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Abstract 
 
This paper examines the strategic effects of case preparation in litigation. Specifically, it 
shows how the pretrial efforts incurred by one party may alter its adversary’s incentives to 
settle. We build a sequential game with one-sided asymmetric information where the 
informed party first decides to invest, or not, in case preparation, and the uninformed party 
then makes a settlement offer. Overinvestment, or bluff, always prevails in equilibrium: with 
positive probability, plaintiffs with weak cases take a chance on investing, and regret it in 
case of trial. Furthermore, due to the endogenous investment decision, the probability of trial 
may (locally) decrease with case strength. Overinvestment generates inefficient preparation 
costs, but may trigger more settlements, thereby reducing trial costs. 
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1 Introduction

The vast majority of tort disputes never reach a trial verdict. Litigants, indeed, have mutual
incentives to save on trial costs by settling out of court. Moreover, a settlement shortens
the dispute and might help to keep it confidential.1 For example, out of the 98,786 tort
cases that were terminated in U.S. district courts during fiscal years 2002 and 2003, 1,647 or
2% were decided by a bench or jury trial.2 Data about settlement are most of the time not
available but it is commonly believed that cases that go to trial involve larger damages.3

The amount at stake in a settlement dispute can be very important: in March 2006 the
Canadian firm Research In Motion who manufactures the Blackberry email device agreed
to pay a $612.5m settlement amount to end a patent dispute with NTP Inc. a little known
Virginia firm.4

In this article, we examine how the incentives to settle are modified when litigants
can enhance the strength of their case by investing in case preparation during the pretrial
phase. We assume that pretrial efforts incurred by the parties can change the probability
that the defendant will be found liable at trial and/or the damage awarded to the plaintiff
should liability be established. The seminal contributions in the field, Bebchuk (1984)
and Reinganum and Wilde (1986), assume that the expected award is fixed, but known
to one party only. The former paper considers a screening game: the uninformed party
(the defendant, say) makes a settlement offer, which is rejected by plaintiffs with strong
cases. The latter paper studies a signaling game: the informed party makes an offer which
positively depends on the strength of his case, and the defendant refuses to pay a larger
settlement amount with a higher probability.5

With few exceptions, the subsequent literature has treated the expected award in court
as exogenous. Litigants, however, do invest in case preparation with the purpose of improv-
ing their position at trial and, consequently, at the negotiation table. During the pretrial
phase, the parties take various actions: getting additional evidence, taking thorough initial
interviews and depositions, obtaining statements from witnesses, issuing interrogatories,
selecting expert witnesses, etc. In practice, the precise form of pretrial preparation depends
on the legal procedure in force.

To show how the investment in case preparation of one party can affect its adversary’s
incentives to settle, we build a sequential game, where the informed party first decides
to invest, or not, in case preparation, and the uninformed litigant, after observing this

1See Daughety and Reinganum (1999) for the issue of confidentiality.
2Source: Bureau of Justice Statistics Bulletin, August 2005, NCJ 208713. See http://www.ojp.usdoj.

gov/bjs/pubalp2.htm#Torts
3See Black, Silver, Hyman, and Sage (2005) and Chandra, Shantanu, and Seabury (2005). Kaplan,

Sadka, and Silva-Mendez (2008) use a data set from labor tribunals in Mexico that provides information
about settled cases as well as tried cases. They find that about 70% of lawsuits are settled, 15% dropped
and 15% go to trial. They find, however, that plaintiffs that go to trial receive significantly lower final
payments. They explain this difference by a selection effect as workers who exaggerate their claims settle
less often, and may be punished in terms of final-payment amounts.

4The settlement, which was not easy to reach, ended four years of legal dispute in the U.S. between the
two companies. Maybe the largest amounts that make newspapers front pages correspond to drug related
civil action trials but they do not necessarily lead to the largest amounts per plaintiff.

5See Spier (2005) and Daughety and Reinganum (2005) for comprehensive surveys.
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decision, makes a take-it-or-leave-it settlement offer.6 We assume that case preparation
efforts entail a sunk cost, which is incurred during the pretrial phase, and that they are
effective in raising or reducing the expected award (depending on the party who invests).
Conditionally on the investment decision, litigants play a screening game with a continuum
of types à la Bebchuk, leading to settlement or trial.7 The endogenous investment decision,
however, introduces a signaling dimension. The informed party can potentially use the
investment to manipulate the defendant’s beliefs and alter her incentives to settle.

The observability assumption is critical as it is the basis of the signaling mechanism.
Admittedly, a party may not observe the exact amount of resources devoted by her adver-
sary to prepare his case. At the very least, however, the counsel chosen by a litigant to
assist him during the pretrial phase is known to the other party as counsels have many
opportunities to interact during this phase. The counsel choice is a good indicator of case
preparation expenses. Lawyer’s fees vary substantially from one lawyer to another accord-
ing to experience and reputation. For example, the Laffey Matrix8 allows an experienced
federal court litigator to charge twice as much as a junior associate. Hiring a prominent
law firm rather than an ordinary attorney is a major strategic decision, and this choice is
public information before the settlement offers are made.

To present our main findings, we now suppose, for convenience, that the informed party
is an injured plaintiff, and the uninformed party a potentially negligent defendant. Case
preparation raises the value of the claim, but entails a sunk cost. We assume that, under
symmetric information, only plaintiffs with strong cases do invest. For low expected damage
types, the costs of case preparation exceed its return. In other words, the case preparation
technology is tailored for plaintiffs with large damages.

Under asymmetric information, low-damage plaintiffs can mimic plaintiffs with more
serious cases in the hope of a larger settlement offer. Such an incentive is well understood by
the defendant. If total trial costs are relatively large, the mimicking incentive leads, through
an unraveling process à la Akerloff, to full pooling: plaintiffs invest in case preparation
irrespective of the strength of their case. As a result, an efficient technology is deserted.

If total trial costs are not too large, a more complex equilibrium pattern stands out.
Plaintiffs with strong cases, who invest in case preparation under symmetric information,
maintain this choice under asymmetric information. Plaintiffs with weak cases, who do not
invest under symmetric information, however, are made indifferent between investing or
not, and randomize between both options. When the defendant observes that the plaintiff
has invested, she herself randomizes between a high and a low settlement offer. When
she observes that he has not, she makes a deterministic low offer. Plaintiffs with strong
cases reject all equilibrium settlement offers and proceed to trial. Plaintiffs with weak cases

6For a model with alternative offers, see Spier (1992).
7The informational asymmetry is one-sided. For models where both parties have private information,

see Schweizer (1989) and Daughety and Reinganum (1994).
8A list of hourly rates (adapted each year to take into account inflation) for attorneys of varying ex-

perience levels prepared by the Civil Division of the United States Attorney’s Office for the District of
Columbia. This list is intended to be used in cases in which a fee-shifting statute permits the prevail-
ing party to recover reasonable attorney’s fees. See http://www.usdoj.gov/usao/dc/Divisions/Civil_
Division/Laffey_Matrix_4.html
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can be further distinguished with respect to their settlement strategy. Plaintiffs with very
weak cases accept all equilibrium offers (whether they have invested or not), and earn an
informational rent. Intermediate types settle if and only if they have invested and the
defendant offers a large amount. That is, these types settle more often out of court if they
invest than if they do not.

Overinvestment in case preparation is generic, and its extent is constant across equilib-
ria. This phenomenon can be understood as bluff. Plaintiffs with intermediate types go to
court with positive probability, and regret to have invested when a trial indeed takes place.
High damage and low damage types, on the contrary, never regret their decision.

Furthermore, our model predicts that the probability of trial can decrease with the
strength of the case. This is in sharp contrast with both Bebchuk and Reinganum and
Wilde models, which predict that the probability of trial increases with the expected dam-
ages. Indeed, the more demanding the plaintiff, the less likely settlement occurs, otherwise
all types of plaintiff would demand more. In our model, this logic fails because of a selec-
tion effect involving the plaintiffs with intermediate cases. In equilibrium, the larger their
expected damage, the larger their probability of investment and, in turn, the larger their
probability of settlement.

Overall, asymmetric information induces the relatively low types to overinvest in case
preparation. This is socially inefficient as it increases the preparation sunk costs. Strategic
effects, however, can mitigate this direct cost effect. Case preparation may indeed trigger
more settlements for plaintiffs with intermediate cases, and consequently reduce trial costs.

Among the few papers that deal with case preparation and endogenize case strength,
Hay (1995) is the closest to the present study.9 Hay, however, assumes away any exogenous
heterogeneity concerning case strength, by supposing that discovery rules are able to elimi-
nate any preexisting uncertainty. Accordingly, in the last stage of his game, plaintiffs differ
only through their pretrial effort, which is not observed by the defendant. In other words,
the final stage of Hay’s game, which has a mixed strategy equilibrium, involves hidden
action, but symmetric information. The mechanism is reminiscent to shirking models. The
plaintiff would, under perfect information, work hard to prepare his case, and the defendant
would make a substantial settlement offer.10 As a result of the hidden action problem, the
plaintiff is tempted to shirk, and, in the equilibrium, both players resort to mixed strategies.
Settlement fails when a low offer is made to a well-prepared plaintiff. Hay’s assumption that
discovery rules, in jurisdictions where such rules exist, eliminate any asymmetric informa-
tion is extreme, because some information cannot be exchanged (voluntary or not) without
parties incurring important costs. Parties may not even be aware of the existence of pieces
of information that are relevant for the dispute. In contrast to Hay, we assume that some
exogenous heterogeneity remains at the end of the pretrial phase, and that case preparation
decisions are observed by the defendant. The two sets of assumptions are complementary.

Posey (1998) introduces the option for the plaintiff of either hiring an attorney at the
beginning of the settlement process or delaying it until and unless the case proceeds to

9In Schrag (1999) the strength of a case is also endogenous through the discovery of evidence efforts
undertaken by the parties. But the efforts are made after the strategic settlement phase that is studied.

10Such a strategy is assumed to be better than sloppy preparation which would imply a meager settlement
offer.
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trial. To hire a lawyer early can be used as a (costly) signal. Yet she assumes that the
attorney costs are the same for low-damage and high-damage plaintiffs and that the pres-
ence of an attorney does not affect case strength. That is, Posey focuses on the cost aspect
of the attorney exclusively: hiring an attorney early is a purely dissipative signal. Under
asymmetric information and under the assumption that only contingency fee arrangements
are available, she exhibits a counter intuitive separating equilibrium where the attorney is
hired by the low damage claimant.11 Our approach complements hers. We focus on observ-
able (hourly fee) arrangements, and we assume that the choice of a better case preparation
technology is not dissipative, but is effective in strengthening the case.

A methodological contribution of this article is to provide a comprehensive analysis of
a sequential signaling game with one-sided informational asymmetry, a continuum of types
and a type-dependent reservation utility. The informed party, playing first, makes a binary
decision (preparing or not), and the uninformed party replies with a continuous strategic
variable (the settlement offer). Despite of the multiplicity of equilibria, we are able to show
that important economic features (in particular, the extent of overinvestment) are constant
across equilibria. We also demonstrate that the equilibria involve non-degenerated mixed
strategies of both players. As already said, the main modeling difference with Hay (1995) is
the presence of private information. Another difference is the timing of the game: sequential
in the present paper, simultaneous in Hay. In contrast to the signaling game of Reinganum
and Wilde (1986), both players, in our framework, resort to mixed strategies. Specifically,
in their paper, the uninformed defendant randomizes between accepting or rejecting the
settlement offer made by the informed plaintiff, while, in our model, no randomization
takes place once a settlement offer is made as it is the informed party who accepts or
rejects the offer. Here, the defendant randomizes between a generous and a conservative
offer when the plaintiff opts for case preparation which induces the intermediate plaintiff
types to accept or reject the offer. As to the plaintiff, he randomizes between investing,
or not, in case preparation, using a probability that is not necessarily monotonic in case
strength. Yet our model predicts a simple average pattern: above a critical threshold
for case strength, all types invest and proceed to trial. Below the threshold, the average
probability of investment depends on the fundamentals of the game (sunk and trial costs
and effectiveness of case preparation) in a simple manner.

The paper is organized as follows. Section 2 presents the model. Section 3 details
the strategies of the parties and presents some preliminary results. Section 4 characterizes
the unique equilibrium when trial costs are relatively large, while section 5 deals with
the relatively low trial cost case. Section 6 presents comparative statics and qualitative
properties of the equilibria. Section 7 suggests alternative interpretations of the model and
avenues for future research.

11When both contingency fee and hourly fee arrangements are available (but the arrangement choice is
not observed by the defendant) there is no longer a separating equilibrium.
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2 The model

We consider a litigation framework with one-sided informational asymmetry. The expected
award at trial, also referred to as “case strength”, is the plaintiff’s private information. The
defendant only knows the distribution of case strength. The plaintiff can invest in case
preparation to enhance his case. We posit a multiplicative effect: the investment multiplies
the expected award at trial by a constant greater than one. Both litigants are risk neutral.12

2.1 The litigation game

The extensive form of the game is illustrated in Figure 1. Nature determines the plaintiff’s
type, noted x, according to a distribution F with positive density f on [a, b]. The plaintiff
decides to invest in case preparation, which we note e = H, or to exert the basic level of
effort, e = L. The investment involves a sunk (pretrial) cost c > 0. The defendant, after
observing the investment decision, makes a take-it-or-leave-it settlement offer. The plaintiff
either accepts or refuses the offer. If the latter, the case goes to court, where the expected
award to the plaintiff is µx if he has invested, x otherwise. The parameter µ > 1 is common
knowledge. In other words, the return of the case preparation is a higher expected award
at trial.

In addition to the sunk cost, the pretrial investment may alter the plaintiff’s trial costs.
The choice of a reputable attorney in the pretrial phase may imply larger trial cost as it
might be costly to switch to a less expensive lawyer who would have to start from scratch
Furthermore, case preparation can make the life of the opposite party in court harder, forcing
it to incur higher costs at trial. Trial costs are noted tDH ≥ tDL ≥ 0 for the defendant and
tPH ≥ tPL ≥ 0 for the plaintiff. Total trial costs in each situation are denoted TL = tPL + tDL
and TH = tPH + tDH . Negative expected claims are assumed away: the expected award
in court is greater than the trial’s costs for both technologies, even for the weakest case:
a > tPL and µa > tPH + c.

Nature

chooses x

x ∈ [a, b]

The plaintiff

strengthens his

case or not

e ∈ {H, L}

The defendant

offers a settle-

ment amount

s
e
≥ 0, e ∈ {H, L}

The plaintiff ac-

cepts or refuses

A or R

Trial if no

settlement

Payoffs

Figure 1: Timeline of the game

Under symmetric information, litigants never go to court. The defendant observes x,
12The roles could be switched: the defendant could be the one holding private information and investing.

In that case the investment would reduce the expected award of the plaintiff at trial. The uninformed
plaintiff would be the one making the settlement offer. See Section 7.
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the case strength, as well as the plaintiff’s investment decision. Therefore, she holds all the
necessary information to make personalized offers which are accepted. Formally, she offers
x − tPL after e = L, and µx − tPH after e = H. The plaintiff accepts such an amount (but
would refuse any smaller amount) because this is exactly the expected amount he would
have in case of a trial. Anticipating these settlement amounts, the plaintiff invests if and
only if µx − tPH − c ≥ x − tPL . Let x̃ be the type of the plaintiff who is indifferent, under
perfect information, between both technologies:

x̃ =
tPH − tPL + c

µ− 1
.

We refer to the plaintiff x̃ as the marginal type. Investment is efficient for plaintiffs
with strong cases (x > x̃), while it is not for weak cases (x < x̃). Throughout, we assume
that no technology is superior to the other for all types of plaintiff. Formally:

Assumption 1. The marginal type is interior: a < x̃ < b.

a bx̃

x̃− tP
L

x

Plaintiff’s net

expected gain

x− tP
L

if e = Lµx− tP
H
− c

if e = H

Figure 2: The efficient technologies and the marginal type x̃

Under symmetric information, the plaintiff invests if and only if his case is strong (x ≥
x̃), consequently he obtains µx− tPH − c. Otherwise he does not invest and gets x− tPL . In
Figure 2, the bold line represents the plaintiff’s symmetric information gain as a function of
his type x. Under asymmetric information, this line corresponds to the minimum gain the
plaintiff can secure by going to court. This gain is the plaintiff’s reservation utility, which
is type-dependent. We also assume that a plaintiff who has invested in case preparation
does not want to switch back to the basic technology.
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Assumption 2. Once the sunk cost c has been incurred, a plaintiff has no incentives to
give up the return of case preparation. Formally: a− tPL < µa− tPH .

Combined with Assumption 1, Assumption 2 implies, for the weakest case: µa−tPH−c <
a− tPL < µa− tPH , which entails a positive lower bound for the sunk cost: c > (µa− tPH)−
(a− tPL ) > 0. Notice that assumption 2 is satisfied when tPL = tPH .

2.2 The one-technology benchmarks

Throughout, we note {H} and {L} the situations where only one technology is available,
and {HL} the situation where the plaintiff can choose his preferred technology. Following
Bebchuk, we first examine the benchmark cases {H} and {L}.

A settlement offer partitions the population of plaintiffs into two groups. In case {L},
the plaintiff of type x accepts a settlement offer s if and only if x ≤ s+tPL . The corresponding
threshold in case {H} is (s+ tPH)/µ. It is convenient to parameterize settlement offers with
the type of the indifferent plaintiff, rather than with the settlement amount itself. The offer
leaving plaintiff x indifferent yields the following utility to plaintiff y:

v{L}(y;x) = max(y − tPL , x− tPL ) (1)

v{H}(y;x) = max(µy − tPH − c, µx− tPH − c), (2)

and the following profit to the defendant:

π{L}(x) = − (x− TL) F (x)−
∫ b

x
yf(y)dy − tDL

π{H} (x) = µ

[
−

(
x− TH

µ

)
F (x)−

∫ b

x
yf(y)dy

]
− tDH .

The latter formulae express the defendant’s tradeoff between rent extraction and trial cost
savings. Throughout the paper, we maintain the following assumption.

Assumption 3. The distribution of case strength is strictly log-concave.

Assumption 3 amounts to τ = F/f being increasing on [a, b]. Under this assumption,
the function π{L} and π{H} are strictly quasi-concave. Therefore they attain their maximum
for only one value of x.13 The optimal offers, denoted x∗

L and x∗
H , are characterized by the

first order conditions:
τ(x∗

H) = TH/µ and τ(x∗
L) = TL.

If case strength is uniformly distributed on [a, b], then τ(x) = x − a, x∗
L = a + TL, x∗

H =
a + TH/µ. By assumption, TL ≤ TH , but TH/µ could be either larger or smaller than TL

and there is a priori no restriction on the ordering of x∗
H and x∗

L. Hereafter, we limit our
attention to the interesting cases where x∗

H and x∗
L are interior.

13In the three situations {H}, {L} and {HL}, existence results only require τ to be nondecreasing, but
uniqueness results depend on τ increasing. In particular, the strict monotonicity guarantees the uniqueness
of x∗

H and x∗
L.
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In such a litigation environment, total welfare equals the opposite of litigation costs,
and is not affected by transfers from one party to another.14 The expected litigation costs
in equilibrium when only one technology is available are given by

C∗{H} = c + (1− F (x∗
H))TH and C∗{L} = (1− F (x∗

L))TL. (3)

The comparison of the expected trial costs in the situations {H} and {L} involves a direct
cost effect and a strategic effect. Formally,

C∗{H} − C∗{L} = c + (1− F (x∗
L))(TH − TL)− (F (x∗

H)− F (x∗
L))TH .

Since c ≥ 0 and TH ≥ TL, the sum of the first two terms is positive, and tends to make C∗{H}
higher than C∗{L} (direct cost effect). The last term reflects the change in the incentives to
settle. If TH/µ ≤ TL, trial occurs less often in {L} than in {H}, so both effects play in the
same direction. This happens, in particular, when TL = TH . On the other hand, if TH/µ
is larger than TL, the strategic effect tends to make C∗{H} lower than C∗{L}. When x∗

H tends
to b, the strategic effect may dominate the direct cost effect.15

3 Preliminary results

We now examine the incentives to invest and to settle in the situation {HL} where both
technologies are available. As will shortly become clear, we must consider mixed strategies
of the defendant. Parameterizing settlement offers with the type of the indifferent plaintiff
as explained above, the most general defendant’s strategy is represented by a pair (PH , PL)
of probability measures on the interval [a, b]. Facing e = H (resp. e = L), the defendant
randomizes between the offers µx− tPH (resp. x− tPL ), where x is drawn in [a, b] according
to the distribution PH (resp. PL).

3.1 The defendant’s strategy and the plaintiff’s payoffs

Facing a defendant’s strategy (PH , PL), a plaintiff of type y gets the following expected
payoffs:

vH(y) =
∫ b

a
v{H}(y;x)dPH(x) and vL(y) =

∫ b

a
v{L}(y;x)dPL(x), (4)

where the base utility functions v{H}(.;x) and v{L}(.;x) are defined in (1) and (2).

Let KL be the set of nondecreasing, convex functions v from [a, b] to
[
a− tPL , b− tPL

]
satisfying v(b) = b − tPL and 0 ≤ v′ ≤ 1. Similarly, let KH be the set of nondecreasing,
convex functions v from [a, b] to

[
µa− tPH − c, µb− tPH − c

]
satisfying v(b) = µb − tPH − c

and 0 ≤ v′ ≤ µ.
14The focus of the paper is on the settlement issue. Therefore we do not take into account the adminis-

trative costs of a trial nor the deterrence effects that trial and settlement cost might have.
15This is the case, for instance, when TH/µ tends to b− a and case strength is uniformly distributed.
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Lemma 1. There exists a one-to-one map between pairs (PH , PL) of probability distribu-
tions on [a, b] and pairs (vH , vL) ∈ KH ×KL. Conditionally on the litigation technologies,
the trial probabilities are given by:

PH(x ≤ y) = v′H(y)/µ and PL(x ≤ y) = v′L(y), (5)

and are nondecreasing in case strength.

Proof. For all x ∈ [a, b], the functions v{H}(.;x) and v{L}(.;x) belong to KH and KL

respectively. Both sets are convex. The functions vH and vL given by (4) being convex
combinations of the base functions v{H}(.;x) and v{L}(.;x), also belong to KH and KL.
We have:

vH(y) =
[
µy − tPH

]
PH(x ≤ y) +

∫ b

y
[µx− tPH ]dPL(x)− c (6)

vL(y) =
[
y − tPL

]
PL(x ≤ y) +

∫ b

y
[x− tPL ]dPL(x), (7)

where Pe(x ≤ y) is the probability that the plaintiff of type y, if he exerts effort e, goes to
trial. We refer to this probability as the conditional trial probability. Being nondecreasing
and convex, ve is differentiable almost everywhere.16 Differentiating (6) and (7) yields (5).
Since vL and vH are convex, the conditional trial probabilities are nondecreasing in case
strength.

In Appendix A, we show that the base functions v{H}(.;x) and v{L}(.;x), a ≤ x ≤ b,
generate the convex sets KH and KL and explain how any function ve ∈ Ke, e = H,L, can
be written in the form (4).

According to Lemma 1, we can interchangeably use the probability measures PH and PL

or the expected payoff functions vH(.) and vL(.) of the plaintiff to describe the defendant’s
strategy. This result plays a critical role in the following analysis, where the geometric
properties of vH and vL are extensively used.

3.2 The plaintiff’s strategy and the defendant’s payoffs

A plaintiff’s behavioral strategy is represented by a map σ : [a, b] → [0, 1], which specifies
the probability σ(x) that the plaintiff of type x invests in case preparation. After observing
the plaintiff’s decision e ∈ {H,L}, the defendant revises her beliefs about the distribution
of case strength. For a given plaintiff’s strategy σ, we note fe and Fe, the density and
c.d.f. of the defendant’s posterior distributions. Assuming that both technologies are used
in equilibrium, the revised densities are given by the Bayes’ rule

fH(x) =
σ(x)f(x)∫ b

a σ(t)f(t)dt
and fL(x) =

[1− σ(x)] f(x)∫ b
a [1− σ(t)] f(t)dt

. (8)

16More precisely, ve admits at every point a left- and a right-derivative, which coincide almost everywhere.
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Consequently, conditional on e, an offer x yields the following expected revenues

πH(x) = µ

[
−

(
x− TH

µ

)
FH (x)−

∫ b

x
tfH(t)dt

]
− tDH (9)

πL(x) = − (x− TL) FL (x)−
∫ b

x
tfL(t)dt− tDL (10)

to the defendant after e = H or e = L. The difference between the above expressions of πe

and the expression of π{e} used in the one-technology worlds of Section 2.2 is the underlying
distributions of heterogeneity: the profits πe refer to the posterior distributions, while the
prior distributions of case strength are used in π{e}.

We cannot impose a priori that the investment probability σ(x) is continuous in the
case strength x. Indeed, continuity does not hold under complete information: the efficient
configuration has σ = 0 for low-types and σ = 1 for high-types, thus an upward discontinuity
at x̃. To avoid useless complications, however, we assume that the function σ has a left and
a right limit at any point x, which are noted σ(x−) and σ(x+) respectively.17 It follows
that the posterior densities fH and fL have left and right limits at any point x and that
the defendant’s payoff function πH and πL have a left and a right derivative at any point
x; the right derivatives are given by

π′
H(x+)/µ = −FH(x) +

TH

µ
fH(x+) and π′

L(x+) = −FL(x) + TLfL(x+),

the left derivatives are given by analog formulae. It is useful to observe that π′
H(x) and

π′
L(x) are respectively equal, up to a positive multiplicative constant, to σ(x)f(x)−

∫ x
a σdF

and (1− σ(x))f(x)−
∫ x
a (1− σ)dF .

If the defendant randomizes between offers according to the probability distribution Pe,
her payoff is Πe =

∫ b
a πe(x)dPe(x). According to Lemma 1, the defendant’s strategy can

also be expressed in terms of the utility she leaves to the plaintiff. In that case, her profits
write as in Lemma 2.

Lemma 2. The conditional profits of the defendant given e = H and e = L can be expressed
as functions of her strategy (vH , vL) in the following way:

ΠH =
∫ b

a

[
−vH(x)− TH

µ
v′H(x)

]
fH(x)dx− c

ΠL =
∫ b

a

[
−vL(x)− TLv′L(x)

]
fL(x)dx.

Proof. See Appendix B
17Mathematically, we impose the restriction that the plaintiff’s strategy σ belongs to the set of functions of

bounded variation. The functions of bounded variation are differences between two nondecreasing functions.
The set of discontinuity points of such a function can be infinite, but is necessarily countable. See W. P.
Ziemer, Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Graduate
Texts in Mathematics. Springer-Verlag, New York, 1989.
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Finally, note that the unconditional defendant’s profit, namely her expected profit before
the investment decision is observed, is given by Π{HL} = Pr(e = H)ΠH + Pr(e = L)ΠL,
where Pr(e = H) =

∫
σdF and Pr(e = L) =

∫
(1− σ)dF .

3.3 General properties of equilibria

A perfect Bayesian equilibrium of the game is a function σ∗(.) and two probability measures
P ∗

H and P ∗
L on [a, b] such that (i) given P ∗

H and P ∗
L, σ∗(x) maximizes the expected payoff

of type x, for all x in [a, b]; (ii) given σ∗, P ∗
e maximizes the defendant expected payoff after

she has observed e, for e = H,L; (iii) beliefs are updated according to Bayes’ rule (8).
The support of a mixed strategy is the set of pure strategies to which a positive probabil-

ity is assigned. For an offer to be in the support, a necessary condition is that it maximizes
the defendant expected payoff. Whenever the maximum of her payoff is attained at many
points, she is indifferent between the corresponding offers and can randomize between sev-
eral of them. Formally:

supp P ∗
e ⊂ argmax πe,

where πe, given by (9) or (10), uses the updated beliefs. If, for e = H or L, the defendant’s
payoff function attains its maximum at a unique point, then she makes the corresponding
offer with probability 1: the support of distribution Pe is thus a singleton, or, equivalently,
Pe is a mass point. (As seen above, this happens if all x opt for the same technology.)

Lemma 3. Suppose that, in equilibrium, the investment probability Pr(e = H) is smaller
than 1. Then, after observing e = L, the defendant makes no offer greater than x̃ − tPL .
Formally: vL(x̃) = x̃− tPL .

Proof. We use a standard unraveling argument. Suppose that vL(x̃) > x̃−tPL = µx̃−tPH−c.
Since vL(b) = b − tPL < µb − tPH − c, the curve vL must cross the segment µx − tPH − c on
(x̃, b]. They only cross once since the segment has slope µ > 1 and vL has slope no greater
than 1. Let x0 be the unique intersection point. For x > x0, we have: vH > vL, so the
plaintiff chooses e = H with probability σ = 1. The defendant therefore knows that all the
plaintiffs who choose e = L necessarily have: x ≤ x0. Therefore she could reduce the utility
vL(.) by the constant amount z = vL(x0) − [x0 − tPL ] > 0. Such a change would increase
her payoff by z

∫ x0

a (1− σ)dF , which is positive by assumption. We conclude that we must
have: vL(x̃) = x̃ − tPL , which is equivalent to saying that the support of PL is a subset of
[a, x̃] or that the defendant, after observing e = L, does not make any offer greater than
x̃− tPL with positive probability.

Corollary 1. In equilibrium, plaintiffs with strong cases invest in case preparation: σ∗ = 1
on [x̃, b].

Proof. The result, obviously, holds when the overall probability that e = H,
∫ b
a σdF , is 1.

We concentrate, therefore, on the case where the overall probability of observing the basic
technology,

∫ b
a (1−σ)dF , is positive. From Lemma 3, for x > x̃, we have: vL(x) = x− tPL <

µx− tPH − c, so the plaintiff x chooses e = H, σ(x) = 1.

12



According to Corollary 1, the investment decision of plaintiffs with strong cases is never
distorted: both under symmetric and asymmetric information, high types efficiently invest
in case preparation.

4 Equilibria when trial costs are large

This section is devoted to the case x̃ < x∗
H or, equivalently, τ(x̃) < TH/µ. This assump-

tion expresses that, in the benchmark situation {H}, the marginal plaintiff x̃ settles in
equilibrium. The next proposition shows that, under this assumption, the only possible
equilibrium configuration when both technologies are available is the same as in {H}.

Proposition 1. Assume x̃ < x∗
H . Then, in equilibrium, any plaintiff invests in case prepa-

ration: σ∗ = 1 on [a, b]. After observing e = H, the defendant offers µx∗
H − tPH to settle the

case.

Proof. First, we prove the existence of out-of-equilibrium beliefs that are consistent with
this configuration. Suppose that, after she observes e = L, the defendant believes that
the deviation comes from plaintiff a, and, accordingly, offers only a − tPL to settle. It
follows that a plaintiff of type x receives utility x− tPL if he does not invest, while he gets
v∗H(x) = v{H}(x;x∗

H) > x − tPL if he invests (see Figure 3). In turn, any plaintiff invests
and, as seen in Section 2.2, it is indeed optimal for the defendant to offer µx∗

H − tPH , leaving
plaintiff x∗

H indifferent between accepting or rejecting the offer.

Second, we check that the above configuration is the only possible one in equilibrium.
The proof proceeds by contradiction. Assuming that the investment probability Pr(e = H)
is smaller than 1, we use the convexity of the functions vH and vL to show that there must
exist x1 ∈ (a, x̃] such that, after observing e = H, the defendant makes the offer µx1 − tPH
with positive probability, and we show that this is not possible given the assumption x̃ < x∗

H .
The detailed proof is presented in Appendix D.

According to Proposition 1, the plaintiff’s strategy, as well as the defendant’s strategy
after she has observed e = H, are unique in equilibrium. Any distribution PL such that
vL ≤ v∗H sustains the equilibrium. But the equilibrium configuration is unique, and is the
same as in {H}. The uniqueness result is the heart of Proposition 1.

The intuition behind this result is fairly simple. When TH/µ is large enough, the trial
is relatively costly to at least one party and the plaintiff and/or the defendant are eager to
settle. Therefore a relatively high settlement offer is made after e = H which attracts all
types of plaintiff.

The absence of the basic technology in equilibrium can harm some types of plaintiff.
Indeed, assume that x∗

L is larger than x∗
H and such that x∗

L− tPL is larger than µx∗
H − tPH − c

(more precisely, we are concerned by the case: x̃ < x∗
H < x∗

H + (µ− 1)(x∗
H − x̃) < x∗

L < b).
Then all plaintiffs who settle would prefer to do it for x∗

L − tPL rather than µx∗
H − tPH − c.

Yet the offer x∗
L − tPL would only be made if all types selected e = L, which is not an

equilibrium.

13
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x− tPL

µx− tPH − c

v∗H(x)

x∗H

µx
∗

H
− t

P

H
− c

Figure 3: Equilibrium gains when x∗
H > x̃

Finally, and more importantly, asymmetric information induces overinvestment. Plain-
tiffs with weak cases (x < x̃) do not invest when information is symmetric, while they do
when it is asymmetric. This choice is rewarding as they earn an informational rent. Part of
the high-types (those who settle: x̃ < x < x∗

H) also benefit from asymmetric information.

5 Equilibria when trial costs are low

We now turn to the complementary case x∗
H < x̃. Under this condition, assume that all

types decide to invest in case preparation. Then the defendant makes the offer µx∗
H − tPH ,

which is rejected by all types above x∗
H . But the plaintiffs whose type lie between x∗

H and
x̃ are better off, in court, with e = L rather than with e = H (see Figure 4). Therefore, it
can no longer be an equilibrium for all types of plaintiff to invest.

We know from Corollary 1 that high types invest in case preparation. The following
proposition goes a step further towards the characterization of the equilibrium.

Proposition 2. Assume that x∗
H < x̃. In equilibrium, plaintiffs with strong cases (x > x̃)

invest and go to court; plaintiffs with weak cases (x ≤ x̃) are indifferent between investing
or not. Formally: vH = vL on [a, x̃].

Proof. Since the probability of investment is smaller than one, we know from Lemma 3 that
vL(x̃) = x̃− tPL . In Appendix E, we show, by using the convexity of the functions vH and
vL, that the defendant, after observing e = H, makes no offer greater than µx̃− tPH , which
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Figure 4: When x∗
H < x̃, all types choosing e = H is no longer an equilibrium

is equivalent to vH(x̃) = vL(x̃). It follows that vH(x) = µx− tPH − c > vL(x) = x− tPL for
x > x̃, and that plaintiffs with strong cases invest and go to court.

We now turn to plaintiffs with weak cases, and show that vL = vH on [a, x̃]. We
proceed by contradiction. Suppose that there exists x < x̃ such that vL(x) 6= vH(x), say,
for instance, vL(x) < vH(x). Since vL = vH at x̃, there exists x1, with x < x1 ≤ x̃ such
that vL = vH at x1 and vL < vH on [x, x1). We have vL < vH , σ = 1 and fL = 0 on [x, x1).

Suppose first that FL(x) is positive. In this case, we have: π′
L = −FL+TLfL = −FL < 0

on [x, x1), so πL does not attain its maximum in this interval, which, therefore, does not
intersect the support of PL. Applying Lemma C.2, we conclude that vL is affine on [x, x1).
More generally, the argument shows that vL is affine as long as it is below vH . Since vH is
convex and vH(x1) = vL(x1), the only possibility is that vL < vH and σ = 1, on the whole
interval [a, x1], which contradicts FL(x) > 0.

It follows that FL(x) = 0. Applying Lemma C.1, we conclude that vL is constant on
[a, x]. But this, again, is impossible as vH(x1) = vL(x1), vH > vL on a left neighborhood
of x1, and vH is nondecreasing.

It follows that vH ≤ vL on [a, x̃]. The proof of vL ≤ vH is symmetric.

The following proposition characterizes the defendant’s strategy in equilibrium.

Proposition 3. Assume that x∗
H < x̃. After e = L, the defendant makes a single offer,

x̂ − tPL , where x̂ lies between x∗
H and x∗

L and x̂ < x̃; after e = H, she offers µx̂ − tPH with
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probability 1/µ and µx̃− tPH with probability 1− 1/µ.

Proof. See Appendix F

The key point in Proposition 3 is that the support of PL must be a singleton. If
the plaintiff has not invested, the defendant does not randomize.18 In the other case, she
randomizes between exactly two offers. Formally, if PL is the singleton {x̂}, then the support
of PH must be the pair {x̂, x̃}. The weights of x̂ and x̃ are 1/µ and 1 − 1/µ respectively.
The equilibrium settlement strategy of the plaintiff immediately follows Proposition 3.

Corollary 2 (Settlement and trial conditional on plaintiff’s type and investment decision).
Assume that x∗

H < x̃ and consider a plaintiff of type x. After case preparation, he settles
out of court if x ≤ x̂, declines the low offer and accepts the high one if x̂ < x ≤ x̃ , goes to
court otherwise. If the plaintiff has not invested, he goes to court if and only if x > x̂.

We now examine the behavior of plaintiffs with weak cases (x < x̃). The main result
is that the fraction of low types investing in the case preparation is positive and constant
across equilibria. This contrasts with the symmetric information case, where low plaintiffs
never invest in case preparation. These weak case types who overinvest in equilibrium are
certain to regret their choice if they cannot settle and end in court. As for them their
expected net gain at trial is larger after e = L rather than after e = H.

Corollary 3 (Overinvestment by plaintiffs with weak cases). The fraction of plaintiffs with
weak cases (x < x̃) who invest in case preparation is given by

Pr(e = H |x < x̃) =
TH

µ

f(x̃)
F (x̃)

. (11)

Proof. Since x̃ belongs to the support of PH , Lemma C.3 implies that σ(x̃+) ≤ σ(x̃−). As
σ(x̃+) = 1 it means that σ(.) is continuous at x̃, with σ(x̃) = 1. Therefore, the function
πH is differentiable at x̃; since πH is maximal at x̃, we have π′

H(x̃) = 0, which writes:

FH(x̃) =
TH

µ
fH(x̃) =

TH

µ

f(x̃)
Pr(e = H)

,

which, combined with

Pr(e = H |x < x̃) =
1

F (x̃)

∫
ex

a
σ(x)f(x)dx =

1
F (x̃)

Pr(e = H)FH(x̃),

yields (11).

The next corollary shows the plaintiff’s gain in equilibrium, denoted v∗(x), which is
represented on Figure 5.

18This property follows from the log-concavity of the distribution of types, see section F.3.
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Figure 5: Equilibrium payoff of the plaintiff and offers of the defendant

Corollary 4 (Plaintiff’s payoff). Assume that x∗
H < x̃. In equilibrium, the net expected

payoff of the plaintiff of type x is x̂− tPL if a ≤ x ≤ x̂, x− tPL if x̂ ≤ x ≤ x̃, and µx− tPH − c
if x̃ ≤ x ≤ b.

Plaintiffs with very weak cases (x < x̂) never go to court, and earn an informational
rent compared to the symmetric information case (see Figure 2). In contrast, types above
x̂ have the same expected payoff under symmetric and asymmetric information. Plaintiffs
with intermediate cases (x̂ ≤ x ≤ x̃) go to court with probability one if they do not invest,
with probability 1/µ if they do. Plaintiffs with strong cases invest and go to court.

Note, that in Hay (1995)’s model both the plaintiff and the defendant have (on average)
the same payoff whether or not the effort is hidden. The lack of settlement entails no
loss (despite the parties’ costs of trial) for each party: the trial costs of the defendant
(resp. plaintiff) are exactly compensated by the fact that with some probability a lower
offer is accepted (resp. a high offer is made while no effort has been undertook). In our
model, incomplete information entails a social cost and we discuss the welfare impact of
the availability of different case preparation strategies.

Next, we examine the defendant’s unconditional payoff in equilibrium, that is, her profit
before she observes the plaintiff’s investment decision. A first way to compute her profit is
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to consider her response to each plaintiff type’s decision. We get:

−Π∗
{HL} =

∫
bx

a

{
σ

[
1
µ

(µx̂− tPH) + (1− 1/µ)(µx̃− tPH)
]

+ (1− σ)(x̂− tPL )
}

f(x)dx

+
∫

ex

bx

{
σ

[
1
µ

(µx + tDH) + (1− 1/µ)(µx̃− tPH)
]

+ (1− σ)(x + tDL )
}

f(x)dx

+
∫ b

ex
[µx + tDH ]f(x)dx.

The first line correspond to plaintiffs with very weak cases (x < x̂), who invest with
probability σ(x). If the defendant observes that the plaintiff has not invested, she offers
x̂ − tPL , and the plaintiff agrees to settle; if she observes that he has invested, she offers
µx̂ − tPH with probability 1/µ and µx̃ − tPH with probability 1 − 1/µ. Again, the plaintiff
accepts both offers. The second and third lines can be interpreted in the same fashion. In
Appendix G, we derive another expression of the defendant’s payoff, which will prove useful
below.

Corollary 5 (Defendant’s payoff). Assume that x∗
H < x̃. In equilibrium, the net expected

payoff of the defendant is given by

−Π∗
{HL} = (x̂− tPL )

∫
bx

a
f(x)dx +

∫
ex

bx

[
x + tDL

]
f(x)dx +

∫ b

ex

[
µx + tDH

]
f(x)dx

+c
TH

µ
f(x̃) +

(
TH

µ
− TL

) ∫
ex

bx
σ(x)f(x)dx. (12)

The last term of the first line of (12) comes from the plaintiffs with strong cases (x ≥ x̃),
who invest and go to court. The first and second terms of the first line are the amounts
that the defendant would pay absent investment by low plaintiffs (x < x̃). The first term
accounts for the types between a and x̂ who settle and the second for the types between
x̂ and x̃ who do not. Yet in equilibrium, a fraction of plaintiffs with weak cases do invest,
which is reflected by the two correction terms of the second line. First, investment by low
plaintiffs entails an extra cost cPr (e = H and x < x̃), which is fully “passed on” to the
defendant (since low plaintiffs must be kept indifferent between investing or not). Second,
for types between x̂ and x̃, investment alters the expected trial costs, which explains the
second term of the second line of (12).

Proposition 3 does not characterize the plaintiff’s strategy σ(.); in particular, it does
not rule out the possibility of multiple equilibria associated with different functions σ. We
now exhibit a fully specified equilibrium (σ∗, PH , PL).

Proposition 4. Assume that x∗
H < x̃. If TL = TH/µ, we set x̂ = x∗

L = x∗
H , otherwise we

define x̂ as the highest root to the equation

f(x̃)
f(x)

exp
[

µ

TH
(x∗

H − x)
]

=
τ(x)− TL

TH/µ− TL
.
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We define the defendant’s strategy (PH , PL) as in Proposition 3. We define the plaintiff’s
strategy by

σ∗(x) =


(f(x̃)/f(x∗

H)) exp
[

µ

TH
(x∗

H − x̃)
]

for a ≤ x ≤ x∗
H

(f(x̃)/f(x)) exp
[

µ

TH
(x− x̃)

]
for x∗

H ≤ x ≤ x̃

1 for x̃ ≤ x ≤ b

if TL ≥ TH/µ, and

σ∗(x) =



1− (1− σ(x̂)) (f(x̂)/f(x∗
L)) exp

[
1
TL

(x∗
L − x̂)

]
for a ≤ x ≤ x∗

L

1− (1− σ(x̂)) (f(x̂)/f(x)) exp
[

1
TL

(x− x̂)
]

for x∗
L ≤ x ≤ x̂,

(f(x̃)/f(x)) exp
[

µ
TH

(x− x̃)
]

for x̂ ≤ x ≤ x̃,

1 for x̃ ≤ x ≤ b

if TL < TH/µ. Then (σ∗, PH , PL) is an equilibrium.

The equilibrium of Proposition 4 is represented on Figures 6a and 6b. The formal check
that the given strategies form an equilibrium is relegated in Appendix H.

The logic behind the shape of σ∗(.) is the following. As stated in Proposition 3, the
defendant makes a unique offer, x̂, after e = L, and she randomizes between x̂ and x̃ after
e = H. Accordingly, πL has to attain its maximum at x = x̂, and πH at both x̂ and x̃. The
function σ∗ of Proposition 4 is such that πH is constant between x̂ and x̃. In Appendix H,
we check that πL is maximal at x̂ on the interval [x̂, b]. On [a, x̂], σ∗(.) is such that πH and
πL are nondecreasing and such that enough low types choose to invest, in accordance with
Equation (11). When TL ≥ TH/µ (Figure 6a), this can be achieved by maintaining πH

flat between x∗
H and x̂, and keeping σ∗(.) constant between a and x∗

H . When TL > TH/µ
(Figure 6b), this choice of σ∗ below x̂ is not consistent with the equilibrium requirements,
as it would not give enough weight to e = H and Equation (11) would be violated. As a
consequence, σ∗(.) has to decrease between a and x̂. A way to satisfy Equation (11) is to
choose σ∗(.) between x∗

L and x̂ such that πL is flat and then to maintain σ∗(.) constant
between a and x∗

L. In Appendix H, it is checked that, in these circumstances, πH is
increasing on [a, x̂].

In the equilibrium of Proposition 4, all plaintiffs with weak cases (x < x̃) resort to a
mixed strategy. Obviously, one can construct equilibria where many low types play in pure
strategy, provided that the probability of investment conditional on x < x̃, given (11), is
not affected. However, mixed strategies cannot not be entirely ruled out, as shown in the
following remark (proved in Appendix F.4).

Remark 1. The mixed strategy of the plaintiff x̂ must be non degenerate: 0 < σ∗(x̂) < 1.
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Figure 6a: x∗
H < x̃ and x∗

H < x∗
L

Parameter values: F uniform on [1, 3], tD
H = tD

L =

0, tP
H = 1.5, tP

L = 1.25, c = 2.25, and µ = 2.

Figure 6b: x∗
L < x∗

H < x̃

Parameter values: F uniform on [1, 3], tD
H = tD

L =

0, tP
H = 2.5, tP

L = 0.5, c = 0.75, and µ = 2.

As x̂ belongs to the supports of both PL and PH , σ∗ is continuous at x̂ (Lemma C.3),
Remark 1 implies that a positive mass of plaintiffs plays in mixed strategy.19

6 Discussion

We now present qualitative properties of the equilibria and comparative statics results that
illustrate the strategic effects at work. First, we show how the introduction of a publicly ob-

19Admittedly, these results partly follow from our assumption that σ is a function of bounded variations
(see footnote 17). Recall, however, that this restriction allows for an infinite number of discontinuity points.

20



servable investment decision by the plaintiff alters Bebchuk’s equilibrium pattern. Second,
we examine the extent of overinvestment by plaintiffs with weak cases, and explain how it
varies with the primitives of the model. Third, we study the welfare effects of introducing
a new technology, starting from a one-technology world.

6.1 The trial probability may locally decrease with case strength

Figures 7a and 7b plot the probabilities of trial conditional on the investment choice as
functions of the case strength x. As stated in Lemma 1, these probabilities are nondecreasing
in x. A plaintiff who expects large damages in court is less likely to settle. Yet Figure 7c
shows that this property does not extend to the unconditional trial probability: a plaintiff
with a stronger case can settle more often than a plaintiff with a weaker case.

Corollary 6. Assume that x∗
H < x̃. At the equilibrium of Proposition 4, the unconditional

trial probability decreases with case strength on [x̂, x̃].

This result is in sharp contrast with Bebchuk (1984), as well as with Reinganum and
Wilde (1986), where the probability of settlement is decreasing in x. In the present model,
the endogenous investment decision entails a selection effect, which can delete monotonicity,
as shown on Figure 7c. For a given investment decision, the trial probability increases with
case strength. Ex ante, however, the opposite result may hold as plaintiffs with stronger
cases are more likely to invest in case preparation.

x

T = 0

T = 1
1

a x̂ x̃ b

Figure 7a: Proba. of trial after e = L

x

T = 0

T = 1

µ

T = 1
1

a x̂ x̃ b

Figure 7b: Proba. of trial after e = H

6.2 The extent of overinvestment

Plaintiffs with weak cases (x < x̃) who decide to invest in case preparation can be called
bluffers. If the defendant calls their bluff and brings them to court, they regret their choice.
When x̃ < x∗

H , the proportion of bluffers is one, as all types invest, and the bluff is always
successful as the defendant settles with all types below x∗

H > x̃. When x∗
H < x̃, however,

this proportion, given by (11), is lower than one; moreover, the bluff is successful with

21



x

1/µ
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(
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)
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T = 1
1
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Figure 7c: Unconditional probability of trial

probability 1− 1/µ only as the defendant randomizes between a low and a high offer after
observing that the plaintiff has invested. The following Lemma describes how the extent of
bluff varies with the primitives of the model.

Lemma 4 (Proportion of bluffers). In equilibrium, the proportion of bluffers becomes larger
when (other things being equal):

i) The defendant’s trial cost, tDH , increases.
ii) The plaintiff’s trial cost after e = L, tPL , increases.
iii) The sunk cost of investment, c, decreases.

Proof. i) An increase of tDH increases TH , but not does not change x̃. Moreover, the propor-
tion of bluffers tends to one as tDH goes to µτ(x̃)− tPH , all other parameters being fixed. ii)
and iii) If tPL increases (resp. c decreases), TH/µ is not affected, while x̃ decreases, therefore
TH
µ /τ(x̃) increases.

6.3 The welfare effects of introducing a second technology

At the end of Section 2, we compared the expected litigation costs C∗{H} and C∗{L} in the
two benchmark situations. We now investigate the welfare effects of introducing the costly
technology, H, when only the basic one, L, is available, and, symmetrically, of introducing
L when only H is available. When x∗

H ≥ x̃, the effect is obvious as the equilibrium
configuration is the same in {H} and in {HL}. Hereafter, we focus on the case x∗

H < x̃.
The total litigation costs in {HL} are given by:

C∗{HL} =
∫

ex

bx

[
σ(x)

TH

µ
+ (1− σ(x))TL

]
f(x)dx + [1− F (x̃)]TH + c Pr(e = H).

Plaintiffs with very weak cases (x < x̂) settle. Plaintiffs with intermediate cases (x̂ ≤ x ≤ x̃)
invest with probability σ, then go to court with probability 1/µ, or do not invest (probability
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1 − σ) and go to court with certainty; their contribution to the total costs is therefore
σ(x)TH

µ + (1−σ(x))TL. Finally, plaintiffs with strong cases (x > x̃) invest and go to court,
generating trial costs TH .

Starting from a one-technology world {e}, the introduction of the case preparation
technology has four effects on total costs. First, the critical case strength below which
plaintiffs always settle is x∗

e in {e} and x̂ in {HL}. The threshold x̂ is lower or higher than
x∗

e depending on the ordering of TL and TH/µ. Second, in a (possibly empty) intermediate
region [max(x∗

e, x̂), x̃], Te is replaced by σ(x)TH
µ + (1− σ(x))TL, which is certainly smaller

than TH , and may be lower or higher than TL depending, again, on the ordering of TL and
TH/µ. Third, the introduction of L starting from {H} does not change the contribution
of plaintiffs with strong cases; the introduction of H starting from {L} increases their
contribution from TL to TH . Fourth, the introduction of a second technology modifies the
overall investment probability Pr(e = H), and, in turn, the weight of the sunk cost c.

The overall effect is ambiguous in general, but can be determined in the particular case
where the case preparation investment multiplies the total trial cost by the same factor as
the expected award in court: TH/µ = TL. Under this assumption, the trial probability is
the same in {H} and in {L}, so the direct cost effect implies C∗{H} > C∗{L}. Furthermore,
in {HL}, plaintiffs with weak cases generate the same expected trial costs, whether they
invest (TH/µ) or not (TL).

Proposition 5 (Pure bluff effect). Assume that x∗
H = x∗

L < x̃. Then
i) From {L}, the introduction of H reduces the trial probability, raises the expected liti-

gation costs, benefits the plaintiff, irrespective of his type, and harms the defendant.
ii) From {H}, the introduction of L reduces the trial probability and the expected litigation

costs, is beneficial to the plaintiff as well as, if x∗
L ≥ TL, to the defendant.

Proof. If x∗
H = x∗

L, we have, by Proposition 3: x̂ = x∗
H = x∗

L. In the two benchmark
situations, plaintiffs settle if and only if their type is below x̂, and the probability of settle-
ment is F (x∗

H) = F (x∗
L) = F (x̂). When both technologies are available, plaintiffs with type

x ≤ x̂ continue to settle; but plaintiffs with type x ∈ [x̂, x̃] now settle when they invest and
receive the high offer µx̃−tPH , which occurs with probability σ(x).[1−1/µ]. The probability
of settlement is, therefore, increased by (1− 1/µ)

∫
ex
bx σ(x)f(x)dx, which is positive, since

σ(x̃) = 1 and σ is continuous at x̃ (see Appendix F).
Under the assumptions of the Proposition, the total costs simplify into C∗{HL} = cPr(e =

H) + [F (x̃)− F (x̂)]TL + [1− F (x̃)]TH . Comparing with (3) yields C∗{L} < C∗{HL} < C∗{H}.

It is straightforward to check that the plaintiff’s payoff in {HL}, which is represented
on Figure 5, is uniformly greater than his payoffs v{L}(x; x̂) and v{H}(x; x̂) in the one-
technology worlds. It follows that the plaintiff, whatever his type, prefers {HL} to both
{H} and {L}.

Starting from {L}, the introduction of the costly technology reduces total welfare and
benefits the plaintiff (irrespective of his type); it must therefore harm the defendant. Start-
ing from {H}, the introduction of the basic technology raises total welfare; so it might

23



benefit both parties. Item ii of the Proposition, proved in Appendix I, establishes that it
is indeed the case under the additional condition x∗

L ≥ TL.

The results of Proposition 5 are driven by a pure bluff effect. Under the assumption
x∗

H = x∗
L < x̃, the incentives to settle in {H} and in {L} are identical; the lower threshold

for settlement, x̂, coincide with x∗
H = x∗

L. Yet a fraction of types above this threshold
invests in the costly technology, and is rewarded by a generous settlement offer, thereby
reducing the overall probability of trial.

Part ii of Proposition 5 shows that, if TL ≤ x∗
L = x∗

H < x̃, the introduction of the basic
technology, starting from the situation {H}, is Pareto-improving. The left inequality holds,
for instance, when the distribution of case strength is uniform as x∗

L = a + TL.

Under the assumptions of Proposition 5, the equilibrium total cost when both technolo-
gies are available lies between C∗{H} and C∗{L}. The final proposition shows that this is not
true in general. More interestingly, while overinvestment generates inefficient sunk costs,
it may also trigger more settlements through the bluff effect, thereby reducing trial costs.
The overall effect may be a reduction of the litigation costs.

Proposition 6. Starting from {L}, the introduction of H may reduce the expected litigation
costs, even when H alone leads to higher costs than L alone. In other words, the ordering
C∗{HL} < C∗{L} < C∗{H} is possible.

To construct an example, we choose x̃ close to b, so as to minimize both the preparation
and the trial costs generated by plaintiffs with strong cases. We choose x∗

L < x∗
H , so that

trial occurs less often in {H} than in {L}. But we make sure that, in the comparison
of {H} and {L}, the strategic effect does not offset the cost effect, so that C∗{L} < C∗{H}.
Next, we compare {L} and {HL}. First the sunk preparation cost tends to make C∗{HL}
higher than C∗{L}. Second, σTH/µ + (1− σ)TL is larger than TL, which pushes in the same
direction. On the other hand, because of x̂ > x∗

L, more plaintiffs settle in {HL} than in
{L}, which tends to make C∗{HL} lower than C∗{L}. We now exhibit a set of parameters such
that the latter effect dominates, which proves Proposition 6.

We assume that x uniformly distributed on [1, 3], and set: c = 0.08, tPL = 0.5, tDL = 1.085
so TL = 1.585, tPH = 0.54, tDH = 1.25 so TH = 1.79, and µ = 1.04. Under these assumptions,
we have: x∗

L = 2.585, x̂ = 2.699, x∗
H = 2.721, x̃ = 3, and C∗{HL} = 0.3259 < C∗{L} = 0.3288 <

C∗{H} = 0.3295. In this example, all plaintiffs have weak cases as x̃ = b, yet 86% of them
invest in case preparation when both technologies are available. This excessive investment
entails inefficient sunk costs, but comes with a higher settlement rate. The settlement
probability is indeed 98% in {HL} as opposed to 79% only in {L}. Accordingly, trial costs
are reduced, which more than offsets the increase in preparation costs.

7 Concluding remarks

The above presentation has assumed that the informed party is the plaintiff. The model,
however, allows for alternative interpretations. Consider for instance the following tax
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evasion situation, where the informed party is the defendant. After a preliminary inspection,
the tax department has found that an agent (firm or individual) hid some transactions
and that a certain amount of taxes has not been paid as a result. Yet thanks to skillful
accounting practices, the agent can justify a fraction of this tax evasion. The amount the
agent can justify is his private information. Once challenged by the authorities, the agent
can hire a costly tax advisor, who is able to reduce the tax liability even further. After
observing this choice, the tax department makes a settlement offer to save on inspection
costs. If the settlement is rejected by the agent, a thorough inspection starts which is costly
for both the tax department and the taxpayer.

The model also applies to the following procurement issue. A firm or a government buys
an input (e.g. a commodity) whose quality is variable. The price contractually depends on
the estimated quality, but the quality audit is costly. To save on the evaluation costs, the
buyer proposes a price to the supplier. If the latter refuses the proposed price, the audit
is undertaken, and both the buyer and the supplier incur costs. The supplier can hire an
engineer in charge of quality management, which entails a sunk cost but increases quality.
The buyer makes her price offer after observing the supplier’s effort in quality management.

More generally, the model applies to any context where a monetary transfer must be
decided on the basis of unobserved characteristics of one party, and these characteristics
can be revealed through a costly audit. To save on the auditing costs, the uninformed party
makes an offer, but the informed party has the opportunity to move first, by investing to
improve its position should the audit occur. Notice that the investment of the informed
party could directly enhance the welfare through a real effect on attributes valued by the
players (e.g. a quality improvement). In this paper, we have ruled out this possibility to
focus exclusively on the signaling mechanism and the bluff effect.

We have assumed that the informed party initiates the case, and makes his preparation
decision before the opposite party can move. Depending on the circumstances, however,
the uninformed party may be able to anticipate future litigation and to make an initial offer
at the very beginning of the process. Accordingly, we could envisage successive sequences
of investment decisions and settlement offers. It would be of interest to study the resulting
dynamics, in the spirit of Spier (1992).

Finally, an obvious limitation of our framework is that we study the strategic effects of
case preparation of one party only, leaving the pretrial efforts of the adversary exogenous. It
is tempting to allow both parties to invest. Under symmetric information, this could result
in an arms race. Depending on the costs and returns of the respective investments, both
parties could invest and neutralize each other -a prisoner dilemma. The current framework
emphasizes a different idea: plaintiffs with weak cases invest to manipulate the beliefs of
the opposite party; overinvestment is inherent to asymmetric information.
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Appendix

A Proof of Lemma 1

We have already shown that if Pe is a probability distribution on [a, b], then the functions
vH and vL given (4) belongs to KH and KL. Conversely, pick any vL ∈ KL. Integrating by
parts and using vL(b) = b− tPL , we have

vL(x) = −
∫ b

x
v′L(y)dy + b− tPL

=
∫ b

x
v′′L(y).[y − tPL ]dy + [1− v′L(b)].[b− tPL ] + v′L(x).[x− tPL ]

=
∫ b

x
v′′L(y).[y − tPL ]dy +

∫ x

a
v′′L(y).[x− tPL ]dy

+[1− v′(b)].[b− tPL ] + v′L(a)[x− tPL ]

=
∫ b

a
v′′L(y) max{x− tPL , y − tPL}dy

+[1− v′L(b)](b− tPL ) + [x− tPL ]v′L(a).

The same computation yields

vH(x) =
∫ b

a

v′′H(y)
µ

max{µx− tPH , µy − tPH}dy

+
[
1−

v′H(b)
µ

]
(µb− tPH) + [µx− tPH ]

v′H(a)
µ

− c.

It follows that any ve ∈ Ke can be written according to (4) with Pe given by

PL(y) = v′L(a)δa + v′′L(y) + [1− v′L(b)]δb

PH(y) =
v′H(a)

µ
δa +

v′′H(y)
µ

+
[
1−

v′H(b)
µ

]
δb,

where δx represents the mass point at x. Since ve is a convex function, its first-order
derivative is a nondecreasing function and its second-order derivative is a positive measure.
We have ∫ b

a
dPL(y) = v′L(a) +

∫ b

a
v′′L(y)dy + 1− v′L(b) = 1,

so the total mass of PL is 1. The same result holds for PH . So PL and PH are probability
distributions on [a, b].

Notice that Pe could, in theory, have mass points at a, at b and at any interior point
in (a, b). An interior mass point corresponds, as already mentioned, to a convex kink of ve

(jump of v′e, mass in v′′e ).
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B Proof of Lemma 2

Integrating twice by parts and using the fact that πL(b) = −(b − tPL ), we find that the
defendant’s profit, when she faces e = L, is given by∫ b

a

[
−vL(x)− TLv′L(x)

]
fL(x)dx =

∫ b

a
v′L(x)[FL(x)− TLfL(x)]dx− vL(b)

= −
∫ b

a
v′L(x)π′

L(x)− [b− tPL ]

=
∫ b

a
πL(x)v′′L(x)dx− v′L(b)πL(b) + v′L(a)πL(a)− [b− tPL ]

=
∫ b

a
πL(x)v′′L(x)dx + [1− v′L(b)]πL(b) + v′L(a)πL(a)

=
∫ b

a
πL(x)dPL(x).

Similarly, the defendant’s profit, when she faces e = H, is given by (use πH(b) = −(µb−tPH))∫ b

a

[
−vH(x)− TH

µ
v′H(x)

]
fH(x)dx− c =

=
∫ b

a
v′H(x)

[
FH(x)− TH

µ
fH(x)

]
− vH(b)− c

=
1
µ

(∫ b

a
πH(x)v′′H(x)dx− v′H(b)πH(b) + v′H(a)πH(a)

)
− [µb− tPH ]

=
∫ b

a
πH(x)v′′H(x)/µdx + [1− v′H(b)/µ]πH(b) + πH(a)v′H(a)/µ

=
∫ b

a
πH(x)dPH(x).

C Technical properties of the equilibrium

Lemma C.1. Suppose that the plaintiff chooses technology e with positive probability. Let
x ≥ a be such Fe(x) = 0. Then the defendant makes no offer smaller than or equal to x
after e: Pe = v′e = 0 on [a, x].

Proof. We write the proof for e = L. Suppose πL attains its maximum at x = a. This
would imply ∫ x

a
[−FL(x) + TLfL(x)]dx ≤ 0

for all x ∈ [a, b], or, noting GL =
∫ x
a FL(x)dx

e−x/TL

[
− 1

TL
GL(x) + FL(x)

]
≤ 0.
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The function e−x/TLGL would be nonincreasing. Since it is zero at x = a, it would be every-
where nonpositive, which implies that FL and fL would be identically 0. This contradicts
the fact that FL is a probability distribution on [a, b].

Lemma C.2. Let x ∈ (a, b) be such that πe is not maximal at x. Then ve is affine on
a neighborhood of x. Convex kinks in ve can occur only at points where πe attains its
maximum.

Proof. Since πe is continuous, it is not maximal in a neighborhood of x, which, therefore,
does no intersect the support of Pe. Since, in (a, b), the support of Pe is the same as the
support of v′′e (see Appendix A), πe is affine on that neighborhood.

Lemma C.3. If x belongs to the support of PH , then σ(x+) ≤ σ(x−). If x belongs to the
support of PL, then σ(x+) ≥ σ(x−). If x belongs to both supports, then σ is continuous at
x.

Proof. The result follows immediately from the fact that if x maximizes πe, then we must
have: π′

e(x
−) ≥ π′

e(x
+).

D Proof of Proposition 1 (uniqueness part)

The proof of the uniqueness of the equilibrium configuration when x∗
H > x̃ requires a

preliminary result.

Lemma D.1. Let E be an equilibrium such that vL(x̃) = x̃ − tPL . Let Ě be the same
configuration as E except that vH is replaced by max(vL, vH) on [a, x̃].

Then Ě is an equilibrium. For both litigants, the payoffs are the same at E and Ě.

Proof. We have vH(x̃) ≥ vL(x̃) = x̃− tPL , which yields: v̌H(x̃) = vH(x̃). It follows immedi-
ately that v̌H belongs to KH and that the change corresponds to an admissible defendant’s
strategy P̌H . The only impact of the change is the following: the plaintiffs who strictly
preferred L to H at E are indifferent between the two levels of effort at Ě. Those plaintiffs
can therefore continue to choose e = L with certainty (σ̌ = σ = 0 is optimal for them).

We now use Lemma 2 to show that the defendant’s profit is maximal at Ě. Since v̌l = vL

and the plaintiff’s strategy is the same at E and Ě (σ̌ = σ), the defendant’s payoff when
e = L is the same at E and Ě. Therefore the strategy vL still maximizes the defendant’s
payoff when e = L.

If the plaintiff invests in case preparation, the utility vH changes only when σ = 0, so
the integral

∫ b
a vH(x)fH(x)dx is not affected. The derivatives v′H and v̌′H coincide whenever

vL 6= vH , but can be different at points where vH = vL and σ = σ̌ > 0 (corresponding to
plaintiffs who randomize between the two technologies). The difference between v′H and
v̌′H at points where fH is positive could, in principle, affect the defendant’s payoff. In fact,
this is not the case, since such a possibility can only occur on a negligible set.

Indeed, vH and vL are differentiable almost everywhere. If vH(x) = vL(x) and v′H(x) =
v′L(x), then v̌′H(x) = v′H(x), so v′H and v̌′H coincide. If vH(x) = vL(x) and v′H(x) 6= v′L(x),
then v̌H is not differentiable at x, which can occur only a negligible subset.
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It follows that v′H and v̌′H coincide at almost every x such that σ > 0 and that the
defendant’s payoff when e = H is the same at E and Ě. We conclude that the change in
the defendant’s strategy (from vH to v̌H) does not affect her payoff.

To prove uniqueness, we proceed by contradiction. We suppose that there exists an
equilibrium where the probability of e = L is positive. From Lemma 3, we know that
vL(x̃) = x̃ − tPL . Lemma D.1 applies: there exists another equilibrium with the same
plaintiff’s strategy, the same payoff for both litigants and vH ≥ vL on [a, x̃]. We now work
with this equilibrium and exhibit a contradiction. Since, by assumption, the probability of
e = L is positive and given that high types (x > x̃) chooses e = H (recall Corollary 1), we
cannot have vH > vL everywhere on (a, x̃]. Let x1, a < x1 ≤ x̃, be the highest solution to
vL = vH . By construction, all plaintiffs with type x > x1 strongly prefer e = H to e = L;
in other words: vH > vL and σ = 1 on (x1, b]. It follows that σ(x+

1 ) = 1.

We now use the property vH ≥ vL on [a, x̃] (coming from Lemma D.1) to prove that
x1 necessarily belongs to the support of PH . Here again, we proceed by contradiction.
Suppose that x1 were not in the support of PH . Then, by Lemma C.2, vH would be affine
in a small interval around x1. The function vL would be below this affine function for
x ≤ x1, would coincide with it at x1 and would be strictly below for x > x1. This would
violate the convexity of vL. We conclude that x1 belongs to the support of PH .

Yet we have:

−
∫ x1

a
σ(t)dF (t) +

TH

µ
σ(x+

1 )f(x1) = −
∫ x1

a
σ(t)dF (t) +

TH

µ
f(x1)

≥ −F (x1) +
TH

µ
f(x1)

= f(x1). [TH/µ− τ(x1)]
≥ f(x1). [TH/µ− τ(x̃)]
> 0.

This implies that π′
H(x+

1 ) > 0, which contradicts x1 ∈ supp PH ⊂ argmax πH . This
contradiction yields uniqueness. �

E Proof of Proposition 2

We assume that TH/µ < τ(x̃) or x∗
H < x̃. We already know that the defendant makes

no offer greater than x̃ after observing L, that is vL(x̃) = x̃ − tPL . In this appendix, we
show that, after observing e = H, the defendant makes no offer greater than µx̃− tPH with
positive probability, which is equivalent to vH(x̃) = vL(x̃).

We proceed by contradiction. Suppose that the defendant makes an offer µx2 − tPH ,
x̃ < x2 ≤ b, with positive probability. We follow the same argument as in the proof of the
uniqueness part of Proposition 1. Since vL(x̃) = x̃−tPL , we can apply Lemma D.1: replacing
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vH by max(vL, vH) on [a, x̃], leaving vL and σ unchanged, we get another equilibrium where
both litigants get the same payoff. We now work with this new equilibrium and exhibit a
contradiction. Since, by assumption, the probability of L is positive and given that high
types (x > x̃) chooses e = H by Corollary 1, we cannot have vH > vL everywhere on (a, x̃].
Let a < x1 < x̃ be the highest solution to vL = vH .20 By construction, all plaintiffs with
type x > x1 strongly prefer e = H to e = L; in other words: vH > vL and σ = 1 on (x1, b].

We now use the property (coming from Lemma D.1) that vH ≥ vL on [a, x̃], to prove
that x1 belongs to the support of PH . Again, we proceed by contradiction. Suppose that
x1 were not in the support of PH . Then, by Lemma C.2, vH would be affine in a small
interval around x1. Since vL ≤ vH on [a, x̃], the function vL would be below this affine
function for x ≤ x1, would coincide with it at x1 and would be strictly below for x > x1.
This would violate the convexity of vL. We conclude that x1 must belong to the support
of PH .

On [x1, b], we have σ = 1 and π′
H is equal (up to a positive multiplicative factor) to

−
∫ x

a
σ(t)f(t)dt +

TH

µ
f(x) = κ− F (x) +

TH

µ
f(x),

where κ =
∫ x1

a (1 − σ)dF > 0. Since τ is nondecreasing, the function πH on [x1, b] is first
nondecreasing, then nonincreasing: it attains its maximum at some point(s) greater than
x∗

H . We must therefore have: x∗
H < x1 < x̃ < x2. Since the function πH is maximal at x1

and at x2, it must remain constant in between, which implies κ− F (x) + TH
µ f(x) = 0, or

TH

µ

1
τ

= 1− κ

F

on [x1, x2]. Since the left-hand side is decreasing and the right-hand side is increasing, it
follows that both sides are constant, which implies that F is constant, and f = 0 on [x1, x2],
the desired contradiction. It follows that vL(x̃) = vH(x̃).

F Proof of Proposition 3

The proof is organized as follows. First, we show that after e = H, the defendant offers
µx̃−tPH with probability 1−1/µ. Second, we establish a number of properties of offers made
after e = L. Third, we exploit these properties to prove that, after e = L, the defendant
makes only one offer (the support of PL is the singleton). Finally, noting x̂ − tPL this
single offer, we show that the indifferent plaintiff x̂ uses a non-degenerated mixed strategy:
0 < σ(x̂) < 1.

F.1 After e = H, the defendant offers µx̃− tPH with probability 1− 1/µ

Since vH = vL on [a, x̃] and vL ∈ KL, the left-derivative of vH at x̃ is lower than or equal
to 1. Since v′H(x̃+) = µ, the derivative of vH/µ jumps upwards, with a jump greater than

20Note that, in the proof of the uniqueness part of Proposition 1, we only knew that x1 ≤ ex.
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or equal to 1 − 1/µ. The probability of playing x̃ after e = H has to be greater (or equal
to) than 1− 1/µ.

It follows that πH is maximal at x̃. This implies that σ is continuous at x̃. Indeed, if
σ(x̃−) were strictly smaller than σ(x̃+) = 1, we would have π′

H(x̃−) < π′
H(x̃+) = 0 and πH

would not be maximal at x̃.
Since −FL(x̃) + TLfL(x̃) = −FL(x̃) < 0, πL is not maximal at x̃ and vL is affine on a

neighborhood of x̃. This implies v′(x̃−) = 1. So the jump of v′H/µ at x̃ is exactly 1− 1/µ.
We conclude that, after e = H, the defendant offers µx̃− tPH with probability 1− 1/µ

F.2 Properties of offers made after e = L

By Lemma 3, we know that any offer made after e = L, say x̂ − tPL , satisfies: x̂ ≤ x̃. As
mentioned above, πL is not maximal at x̃, so we have: x̂ < x̃. From Proposition 2, we
know that vH = vL on [a, x̃]. From Lemma 1, we deduce that the supports of PL and PH

coincide on this interval. It follows that x̂ belongs to the support of both PH and PL, and
that the functions πH and πL both attain their maximum at x̂. From Lemma C.3, σ must
be continuous at this point, and πH and πL are differentiable at x̂, so we have∫

bx

a
σdF =

TH

µ
σ(x̂)f(x̂) (13)∫

bx

a
(1− σ)dF = TL[1− σ(x̂)]f(x̂). (14)

Adding up this two equations yields

F (x̂) = [TH/µ− TL]σ(x̂)f(x̂) + TLf(x̂),

which implies x̂ = x∗
H = x∗

L when TH/µ = TL, and equation (15) otherwise:

σ(x̂) =
τ(x̂)− TL

TH/µ− TL
. (15)

As the probability σ(x̂) is between 0 and 1, and as τ is increasing, it follows that x̂ lies
between x∗

L and x∗
H . More precisely, if TL < TH/µ, then x∗

L < x̂ < x∗
H and if TH/µ < TL,

then x∗
H < x̂ < x∗

L (see Figures 6a and 6b).

Since πH attains its maximum at x̂, we have∫ x

bx

[
−FH(y) +

TH

µ
fH(y)

]
dy ≤ 0

for all y. Setting GH(x) =
∫ x
bx FH(y)dy, we get

−GH(x) +
TH

µ
FH(x) ≤ TH

µ
FH(x̂). (16)

Multiplying by exp(−µx/TH) yields

exp(−µx/TH)
[
− µ

TH
GH(x) + FH(x)

]
≤ FH(x̂) exp(−µx/TH).
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Integrating between x̂ and x ≥ x̂ yields

GH(x) ≤ TH

µ
FH(x̂)

[
exp

(
µ

TH
(x− x̂)

)
− 1

]
Now using (16) yields, after simplification

FH(x) ≤ FH(x̂) exp
[

µ

TH
(x− x̂)

]
(17)

for every x ≥ x̂. The same computation for the L-technology shows that

FL(x) ≤ FL(x̂) exp
[

1
TL

(x− x̂)
]

. (18)

F.3 After e = L, the defendant makes only one offer

We now prove that PL is a mass point. We proceed by contradiction. We assume that there
exists x1 and x2, a < x1 < x2 < x̃, both in the supports of PL and PH .

If TH/µ = TL, we already know that this is impossible, since we must have x1 = x2 =
x∗

H = x∗
L. We assume TL < TH/µ, which implies (see the preceding section): x∗

L < x1 <
x2 < x∗

H .21 Applying (17) for x̂ = x1 and x = x2 we obtain (using the f.o.c. (13) for both
x1 and x2):

σ(x2)f(x2) ≤ σ(x1)f(x1) exp
[

µ

TH
(x2 − x1)

]
. (19)

From (15), we have for i = 1, 2:

σ(xi)f(xi) =
F (xi)− TLf(xi)

TH/µ− TL
> 0

and as TL < TH/µ, F (xi)− TLf(xi) > 0. Therefore, inequality (19) can be rewritten as

F (x2)− TLf(x2) ≤ (F (x1)− TLf(x1)) exp
[

µ

TH
(x2 − x1)

]
or taking the logarithm

log (F (x2)− TLf(x2))− log (F (x1)− TLf(x1)) ≤
µ

TH
(x2 − x1). (20)

Let Λ(x) = ln (F (x)− TLf(x)) = lnF (x) + ln (1− TL/τ(x)). Since F is log-concave
and τ is increasing, we have τ(x2) < τ(x∗

H) = TH/µ, and

Λ(x2)− Λ(x1) ≥ lnF (x2)− lnF (x1) ≥
1

τ(x2)
.(x2 − x1) ≥

µ

TH
(x2 − x1), (21)

which, combined to (20), yields x1 = x2, the desired contradiction. We must therefore have:
x1 = x2.

21The case x∗
H < x1 < x2 < x∗

L is treated similarly starting with (18) instead of (17).
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F.4 The plaintiff x̂ randomizes: 0 < σ(x̂) < 1

We now prove that the probability σ(x̂) is strictly between 0 and 1 as it satisfies

f(x̃)
f(x̂)

exp
[

µ

TH
(x̂− x̃)

]
≤ σ(x̂) ≤ 1− Pr(e = L)

TLf(x̂)
exp

[
1
TL

(x̂− x̃)
]

, (22)

where Pr(e = L) = 1− Pr(e = H) is known from (11).
Indeed, using the first-order condition (13) and applying (17) at x = x̃ yields

FH(x̃) =
TH

µ

f(x̃)
Pr(e = H)

≤ TH

µ

σ(x̂)f(x̂)
Pr(e = H)

exp
[

µ

TH
(x̃− x̂)

]
which yields the left inequality of (22). Using the first-order condition (14) and applying
(18) at x = x̃ yields

FL(x̃) = 1 ≤ TL
(1− σ(x̂))f(x̂)

Pr(e = L)
exp

[
1
TL

(x̃− x̂)
]

which yields the right inequality of (22).

G The defendant’s payoff

Another way of writing the defendant’s profit is to express it as the difference between the
total welfare and the utility left to the plaintiff (Lemma 2). Given that vL = vH = v∗, we
have:

−Π∗
{HL} = −Pr(e = L)Π∗

L − Pr(e = H)Π∗
H

=
∫ b

a

{
[v(x) + TLv′(x)][1− σ(x)] +

[
v(x) +

TH

µ
v′(x)

]
σ(x)

}
f(x)dx

+cPr(e = H).

Using equation (11) and observing that v′ = 1 on [x̂, x̃] yields (12).

H Construction of an equilibrium (Proof of Proposition 4)

We examine successively the case TH/µ < TL, TH/µ = TL and TH/µ > TL. Hereafter,
we adopt the natural notations: f∗

L = f(x∗
L), F ∗

L = F (x∗
L), f∗

H = f(x∗
H), F ∗

H = F (x∗
H),

f̃ = f(x̃), F̃ = F (x̃).

H.1 The case TH/µ < TL

Using the log-concavity of F , we get, for x∗
H < x1 < x2 < x̃:

lnF (x2)− lnF (x1) ≤
1

τ(x1)
(x2 − x1) ≤

µ

TH
(x2 − x1).
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It follows that − lnF (x) + µ
TH

x is nondecreasing on [x∗
H , x̃]. Since τ = F/f is increasing, it

follows that − ln f(x) + µ
TH

x is increasing, and so is σ∗ on [x∗
H , x̃]. Since TH/µ − TL < 0,

the function (τ − TL)/(TH/µ− TL) is decreasing on [x∗
H , x̃], is equal to 1 at x∗

H and to 0 at
x∗

L. By continuity, the equation

σ∗(x) =
τ(x)− TL

TH/µ− TL
(23)

has a unique solution x̂ in [x∗
H ,min(x̃, x∗

L)]. Notice that we have: σ∗ ≥ (τ−TL)/(TH/µ−TL)
on [x̂, x̃].

We have: σ∗(x̃) = 1, so σ∗ is continuous at x̃. The function σ∗ takes its value in (0, 1]
and is continuous on [a, b]. Since σ∗ is constant on [a, x∗

H ], we have have∫ x∗H

a
σ∗(x)f(x)dx =

f̃

f∗
H

exp
[

µ

TH
(x∗

H − x̃)
]

.F ∗
H =

TH

µ
f̃ exp

[
µ

TH
(x∗

H − x̃)
]

=
TH

µ
σ∗(x∗

H)f(x∗
H),

which yields π′
H(x∗

H) = 0. From the definition of σ∗ on (x∗
H , x̃), it follows that π′

H is
constant on that interval, which, given that π′

H(x∗
H) = 0, yields π′

H = 0 on that interval.
On [a, x∗

H ], the quantity −FH + TH
µ fH is equal, up to a multiplicative positive constant,

to −F + TH
µ f ≥ 0, which yields π′

H ≥ 0 on [a, x∗
H ]. Finally, on [x̃, b], we have σ∗ = 1 and

the quantity −FH + TH
µ fH is equal, up to an additive constant, to −F + TH

µ f , which is
decreasing on [x̃, b] (by log-concavity of F ). This shows that π′

H ≤ 0 on this interval. In
sum, the function πH is nondecreasing on [a, x∗

H ] and constant on [x∗
H , x̃] and nonincreasing

(and concave) on [x, b].

Using x̂ < x∗
L, σ constant, and the log-concavity of F , it is easy to check that πL is

nondecreasing on [a, x̂]. On [x̂, x̃], we have, by using π′
H = 0:

−
∫ x

a
(1− σ∗(t))f(t)dt + TL(1− σ∗(x))f(x) = −F (x) +

∫ x

a
σ∗(t)f(t)dt + TL(1− σ∗(x))f(x)

= −F (x) +
(

TH

µ
− TL

)
σ∗(x)f(x) + TLf(x)

= (TH/µ− TL)f(x)
[
σ∗(x)− τ(x)− TL

TH/µ− TL

]
≤ 0

which yields π′
L ≤ 0. It follows that πL is nonincreasing on [x̂, x̃]. On [x̃, b], we have σ∗ = 1,

and πL is affine and decreasing. In sum, πL is nondecreasing on [a, x̂] and nonincreasing on
[x̂, b].

We have shown that πH attains its maximum at x̂ and x̃ and that πL attains its max-
imum at x̂. Therefore the corresponding strategy (PH , PL) is optimal for the defendant.
Any plaintiff with type below x̃ is indifferent between investing or not, and may randomize
according to the proposed probability σ∗.

�
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H.2 The case TH/µ = TL

Using σ constant and the log-concavity of F , it is easy to check that πH and πL are
nondecreasing on [a, x̂]. As above, πH is constant on [x∗

H , x̃] and decreasing and concave
on [x̃, b]. On [x̂, x̃], the same computation as above shows that

−
∫ x

a
(1− σ∗(t))f(t)dt + TL(1− σ∗(x))f(x) = −F (x) + TLf(x) = −F (x) +

TH

µ
f(x) ≤ 0,

implying that πL is nonincreasing on [x̂, x̃]. On [x̃, b], πL is still affine and decreasing.
�

H.3 The case TH/µ > TL

As shown above, the function
(
f̃/f

)
exp

[
µ

TH
(x− x̃)

]
is increasing on [x∗

H , x̃], and is equal
to 1 at x̃. Thus the value of the function at x∗

H is smaller than or equal 1. The function
(τ − TL)/(TH/µ− TL) is also increasing on [x∗

L, x∗
H ], is equal to 0 at x∗

L, to 1 at x∗
H and is

greater than 1 at x̃. It follows that the equation

f̃

f(x)
exp

[
µ

TH
(x− x̃)

]
=

τ(x)− TL

TH/µ− TL
(24)

has at least one solution in [x∗
L,min(x∗

H , x̃)]. We define x̂ < x̃ as the highest root in this
interval.

By the same reasoning as above (using the log-concavity of F ), we obtain that σ∗ is
decreasing on [x∗

L, x̂]. Since σ∗ is constant on [a, x∗
L], σ∗ takes its values in [0, 1], and we

have: σ∗ ≥ (τ − TL)/(TH/µ− TL) on [a, x̂] and σ∗ ≤ (τ − TL)/(TH/µ− TL) on [x̂, x̃].
We have∫ x∗L

a
(1− σ∗(x)) f(x)dx = (1− σ̂)

(
f̂/f∗

L

)
. exp

[
1
TL

(x∗
L − x̂)

]
.F ∗

L

= TL(1− σ̂)f̂ exp
[

1
TL

(x∗
L − x̂)

]
= TL (1− σ(x∗

L)) f(x∗
L),

which yields π′
L(x∗

L) = 0. Since, by construction of σ∗, π′
L is constant on [x∗

L, x̂], we also
have: π′

L = 0 on that interval. In particular: π′
L(x̂) = 0. The definition of x̂ then implies:

π′
H(x̂) = 0. Now, by construction of σ∗, π′

H is constant on [x̂, x̃], which, in turn, yields:
π′

H = 0 on that interval. As in case (i) and (ii), we have σ∗ = 1 on [x̃, b], and πH is concave
and nonincreasing on that interval.

Again, usign σ constant on [a, x∗
L], it is easy to check that πL and πH are nondecreasing
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on that interval. On [x∗
L, x̂], we have, by using π′

L = 0:

−
∫ x

a
σ∗f(t)dt +

TH

µ
σ∗(x)f(x) = −F (x) +

∫ x

a
(1− σ∗)f(t)dt +

TH

µ
σ∗(x)f(x)

= −F (x) + TL(1− σ∗(x))f(x) +
TH

µ
σ∗(x)f(x)

= −F (x) + TLf(x) + σ∗(x)f(x)
(

TH

µ
− TL

)
= f(x)(TH/µ− TL)

[
σ∗(x)− τ(x)− TL

TH/µ− TL

]
≥ 0,

implying that πH is nondecreasing on [x∗
L, x̂]. By construction, πH is constant on [x̂, x̃],

and is concave and nonincreasing on [x̃, b]. It follows that πH attains its maximum at x̂
and x̃.

As to πL, we already know that it is nondecreasing on [a, x∗
L] and constant on [x∗

L, x̂].
Now on [x̂, x̃], the same computation as in case (i) shows, by using π′

H = 0, that

−
∫ x

a
(1− σ∗)f(t)dt + TL(1− σ∗(x))f(x) = (TH/µ− TL)f(x)

[
σ∗(x)− τ(x)− TL

TH/µ− TL

]
≤ 0

implying that πL is nonincreasing on [x̂, x̃]. Finally on [x̃, b], we know that σ∗ = 1, so πL is
affine and decreasing, which shows that πL attains its maximum at x̂.

�

I Proof of Proposition 5

In this section, we prove that, when TL ≤ x∗
L = x∗

H < x̃, the defendant prefers {HL} to
{H}. Corollary 5 yields the expected payoff of the defendant in equilibrium when both
technologies are available:

Π∗
{HL} = −(x̂− tPL )

∫
bx

a
f(x)dx−

∫
ex

bx

[
x + tDL

]
f(x)dx−

∫ b

ex

[
µx + tDH

]
f(x)dx− TLf(x̃)c.

When only the H technology is available, the defendant’s profit is

Π∗
{H} = −(µx̂− tPH)

∫
bx

a
f(x)dx−

∫ b

bx

[
µx + tDH

]
f(x)dx

whence

Π∗
{HL} −Π∗

{H} =
(
µx̂− tPH − (x̂− tPL )

) ∫
bx

a
f(x)dx + (µ− 1)

∫
ex

bx
xf(x)dx− TLf(x̃)c

+
(
tDH − tDL

)
(F (x̃)− F (x̂))

= (µ− 1) (x̂− TL)
∫

bx

a
f(x)dx + (µ− 1)

∫
ex

bx
xf(x)dx− TLf(x̃)c

+
(
tDH − tDL

)
F (x̃)
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Using x̃ = (tPH − tPL + c)/(µ− 1) = TL + c/(µ− 1)− (tDH − tDL )/(µ− 1) and F (x̃) > TLf(x̃),
we get

Π∗
{HL} −Π∗

{H}

µ− 1
≥ (x̂− TL) F (x̂) +

∫
ex

bx
xf(x)dx− TLf(x̃)(x̃− TL)

= (x̃− TL) F (x̃) +
∫

ex

bx
[−F (x) + TLf(x)]dx− TLf(x̃)(x̃− TL)

=
∫

ex

bx
[−F (x) + TLf(x)] dx + (x̃− TL) [F (x̃)− TLf(x̃)] .

Using the log-concavity of F , it is easy to check that the function −F +TLf is nonincreasing
on [x̂, x̃], which yields (using the assumption x̂ = x∗

L > TL)

Π∗
{HL} −Π∗

{H}

µ− 1
≥ (x̃− x̂)[−F (x̃) + TLf(x̃)] + (x̃− TL) [F (x̃)− TLf(x̃)]

= (x̂− TL) [F (x̃)− TLf(x̃)]
≥ 0.
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