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Abstract. Payoff security combined with reciprocal upper semicontinuity is suffi -

cient for better-reply security, and consequently for the existence of a pure strategy

Nash equilibrium in compact, quasiconcave games by Reny’s (1999) theorem. Analo-

gously, diagonal payoff security combined with upper semicontinuity of the diagonal

payoff function has been widely understood to be suffi cient for diagonal better-reply

security, and consequently for the existence of a symmetric pure strategy Nash equi-

librium in compact, diagonally quasiconcave, quasi-symmetric games. We show by

example that this is incorrect. Specifically, diagonal better-reply security may fail to

hold, and a symmetric pure strategy equilibrium may fail to exist, if some player’s

payoff function lacks lower semicontinuity, with respect to the opponents’symmetric

strategy profile, at all strategy profiles reached from a non-equilibrium profile on the

diagonal by a unilateral better response of that player. These diffi culties disappear,

both in the game and in its mixed extension, if the lower bound on a player’s payoff

in the definition of diagonal payoff security is raised to reflect the higher levels that

arbitrary better responses may achieve. We also discuss the relationship between

our strengthened condition and diagonal payoff security.

Keywords. Discontinuous games · Equilibrium existence · Quasi-symmetric games
· Diagonal payoff security

JEL-Codes. C62 (Existence and Stability Conditions of Equilibrium), C72 (Non-

cooperative Games)

*) Phil Reny provided valuable feedback on an earlier draft of this paper.

**) Department of Economics, University of Zurich, Schönberggasse 1, CH-8001

Zurich, Switzerland; christian.ewerhart@econ.uzh.ch.



1. Introduction

The topological approach to equilibrium existence, initiated by Nash (1950, 1951),

formulates general conditions suffi cient for the existence of pure and mixed strategy

Nash equilibria in discontinuous non-cooperative games. Standard conditions for

the existence of a pure strategy Nash equilibrium, derived by Glicksberg (1952),

Fan (1952), and Debreu (1952), require strategy spaces to be compact (as well as

convex and non-empty), and each player’s payoff function to be quasiconcave in that

player’s own strategy, as well as continuous in the overall strategy profile.1 But, as

emphasized by Dasgupta and Maskin (1986), especially the continuity requirement is

overly restrictive in many economic applications. Therefore, more flexible concepts

such as transfer-continuity (Baye et al., 1993) and better-reply security (Reny, 1999)

have been developed so as to replace the continuity assumptions on compact qua-

siconcave games without losing the conclusion of equilibrium existence. Moreover,

suffi cient conditions have been derived to make the application of such concepts even

more straightforward. Most prominently, Reny introduced two conditions on dis-

continuous games, payoff security and reciprocal upper semicontinuity, and showed

that they jointly imply better-reply security.2

Conditions for equilibrium existence can be further relaxed in the special case

of quasi-symmetric games, which is a class of games strictly nesting the class of

symmetric games. To this end, Reny defined suitable variants of quasiconcavity

and better-reply security for quasi-symmetric games. These are referred to as diag-

onal quasiconcavity and diagonal better-reply security. He showed that, if a quasi-

symmetric game is compact, diagonally quasiconcave, and diagonally better-reply

secure, then a symmetric pure strategy Nash equilibrium exists. This result al-

lows numerous applications, in particular to the analysis of Bertrand competition,

1Analogous results for symmetric games have been obtained by Nash (1951, Thm. 2) and Moulin
(1986, p. 115), in particular.

2Notably, the availability of suffi cient conditions remains desirable even in view of the important
further generalizations obtained by McLennan et al. (2011), Barelli and Meneghel (2013), Reny
(2016), and others. Cf. Olszewski and Siegel (2022), who take a similar perspective.
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location choice, brand loyalty, and multi-unit auctions.3

In analogy to Reny’s development of suffi cient conditions in the case of general

discontinuous games, is has been widely understood that two conditions known

as diagonal payoff security and upper semicontinuity of the diagonal payoff function

jointly imply diagonal better-reply security and, hence, are suffi cient for the existence

of a symmetric pure strategy Nash equilibrium in compact, diagonally quasiconcave,

quasi-symmetric games.4 We present below an example to show that this is incorrect.

In the example, diagonal better-reply security does not hold, and all pure strategy

Nash equilibria are asymmetric, while the game satisfies diagonal payoffsecurity and

upper semicontinuity of the diagonal payoff function, in addition to being compact,

diagonally quasiconcave, and quasi-symmetric.

In the example, problems arise because the payoff function of some player lacks

lower semicontinuity in her opponent’s strategy at all strategy profiles reached from

a non-equilibrium strategy profile on the diagonal via a unilateral deviation of that

player to some better response. But if, for at least one such better response, the

deviating player could, up to any given ε > 0, secure her payoff at the corresponding

strategy profile, the diffi culties would disappear. In particular, suppose we strength-

ened the requirement of diagonal payoff security to what will be called strong di-

agonal payoff security, wherein we raise the lower bound on a player’s payoff in

the definition of diagonal payoff security to reflect the higher levels that arbitrary

better responses may achieve. Then, the two conditions, strong diagonal payoff

security and upper semicontinuity of the diagonal payoff function, jointly imply di-

agonal better-reply security. In particular, these two conditions are suffi cient for

the existence of a symmetric pure strategy equilibrium in any compact, diagonally

quasiconcave, quasi-symmetric game.

3Also this result has been generalized in the meanwhile. See, in particular, Reny’s (2020)
discussion of Bich and Laraki (2012).

4Cf. Reny (1999, Prop. 4.2, Cor. 4.3, Ex. 4.1, and the proof of the second part of Cor. 5.3). These
claims have indeed been the basis of further analysis, especially more recently. See, for example,
Ciardiello (2010), Van den Berg and Bos (2017), Matakos and Xefteris (2017), Plan (2017), Au
and Kawai (2020), Eguia and Xefteris (2021), and Petrikaitė (2022).
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A formal elaboration of this idea may be found below. The necessary background

on quasi-symmetric discontinuous games is provided in Section 2. Section 3 concerns

diagonal payoff security in quasi-symmetric games: We show by example that diago-

nal payoff security and upper semicontinuity of the diagonal payoff function will not,

in general, jointly imply diagonal better-reply security. Using the same example, we

show that these two conditions will neither, in general, jointly imply the existence of

a symmetric pure strategy Nash equilibrium in compact, diagonally quasiconcave,

quasi-symmetric games. In Section 4, we introduce the notion of strong diagonal

payoff security and show that, combined with the upper semicontinuity of the diag-

onal payoff function, it implies diagonal better-reply security. In Section 5, we apply

those findings to derive conditions suffi cient for the existence of symmetric pure and

mixed strategy Nash equilibria in discontinuous quasi-symmetric games. Section

6 discusses the relationship between diagonal payoff security and strong diagonal

payoff security. In particular, it is shown that the two concepts are equivalent if

each player’s payoff function is lower semicontinuous in her opponents’symmetric

strategy profile at all strategy profiles reached from the diagonal via a unilateral

deviation by that player. Finally, we illustrate the usefulness of this observation by

applying it to models of price competition that do not satisfy the usual quasiconcav-

ity assumption. In an Appendix, we clarify the relationship between payoff security

and strong diagonal payoff security.

2. Background on quasi-symmetric discontinuous games

We follow Reny (1999), which should be consulted for a fuller exposition. For a

given game in strategic form, G = (Xi, ui)
N
i=1, let i ∈ {1, . . . , N} denote an arbitrary

player, Xi the set of player i’s pure strategies, and ui : X1 × . . . ×XN → R player

i’s payoff function, respectively. We shall assume throughout that G = (Xi, ui)
N
i=1

is a compact game meaning that, for each player i, the strategy set Xi is a non-

empty compact subset of some topological vector space and the payoff function ui

is bounded.
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We say thatG = (Xi, ui)
N
i=1 is quasi-symmetric if the following two conditions are

satisfied: (i) For all players i, j, Xi = Xj; (ii) u1(x, y, . . . , y) = u2(y, x, y, . . . , y) =

· · · = uN(y, . . . , y, x) for all x, y ∈ X, where X = X1 = · · · = XN denotes the

common strategy space. Note that a symmetric game is quasi-symmetric, but the

converse does not hold in general (unless N = 2). For x, y ∈ X, we denote by

ui(y, . . . , x, . . . , y) the function ui evaluated at the strategy profile in which player i

chooses x while all others choose y. IfG = (Xi, ui)
N
i=1 is quasi-symmetric, its diagonal

payoff function v : X → R is defined as v(x) = u1(x, . . . , x) = · · · = uN(x, . . . , x)

for every x ∈ X. As usual, a strategy profile (x1, . . . , xN) ∈ X1 × . . . ×XN is said

to lie on the diagonal, or alternatively, to be symmetric, if x1 = · · · = xN .

Let G = (Xi, ui)
N
i=1 be a quasi-symmetric game. Given α ∈ R and x ∈ X, we

shall say that player i can secure a payoff of α along the diagonal at (x, . . . , x),

if there exists x ∈ X such that ui(x′, . . . , x, . . . , x′) ≥ α for all x′ in some open

neighborhood U of x. The game G is called diagonally payoff secure if, for every

x ∈ X and every ε > 0, each player i can secure a payoff of ui(x, . . . , x) − ε along

the diagonal at (x, . . . , x). Further, G is diagonally better-reply secure if, whenever

(x∗, u∗) ∈ X × R is in the closure of the graph of its diagonal payoff function and

(x∗, . . . , x∗) is not an equilibrium, some player i can secure a payoff strictly above

u∗ along the diagonal at (x∗, . . . , x∗). Finally, G is diagonally quasiconcave if X is

convex, and for every player i, all x1, . . . , xm ∈ X, and all x ∈ co{x1, . . . , xm},

ui(x, . . . , x) ≥ min
1≤n≤m

ui(x, . . . , x
n, . . . , x). (1)

We shall make use of the following result due to Reny (1999, Thm. 4.1).

Proposition 2.1 If G = (Xi, ui)
N
i=1 is quasi-symmetric, compact, diagonally qua-

siconcave, and diagonally better-reply secure, then it possesses a symmetric pure

strategy Nash equilibrium.

Proof. See Reny (1999, p. 1042). Q.E.D.
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3. An example

Consider the following game G0. There are N = 2 players. Each player i ∈ {1, 2}

chooses a strategy from the unit interval X = X1 = X2 = [0, 1]. Player 1’s payoff

function is given by

u1(x, y) =

 x if y ∈ [0, 1
2
)

1− x if y ∈ [1
2
, 1].

(2)

Player 2’s payoff function is given by u2(x, y) = u1(y, x), for all x, y ∈ X. Clearly,

G0 is quasi-symmetric and compact. Further properties of G0 are collected in the

following proposition.

Proposition 3.1

(i) G0 is diagonally payoff secure;

(ii) the diagonal payoff function in G0 is upper semicontinuous;

(iii) however, G0 is not diagonally better-reply secure.

Proof. (i) Take some x ∈ [0, 1] and ε > 0. We claim that each player i ∈ {1, 2}

can secure a payoff of ui(x, x)− ε along the diagonal at (x, x). Because G0 is quasi-

symmetric, it suffi ces to prove the claim for player 1. We distinguish three cases.

Suppose first that x ∈ [0, 1
2
). Then, u1(x, x) = x, and we merely need to show that

player 1 can secure a payoff of x− ε along the diagonal at (x, x). But by using her

best response x = 1, player 1 can in fact secure a payoff of 1. Indeed, u1(1, x′) = 1

for all x′ in an open neighborhood of x. Since 1 ≥ x− ε, this proves the claim in the

first case. Suppose next that x = 1
2
. Then, u1(x, x) = 1

2
. In this case, by playing

x = 1
2
, player 1 can secure a payoff of 1

2
− ε. Indeed,

u1(
1
2
, x′) = 1

2
> 1

2
− ε (3)

for all x′ in an open neighborhood of x = 1
2
. Hence, we have verified the claim also

in this case. Suppose, finally, that x ∈ (1
2
, 1]. Then, u1(x, x) = 1−x, but by playing
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her best response x = 0, player 1 can again secure a payoff of 1. Since 1 > 1−x− ε,

this proves the claim in the final case as well. Thus, G0 is indeed diagonally payoff

secure. (ii) The diagonal payoff function in G0 is given as

v(x) =

 x if x ∈ [0, 1
2
)

1− x if x ∈ [1
2
, 1].

(4)

Clearly, v is continuous. In particular, v is upper semicontinuous, as has been

claimed. (iii) Let x∗ = 1
2
and u∗ = 1

2
. Since v(x∗) = u∗, the pair (x∗, u∗) is an

element of the graph of the diagonal payoff function in G0, which is easily seen

to be identical to its closure (since v is continuous). Moreover, (x∗, x∗) is not an

equilibrium, because player 1, for instance, might deviate to x = 0, thereby raising

her payoff to u1(0, x∗) = 1 > 1
2
= u1(x

∗, x∗). To prove that G0 is not diagonally

better-reply secure, it suffi ces to show that player 1 cannot secure a payoff strictly

above u∗ along the diagonal at (x∗, x∗). For this, let x ∈ [0, 1] be any strategy of

player 1, and let U be any open neighborhood of x∗ = 1
2
. Then,

u1(x, x
′) =

 x′ if x′ ∈ [0, 1
2
)

1− x′ if x′ ∈ [1
2
, 1].

(5)

Since the open neighborhood U has a nonempty intersection with the interval [0, 1
2
),

there exists some x′ ∈ U such that u1(x, x′) = x′ < 1
2
= u∗. Therefore, player 1

cannot even secure a payoff of u∗ (let alone a payoff strictly above u∗) along the

diagonal at (x∗, x∗). This proves the last claim, and hence, the proposition. Q.E.D.

It follows from Proposition 3.1 that diagonal payoff security and upper semicon-

tinuity of the diagonal payoff function do not, in general, jointly imply diagonal

better-reply security. The next proposition relates this observation to the existence

of a symmetric equilibrium in pure strategies.
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Proposition 3.2

(i) G0 is diagonally quasiconcave;

(ii) however, G0 does not possess a symmetric pure strategy Nash equilibrium.

Proof. (i) Clearly, X = [0, 1] is convex. Take x1, . . . , xm ∈ X and let x ∈

co{x1, . . . , xm}. We wish to show that

u1(x, x) ≥ min
1≤n≤m

u1(x
n, x) (6)

u2(x, x) ≥ min
1≤n≤m

u2(x, x
n). (7)

As G0 is quasi-symmetric, it suffi ces to verify relationship (6). Recall that

u1(x, x) =

 x if x ∈ [0, 1
2
)

1− x if x ∈ [1
2
, 1].

(8)

Suppose first that x ∈ [0, 1
2
). Since x ∈ co{x1, . . . , xm}, and X is one-dimensional,

there exists n ∈ {1, . . . ,m} such that xn ≤ x. Therefore, u1(xn, x) = xn ≤ x =

u1(x, x), and hence, inequality (6) holds true in this case. Suppose next that x ∈

[1
2
, 1]. Clearly, there exists n such that xn ≥ x. Therefore, u1(xn, x) = 1 − xn ≤

1 − x = u1(x, x), and hence, inequality (6) holds true also in this case. Since both

cases have been covered, it follows that G0 is indeed diagonally quasiconcave. (ii)

The proof is by contradiction. Suppose that (x∗, x∗) is a symmetric pure strategy

Nash equilibrium in G0. There are two cases. Suppose first that x∗ ∈ [0, 12). Then,

player 1’s unique best response to x∗ is given by x = 1. Therefore, x∗ = 1, in

conflict with the hypothesis. Suppose next that x∗ ∈ [1
2
, 1]. Then, similarly, player

1’s unique best response to x∗ is x = 0, hence x∗ = 0, which is again impossible.

The claim follows. Q.E.D.

The proposition above adds to the discussion that G0 is diagonally quasiconcave,

yet does not possess a symmetric Nash equilibrium in pure strategies. In particular,
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it follows that the two beforementioned conditions, diagonal payoff security and

upper semicontinuity of the diagonal payoff function, do not in general imply the

existence of a symmetric Nash equilibrium in a compact, diagonally quasiconcave,

quasi-symmetric game.

Proposition 3.2 relates to a result in Amir et al. (2010) for submodular games

on the square with strictly quasiconvex payoffs. Such games necessarily possess a

pure strategy Nash equilibrium as a consequence of Topkis’fixed point theorem.5

Amir et al. note that any player whose payoff function is strictly quasiconvex in

her own strategy will optimally choose an extremal strategy in response to a pure

strategy. Under additional assumptions ensuring that the strategy profiles (0, 0) and

(1, 1) are not equilibria, all pure strategy Nash equilibria must be asymmetric. We

note here that their result extends to payoff functions that are strictly monotone

in own strategy (i.e., either strictly increasing or strictly decreasing) for any given

strategy of the opponent. Consistent with this logic, the submodular game G0

admits precisely two asymmetric pure strategy Nash equilibria, viz. (0, 1) and (1, 0),

but no symmetric pure strategy Nash equilibrium.

4. Strong diagonal payoff security

We start with a definition.

Definition 4.1 A quasi-symmetric game G = (Xi, ui)
N
i=1 is strongly diagonally

payoff secure if for each i ∈ {1, . . . , N}, every x ∈ X, every x̂i ∈ Xi, and every

ε > 0, player i can secure a payoff of ui(x, . . . , x̂i, . . . , x) − ε along the diagonal at

(x, . . . , x).

Strong diagonal payoff security is a variant of diagonal payoff security (cf. Sec-

tion 2). It is obtained by tracing through the proof of Reny (1999, Prop. 3.2) for

general games. The condition in the original definition saying that player i can se-

cure a payoff of ui(x, . . . , x) − ε along the diagonal at (x, . . . , x) is replaced by the
5For this, the natural ordering of the strategy interval is reversed for one of the two players.

See Milgrom and Roberts (1990) and Vives (1990).
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stronger condition that, for every strategy x̂i ∈ Xi, player i can secure a payoff of

ui(x, . . . , x̂i, . . . , x)− ε along the diagonal at (x, . . . , x). By reflecting the potentially

higher payoff level ui(x, . . . , x̂i, . . . , x) that player i might obtain from a unilateral

deviation to x̂i ∈ Xi, the concept tightens.6 Therefore, any strongly diagonally

payoff secure game is, in particular, diagonally payoff secure.

However, the converse implication does not hold in general, not even for N = 2.

Indeed, recall from Proposition 3.1 that G0 is diagonally payoffsecure. But G0 is not

strongly diagonally payoff secure. To understand why, note that with x = 1
2
, x̂1 = 0,

and ε = 1
4
, player 1 cannot secure a payoffof α = u1(x̂1, x)−ε = 3

4
along the diagonal

at (x, x). This is so because for any x1 ∈ [0, 12), it holds that u1(x1, x
′) = x1 <

1
2
< α

for any x′ ∈ [0, 1
2
), while the interval [0, 1

2
) necessarily has a nonempty intersection

with any open neighborhood of x = 1
2
. Similarly, for any x1 ∈ [1

2
, 1], it holds

that u1(x1, x) = 1 − x1 ≤ 1
2
< α, even though x is necessarily contained in any

open neighborhood of x. Thus, G0 is indeed not strongly diagonally payoff secure,

which shows that a diagonally payoff secure game need not, in general, be strongly

diagonally payoff secure. This clarifies the relationship between Definition 4.1 and

the notion of diagonal payoff security.7

The following result proposes a set of conditions suffi cient for diagonal better-

reply security in quasi-symmetric discontinuous games.

Proposition 4.1 If a quasi-symmetric game G = (Xi, ui)
N
i=1 is strongly diagonally

payoff secure and its diagonal payoff function v is upper semicontinuous, then G is

diagonally better-reply secure.

Proof. The following proof is a straightforward adaption of Reny (1999, proof

of Prop. 3.2). Suppose that (x∗, u∗) is in the closure of the graph of v, and that

(x∗, . . . , x∗) is not an equilibrium. Then, by upper semicontinuity, either v(x∗) > u∗

6Indeed, it is not hard to see that G is strongly diagonally payoff secure iff for each i, every
x ∈ X, and every ε > 0, player i can secure a payoff of supx̂i∈Xi

ui(x, . . . , x̂i, . . . , x)− ε along the
diagonal at (x, . . . , x). But supx̂i∈Xi

ui(x, . . . , x̂i, . . . , x) ≥ ui(x, . . . , x).
7Another question is the relationship between Definition 4.1 and payoff security. As this issue

is not crucial for our analysis, it has been relegated to an Appendix.
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or v(x∗) = u∗. In the latter case, because (x∗, . . . , x∗) is not an equilibrium, some

player i has a better response than x∗, say x̂i ∈ Xi, such that ui(x∗, . . . , x̂i, . . . , x∗) >

ui(x
∗, . . . , x∗) = u∗. Consequently, in either case there is a player i ∈ {1, . . . , N} and

a strategy x̂i ∈ Xi (equal to x∗ in the former case) such that ui(x∗, . . . , x̂i, . . . , x∗) >

u∗. Fix now this player i. Choose ε > 0 so that ui(x∗, . . . , x̂i, . . . , x∗) > u∗ + ε.

Because G is strongly diagonally payoff secure, player i has a strategy xi such that

ui(x
′, . . . , xi, . . . , x

′) ≥ ui(x
∗, . . . , x̂i, . . . , x

∗)−ε for all x′ in some open neighborhood

of x∗. Since ui(x∗, . . . , x̂i, . . . , x∗) − ε > u∗, this implies that player i can secure a

payoff strictly above u∗ along the diagonal at (x∗, . . . , x∗). Thus, G is diagonally

better-reply secure, as has been claimed. Q.E.D.

5. Conditions for equilibrium existence

This section combines Reny’s main existence theorem for quasi-symmetric games

(cf. Section 2) with Proposition 4.1 to derive conditions suffi cient for the existence

of symmetric pure and mixed strategy Nash equilibria in quasi-symmetric discon-

tinuous games. We start with the case of pure strategy Nash equilibrium.

Corollary 5.1 If G = (Xi, ui)
N
i=1 is quasi-symmetric, compact, diagonally quasi-

concave, and strongly diagonally payoff secure, and v is upper semicontinuous, then

G possesses a symmetric pure strategy Nash equilibrium.

Proof. Immediate from Propositions 2.1 and 4.1. Q.E.D.

Example 5.1 Consider a compact, quasi-symmetric, strongly diagonally payoff se-

cure game G = (Xi, ui)
N
i=1 with X = [0, 1], and such that v is upper semicontinuous

on [0, 1]. If for each player i ∈ {1, . . . , N} and for all x ∈ [0, 1], the function

ui(x, . . . , x, . . . , x) is either:

(i) nondecreasing in x on [0, x], or

(ii) nonincreasing in x on [x, 1],

then G possesses a symmetric pure strategy Nash equilibrium.

10



This follows directly from Corollary 5.1 since conditions (i) and (ii) imply that G is

diagonally quasiconcave.

Next, we turn to the case of mixed strategy Nash equilibria. Let G = (Xi, ui)
N
i=1

be a compact Hausdorff game such that ui is measurable in the strategy profile for

each player i ∈ {1, . . . , N}. Letting Mi denote the space of probability measures on

the Borel subsets of Xi, each Mi is compact in the weak*-topology. In the mixed

extension of G, denoted by G, each player i chooses a probability measure µi ∈Mi.

Player i’s payoff in G is determined as the Lebesgue integral ui =
∫
X1×···×XN uid(µ1×

· · ·×µN), where µ1×· · ·×µN denotes the product measure onX1×· · ·×XN . LetG =

(Xi, ui)
N
i=1 be a game such that X1 = . . . = XN = X. Then, the common strategy

space of G is M = M1 = . . . = MN . As noted by J. Duggan, quasi-symmetry of G

does not imply that G is quasi-symmetric, so that a stronger requirement on G is

needed.8 Following Plan (2017), we will say that G is weakly symmetric if for any

two players i, j ∈ {1, . . . , N}, there exists a permutation σ of the set {1, . . . , N}

such that σ(i) = j, and uj(x1, . . . , xN) = ui(xσ(1), . . . , xσ(N)) for all x1, . . . , xN ∈ X.

Any symmetric game is weakly symmetric, and likewise any weakly symmetric game

is quasi-symmetric, but the reverse implications do not hold in general.

Corollary 5.2 Suppose that G = (Xi, ui)
N
i=1 is a weakly symmetric, compact, Haus-

dorff game. Then G possesses a symmetric mixed strategy Nash equilibrium if its

mixed extension, G = (Mi, ui)
N
i=1, is better-reply secure along the diagonal. More-

over, G is better-reply secure along the diagonal if it is strongly diagonally payoff

secure and each ui(µ, . . . , µ) is upper semicontinuous as a function of µ on M .

Proof. By Plan (2017, Thm. 10), G = (Mi, ui)
N
i=1 is quasi-symmetric. Accounting

for this fact, the first claim corresponds to the first part of Reny (1999, Cor. 5.3).

The second claim follows then from Corollary 5.1 above. Q.E.D.

Milgrom and Weber (1985) defined randomized strategies for Bayesian games by

8I am very much indebted to Phil Reny for sharing this valuable information, thereby correcting
an error in an earlier draft of this paper.
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assuming that each player chooses a probability distribution over the product of

her type space and her action space. Provided that all type and action spaces are

compact Hausdorff, a straightforward application of Tychonoff’s theorem, combined

with the elementary fact that the product of two Hausdorffspaces is again Hausdorff,

shows that Corollary 5.2 extends, with identical proof, to their setting as well.

6. Discussion

What is the relationship between diagonal payoff security and strong diagonal payoff

security? The following result addresses this question by providing a condition on

a diagonally payoff secure game suffi cient to be strongly diagonally payoff secure.

Proposition 6.1 Suppose that the quasi-symmetric game G = (Xi, ui)
N
i=1 is diag-

onally payoff secure, and that ui(x, . . . , xi, . . . , x) is lower semicontinuous in x on

X\{xi} for each player i and all xi ∈ Xi. Then, G is strongly diagonally payoff

secure.

Proof. Fix some player i ∈ {1, . . . , N}, and take some x ∈ X, x̂i ∈ Xi, ε > 0. We

claim that player i can secure a payoffof ui(x, . . . , x̂i, . . . , x)−ε along the diagonal at

(x, . . . , x). There are two cases. Suppose first that x̂i = x. Then, clearly, diagonal

payoff security implies that player i can secure a payoff of ui(x, . . . , x) − ε along

the diagonal at (x, . . . , x). This proves the claim if x̂i = x. Suppose next that

x̂i 6= x. Then, x ∈ X\{x̂i}, and ui(x′, . . . , x̂i, . . . , x′) is lower semicontinuous in x′

at x. Thus, there is an open neighborhood U of x such that ui(x′, . . . , x̂i, . . . , x′) ≥

ui(x, . . . , x̂i, . . . , x) − ε for any x′ ∈ U . In particular, by letting xi = x̂i, it is

seen that ui(x′, . . . , xi, . . . , x′) ≥ ui(x, . . . , x̂i, . . . , x) − ε for any x′ suffi ciently close

to x. It follows that, also in the case x̂i 6= x, player i can secure a payoff of

ui(x, . . . , x̂i, . . . , x) − ε along the diagonal at (x, . . . , x). Since the claim has been

established in both cases, the proposition follows. Q.E.D.

The proposition says that diagonal payoff security implies strong diagonal payoff

security if each player’s payoff function is lower semicontinuous in her opponents’

12



symmetric strategy profile at all strategy profiles that are reached from the diagonal

via a unilateral deviation of that player.

The lower semicontinuity assumption is crucial, even for N = 2. In G0, which

satisfies diagonal payoff security, one can easily verify that, for instance, u1(x, y)

lacks lower semicontinuity in y at any strategy profile that is reached from the

symmetric profile (1
2
, 1
2
) via a unilateral deviation by player 1 to some x ∈ [0, 1

2
).9

And indeed, as noted above, the conclusion of Proposition 6.1 does not hold for G0.

Proposition 6.1 implies that diagonal payoff security and strong diagonal payoff

security are equivalent in all games whose payoff discontinuities lie on the diagonal

only. This case includes some applications of economic interest. For instance, the

Bertrand duopoly with continuous demand is both diagonally payoffsecure and diag-

onally quasiconcave. Since price competition creates discontinuities on the diagonal

only, Proposition 6.1 implies that games in this class are even strongly diagonally

payoff secure, and hence, using Corollary 5.1, possess a symmetric pure strategy

Nash equilibrium. This is remarkable since the firm’s profit functions may fail to

satisfy the usual quasiconcavity assumption. Analogous considerations are feasible

in models of brand loyalty, where a firm charging a price from its customer base

that strictly exceeds the competitor’s price incurs a fixed cost c > 0 (cf. Baye et

al., 1993). Thus, the concepts of diagonal payoff security and strong diagonal payoff

security turn out to be equivalent in economically meaningful examples of quasi-

symmetric discontinuous games, and this observation proves useful for establishing

the existence of a symmetric pure strategy Nash equilibrium in those games.

9For a formal argument, let ε > 0 such that x < 1−x− ε. Then, u1(x, 12 − δ) = x < 1−x− ε =
u1(x,

1
2 )− ε for any small δ > 0. Hence, u1(x, y) is not lower semicontinuous in y at y =

1
2 .
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A. Appendix

In this Appendix, we briefly discuss the relationship between payoff security and

strong diagonal payoff security. Let G = (Xi, ui)
N
i=1 be a discontinuous game, as

before. Recall the following definitions from Reny (1999, Sec. 3). Given α ∈ R and

(x1, . . . , xN) ∈ X1 × . . . × XN , player i can secure a payoff of α at (x1, . . . , xN) if

there exists xi ∈ Xi, such that

ui(x
′
1, . . . , x

′
i−1, xi, x

′
i+1, . . . , x

′
N) ≥ α (9)

for all (x′1, . . . , x
′
i−1, x

′
i+1, . . . , x

′
N) ∈ X1× . . .×Xi−1×Xi+1× . . .×XN in some open

neighborhood of (x1, . . . , xi−1, xi+1, . . . , xN). The game G is called payoff secure if

for every (x1, . . . , xN) ∈ X1 × . . .×XN and every ε > 0, each player i can secure a

payoff of ui(x1, . . . , xN)− ε at (x1, . . . , xN).

Proposition A.1 Let G = (Xi, ui)
N
i=1 be a quasi-symmetric game. If G is pay-

off secure, then it is strongly diagonal payoff secure. Conversely, if G is strongly

diagonal payoff secure and N = 2, then it is payoff secure.

Proof. Immediate from the definitions. Q.E.D.

It is not hard to verify that strong diagonal payoff security does not, in general,

imply payoff security. To be sure, consider the following example. There are N ≥ 3

players. Each player i ∈ {1, . . . , N} chooses a strategy xi from the unit interval

[0, 1]. The payoff of player i is given as

ui(x1, . . . , xN) =

 0 if x1 = · · · = xi−1 = xi+1 = · · · = xN

−1 otherwise.
(10)

Clearly, the thereby defined game G1 is quasi-symmetric and strongly diagonally

payoff secure. However, G1 is not payoff secure, because for ε = 1
2
, player 1 can-

not secure a payoff of u1(0, . . . , 0) − ε = −1
2
at (0, . . . , 0) ∈ [0, 1]N . Indeed, since

14



N ≥ 3, any open neighborhood of (0, . . . , 0) ∈ [0, 1]N−1 necessarily contains a point

(x′1, . . . , x
′
i−1, x

′
i+1, . . . , x

′
N) such that x

′
j 6= x′k for some players j, k ∈ {1, . . . , N}\{i}.

But then, ui(x′1, . . . , x
′
i−1, x

′
i+1, . . . , x

′
N) = −1 < u1(0, . . . , 0)− ε.
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