 when the

Hotelling Rule holds and when

8Q =

¢ — Fy][dN/dt] . d[K — RFg]/dt
Fg Fy l

(13)

This last condition is familiar as equation (6) above.

[[ We now specify sQ as nK and the production function as @ = K aRBENTW°



with «, 8,7 and 6 each positive and less than unity. Equation (13) becomes

nKFx = [C—yQIn+nK +nK
or na@ = nC —ynQ+nK +nkK
or naQ = nC—nQ+nQ —ynQ +nK +nK

or na = n@Q —ynQ +nK

or — = —(Q/K)i-a—1l

This expression for n/n is similar to its counterparts for our two models above, but
is not identical. We infer that this equation if defining the population dynamics

for the Stollery model, with population, but we are not able to fill in the details.

I

5. Concluding Remarks

We have observed that when the basic Solow (1974) model of sustainable consump-
tion is extended to incorporate varying population levels, a new equilibrium con-
dition (equation) emerges that captures the allocation of extra investment needed
to counter various population-change or population ”drag” effects. In place of the
familiar three conditions defining sustainability associated with Solow (1974), we
observe four conditions when population levels are changing in the model. The
new equation relates "extra" saving to current population increase. We observe
the same general equation for allocating ”extra” savings in three variants of Solow
(1974), each with the population level changing. When the expression for "extra
saving" is specified, we are able to "reduce" our general equation to an equation
characterizing population dynamics for each model. Note that we have, above,
worked with sustainability implying a new condition for "maintaining sustainabil-

ity". A different theorem remains to be worked on, namely how our new equation,



accompanied by the relevant Hotelling Rule and the amended invest resource rents

rule, implies Solow sustainability.



APPENDIX 1: The Dynamic Efficiency Condition (Hotelling Rule) for the
d’Autume-Schubert Model

We set out an optimal savings problem with exhaustible resource extraction
”built in”. The Hamiltonian for the problem is

H:u(c

++5) +AIF(K, R, S) — C] — ¢R

The necessary conditions defining an optimum are

g_g = 0:%1},}/:/\, forYE]—Cv-;

g—]}\i = O:>—[%sz+/\FN:0; or—[—]%}-k{%}:();

Z—;j = 0= AFr=¢; orZ=¢,forZE{%uy];
—gg::X—M:%%K:X—MMH—Zﬂﬁ:ﬁﬂ%yﬁ-zﬁ
;%% = ¢—pp= —us=27Z—pZ; ot —us=2—ZFx— Frd[uy/N]dt,

or —ug = FRd[Uy/N]dt+[uY/N]FR—ZFK—FRd[’U,y/N]dt

From the last expression we deduce that the ”Hotelling Rule” is

. N
FyFe— Fp= 105,
Uy




APPENDIX 2: The Sidgewick-Meade Rule for Optimal Population

We have an island that sustains, without labor or capital, a flow of consumables
and the annual flow harvest is I'. We add people to the island so that NU (T/N)
is maximized. N is the current number of people on the island. There are an
unlimited number of persons, ”in the wings” available to be put on the island
with no cost of moving them on. Persons can be added at zero "moving cost”.
We have Z = I'/N. The first order condition is

dz

an = o

U(Z) + NUy

This reads: given current optimal value N*, adding one more person, adds U(Z)
directly to the objective function, but congests the existing N* people and cuts
into each incumbant’s current Z/N for total "damage”, NU, 2%-

This first order condition reduces to

viz) _ T

U z e N '
This equation is defining the optimizing value of N. This is the Sidgewick-Meade

Rule for optimal population, N*. The rule says that the ”dollar” payoff of the mar-
ginal person joining equals the payoff in utils, U(Z), translated back to "dollars”
with factor, Uj.

An extension to this island problem is to have people do work so that in place
of I we have g(N) being produced on the island each period. So now the optimal
population must maximize NU(g(N)/N). The first order condition is

A
U(Zz) +NU25—N =0 for Z =g(N)/N.

This has the same interpretation as its analogue above. This condition can be

written as
U(Z)/Uz ={g(N)/N —gn}.



The interpretation of this ”rule” is only slightly different from the classic rule
above. Adding a person involves NET payoff to the new person in "dollars”,
{g(N)/N — gy}, where gy (N*) is her marginal product. The utility payoff to the
entrant is U(Z), and this has value in "dollars” of U(Z)/Uz.
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