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Abstract

This paper studies the disposal cost’s effect on consumer surplus and firms’ prof-

its. We present a model with ex-ante homogeneous firms producing inventories

either early on at a low cost and with little information about demand, or later

with more information yet at a higher cost. Unsold products are discarded.

Firms only forgo an early production cost advantage if the disposal cost and de-

mand uncertainty are both simultaneously high. When the disposal cost is high,

less is discarded and firms’ competition for market shares increases, benefiting

consumers. However, firms decrease their production to mitigate costs, affecting

consumer surplus negatively. In our setup, the negative effect on the sales volume

dominates, reducing consumer surplus and firms’ profits. In equilibrium, firms

may be asymmetric. The disposal cost substitutes information about demand,

affecting a firm’s information advantage; its profit may increase.
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1 Introduction

A wide variety of commodities are produced in advance. Firms manufacture their

products anticipating future demand, determining inventories while their product’s

popularity is unknown. Accordingly, production costs are sunk by the time products

are put up for sale. If demand turns out to be lower than expected, firms may hold

back some quantity to increase the market price.

This behavior has been increasingly observed over the last years. Investigative jour-

nalists have uncovered several cases where firms have discarded new, unsold products.

One of the most infamous scandals was uncovered in 2010 by the New York Times.

A Hennes and Mauritz (H&M) store in New York City discarded new clothes at their

back entrance, cutting them up to make sure they would never be worn. The same

course of action was used by a Nike store in 2017. In reaction to the negative headlines,

firms usually pledge improvement, yet disposing of unsold products is an open secret

in the fashion industry.1

Discarding new products is not confined to the apparel industry. French Amazon

dumped almost 3 million unsold products in 2018. All over France, new products worth

$900 million are discarded each year according to an estimate by the government.2 The

disposal of unused products is considered a waste of resources and an environmental

burden, which led the French government to intervene.

In 2016, France already passed a law prohibiting grocery stores from disposing of

food as long as it is still edible. With the new loi anti-gaspillage (anti-waste law),

regulators are broadening the prohibition of disposal to non-food products, including

textiles, electronics, and daily hygiene products. Unsold products must be donated or

recycled.3 The new regulation is expected to come into effect in 2023.

This paper studies how firms respond to a regulatory increase in their disposal costs

and the effects on consumer surplus. The literature on this subject is scarce.4 Environ-

mental economists usually discuss policies to reduce waste and increase recycling.5 The

focus is usually on the failure of the first welfare theorem resulting from externalities.

1Not all firms keep it a secret. Burberry literally burnt almost $40 million of stock in 2018. The
fashion brand reported the deed in their annual report and specified that the energy was used to make
the process environmentally friendly.

2https://www.nytimes.com/2019/06/05/world/europe/france-unsold-products.html (last
accessed September 30, 2020).

3Projet de loi relatif à la lutte contre le gaspillage et à l’économie circulaire (TREP1902395L).
4The literature on operation research considers the costs of unsold products for the inventory’s

optimization. Choosing the optimal inventory is known as the newsvendor problem, e.g., Rosenfield
(1989) or van der Laan and Salomon (1997).

5For example, Dinan (1993) argues that taxing disposal instead of a virgin tax can increase efficiency
in newspaper markets. In his model, disposing of newspapers creates a cost, which is internalized by
taxing total output. A virgin tax, however, only leads to the substitution of input factors, i.e., firms
use recycled, old newspapers instead of virgin material.
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Instead of looking at an efficient mechanism to reduce disposal, we focus on the effect

of costly disposal in a market with imperfect competition, thereby abstracting from

externalities.

First, we study a monopolist which either produces early on at a low cost and with

little information about demand, or later, with more information yet at a higher cost.

If demand is lower than expected, the firm can hold back quantities to increase the

market price. Restrained or unsold products are not perfectly reversible; firms may

even incur a per-unit cost to dispose of commodities. Each unsold unit is, therefore,

not only a loss in revenue, it also increases costs. By slight abuse of language, we refer

to the sum of the loss from the imperfect reversibility and the additional cost to discard

as disposal cost.

The expected disposal is reduced if its cost goes up. Moreover, the monopolist

decreases its inventory to reduce costs if demand is lower than expected. In our setup,

this results in a lower expected trade volume, lowering the firm’s expected profit and

consumer surplus.

The firm forgoes the cost advantage from an early production if and only if the

disposal cost and demand uncertainty are both simultaneously high: Low disposal

costs substitute information about demand. If the disposal cost tends to zero, i.e., the

inventory becomes fully reversible, the outcome is equivalent as if the firm had full

information about demand. The monopoly produces its inventory equal to the profit-

maximizing quantity for the greatest possible demand. If a lower demand materializes,

the monopolist reverses parts of its inventory and again sells the profit-maximizing

quantity, equivalent as if the firm had known its demand. Information about demand

is, therefore, more valuable if the disposal is costly.

Second, we study the same setup with two competitors. The larger the disposal

cost is, the less is discarded by firms. Thus, given its inventory, a firm competes more

aggressively for a larger market share if the disposal is costly, thereby benefiting con-

sumers. However, firms adjust their inventory strategy in response to costly disposal.

They decrease their production to mitigate costs if demand is lower than expected. Dis-

posal decreases, yet consumers are negatively affected. Firms, furthermore, may adjust

their timing of production. A firm forgoes the cost advantage of an early production

if and only if the disposal cost and demand uncertainty are both simultaneously high.

There exist three types of equilibria in pure strategies. (i) If demand is highly

uncertain and discarding is expensive, both firms produce on the spot. They forgo

an early production cost advantage and delay their production until they have full

information. Consequently, firms dispose of nothing, and an increase in the disposal

cost has no effect. (ii) If demand is reasonably predictable and/or the marginal cost to
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dispose of is lower than the marginal cost advantage, both firms produce in advance at

a low cost. An increase in the disposal cost reduces the expected disposal, yet it also

lowers expected consumer surplus and firms’ expected profits.

(iii) For intermediate levels of demand uncertainty and a disposal cost above the

marginal cost advantage, one firm produces in advance, while the other one produces

on the spot. The first manufactures at a lower cost, yet the latter has an information

advantage. The higher the disposal cost is, the lower the expected disposal. Expected

consumer surplus, however, is also lower. The first firm’s expected profit decreases,

while the other one’s increases. The information advantage is more valuable the higher

the disposal cost. At some point, the first firm may postpone its production, too.

Due to the adjustment in the timing of production, profits and consumer surplus may

change discontinuously.

The equilibrium in pure strategies is unique, except for type (iii), where an equiva-

lent equilibrium exists with the firms’ labels interchanged. Although firms are ex-ante

symmetric, they may choose an asymmetric strategy. The ordering of firms’ profits

is ambiguous: The firm producing in advance has a cost advantage, while the other

has an information advantage. The former’s reaction to demand below expectations is

expensive if the disposal cost is high. Due to this costly reaction to new information,

the latter’s information advantage is more valuable if disposal is expensive.

In our setup, a regulatory increase in disposal costs fulfills its purpose to lower the

expected disposal. Yet, consumers are generally worse off. Although competition for

market shares increases, firms reduce their production and thereby the sales volume.

We extend our model in several directions. First, we consider firms with a combined

production technology: Firms first manufacture their inventory at low costs while

demand is uncertain. Both firms can then react to new information about demand

either by disposing of or producing additional quantities. In the unique, symmetric

equilibrium, the amount discarded decreases. Yet, consumer surplus and firms’ profits

also go down.6 Moreover, firms only use the production possibility after the realization

of demand if the disposal cost and demand uncertainty are both simultaneously high.

Our result on the forgoing of the cost advantage hinges, to some extent, on the price

being below the marginal cost of production. We extend our setup with the combined

technology and restrict prices such that the demand becomes perfectly elastic for large

quantities. Thus, firms have two ways to dispose of their goods: by either paying

the disposal cost, or by offering their goods for free. For a wide range of parameters,

our results are not affected. However, for high demand uncertainty, firms produce in

advance if the cost advantage is sufficiently high regardless of the cost to discard.

6We also study an extension to N ≥ 2 firms – consumer surplus increases in the number of firms,
yet the disposal, does too. Competition increases at the cost of a larger number of disposers. Thus,
policymakers concerned about the amount disposed of face a trade-off between competition and the
amount discarded.
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Moreover, we study both models, the one with distinct and the one with combined

technologies, when firms observe their competitor’s inventory. Companies announce

their targeted sales to inform investors. These targets are publicly announced. Thus,

competitors may not directly observe the inventory but can infer its size. If inven-

tories are observed, there may exist additionally an asymmetric equilibrium with the

combined technology. Extensive stocks send the message of large intended sales. The

firm with a larger inventory can only credibly commit to selling large parts of it if the

disposal is costly. This effect benefits the firm with the larger inventory. However,

costly disposal increases the costs to adjust to demand below expectations. Due to

the two opposing effects, the larger firm’s expected profit is ambiguous, precisely, U-

shaped in the disposal cost. The smaller firm produces mainly after the realization

of demand. Its information advantage becomes more valuable with costly disposal,

resulting in a higher expected profit. Consequently, both firms’ profits may increase in

the disposal cost, yet consumer surplus decreases. Results are similar if firms have to

choose between distinct technologies.

Finally, we discuss different forms of competition, namely, perfect competition and

price competition. In general, a regulatory increase in the disposal cost lowers the quan-

tity discarded. Yet, the expected trade volume decreases, thereby putting consumers

in a worse position.

Related Literature. This paper stands at the intersection of many literatures.7

In his seminal paper, Saloner (1986) provides one of the first formal studies of imper-

fect competition with disposal costs. Inventory is not fully reversible, and firms may

even incur additional costs for unsold products. First, firms choose (simultaneously or

sequentially)8 their inventory, which is observed by their competitor and later compete

in sales volume. Since there is no demand uncertainty, in the end, firms dispose of

nothing. The higher the disposal cost is, the more credible it is not to discard, even if

the price is low. Inventories, therefore, indicate intended sales. We silence this effect

by assuming that inventories are unobserved by the competitor. However, we relax

this assumption in an extension.9

7I thank the referees for contributing to this review.
8Maggi (1996) studies a reduced form model with demand uncertainty, which predicts a sequential

outcome in pure strategies. By contrast, Pal (1993) studies the Saloner model with mixed strategies
and argues that the sequential outcome is just a realization of a symmetric equilibrium in mixed
strategies.

9Recently, different effects of inventory have been studied in the literature. Antoniou and Fiocco
(2019) analyze the inventory’s impact on future prices to prevent stockpiling of consumers. This is
similar to Mitraille and Thille (2014), who study the presence of speculators: demand may be higher,
but later competition increases due to the resellers. Dana and Williams (2019) and Qu et al. (2018)
discuss the effect of inventory on intertemporal price discrimination.
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In a recent paper, Montez and Schutz (2021) study a game in which a firm cannot

observe its competitor’s inventory and compete in prices. Firms may hold back some

of their inventories, which are at most partly reversible.10 When the production cost

tends to full reversibility, the outcome ends in Bertrand competition. The authors

conclude that the observability of the inventories determines the difference between

the Cournot and Bertrand outcomes.

Their conclusion is based on the seminal paper by Kreps and Scheinkman (1983),

which shows that capacity choice followed by price competition yields an outcome

equivalent to the Cournot outcome.11 Firms first choose an upper bound of their next

stage’s sales volume. In a capacity game, firms incur an additional cost in the second

stage, while the production cost is sunk in an inventory game. Whenever the cost in

the second stage is normalized to zero, the games are formally equivalent.

However, in general, inventories allow firms to temporarily increase sales by ex-

tending the capacity of production; fixed capacity limits a firm’s ability to increase

sales.

Arvan (1985), Saloner (1987), and Mitraille and Moreaux (2013) each study a two-

period model where firms can manufacture in both periods. Storing may be costly

and observed by the competitors. The stored commodities’ production cost is sunk,

resulting in a zero effective marginal cost when firms compete in the second stage.

Thus, firms with storage have a cost advantage.12 Firms seek leadership at the cost

of storing the commodity. Sales volume increases, resulting in a lower market price if

firms can store.

By contrast, Thille (2006) finds in an infinitely repeated game that storage does

not affect prices in the absence of depreciation. With depreciation, firms incur higher

costs to maintain their stock of inventory, resulting in lower sales and higher market

prices.

We do not explicitly model a storage cost. In our setup, storing costs would decrease

the cost advantage of early production. As in the latter, this reduces sales, and the

price goes up.

Dada and van Mieghem (1999) study the timing of production. A monopolist

chooses inventory, sales volume, and prices, either before or after demand realization.

The monopolist holds back some products to affect the market-clearing price. Anupindi

and Jiang (2008) extend the model to a three-stage version with competing firms,

10Pashigian (1988) showed that clearance sale prices are below marginal costs in the apparel industry,
presenting empirical evidence for the imperfect reversibility.

11This result depends on the rationing rule (see, e.g., Davidson and Deneckere, 1986), furthermore
a pure strategy equilibrium may not exist if uncertainty is introduced (e.g., Hviid, 1991 or Reynolds
and Wilson, 2000). Nonetheless, Young (2010) confirms the Cournot equivalence with a multiplicative
demand shock and a relatively high capacity cost. He avoids a rationing rule by introducing product
differentiation.

12Technically, a disposal cost is a negative production cost expanding the cost advantage.
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whereby firms invest in capacity before demand materializes. Flexible firms produce

after the demand realization, while inflexible firms produce ex-ante. Firms trade off

the value of commitment against flexible production. None of these papers studies

costly disposal or competition with unobserved inventories.

The literature on inventory usually assumes a weakly lower production cost in the

second period, for example, due to the employed capital’s opportunity cost. Pal (1991)

extends Saloner (1987) and allows for different production costs across periods. If the

cost in the first period is lower than in the second, there exists a unique subgame

perfect equilibrium in pure strategies, which is symmetric. In our setup, asymmetric

outcomes are possible.

Our assumption of an increasing production cost over time is motivated by the

literature on outsourcing. Firms outsource their production to countries with low labor

or material cost, such as China or India (Deloitte, 2016).13 Physical products have to

be transported, resulting in longer processes. Thus, our model can be interpreted as

the decision to manufacture abroad, at low costs yet earlier, when demand is uncertain,

or close to the market, on the spot, when demand is known yet costs are higher.

Without the cost advantage of an earlier production, firms in our setup do not face

a trade-off. The strategic effect of the inventory is absent because it is not observed by

the competitor. The literature on strategic forward sales discusses the role of observ-

ability. If there exists a forward market, Allaz and Vila (1993) demonstrate an increase

in competition if inventories are observable, while Hughes and Kao (1997) find no ef-

fect on the competitiveness if forward sales are not observed. Ferreira (2006) studies

the case of imperfect observability. He introduces speculators, who may imperfectly

observe the quantity sold forward. The presence of a future market results in a more

competitive outcome. Comparing firms’ profits with and without observed inventory

yields ambiguous results in our setup.

Our model can be interpreted as one in which firms either acquire full information

on demand at a unit cost or renounce from the acquisition. The literature on informa-

tion acquisition in imperfectly competitive markets usually assumes a cost to reduce

the demand uncertainty, which is, however, independent of the sales volume. Sasaki

(2001) presents a model with a fixed cost to learn the demand function’s intercept with

precision. One firm’s information acquisition discourages the competitor’s incentive to

acquire information. Depending on the fixed cost of the information, either none, one

or both may acquire the information. In our setup, a firm commits to not acquire

information if it is expensive or not highly valued, i.e., if the uncertainty is low or

inventories are largely reversible.

13There exist other strategic motives, see for example Buehler and Haucap (2006) or Milliou (2019).
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Other papers consider a continuous measure to acquire information instead of a

dichotomy. Li et al. (1987) show that the optimal amount of information acquired

decreases with demand uncertainty and cost of information, yet is independent of the

constant marginal production cost. Vives (1988) shows how the marginal production

cost’s slope affects the optimal amount non-monotonically, and Hwang (1993) shows

that the firm with the steeper slope acquires more information.14 None of these allows

for a firm to react to the materialized demand.

We follow Hamilton and Slutsky (1990) and have a pre-game stage where firms

choose their production technology/timing without committing to quantities. By con-

trast, Gal-Or (1985) studies a sequential move game and finds, in general, a first-mover

advantage in submodular games. If demand is uncertain, the second mover can infer

some information of the first mover’s action (Gal-Or, 1987). Thus, the second mover

may have an advantage. In Liu (2005) and Wang and Xu (2007), demand uncertainty

decreases over time, similar to us. In their setup, the firm producing in the second

stage makes a higher profit if its information advantage is large. However, the authors

implicitly assume an infinitely high disposal cost. If the other firm can adjust its sales

volume to the realization of demand, their result remains only partially – a low disposal

cost substitutes information about demand.

In these papers, the second mover observes the first mover’s action perfectly. If

there exists some noise, Bagwell (1995) shows that the general first-mover advantage

disappears, and there exists a unique equilibrium in pure strategies. However, van

Damme and Hurkens (1997) prove the existence of a mixed equilibrium, resembling

the outcome of the observable game. Moreover, they present a refinement criterion

that selects this equilibrium. In our setup, the first mover has to choose an action

again, simultaneously with the second mover, in the game’s final stage. We conjecture

that this results in a unique equilibrium, as in our model. This, however, needs to be

addressed in detail as part of future research.

In our setup, ex-ante symmetric firms may choose different strategies, as in Robson

(1990). According to van Damme and Hurkens (1999), a sequential move equilibrium is

only stable if the first mover has a cost advantage. This is also a necessary condition in

our model. Additionally, we require a follower’s information advantage and imperfect

reversibility of production for the existence of an asymmetric equilibrium.

14Hauk and Hurkens (2001) discuss if the information acquisition is not observed by the competitor.
Raith (1996) and Jansen (2008) study strategic incentives to disclose private information. Myatt and
Wallace (2015) distinguish between public and private signals and find that competitive firms acquire
inefficiently much information.
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2 Monopoly

First, let us consider a monopolist producing a single commodity. The inverse demand

function is linear with a random slope, reflecting an unknown number of identical

consumers. Formally, let the inverse demand function in state ϑ ∈ {l, h} be Pϑ(Q) =

a− bϑQ, where Q is the total sales volume. The intercept a > 0 denotes the maximal

willingness to pay and is commonly known. The slope bϑ takes on one of two values,

bl = 1+β or bh = 1−β, each with equal probability. The difference between the states

is measured by β ∈ [0, 1), which we refer to as demand uncertainty. If bh materializes,

more consumers are on the market, resulting in a higher willingness to pay for any

quantity. Therefore, we refer to bh (bl) as the high (low) demand state. With this

setup, the expected inverse demand function is independent of β.15

The monopoly can choose between two different production technologies. It either

produces the quantity q̄A in the first period at a marginal cost normalized to zero,

denoted as technology A, or postpone its production until the demand has materialized

and manufactures qS,ϑ at a marginal cost c ∈ [0, a/2), which we denote as technology

S. Thus, technology A represents a low-cost yet time-consuming production, while

technology S stands for a fast, yet more expensive production.

Producing at an early stage is less expensive; a firm has time to adjust processes to

substitute input factors. For example, a firm can off-shore its production to decrease its

costs. However, products manufactured abroad need to be shipped to the home market.

Production, therefore, has to precede in time. The firm trades-off costs and uncertainty:

producing at a lower cost with less information or deferring the manufacturing until

more information is available, yet production is more expensive.

If the monopolist produces with technology A, it can hold back its goods after the

demand has materialized. Let the firm’s sales volume be qA,ϑ, thus q̄A − qA,ϑ is the

quantity held back. We denote its marginal cost as d > 0, reflecting costs to dispose

of products.

Due to the normalization of technology A’s production cost to zero, we have to be

careful with the interpretation of the parameters. c, the production cost of technology

S, is the relative cost advantage of early production. d reflects the reversibility of the

production: Suppose the cost of production with technology A is cA. For d ∈ [−cA, 0),

a part of the inventory is reversible (for example, if products are reused or sold in

15Commonly, demand uncertainty is modeled with a linear demand curve and a random intercept
(e.g., Gilpatric and Li, 2015) or a random slope (e.g., Daughety and Reinganum, 1994, or Malueg
and Tsutsui, 1996). We discuss a random intercept in Appendix A. In Klemperer and Meyer (1986),
firms facing a random slope prefer to fix quantities and let prices adjust depending on the demand
realization. In our model, firms also prefer to fix quantities and let prices adjust if the disposal cost
is high.
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t

Technology A

Technology S

Demand
materializes

Market
clears

Produce q̄A at a
marginal cost of 0

Discard q̄A − qA ≥ 0 at
a marginal cost d > 0

Produce qS at
a marginal cost c ≥ 0

Figure 1: The game’s timeline.

a clearance sale). By normalizing cA = 0, we do not have to distinguish between

reversibility and additional costs of discarding. Thus, a small d should be interpreted

as a largely reversible product.

Figure 1 summarizes the technologies.16 Henceforth, we suppress the state index ϑ

for quantities. Formally, the expected profits of the two technologies are

E[πA,ϑ(qA, q̄A)] = E[Pϑ(Q)qA − d(q̄A − qA)], (1)

E[πS,ϑ(qS)] = E[Pϑ(Q)qS − cqS], (2)

where Q is the total sales volume; (1) refers to technology A and (2) to S.

Suppose the monopolist uses technology A. After the realization of demand, the

inventory q̄A is fixed and the production cost is sunk. The monopolist’s sales volume

qA ∈ [0, q̄A] maximizes

πA,ϑ(qA|q̄A) = Pϑ(Q)qA − d(q̄A − qA), (3)

where Q = qA. The optimal sales volume qA(q̄A) = min{(a + d)/2bϑ, q̄A} and the

associated amount disposed of is taken into account when the monopolist produces its

inventory. The optimal inventory and sales volume are summarized in Table 1. We

indicate the market outcome with a star.

In the high-demand state, the monopolist sells its total inventory. If demand is

lower than expected, it reduces its quantity to increase the market price. The costlier

disposal is, the higher is the cost to reduce the quantity. To mitigate costs in the

low-demand state, the monopolist lowers its inventory, resulting in less disposal. This,

however, comes at the cost of a lower profit in the high-demand state.

For d ≥ βa, the monopolist disposes of nothing and serves the expected demand,

regardless of its realization. A low maximal willingness to pay, a, means that the

production is relatively expensive. Thus, products that cost much in production are

not discarded.

16Here, we assume that only one technology is feasible. We extend the model in Section C.
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q∗A high demand low demand

d < βa a−d
2(1−β)

a+d
2(1+β)

d ≥ βa a
2

a
2

Table 1: A monopoly’s production and sales volume. The inventory equals the sales volume
in the high-demand state.

A low disposal cost substitutes information about demand: If the monopolist knows

the demand in advance, it would produce q̄∗A = a/2bϑ. This equals the sales volume in

Table 1 for d = 0, i.e., when the firm’s inventory is perfectly reversible. The monopolist

produces its inventory for the high-demand state. If a lower demand materializes, the

monopolist reverses parts of its inventory, and the output is equivalent as if the firm

had known its demand. Accordingly, information about demand is more valuable if

the disposal is costly.

The monopolist’s expected profit is

E[π∗A] =


(a+d)2

8(1+β)
+ (a−d)2

8(1−β)
, if d < βa;

a2

4
, if d ≥ βa,

(4)

if it produces with technology A. Technically, this is a submodular function in β and d:

the higher the demand uncertainty in a market, the more strongly the firm’s expected

profit is affected by the disposal cost.

Next, suppose the monopolist uses technology S instead. The firm produces q∗S =

(a − c)/2bϑ in order to maximize (2), resulting in the expected profit E[π∗S] = (a −
c)2/4(1− β2). Comparing this to (4) yields that the firm chooses technology S if and

only if

β ≥


2ac−c2+d2

2ad
, if d <

√
c(2a− c);√

c(2a−c)
a

, if d ≥
√
c(2a− c).

Note that for d ≤ c, the threshold is larger than 1. Thus with a low d and/or a

low β, the firm uses technology A: it goes for the cost advantage of early production

and manufactures facing uncertain demand. The following proposition summarizes this

result.

Proposition 1. The monopolist forgoes an early production cost advantage if and only

if the disposal cost d and demand uncertainty β are both simultaneously high.

With the monopolist’s technology choice and the associated production and sales

volumes, we can analyze the effect of an increase in the disposal cost.

10
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Proposition 2. The monopolist’s expected profit

E[π∗] =


(a+d)2

8(1+β)
+ (a−d)2

8(1−β)
, if d < βa ≤ 2ac−c2+d2

2d
;

a2

4
, if βa ≤ min{d,

√
c(2a− c)};

(a−c)2
8(1+β)

+ (a−c)2
8(1−β)

, else,

expected consumer surplus E[CS∗] = E[π∗]/2 and expected disposal

E[q̄∗A − q∗A] =


βa−d

2(1−β2)
, if d < βa ≤ 2ac−c2+d2

2d
;

0, else,

decrease with the disposal cost d. The expected price is not affected by the disposal cost.

The disposal cost only has an effect if it is low relative to the demand uncertainty.

The monopolist’s expected profit decreases with d: a cost increase lowers the profit.

On the one hand, consumers benefit from a higher sales volume in the low-demand

state; on the other hand, consumers are harmed by the lower production resulting in a

lower sales volume in the high-demand state.17 The second effect dominates the first,

decreasing the expected consumer surplus. Finally, a lower production quantity and a

higher sales volume in the low-demand state results in lower disposal.

3 A Model of Competition

In this section, we introduce a second firm to our setup. Moreover, we restrict parame-

ters such that the consumers’ willingness to pay is relatively large, formally a ≥ 2c+d.18

This assumption guarantees that both firms are active in equilibrium. Moreover, it

shows that in our setup, an uncertain intercept a may result in a monopoly: we avoid

this by using an uncertain slope of the demand function.

The game proceeds as follows. In stage 0, the two competitors simultaneously

choose their production technology A or S, and the choice is observed. In stage 1, firms

with technology A produce q̄A, which is not observed by the competitor. Then, demand

materializes. In stage 2, firms simultaneously choose their sales volume qA ∈ [0, q̄A], or

produce their sales volume qS if they use technology S. Finally, the market clears.

We have to distinguish between four subgames following the technology choice: both

firms choose technology A (A,A), both choose technology S (S, S), and one chooses

technology A and the other technology S (A, S) and (S,A). By the symmetry of the

game, the latter two differ only in the firms’ labels.

17Formally, consumer surplus CSϑ = Q(a− Pϑ(Q))/2.
18Lemma 5 in Section C shows the assumption’s origin most clearly.
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We derive the perfect Bayesian equilibrium in pure strategies. Thus, we first derive

each subgame’s unique equilibrium, starting with the symmetric ones.

Symmetric Subgames. We denote one firm by i and the other by j. We start with the

(A,A) subgame, i.e., both firms produce in advance. Since both firms use technology

A, we suppress the technology index A. Formally, firm i’s strategy is (q̄i, qi,ϑ(q̄i)), with

q̄i ∈ R+ and qi,ϑ : R+ → R+. We derive the unique perfect Bayesian equilibrium.

Production costs are sunk after the realization of demand; both firms take their

inventory as given. Both choose their sales volume qi ∈ [0, q̄i] to maximize (3) with

Q = qi + qj. The best response function of firm i can be written as

qi(qj|q̄i) = min

{
max

{
a+ d

2bϑ
− 1

2
qj, 0

}
, q̄i

}
. (5)

A firm can maximally sell its total inventory. Its best response function weakly de-

creases in the competitor’s sales volume.

A firm’s sales volume given by (5) increases with d for any qj and q̄i. The costlier

disposal, the less is discarded. If inventories are fixed and the disposal cost goes up,

firms compete more aggressively for larger market shares.

Firms do not observe their competitor’s inventory. Nonetheless, each firm antici-

pates its own disposal behavior. Formally, the firms choose their inventory q̄i ≥ 0 to

maximize (1) subject to (5). Firm i’s best response is

q̄i(qj,l, qj,h) =


a−d

2(1−β)
− qj,h

2
, if qj,h − qj,l ≤ 2(βa−d)

1−β2 ;

a
2
− (1+β)

4
qj,l − (1−β)

4
qj,h, if 2(βa−d)

1−β2 ≤ qj,h − qj,l ≤ 2(βa+d)
1−β2 ;

a−d
2(1+β)

− qj,l
2
, if qj,h − qj,l ≥ 2(βa+d)

1−β2 ,

(6)

whenever it is positive. We derive the best response function explicitly in the appendix.

In the first case, firm i sells its inventory in the high-demand state and disposes of

parts of it if demand is below expectations. In the second case, the firm sells its entire

inventory in both states. In the third case, the firm disposes of parts of its inventory in

the high-demand state and sells it entirely in the low-demand state; this is never part

of an equilibrium.

We summarize the subgame’s equilibrium sales volumes in Table 2. In the high-

demand state, firms sell their total inventory, which decreases with d. In the low-

demand state, firms dispose of parts of it if d < βa. Firms dispose of less, when the

disposal cost is higher. Consequently, the sales volume in the low-demand state goes

up with d. If d ≥ βa, nothing is thrown away and firms sell their total inventory

regardless of the demand’s realization.

12



Imperfect competition with costly disposal Severin Lenhard

q∗A high demand low demand

d < βa a−d
3(1−β)

a+d
3(1+β)

d ≥ βa a
3

a
3

Table 2: Inventory and sales volume in the (A,A) subgame. Inventory equals the sales
volume in the high-demand state.

In equilibrium, firms have to play a best response. There is a unique equilibrium:

this is also perfect Bayesian, and firms have correct beliefs about their competitor’s

inventory. With this, we summarize the market outcome in the following Lemma.

Lemma 1. In the (A,A) game’s unique perfect Bayesian equilibrium, firms choose

q̄A,i = max{(a − d)/3(1 − β), a/3}, qA,i,ϑ(q̄A,i) = min{(a + d)/3bϑ, q̄A,i}, and have

correct beliefs about the competitor’s inventory.

A firm’s expected profit

E[π∗A] =


(a−d)2

18(1−β)
+ (a+d)2

18(1+β)
, if d < βa;

a2

9
, if d ≥ βa,

(7)

expected consumer surplus E[CS∗A] = 2E[π∗A], and expected disposal

2E[q̄∗A − q∗A] =


2(βa−d)
3(1−β2)

, if d < βa;

0, if d ≥ βa,

all decrease with the disposal cost d. The expected price E[P ∗A] = a/3 is not affected by

the disposal cost.

Expected disposal goes down with its cost. Firms’ profits decrease with d because

any adjustment to a lower-than-expected demand is costly, and firms compete more

fiercely. However, the expected consumer surplus also decreases: firms decrease their

inventory and, thus, the expected sales volume. The negative effect of the lower inven-

tories dominates the positive effect of fiercer competition.

Next, we derive the equilibrium of the (S, S) game. Firms manufacture on the

spot, thus delaying their production until demand has materialized. Both firms choose

qS,i,ϑ ∈ R+ to maximize (2), i.e., the firms play a Cournot game in each demand state.

Again, we suppress the technology index. Their best response is

qi,ϑ(qj,ϑ) = max

{
a− c
2bϑ

− 1

2
qj,ϑ, 0

}
. (8)
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By contrast to the best response in (5), the sales volume is no longer bound from above.

Firms incur a marginal cost of production c instead of the disposal cost d. Formally,

the disposal cost is like a negative production cost, as can be seen by comparing (5)

to (8). Instead of incurring a cost for each unit sold, firms with a disposal cost incur a

cost for each unit unsold.

The unique subgame’s equilibrium sales volumes are q∗S,ϑ = (a− c)/3bϑ. Since firms

produce with full information, nothing is disposed of, and d has no effect. The following

Lemma summarizes this finding.

Lemma 2. In the (S, S) game’s unique subgame perfect equilibrium, firms choose

qS,i,ϑ = (a− c)/3bϑ.

A firm’s expected profit

E[π∗S] =
(a− c)2

9(1− β2)
, (9)

expected consumer surplus E[CS∗S] = 2E[π∗S], and the expected price E[P ∗S ] = (a+ 2c)/3

are not affected by the disposal cost. Firms produce with full information, therefore,

nothing is disposed of.

Asymmetric Subgames. Let us turn to the asymmetric subgames. One firm pro-

duces with technology A, while the other uses technology S. We denote the former as

first mover (she), indexed by 1, and the latter as second mover (he), indexed by 2. Her

strategy is (q̄A,1, qA,1,ϑ(q̄A,1)), with q̄A,1 ∈ R+ and qA,1,ϑ : R+ → R+; his is qS,2,ϑ ∈ R+.

Her expected profit is given by Equation (1) and his expected profit by Equation (2),

with Qϑ = qA,1,ϑ + qS,2,ϑ. Again, we suppress the technology and state index.

When demand has materialized, the first mover’s production cost is sunk. She

chooses her sales volume q1 ∈ [0, q̄1] to maximize (3), yielding the best response function

given by (5). The second mover does not observe her inventory. Yet, the first mover

anticipates her optimal disposal behavior. She maximizes (1) subject to (5), resulting

in the optimal production quantity given by (6).

The second mover produces after the demand’s realization. Accordingly, his best

response function is (8). There exists a unique equilibrium, which also forms a perfect

Bayesian equilibrium, where the second mover has correct beliefs about the first mover’s

inventory.

Table 3 summarizes the first mover’s production and sales volumes. For d ≤ β(a+

c)/2, she decreases her inventory if the disposal cost goes up. In the high-demand

state, the first mover sells her total inventory. In the low-demand state, her sales

volume increases in order to decrease the quantity discarded. She gives up some profit

in the high-demand state to mitigate costs if demand is low. If d ≥ β(a+ c)/2, nothing

is thrown away.
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q∗1 high demand low demand

d < β a+c
2

a−2d+c
3(1−β)

a+2d+c
3(1+β)

d ≥ β a+c
2

a+c
3

a+c
3

Table 3: The first mover’s inventory and sales volume. Inventory equals the sales volume in
the high-demand state.

q∗2 high demand low demand

d < β a+c
2

a+d−2c
3(1−β)

a−d−2c
3(1+β)

d ≥ β a+c
2

a−2c
3(1−β)

+ β a+c
6(1−β)

a−2c
3(1+β)

− β a+c
6(1+β)

Table 4: The second mover’s sales volume depending on the demand state.

The second mover’s sales volume given in Table 4 moves in the opposite direction:

if the first mover decreases her sales volume, the second mover increases his and vice

versa. In the high-demand state, the first mover’s sales volume goes down with d; thus,

the second mover faces a smaller competitor and increases his sales volume. In the low-

demand state, however, she sells more the higher the disposal cost is. Accordingly, he

lowers his sales volume to keep prices at a profitable level. The assumption a ≥ 2c+ d

ensures that the second mover’s sales volume is positive. Entry blocking is thus not

possible for relatively low costs.

We summarize the equilibrium and the disposal cost’s effect on the market outcome

in the following Lemma.

Lemma 3. In the (A, S) and (S,A) games’ unique perfect Bayesian equilibrium the first

mover chooses q̄A,1 = max{(a−2d+c)/3(1−β), (a+c)/3}, qA,1,h(q̄A,1) = min{max{(a−
2d + c)/3(1 − β), (a + c)/3}, q̄A,1}, and qA,1,l(q̄A,1) = min{(a + 2d + c)/3(1 + β), (a +

c)/3, q̄A,1}. The second mover chooses q2,h = min{(a + d − 2c)/3(1 − β), (2a − 4c +

β(a+c))/6(1−β)} and q2,l = max{(a−d−2c)/3(1+β), (2a−4c−β(a+c))/6(1+β)};
he has correct beliefs about her inventory.

The first mover’s expected profit

E[π∗1] =


(a−2d+c)2

18(1−β)
+ (a+2d+c)2

18(1+β)
, if d < β a+c

2
;

(a+c)2

9
, if d ≥ β a+c

2
,

(10)
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expected consumer surplus

E[CS∗AS] =


(2a−d−c)2

36(1−β)
+ (2a+d−c)2

36(1+β)
, if d < β a+c

2
;

(4a−2c−β(a+c))2

144(1−β)
+ (4a−2c+β(a+c))2

144(1+β)
, if d ≥ β a+c

2
,

(11)

and expected disposal

E[q̄∗1 − q∗1] =


β(a+c)−2d

3(1−β2)
, if d < β a+c

2
;

0, if d ≥ β a+c
2
,

all decrease with the disposal cost d. The expected price E[P ∗AS] = (a + c)/3 is not

affected by the disposal cost, while the second mover’s expected profit

E[π∗2] =


(a+d−2c)2

18(1−β)
+ (a−d−2c)2

18(1+β)
, if d < β a+c

2
;

(2a−4c+β(a+c))2

72(1−β)
+ (2a−4c−β(a+c))2

72(1+β)
, if d ≥ β a+c

2
,

(12)

increases with the disposal cost.

As in the symmetric subgames, the expected price is not affected by the disposal

cost; it only reflects production costs. In Lemma 1 both firms have zero production

costs, in Lemma 2 both incur the cost c, and in Lemma 3 one has zero cost, while

the other has the cost c. The materialized price, however, depends on d: The price

is higher in the high-demand state and the difference between the materialized prices

increases with d. Firms incur a larger cost to adjust their sales volume to the realization

of demand. By contrast, if d is small, firms inexpensively adjust to the materialized

demand, thereby absorbing the demand’s effect on the price.

Expected disposal decreases with its cost. The first mover’s reaction to a low de-

mand becomes costlier the higher d; the second mover’s information advantage becomes

more valuable. The competitors’ profits, therefore, respond to an increase in the dis-

posal cost in opposite directions. If the inventory is, however, observable, the disposal

cost may increase both firms’ profits simultaneously. We discuss this case in Section 4.

By assumption, the first mover has a lower production cost, while the second has

an information advantage. The ordering of profits is thus ambiguous. She has an

advantage if either the disposal cost is low, demand uncertainty is low, or both.

With fully reversible inventories, the second mover’s information advantage is worth-

less. The first mover bears no cost to decrease her quantity in response to a low demand

while having a lower production cost. By contrast, if she has no cost advantage, he

expects a higher profit than the first mover. In the knife-edge case of no cost advantage

and fully reversible inventory, both firms earn the same expected profit.
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Equilibrium. A firm chooses the technology that maximizes its expected profit. Ac-

cordingly, we use the expected profits in Lemmas 1, 2, and 3 to derive the equilib-

rium. Given that one firm uses technology S, the other firm also uses technology S if

E[π∗S] ≥ E[π∗1]. Thus, we can define the threshold function βS(d) := {β|E[π∗S] = E[π∗1]},
where the first mover is indifferent between technology A and S. The closed form can

be written as

βS(d) =

 ac+d2

d(a+c)
, if d <

√
ac;

2
√
ac

(a+c)
, if d ≥ √ac.

Similarly, we define the threshold function βA(d) := {β|E[π∗A] = E[π∗2]} such that the

second mover is indifferent between technology A and S, i.e.,

βA(d) =


c
d
, if d <

√
c(a+c)

2
;

2
√

4a2d2+(a+c)(5a−7c)(4ac−4c2+d2)−4ad

(a+c)(5a−7c)
, if

√
c(a+c)

2
≤ d < 4a

√
c(a−c)

9a2−2ac−7c2
;

4
√

c(a−c)
9a2−2ac−7c2

, if d ≥ 4a
√

c(a−c)
9a2−2ac−7c2

.

Note that for d ≤ c, the threshold is larger than 1. Consequently, if production is

largely reversible, both firms choose technology A regardless of the demand’s uncer-

tainty. We summarize this finding and the firms’ equilibrium production technology

by the following proposition.

Proposition 3. A unique subgame perfect equilibrium in pure strategies exists,19

(i) if β > βS(d): both firms produce with technology S;

(ii) if β < βA(d): both firms produce with technology A.

(iii) Otherwise, i.e. β ∈ (βA(d), βS(d)), one firm produces with technology A, while

the other produces with technology S.

Firms forgo an early production cost advantage if and only if the disposal cost d and

demand uncertainty β are both simultaneously high.

Figure 2 illustrates the result of Proposition 3. The threshold functions decrease

with d: the less expensive the reaction to the demand’s realization, the less relevant the

information about demand becomes. Each type of equilibrium may exist depending on

the parameters. Moreover, no types coexist apart from the threshold function.20

19If β ∈ {βS(d), βA(d)}, multiple equilibria exist.
20In (iii) there exists a symmetric equilibrium in mixed strategies. The probability of Strategy S

being played increases with d. This results from decreasing expected profits of technology A, precisely
E[π∗A] and E[π∗1 ], combined with increasing expected profits of technology S, precisely E[π∗2 ]. In Section
C, we show that the firms’ expected profits in the mixed equilibrium are non-monotonic.
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d

β

1

0

(a) No cost advantage (c = 0)

d

β

βS(d)
βA(d)

1

0

(b) Low cost advantage (c = 0.1)

d

β

βS(d)

βA(d)

1

0

(c) Medium cost advantage (c = 0.5)

d

β

βS(d)

βA(d)

1

0

(d) High cost advantage (c = 1)

Figure 2: In the diagonally gray (vetically black) shaded area, both firms produce with
technology S (A). In the white area, firms choose an asymmetric strategy: one chooses A
and the other S. (Demand intercept a = 10 and the abscissa is truncated at 8.)
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Similar to a monopoly, a firm only forgoes the cost advantage of an early production

if the disposal cost and the demand uncertainty are both simultaneously high. If one

of the two is low, both firms use technology A and produce in advance. An asymmetric

equilibrium only exists if there is a cost advantage from early production, demand is

uncertain, and disposal is costly (i.e., products are not fully reversible).

Comparative Statics. Lemmas 1, 2, and 3 already show that although disposal goes

down with its cost, there is generally a negative effect on expected consumer surplus

and profits. On the one hand, firms dispose of less and compete more strongly for

market shares. Yet, on the other hand, inventories are lower. Firms give up some

profit in the high-demand state to mitigate costs if demand is below expectations. The

expected trade volume, therefore, decreases with d, and so does consumer surplus.

The only market participant profiting from an increasing disposal cost is the sec-

ond mover in the asymmetric equilibrium. Costlier disposal increases the value of his

information advantage.

It remains to analyze how consumers and firms are affected if an increase in the

disposal cost leads to a change of the production technology. For example, firms may

relocate their manufacturing location in response to an increasing disposal cost. For

a low disposal cost, both produce abroad. One firm may change its location closer to

the home market if d increases. Moreover, also the remaining firm producing abroad

may change its location if d is high.

The following proposition shows how expected disposal, expected consumer surplus,

and firm’s expected profits are affected by a (regulatory) increase of the disposal cost.

It is useful to invert the threshold function by dS(β) := min{d|βS(d) = β}. Thus, at

dS(β) the first mover is indifferent between technology A and S. Similarly, the second

mover is indifferent between technology A and S at dA(β) := min{d|βA(d) = β}.

Proposition 4. An increase in the disposal cost

(i) decreases the expected disposal;

(ii) decreases expected consumer surplus, except if:

1. the first mover postpones her production closer to the market. At d = dS(β),

expected consumer surplus increases discontinuously;

(iii) decreases firms’ expected profits, except if:

1. one firm postpones its production, becoming a second mover. At d = dA(β),

the first mover’s expected profit increase discontinuously;

2. in the asymmetric equilibrium, the second mover’s expected profit increases.
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Finally, let us discuss the disposal cost’s effect throughout all types of equilibria,

starting at a low d, such that both firms produce in advance. An increase in the disposal

cost decreases both firms’ profits: If demand is below expectations, an increase in d

induces firms to dispose of less, and thereby, compete more intensively for a larger

market share. Moreover, firms decrease their inventory to mitigate costs if demand is

low, resulting in a lower sales volume in the high-demand state.

Less disposal and fierce competition benefit consumers. However, a lower sales

volume decreases consumer surplus. The latter effect is stronger than the former,

resulting in an expected loss in consumer surplus.

At d = dA(β), a firm, labeled as firm 2, expects the same profit with technology

S as with technology A. By definition of the equilibrium, firm 2’s expected profit

is continuous: he decides to postpone his production at dA(β), which is simply the

inverse of βA(d), where E[π∗2] = E[π∗A]. The first mover’s profit, however, increases

discontinuously. The change of the competitor’s technology yields a cost advantage

for her. Although the second mover has superior information about demand, the first

mover has an advantage for a low disposal cost, because it enables an inexpensive

reaction to the state of demand.

Expected consumer surplus decreases discontinuously due to the technology change.

While both firms produce in advance, they compete at equal strength and sell their

total inventory if demand is above expectations. Now, in the asymmetric subgame, the

first mover still sells her total inventory in the high-demand state. However, the second

mover has monopoly power on the residual demand, decreasing consumer surplus.

The first mover’s inventory decreases with costlier disposal, resulting in an increase

in the second mover’s residual demand. Expected consumer surplus, therefore, de-

creases further with d. The second mover’s market power increases, and, additionally,

his information advantage becomes more valuable, resulting in a higher expected profit.

At the same time, the first mover’s profit decreases due to her cost increase. Conse-

quently, at some point, the second mover expects a higher profit than the first.

At d = dS(β), the first mover’s expected profit is continuous by the same argument

as above. She postpones her production and gives up her cost advantage to gain

information about demand. The second mover’s profit decreases discontinuously; he

loses his monopoly power on the residual demand. Additionally, he loses his information

advantage, which is relatively valuable for a high disposal cost. Firms become equal

and compete for the total demand, benefiting consumers. Consumer surplus, thus,

increases discontinuously at dS(β).

When both firms produce with technology S, the disposal cost no longer has an

effect. Firms only produce after demand has materialized. Therefore, no products are

discarded, and the disposal cost is irrelevant.
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Note that our discussion is only valid if demand is highly uncertain. An increase

in d does not always result in a technology change, as can be seen in Figure 2: for low

demand uncertainty, it is not possible to affect the timing of production such that both

firms (or even one) postpone it.

4 Extensions

In this section, we discuss several extensions. First, we allow firms to use a combination

of the production technologies. Second, we alter the demand function and assume it is

perfectly elastic at a price of zero. Then, we discuss changes if firms do observe their

competitor’s inventory. Finally, we discuss alternative forms of competition, namely

perfect competition or price competition.

Production Technology. Firms can use both production technologies simultane-

ously. First, firms produce their inventory q̄i ≥ 0 at zero marginal cost. After the

demand has materialized, firms either dispose of at a marginal cost d > 0 or produce

an additional quantity at the marginal cost c ∈ [0, (a− d)/2). Firm i’s expected profit

is

E[π(qi, q̄i)] = E[Pϑ(Q)qi − cmax{qi − q̄i, 0} − dmax{q̄i − qi, 0}],

with Q = qi + qj. The first term is the revenue, the second is the cost of additional

production, and the third is the disposal cost.

In the second stage, firms take their inventories as given. They choose their sales

volume qi ≥ 0 to maximize

π(qi|q̄i) = Pϑ(Q)qi − cmax{(qi − q̄i, 0} − dmax{(q̄i − qi, 0}. (13)

The best reply is thus

qi(qj|q̄i) = max

{
min

{
max

{
a+ d

2bϑ
− 1

2
qj, 0

}
, q̄i

}
,
a− c
2bϑ

− 1

2
qj

}
. (14)

As in above, the sales volume increases with the disposal cost. The costlier it

is to discard, the more fiercely firms compete for their market share. We maintain

the assumption that inventories are not observed by the competitor. Firm i therefore

chooses her inventory q̄i to maximize (13) subject to (14). We derive the best response
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q∗i high demand low demand

d < min{βa, c} a−d
3(1−β)

a+d
3(1+β)

βa ≤ min{c, d} a
3

a
3

c < min{βa, d} a−c
3(1−β)

a+c
3(1+β)

Table 5: Inventory and sales volume with combined technologies. Inventory equals the sales
volume in the high (low) demand’s state if d < min{βa, c} (c < min{βa, d}).

in the appendix. For d < c, it is

q̄i(qj,l, qj,h) =


a−d

2(1−β)
− qj,h

2
, if qj,h − qj,l ≤ 2(βa−d)

1−β2 ;

a
2
− (1+β)

4
qj,l − (1−β)

4
qj,h, if 2(βa−d)

1−β2 ≤ qj,h − qj,l ≤ 2(βa+d)
1−β2 ;

a−d
2(1+β)

− qj,l
2
, if qj,h − qj,l ≥ 2(βa+d)

1−β2 ,

(15)

and for c < d, it is

q̄i(qj,l, qj,h) =


a+c

2(1+β)
− qj,l

2
, if qj,h − qj,l ≤ 2(βa−c)

1−β2 ;

a
2
− (1+β)

4
qj,l − (1−β)

4
qj,h, if 2(βa−c)

1−β2 ≤ qj,h − qj,l ≤ 2(βa+c)
1−β2 ;

a+c
2(1−β)

− qj,h
2
, if qj,h − qj,l ≥ 2(βa+c)

1−β2 ,

(16)

whenever the inventory is larger than zero.

Note that if the marginal production cost is higher than the disposal cost, i.e., c > d,

the function is equivalent to (6). With the combined technology, firms can produce in

the second stage and thus may lower their inventory.

In the first case of (16), the firm produces additional quantities if demand is higher

than expected and sells its entire inventory in the low-demand state. In the second

case, it sells the inventory in both states. In the third, it produces additional quantities

in the low-demand state; this is never part of an equilibrium.

If c = d, producing an additional quantity comes at the same cost as discarding one.

Multiple inventory levels may therefore be optimal. The equilibrium inventory strategy

may not be unique nor symmetric in this case. However, the resulting sales volumes

of the firms are equivalent among all equilibria and independent of the inventory. The

outcome is, therefore, uniquely determined.

The unique sales volumes are derived in the Appendix and shown in Table 5. For

c = d < βa, firms produce any inventory q̄∗i ∈ [(a+ c)/3(1 + β), (a− d)/3(1− β)] and

sell the volumes given in the first/last row of the table. These equilibria are, thus, all

outcome equivalent.
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With a low disposal cost, firms sell their inventory in the high-demand state and

dispose of parts of it if demand is below expectations. The equilibrium is equivalent to

the one in the last section: firms decrease their inventories as a response to an increase

in the disposal cost in order to mitigate costs if demand is below expectations. By

contrast, if the production cost in the second period is low, firms sell their inventory

in the low-demand state and produce additional quantities if demand is higher than

expected. If disposal and production are costly, firms sell their inventory regardless of

the demand’s realization.

We summarize the firms’ expected profits, consumer surplus, disposal, and the price

in the following proposition.

Proposition 5. The unique perfect Bayesian equilibrium is q̄i = max{(a− d)/(3(1−
β)), a/3}, if d < c, and q̄i = min{a/3, (a + c)/(3(1 + β))}, if d > c, and qi(q̄i) =

max{min{(a + d)/3bϑ, q̄i}, (a − c)/3bϑ}; firms have correct beliefs. A firm’s expected

profit

E[π∗i ] =


(a−d)2

18(1−β)
+ (a+d)2

18(1+β)
, if d < min{βa, c};

a2

9
, if βa ≤ min{c, d};

(a−c)2
18(1−β)

+ (a+c)2

18(1+β)
, if c < min{βa, d},

(17)

expected consumer surplus E[CS∗] = 2E[π∗i ], and expected disposal

2E[q̄∗i − q∗i ] =


2(βa−d)
3(1−β2)

, if d < min{βa, c};
0, else,

all decrease with the disposal cost d. The expected price E[P ∗] = a/3 is not affected by

the disposal cost.

In the last section, some market participants (rarely) profited from an increase in the

disposal cost due to an information advantage or a change in the production technology.

With this setup, however, all participants are weakly worse off. Firms always go for

a symmetric production, and as in the last section, in a symmetric equilibrium, all

participants pay the price for a higher disposal cost.

Competition for market shares in the low-demand state increases with d. However,

firms lower their production, resulting in a lower expected trade volume. The expected

disposal also decreases with its cost, and the expected price is not affected.

Firms only use the production possibility after the demand’s realization if the cost

advantage is relatively low compared to the disposal cost and the demand uncertainty.

If there is no demand uncertainty, there is obviously no need for a more expensive

production ex-post. A low disposal cost substitutes information about demand. If a
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firm can reverse large shares of its production, it would rather produce too much than

too little. Thus, although having access to both technologies A and S, the firms only

use the former if the disposal cost or demand uncertainty is low.

Corollary 1. Firms forgo an early production cost advantage if and only if the disposal

cost d or demand uncertainty β are both simultaneously high.

In Section C, we extend the model to N ≥ 2 firms. Expected consumer surplus

increases in the number of firms, yet so does expected disposal. An increasing number

of firms leads to a more competitive market, but it also leads to a higher number of

disposers. Total expected disposal decreases more strongly in its cost, the larger the

number of firms.

Firms expect a lower profit if the disposal cost increases. Accordingly, some firms

may leave the market, resulting in a lower number of competitors. Competition is

lowered, thereby additionally decreasing consumer surplus. The firms staying in the

market are negatively affected by the higher disposal cost, yet benefit from fewer com-

petitors. Their expected profits may thus increase. The positive effect of lower disposal

and, thereby, more intense competition for market shares is not noticeable for con-

sumers. Moreover, considering firms’ exits, competition may even decrease in response

to increased disposal costs.

Perfectly Elastic Demand. Our result hinges, to some extent, on prices being

potentially below zero. For sufficiently large demand uncertainty β, the price may be

negative in the low-demand state. This is, per se, not a problem, because we normalized

the marginal production cost in the first stage to zero. If demand is low, the price may

indeed be below the marginal production cost.

However, for a sufficiently low price, demand may become perfectly elastic. Thus,

firms may get rid of their goods by giving them away to consumers without further

lowering the price. This gives rise to a new strategy for firms producing with technology

A. Before, firms did not produce large quantities in order to avoid significant losses in

the low-demand state. Now, instead of disposing of a share of their inventory if demand

is below expectations, they can offer the total quantity on the market to mitigate their

costs.

To address this issue, we modify the demand function to Pϑ(Q) = max{a−bϑQ, 0}.21

We incorporated this demand function into our model in Section 2, a monopolist pro-

ducing either with technology A or S. The formal derivation and the results are in

Appendix A. Moreover, we study a monopolist with the combined technology and

competitive firms with the combined technology.22 The formal derivation is in Section

C.

21The kink at a price of zero is, to some extent, arbitrary. Note that if consumers also incurred a
disposal cost, the demand would be Pϑ(Q) = max{a− bϑQ,−d} and our results do not change.

22We also analyzed the model with distinct technologies, and the results are similar.
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d

β

1

0

(a) No cost advantage (c = 0)

d

β

1

0

(b) Low cost advantage (c = 0.1)

d

β

1

0

(c) Medium cost advantage (c = 0.5)

d

β

1

0

(d) High cost advantage (c = 1)

Figure 3: In the diagonally gray (vetically black) shaded area, both firms (do not) use
technology S. (Demand intercept a = 10 and the abscissa is truncated at 8.)

25



Imperfect competition with costly disposal Severin Lenhard

For low β, the results are equivalent to the above. However, if demand uncertainty

is high, firms use technology A to produce their inventory, which they sell in both

demand states. In the low-demand state, they sell it at a price of zero. A monopolist

produces q̄∗A = a/2(1− β); competitive firms produce q̄∗i = a/3(1− β).

Figure 3 illustrates when firms with the combined technology produce an addi-

tional quantity after the demand has materialized, i.e., actually use technology S.

The decision of a monopolist coincides with the competitive firms’ decision. For

d ≥ c, firms offer the entire inventory in the low-demand state at a price of zero if

β ≥ (a2 + 2c2)/(a2 + 4ac). For d < c, firms may dispose of some quantity if demand

uncertainty is low. A monopolist does not discard and sells the entire inventory if

β ≥ (a2 + 2d2)/(a2 + 4ad). For competitive firms, there may exist multiple equilibria

for β ∈ [((2a+3d)(4a+3d)−12a
√
d(a+ 2d))/((4a+3d)2 +12ad), (a2−ad+4d2)/(a2 +

5ad− 2d2)]: One in which firms dispose of in the low-demand state, and one in which

firms produce larger inventories and sell it at a price of zero in the low-demand state.

In the latter, firms have a higher expected profit. Note that the upper bound is larger

than the monopolist’s threshold since d < c ≤ a/2.

Consequently, firms do not forgo an early production cost advantage for sufficiently

large demand uncertainty if the demand becomes perfectly elastic.

Similar as in Ferreira (2006), there exists another kind of equilibrium. Each firm

produces inventory q̄∗i ≥ a/(1− β), resulting in a price of zero in both demand states.

Firms make a profit of zero. This equilibrium only exists since the marginal cost of

production in stage 1 is normalized to zero, which is exactly the same point at which

demand becomes perfectly elastic. If the demand function becomes perfectly elastic

at a price below the marginal cost of production, firms would make losses with such a

strategy.

Observable Inventories. In reality, firms may not perfectly observe their competi-

tors’ inventories. Public companies, however, announce their targeted sales to inform

investors. Those announcements may help the competitor to infer the inventory.23 It

thus makes sense also to analyze our setup with observable instead of unobservable

inventories.

In this section, we assume that competitors observe each other’s inventories before

choosing their sales volumes. We have analyzed both cases, where firms choose be-

tween either technology A or S, as in Section 3, or have access to both technologies

simultaneously. The formal derivation of both is relegated to Section C.

23Doyle and Snyder (1999) study U.S. car makers’ announcements of production plans and show
how they affect market outcomes. Thus, the announcements are informative and not mere cheap talk.
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If inventories are observable, an additional effect comes into play. With a higher

disposal cost, firms sell large parts of their inventories even if demand is lower than

expected. An extensive inventory, therefore, implies a large intended sales volume. A

firm can only credibly commit to selling its total inventory if the disposal is expensive.

Generally, the disposal cost reduces inventories, yet, the neglected effect works in

the opposite direction. If firms have the combined technology and observe their com-

petitor’s inventory, the equilibrium may not be unique, nor is it monotone, due to

the opposing effects. Although firms are ex-ante symmetric, there may exist asym-

metric equilibria, where one firm (she) has a larger inventory than the other. The

firm with the smaller inventory (he) produces additional quantities if demand is higher

than expected, while the other disposes of parts of her inventory if demand is lower

than expected. Expected disposal decreases with its cost. Furthermore, inventories

still decrease with the disposal cost. Due to the lower trade volume, consumer surplus

decreases, too.

When firms have a single production technology, the outcome in the symmetric

subgames does not change either. In the (S, S) subgame, firms simultaneously produce

after the demand’s realization, i.e., without an inventory that could be observed. In

the (A, A) subgame, it turns out that the outcome is also equivalent, because firms

have correct expectations of the inventory. However, the outcome in the asymmetric

subgame changes. Like in the setup with the combined technology, the first mover

disposes of parts of her inventory if demand is below its expectation. Her expected

inventory and disposal decreases with d and so does the expected consumer surplus.

However, for a high disposal cost, she does not dispose of anything. Increasing d

allows her to commit to selling a larger inventory credibly. Therefore, her inventory goes

up, and the expected sales volume increases, resulting in a higher expected consumer

surplus.

A regulatory increase in the disposal cost fulfills its purpose of decreasing the quan-

tity disposed of in all considered setups. However, in almost all cases, this comes at a

cost for consumers. Competition for market shares is not achieved by this policy, even

if inventories are observable.

The firm producing (more) in the first stage is negatively affected by an increase

in the disposal cost, because any reaction to new information about demand becomes

more costly. By contrast, observability strengthens her dominant position in terms of

market shares. She can signify large targeted sales with a large inventory. The costlier

disposal, the less does a firm disposes of its inventory. The inventory’s credibility to

indicate targeted sales increases with d, strengthening the firm’s competitive advantage.

Her expected profit is, thus, ambiguously affected by an increase in the disposal cost.

Precisely, her expected profit is U-shaped.
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The other firm manufactures (large parts of) his production after the demand’s

realization. Accordingly, he has an information advantage, which is more valuable

if the other firm’s reaction to new information is costly. His expected profit, thus,

increases with d.24

To sum up, the increased credibility benefits her if demand is lower than expected,

while the information advantage benefits him if demand is higher than expected. By

contrast to unobserved inventories, both firms’ expected profits may increase simulta-

neously with the disposal cost.

H&M and Zara25, the two most prominent players in the European fashion market,

increased their recycling standards over the last years. According to our setup, this

leads to higher costs, which may increase profits. Our model is consistent with the

market structure: H&M mainly produces in Asia and ships its product to the European

market; Zara manufactures mostly in Europe. Zara manufactures close to the market.

The firm claims that within two weeks of the original design, clothes are in retail.

The shipment from Asia to Europe already takes more time. Consequently, H&M’s

clothes are manufactured earlier. In the fast fashion industry, multiple products are

introduced in a single week to stay on-trend. In order to compete trendily, according

to our model, H&M produces large parts of its inventory abroad and thus has a larger

expected disposal than Zara. This is consistent with the fact that Zara only discards

10% of its products, which is half of the industry average.

With the exception of the asymmetric equilibrium in the combined technology

setup discussed above, there always exists the same symmetric equilibrium described

in Proposition 5.26 The difference between observable and unobservable inventories

is, therefore, the asymmetric equilibrium’s existence. We use numerical simulations

to compare the equilibria and find that both firms’ expected profits may be higher in

the symmetric equilibrium. Note that the firms can guarantee to be in the symmetric

equilibrium if inventories are unobservable. However, there exist parameters where one

firm, either she or he, expects a higher profit in an asymmetric equilibrium, i.e., prefers

it if inventories are observable.

Perfect Competition. New firms may enter a profitable market in the long run,

resulting in a perfectly competitive market. Firms make zero expected profits. A

higher disposal cost decreases the firms’ inventories and expected consumer surplus:

Suppose there are many firms using technology A and many using technology S, thus

expected profits are zero. Firms with technology A may dispose of parts of their

24If firms have distinct production technologies, the second mover’s expected profit decreases for
d ≥ (a+ c)(1 + 5β)/2(5 + β). The first mover does not discard and can credibly sell a large inventory,
resulting in a lower expected profit for the second mover.

25Zara is part of the Inditex holding, which also includes Pull&Bear, Massimo Dutti, Oysho, and
others. Although we mean Inditex in lieu, we refer to Zara because it is the flagship of Inditex.

26Dubey and Shubik (1981) show generally that any pure strategy equilibrium with unobservable
inventories is also an equilibrium if inventories are observed.
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inventory if demand is below expectations, i.e., incur a cost. Therefore, they have to

turn a positive profit if demand is above expectations. An increase in the disposal

cost forces those firms to decrease their inventory. Otherwise, firms turn a negative

expected profit because the loss in the low-demand state outweighs the gains in the high

state. Due to the lower inventory, firms with technology S increase their production,

but these quantities come at a higher production cost. Introducing an additional cost

in an efficient market decreases consumer surplus.

Price Competition. Instead of quantity competition in the second stage, Kreps and

Scheinkman (1983) and Montez and Schutz (2021) use price competition. Both firms

choosing technology S results in zero profits à la Bertrand. Both choosing technology

A results in a model similar to de Frutos and Fabra (2011): firms end up with different

capacity/inventory levels. Given an asymmetric technology choice, the first mover has

to set prices weakly below the second mover’s marginal cost, or else the latter undercuts

the price. It depends on the rationing rule how demand is shared with equal prices.

For example, one could use equal demand sharing as de Frutos and Fabra (2011). If

her inventory is not large enough to satisfy total demand, he becomes a monopolist for

the residual demand. He sets the price strictly above his marginal cost, and she tries

to undercut it. No pure strategy equilibrium may exist.

5 Conclusion

For each unit not sold, firms incur a cost if their inventory is not fully reversible. An

unsold unit is not only a loss in revenue, it also causes additional costs. As we show

in this paper, firms discard less of their commodities if the disposal cost increases.

Therefore, competition for sales increases. Accordingly, one would expect consumer

surplus to increase and firms’ expected profits to decrease.

Although correct, this expectation is shortsighted. Firms adjust their inventories if

the disposal cost goes up. The higher the disposal cost, the costlier it is for a firm to

adjust to demand below expectations. To mitigate costs, a firm lowers its inventory,

which leads to a lower profit if high demand materializes.

In our model, firms either produce their inventory earlier, at a low cost and little

information about demand, or later, with more information yet at a higher cost. A

firm forgoes the early production cost advantage if and only if the disposal cost and

demand uncertainty are both simultaneously high.

Firms are ex-ante symmetric. Nonetheless, firms may choose asymmetric produc-

tion strategies. We derive three necessary conditions for an asymmetric equilibrium:

First, early production has to yield a strict cost advantage. Second, the marginal cost

to dispose of has to be higher than the cost advantage from early production. Third,
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demand has to be uncertain, yet, not too much. If demand uncertainty is consider-

able, firms jointly produce with more information, yet at a higher cost. If demand

uncertainty is low, both firms produce at a low cost.

We show that a regulatory increase in the disposal cost decreases the expected

disposal. Yet, consumers do not benefit from fiercer competition for market sales;

the lower trade volume impairs them. In general, consumers suffer from a higher

disposal cost. There is, however, an exception. In an asymmetric equilibrium, the firm

manufacturing with more information has monopoly power over the residual demand.

When the disposal cost increases, the competitor may postpone its production. Firms

become equal and competition increases, benefiting consumers.

Generally, firms expect a lower profit, the costlier disposal is. However, there

are also some exceptions. With an increase in the disposal cost, information about

demand becomes more valuable. Disposing of products as a response to demand below

expectations becomes costlier. Firms may, therefore, postpone their production with

an increasing disposal cost. Changes in the timing of production may benefit a firm.

Furthermore, in the asymmetric equilibrium, one of the two firms has an information

advantage. Since costlier disposal increases the information’s value, the firm expects a

higher profit.

None of these exceptions exist if firms have a combination of both production tech-

nologies, allowing them to either produce additional quantities after the demand has

materialized or to dispose of some quantities. The unique equilibrium is symmetric and

firms only use the production technology after demand has materialized if the disposal

cost and demand uncertainty are both simultaneously high.

Our result on forgoing the early production cost advantage hinges to some extent

on demand being not perfectly elastic. If demand becomes perfect elastic for large

quantities, firms have an additional channel to dispose of their products by offering

them at a zero price. Thus, if demand uncertainty is high, firms end up offering their

entire production for free if demand is lower than expected.

Moreover, we discuss the case of firms observing their competitor’s inventory. This

gives rise to another effect: a firm’s inventory sends the message of its intended sales.

However, a company can only credibly commit to selling large parts of its inventory if

the disposal is costly. Due to this opposing effect, each firm’s profit may simultaneously

go up with the disposal cost. Firms may profitably agree on costlier disposal, e.g., in

the form of higher recycling standards. Expected disposal decreases, yet consumer

surplus does, too.

In our setup, a regulatory increase in the disposal cost impairs firms and consumers.

We discuss some exceptions whereby firms may benefit more often than consumers. Our

model is consistent with the market structure in the fashion market. Furthermore,
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our model explains the ‘reshoring’ of firms. If the cost advantage abroad declines or

recycling standards increase, i.e., the disposal cost goes up, information about demand

becomes more valuable. Thus, firms produce closer to their home market.

We study demand uncertainty. However, in some markets, demand is relatively pre-

dictable, but costs may vary due to input factor prices. Commodities that are expensive

in production are discarded less often. Studying cost uncertainty may, therefore, be of

interest.27 Another interesting question is how the disposal cost affects collusive be-

havior. Paha (2017) studies collusion with capacities; Rotemberg and Saloner (1989)

study the use of inventory for strategic collusion. US data of the aluminum industry

analyzed in Rosenbaum (1989) reveals that markups are negatively correlated with

inventory, but positively correlated with excess capacity. A low disposal cost allows a

firm to inexpensively adjust its sales volume, making it easier to deviate and potentially

aggravating strategic collusion.

27In Thille (2006), the prediction of the model crucially depends on the primary uncertainty. Less
competitive market structures have a relatively low price variance when uncertainty is primarily due
to uncertain cost, and relatively high price variance when uncertainty is mainly due to uncertain
demand.
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A Appendix

Perfectly Elastic Demand. In this section, we present the monopolistic setup from Section

2, yet modify the demand function such that it becomes perfectly elastic at a price of zero.

Formally, Pϑ(Q) = max{a− bϑQ, 0}.
For a monopolist using technology S, there is no difference. However, if it uses technology

A, the firm now has the option to insure a zero profit by offering qA,ϑ ≥ a/bϑ. If the firm

discards, it makes a profit of πA,ϑ = (a+d)2/4bϑ−dq̄A, which is negative if q̄A > (a+d)2/4dbϑ.

Since a/bϑ < (a + d)2/4dbϑ ⇔ (a − d)2 > 0, the monopolist can avoid losses by selling its

entire inventory. The optimal sales volume is thus

qA,ϑ(q̄A) =


q̄A, if q̄A ≤ a+d

2bϑ
;

a+d
2bϑ

, if a+d
2bϑ

< q̄A ≤ a+d
2d

a+d
2bϑ

;

q̄A, if q̄A >
a+d
2d

a+d
2bϑ

.

The firm should produce an inventory that it can sell at a positive profit in the high-

demand state, i.e., it should not dispose of anything in the high-demand state. If it does, or

the price is zero in the high-demand state, the firm is better of with a lower inventory. Thus,

three possibilities arise. (i) sell the entire inventory in the low-demand state at a positive

profit, (ii) dispose of parts of it in the low-demand state and make a positive profit, and (iii)

offer the entire inventory, which results in a price of zero in the low-demand state.

The three candidates for the profit-maximizing inventory are (i) q̄A = a/2, (ii) q̄A = (a−
d)/2(1− β), and (iii) q̄A = a/2(1− β). This results in an expected profit of (i) E[πA] = a2/4,

(ii) E[πA] = (a2 − 2βad+ d2)/4(1− β2), and (iii) E[πA] = a2/8(1− β).

By comparing the expected profits, we get that (i) is maximal if d ≥ βa and β ≤ 1/2.

Moreover, the condition in stage two is d ≥ βa. (ii) yields the highest expected profit if

d ≤ βa and β ≤ (a2 + 2d2)/(a2 + 4ad). Additionally, the second stage requires d ≤ βa and

β ≤ (a2 + 3d2)/(a2 + 4ad − d2). Note that the last condition is implied by the condition

on the expected profit. For (iii) to be profit maximizing, it is necessary that β ≥ 1/2 and

β ≥ (a2 +2d2)/(a2 +4ad). Moreover, the second stage requires β > (a2 +d2)/(a2 +4ad+d2),

which is again satisfied by the condition on the profit. Accordingly, the expected profit with

technology A is

E[π∗A] =


a2

4 , if β < min
{
d
a ,

1
2

}
;

(a+d)2

8(1+β) + (a−d)2

8(1−β) , if β ∈
(
d
a ,

a2+2d2

a2+4ad

]
;

a2

8(1−β) , if β ≥ max
{
a2+2d2

a2+4ad
, 1

2

}
.

Finally, we compare the expected profit from technology A and S:

If β < min
{
d
a ,

1
2 ,
√

2ac−c2
a

}
, the firm produces in the first stage and sells its total inventory

at a positive price in both demand states. If β ∈
(
d
a ,max

{
a2+2d2

a2+4ad
, 2ac−c2+d2

2ad

}]
, the firm

again produces with technology A and sells its total inventory in the high-demand state yet

disposes of parts of it in the low-demand state. If β ≥ max
{
a2+2d2

a2+4ad
, 1

2 ,
a2−4ac+2c2

a2

}
, the firm
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(a) No cost advantage (c = 0)

d

β

1

0

(b) Low cost advantage (c = 0.1)

d

β

1

0

(c) Medium cost advantage (c = 0.5)

d

β

1

0

(d) High cost advantage (c = 1)

Figure 4: In the vetically black (diagonally gray) shaded area, the monopoly uses technology
A (S). (Demand intercept a = 10 and the abscissa is truncated at 8.)

still produces in the first stage and offers its total inventory in both demand states, resulting

in a zero price if demand is below expectations. Otherwise, the firm prefers technology S and

produces in the second stage. Figure 4 illustrates the parameter regions. For a high demand

uncertainty, the firm does not forgo an early production cost advantage.

Demand Uncertainty. In the main text, we assume a demand function with an uncertain

slope. This simplifies the analysis in the duopoly model. Here, we show that our results

for a monopolist do not change if we use a random intercept instead of random slope in the

demand function. Formally, let the demand function in state ϑ ∈ {l, h} be Pϑ(Q) = aϑ− bQ,

with al = 1 − α and ah = 1 + α, such that α ∈ [0, 1) measures the demand uncertainty.

Both states are equally likely. The rest of the setup is unchanged: the firm either chooses

technology A or S, and the timing follows the illustration in Figure 1. For simplicity, we

assume c ≤ 1− α to guarantee trade.
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First, suppose the monopolist produces with technology A. In the second stage, the

production cost is sunk and the inventory is fixed. The monopolist offers qA,ϑ = min{(aϑ +

d)/2b, q̄A} on the market. If d ≥ α, the monopolist produces an inventory of q̄∗A = 1/2b, which

it sells regardless of the demand’s realization. Otherwise, it produces q̄∗A = (1 + α − d)/2b,

which it sells in the high-demand state. It disposes of q̄∗A − q∗A,l = (α − d)/b if demand is

below expectations. Accordingly, the expected profit is E[π∗A] = 1/4b if d ≥ α and E[π∗A] =

((1 − α + d)2 + (1 + α − d)2)/8b = (1 + d2 + α2 − 2dα)/4b, if α > d. Note that the

expected profit weakly decreases with d; so do expected disposal and expected consumer

surplus E[CS∗A] = E[π∗A]/2.

Next, suppose the monopolist produces with technology S. It produces q∗S,ϑ = (aϑ−c)/2b
and makes an expected profit of E[π∗S ] = ((1− α− c)2 + (1 + α− c)2)/8b. By comparing the

expected profits we get the monopolist’s optimal technology choice. It chooses technology S

if and only if

α ≥

2c−c2+d2

2d , if d <
√
c(2− c);√

c(2− c), if d ≥
√
c(2− c).

Like in Section 2, the threshold is larger than 1 if d ≤ c. Thus, the monopolist only

forgoes an early production cost advantage if the disposal cost and demand uncertainty are

simultaneously high.

B Proofs

This section contains all relegated proofs of lemmas and propositions and derives the best

responses (6), (15), and (16).

Proof Equation (6). Firm i sells its inventory at least in one state, else the firm could increase

its profit by adjusting its inventory. Suppose the firms sells its inventory in both states,

implying the optimal inventory q̄i = a/2− (1 + β)qj,l/4− (1− β)qj,h/4. The firm indeed sells

the entire inventory in the low-demand state if qj,h − qj,l ≥ 2(βa − d)/(1 − β2) and in the

high-demand state if qj,h − qj,l ≤ 2(βa+ d)/(1− β2).

Next, suppose the firm sells its inventory in the high-demand state and disposes of parts

of it in the low-demand state. This implies an optimal inventory q̄i = (a−d)/2(1−β)−qj,h/2.

Obviously, it has no incentive to discard in the high-demand state; in the low-demand state,

the firm does dispose of parts of its inventory if qj,h − qj,l ≤ 2(βa− d)/(1− β2).

Finally, suppose it offers its entire inventory in the low-demand state and disposes of parts

of it in the high-demand state, resulting in the optimal inventory is q̄i = (a−d)/2(1+β)−qj,l/2.

Again, it is obvious that it offers the entire inventory in the low-demand state; in the high-

demand state, the firm only disposes of if qj,h − qj,l ≥ 2(βa+ d)/(1− β2).

This proves the best response function (6).
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Note that the best response is unique even if firm j uses a mixed strategy: Suppose firm

j mixes between different sales volumes and plays qj,ϑ with probability ρϑ(qj,ϑ). Firm i’s

expected profit is

E[πA,i,ϑ] =
1

2

∫ ∞
0

ρh(qj,h)[(a− (1− β)(qi,h + qj,h))qi,h − d(q̄i − qi,h)]dqj,h+

1

2

∫ ∞
0

ρl(qj,l)[(a− (1 + β)(qi,l + qj,l))qi,l − d(q̄i − qi,l)]dqj,l

=
1

2
[(a− (1− β)(qi,h + E[qj,h]))qi,h − d(q̄i − qi,h)]+

1

2
[(a− (1 + β)(qi,l + E[qj,l]))qi,l − d(q̄i − qi,l)].

Thus, there is always a unique best response.

Proof Lemma 1. We prove that there exists a unique equilibrium. Therefore, we look for

fixpoints of the best response function of (5) and (6).

First, we show that q̄i = 0 is never an equilibrium strategy. Suppose firm i has produced

inventory q̄i = 0. Firm j’s best response to qi,ϑ = 0 is the inventory q̄j = max{(a− d)/2(1−
β), a/2} and sales volume qj,ϑ = min {(a+ d)/2bϑ, q̄j} ⇒ qj,ϑ ≤ (a + d)/2bϑ, implying a

strictly positive price. Firm i’s optimal response is qi,ϑ = min{(a+d)/2bϑ−qj,ϑ/2, q̄i}. Thus,

if q̄i ≤ (a+ d)/4(1 + β), the firm could sell its entire inventory in both states. Note that the

price stays positive for q̄i ≤ (a − d)/2bϑ. Hence, firm i could make a strictly positive profit

by deviating to a strictly positive inventory.

There remain three best response candidates to form an equilibrium, presented in Table

6, resulting in nine equilibrium candidates.

(i) q̄i =
2a−(1+β)qj,l−(1−β)qj,h

4
qi,l = q̄i qi,h = q̄i

(ii) q̄i =
a−d−(1−β)qj,h

2(1−β)
qi,l = a+d

2(1+β)
− qj,l

2
qi,h = q̄i

(iii) q̄i =
a−d−(1+β)qj,l

2(1+β)
qi,l = q̄i qi,h = a+d

2(1−β)
− qj,h

2

Table 6: Equilibrium Candidates

First, we show that no asymmetric equilibrium exists. Suppose firm j uses (i) and firm

i uses (ii), resulting in the unique solution q̄i = 2a+βa−3d
6(1−β) and q̄j = a

3 . Firm j should not

dispose of any inventory in the low state, formally, a+d
2(1+β) −

qi,l
2 ≥ qj,l ⇔ d ≥ βa. However,

firm i discards in the low-demand state, i.e., qi,l < q̄i ⇔ βa > d, resulting in a contradiction.

Next, suppose firm j still plays (i), yet firm i plays (iii). The unique solution is q̄i =
2a−βa−3d

6(1+β) and q̄j = a
3 . Moreover, qi,h = 2a+βa+3d

6(1−β) . If firm i discards in the high state,

qi,h ≤ q̄i ⇔ βa+d
1−β2 ≤ 0, yielding a contradiction.

Next, suppose firm j plays (ii) and firm i still plays (iii). The unique solution is q̄i = a−3d
1+β

and q̄j = a−3d
1−β . Moreover, qi,h = a+3d

3(1−β) . If firm i discards in the high state, qi,h ≤ q̄i ⇔
2βa+6d
3(1−β2)

≤ 0, also yielding a contradiction.
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Thus, no asymmetric equilibrium exists. Both firms using (i) results in the symmetric

equilibrium q̄i = a
3 . This indeed forms an equilibrium if firms do not dispose of anything,

formally, βa ≤ d.

Both firms playing (ii) results in the symmetric equilibrium q̄i = a−d
3(1−β) . The disposal

behavior is optimal if βa ≥ d.

Finally, both firms playing (iii) results in q̄i = a−d
3(1+β) and qi,h = a+d

3(1−β) . However, q̄i >

qi,h ⇔ βa+ d < 0, yielding a contradiction.

Since a firm’s best response is always a singleton, there is no equilibrium in mixed strate-

gies. Hence, the equilibrium is unique. Plugging in the sales volume yields the expected

expressions in Lemma 1. Since β ∈ [0, 1), the negative effect of d has a higher weight than

the positive. Thus, d’s negative effect follows directly.

Proof Lemma 2. Firms know the state of demand and maximize (2). Note that similar as

in Lemma 1, qi,ϑ = 0 is never an equilibrium. Therefore, best response functions are linear

and strictly decreasing in the relevant part, resulting in a unique equilibrium. Exploiting the

symmetry directly implies q∗S,ϑ = (a− c)/3bϑ. Plugging in the sales volume yields the desired

result.

Proof Lemma 3. The first mover’s best response function is given by (6), the second mover’s

by (8). Like in the proof of Lemma 1, we analyze the best response function step by step to

find all equilibria.

Suppose q̄1 = 0, directly implying q1,h = q1,l = 0 and thus q2,ϑ = (a− c)/2bϑ. This results

in Pϑ = (a + c)/2, thus, firm 1 can get a strictly positive profit by deviating to a small, yet

strictly positive inventory. Hence there is no equilibrium with zero inventory.

Next, suppose q2,ϑ = 0, resulting in q̄i ∈ {a/2, (a− d)/2(1− β), (a− d)/2(1 + β)}, given

by Table 6. Moreover, Pϑ ∈ {a/2, (a+ d)/2, (a− d)/2}. The minimal price (a− d)/2 ≥ c by

our assumption a ≥ 2c + d, i.e., firm 2 is active in both states unless the inequality binds.

Accordingly, his best response is q2,ϑ = (a− c)/2bϑ − q1,ϑ/2.

There remain three cases for an equilibrium. Suppose firm 1 uses (i) in Table 6, yielding

q̄1 = (a+ c)/3. Firm 1 does not dispose of any inventory if β(a+ c)/2 ≤ d, i.e., this forms an

equilibrium.

Next, suppose firm 1 uses (ii) in Table 6. This results in q̄1 = (a− 2d+ c)/3(1− β), and

firm 1 does indeed discard in the low-demand state if β(a+ c)/2 > d.

Finally, suppose firm 1 uses (iii) in Table 6, resulting in q̄1 = (a−2d+c)/3(1+β). However,

q1,h ≥ q1,l ⇔ βa+ c+ 2d ≤ 0 contradicting that the firm discards in the high-demand state.

No other equilibria exist, because they would not be on the firms’ best response func-

tions. Therefore, the equilibrium is unique. Plugging in the sales volumes directly yields the

expected expressions. As in the proof of Lemma 1, d’s effect follows directly.

Proof Proposition 3. First, we show that for β ≥ βS(d) both firms choose technology S, i.e.,

E[π∗S ] ≥ E[π∗1], where the expressions are given by (9) and (10). First, for d < β a+c
2 the

inequality can be rearranged to βd(a + c) ≥ ac + d2. Hence, the first part of βS(d) directly

40



Imperfect competition with costly disposal Severin Lenhard

follows. Note that the left-hand side increases more strongly in d than the right-hand side,

since d ≤ β(a + c). By definition, the first part of βS(d) therefore decreases. For d ≥ β a+c
2 ,

the inequality simplifies to β2(a+ c)2 ≥ 4ac.

Second, we show that for β ≤ βA(d) both firms choose technology A, i.e., E[π∗A] ≥ E[π∗2],

given by (7) and (12). Note that βa ≥ β(a + c)/2. For d < β(a + c)/2, the inequality

simplifies to βd ≤ c, which concludes the first part of βA(d). This decreases with d. For d ∈
[β(a+c)/2, βa], the inequality can be written as β2(a+c)(5a−7c)+8βad−16c(a−c)−4d2 ≤ 0.

The left-hand side is convex and at β = 0 negative and increasing. Hence, the larger root is

the relevant one, which is explicitly given in the second part of βA(d).

We use the implicit function theorem to show βA(d)’s second part has a negative slope.

The derivative of the left-hand side with respect to d is 8(βa − d) > 0; the derivative with

respect to β is 2β(a + c)(5a − 7c) + 8ad ≥ 0. Hence, the implicit function theorem implies

that βA(d) decreases.

For d ≥ βa, the inequality simplifies to β2(9a2 − 2ac − 7c2) ≤ 16c(a − c), implying the

third part of βA(d).

It remains to show that βA(d) ≤ βS(d) to prove that the equilibrium is unique in pure

strategies. This inequality is proven in the next proposition’s proof.

Proof Proposition 4. We first compare the first and second movers’ profits. She expects a

larger profit if and only if E[π∗1] ≥ E[π∗2], where the expressions are given in (10) and (12).

Equating the two expressions and rearranging yields

βAS(d) =


2ac−c2+d2

2ad , if d < β a+c
2 ;√

4c(2a−c)
(3a−c)(a+c) , if d ≥ β a+c

2 .

Thus, β < βAS(d) implies E[π∗1] > E[π∗2] and β > βAS(d) implies E[π∗1] < E[π∗2].

Next, we show that βA(d) < βAS(d) < βS(d). Note that all thresholds are above 1 for

d ≤ c. Thus, we can focus on d > c. By definition, at βA(d), E[π∗A] = E[π∗2] and by the

inequality above E[π∗1] > E[π∗2]. Similarly, at βS(d) by definition E[π∗S ] = E[π∗1] and by the

inequality above E[π∗2] > E[π∗1]. Thus, the first mover’s profit increases discontinuously at

βA(d) while the second mover’s profit decreases discontinuously at βS(d).

For d < β(a+c)/2, the two inequalities above can be simplified to 2ac2 < ac2−c3 +ad2 +

cd2 < 2ad2. The two inequalities can be rewritten as (a+c)(d2−c2) > 0 and (a−c)(c2−d2) <

0, which both are satisfied for d > c.

Since βS(d) and βAS(d) are continuous and constant while βA(d) decreases continuously

for d ≥ β(a + c)/2, the relevant inequality is satisfied. This directly concludes the proof for

the firms’ part.

For the consumer surplus, we show a discontinuous decrease at β = βA(d) and, subse-

quently, we prove a discontinuous increase at β = βS(d).

Formally, at β = βA(d), E[CS∗A] > E[CS∗AS ], where the expressions are given in Lemma

1 and Equation (11):
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First consider d ≤ β(a + c)/2, thus, we can rewrite E[CS∗A] = (2a − 2d)2/36(1 − β) +

(2a + 2d)2/36(1 + β), which is obviously strictly larger than E[CS∗AS ] for d ≤ c. For d > c,

we can simplify the inequality E[CS∗A] > E[CS∗AS ]⇔ β < (4ac− c2 + 3d2)/2d(2a+ c). Since

βA(d) = c/d < (4ac−c2+3d2)/2d(2a+c)⇔ c < d, consumer surplus increases discontinuously

at β = βA(d) for d ≤ β(a+ c)/2.

Next, for d ∈ (β(a+ c)/2, βa), we can rewrite E[CS∗A] > E[CS∗AS ]⇔ 0 > −16ac− 16d2 +

4c2 +32βad−β2(a+c)(7a−5c). Note that at βA(d) we have 0 = −16ac+16c2−4d2 +8βad+

β2(a + c)(5a − 7c), from the last proposition’s proof. Subtracting this from the inequality

yields the condition 0 ≥ −(c2 + d2) + 2βad− β2(a2 − c2) = −(βa− d)2 − (1− β2)c2. Hence,

the condition is satisfied at βA(d).

Finally, let us consider the case d ≥ βa.

We can simplify E[CS∗A] > E[CS∗AS ] ⇔ β < 2
√
c(4a− c)/

√
9a2 − 2ac+ 5c2, which can

be compared to βA(d) = 2
√
c(4a− 4c)/

√
9a2 − 2ac− 7c2. Note that βA/(d) is lower than

2
√
c(4a− c)/

√
9a2 − 2ac+ 5c2 ⇔ 27c(a− c)2 > 0, for c > 0.

For the second part, we show that at β = βS(d), E[CS∗S ] > E[CS∗AS ], where the expressions

are given in Lemma 2 and Equation (11). For d ≤ β(a + c)/2, the inequality simplifies to

4βd(2a − c) > 2(4ac − 3c2 + d2). Plugging in βS(d), we can simplify the expression to

(d2 − c2)(a − c) > 0. d > c is a necessary condition for the threshold function βS(d), to be

strictly below 1. Since both expected consumer surplus functions are continuous and constant

for d ≥ β(a+ c)/2, this concludes the proof for the consumer surplus.

It remains to prove that the expected disposal decreases in its cost. First, note that in

the (S, S) subgame, expected disposal is always zero. Next, using Lemmas 1 and 3, we

can compare the expected disposal: For d ≤ β(a + c)/2 we get 2E[q̄∗A − q∗A] > E[q̄∗1 − q∗1] ⇔
2βa− 2d > β(a+ c)− 2d⇔ a > c. For d ≥ β(a+ c)/2, E[q̄∗1 − q∗1] = 0, while 2E[q̄∗A − q∗A] is

positive, yet decreases until it reaches zero at d = βa. This concludes the proof.

Proof Equations (15) and (16). We use q̄i if the sales volume equals the inventory and else

q̂i. To simplify notation, let τ1 := (a − c)/2(1 + β) − qj,l/2, τ2 := (a + d)/2(1 + β) − qj,l/2,

τ3 := (a− c)/2(1− β)− qj,h/2, and τ4 := (a+ d)/2(1− β)− qj,h/2.
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With this, the expected profit can be written as

E[πi] =



1
2(a− (1− β)(q̄i + qj,h))q̄i+

1
2(a− (1 + β)(q̄i + qj,l))q̄i, if max{τ1, τ3} ≤ q̄i < min{τ2, τ4};
1
2(a− (1− β)(q̄i + qj,h))q̄i+

1
2(a− (1 + β)(q̂i + qj,l) + d)q̂i − 1

2dq̄i, if max {τ2, τ3} ≤ q̄i < τ4;

1
2(a− (1− β)(q̂i + qj,h)− c)q̂i+
1
2(a− (1 + β)(q̄i + qj,l))q̄i + 1

2cq̄i, if τ1 < q̄i < min {τ2, τ3} ;

1
2(a− (1− β)(q̂i + qj,h) + d)q̂i+

1
2(a− (1 + β)(q̄i + qj,l))q̄i − 1

2dq̄i, if max{τ1, τ4} ≤ q̄i < τ2;

1
2(a− (1− β)(q̄i + qj,h))q̄i+

1
2(a− (1 + β)(q̂i + qj,l)− c)q̂i + 1

2cq̄i, if τ3 ≤ q̄i < min{τ1, τ4};
1
2 [(a− (1− β)(q̂i + qj,h))q̂i−
max{d(q̄i − q̂i), c(q̂i − q̄i}]+
1
2 [(a− (1 + β)(q̂i + qj,l))q̂i−
max{d(q̄i − q̂i), c(q̂i − q̄i}], else.

In the first part, firm i sells its inventory in both states, yielding the interior solution

q̄i = a/2 − (1 + β)qj,l/4 + (1 − β)qj,h/4. In the second part, firm i discards if demand is

below expectations, yielding the interior solution q̄i = (a − d)/2(1 − β) − qj,h/2. In the

third part, firm i produces additional quantities if demand is above expectations, yielding

the interior solution q̄i = (a+c)/2(1+β)−qj,l/2. The fourth part implies an interior solution

of q̄i = (a− d)/2(1 + β)− qj,l/2 and the fifth of q̄i = (a+ c)/2(1− β)− qj,h/2.

The last part strictly increases or decreases, depending on c and d. For c = d, multiple

maxima may exist where a firm does not have to sell its inventory in either of the two states.

However, all result in the same sales volume and expected profit as if the firm produced an

inventory to sell entirely in at least one state.

Plugging in the interior solutions to their respective intervals results in the best response

functions given in (15) and (16).

By the same argument as in the proof of Equation (6), the best response is the same to

any mixed strategy of player j.

Proof Proposition 5. By the same argument as in the proof of Lemma 1, firm i has a strictly

positive inventory. Assume first that c 6= d. The best reply candidates for an equilibrium are

thus given in Table 7.

First, we show that no asymmetric equilibrium exists. Note that (i)-(iii) are the same as

in Table 6; thus, we get the same contradiction for an asymmetric equilibrium.

Suppose firm i plays (iv) and firm j (i). The unique solution implies q̄i = 2a−βa+3c
6(1+β) and

q̄j = a
3 . We get qi,h − qi,l = βa−c

1−β2 , which implies βa ≥ c. However, firm j’s strategy implies
a−c

2(1−β) −
qi,h
2 < q̄j ⇔ βa < c, resulting in a contradiction.
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(i) q̄i =
2a−(1+β)qj,l−(1−β)qj,h

4
qi,l = q̄i qi,h = q̄i

(ii) q̄i =
a−d−(1−β)qj,h

2(1−β)
qi,l = a+d

2(1+β)
− qj,l

2
qi,h = q̄i

(iii) q̄i =
a−d−(1+β)qj,l

2(1+β)
qi,l = q̄i qi,h = a+d

2(1−β)
− qj,h

2

(iv) q̄i =
a+c−(1+β)qj,l

2(1+β)
qi,l = q̄i qi,h = a−c

2(1−β)
− qj,h

2

(v) q̄i =
a+c−(1−β)qj,h

2(1−β)
qi,l = a−c

2(1+β)
− qj,l

2
qi,h = q̄i

Table 7: Equilibrium candidates

Next, suppose firm i chooses (iv) and firm j uses (ii). The unique solution implies q̄i =
a+2c−d
3(1+β) and q̄j = a+c−2d

3(1−β) . A necessary condition for firm j to produce no additional quantities

in the high-demand state is a−c
2(1−β) − 1

2qi,h < q̄j ⇔ d < c. However, a necessary condition for

firm i to not dispose of any inventory in the low-demand state is a+d
2(1+β) − 1

2qj,l ≥ q̄i ⇔ c ≤ d,

resulting in a contradiction.

Next, suppose firm i uses (iv) and firm j uses (iii). The unique solution implies q̄i = a+2c+d
3(1+β)

and q̄j = a−c−2d
3(1+β) . Given the strategy, firm j discards in the high-demand state. However,

qj,h = a+c+2d
3(1−β) > q̄j , i.e., a contradiction.

Next, suppose firm i uses (v) and firm j uses (i). The unique solution implies q̄i = 2a+βa+3c
6(1−β)

and q̄j = a
3 . Firm i produces in the low state, yet qi,l = 2a−βa−3c

6(1+β) ≤
2a+βa+3c

6(1−β) = qi,h, yielding

a contradiction.

Next, suppose firm i plays (v) and firm j (ii). The unique solution implies q̄i = a+2c+d
3(1−β)

and q̄j = a−c−2d
3(1−β) . In the low-demand state, firm i produces qi,l = a−2c−d

3(1+β) < q̄i, yielding a

contradiction.

Next, suppose firm i uses (v) and j uses (iii). In order for (iii) to be optimal, it is necessary

that qi,h > qi,l. However, this directly contradicts (v).

Finally, suppose firm i plays (v) and firm j (iv). The unique solution implies q̄i =
a+2βa+3βc

3(1−β2)
and q̄j = a+3c

3(1+β) . Firm i produces in the low state, yet qi,l = a−3c
3(1+β) ≤ q̄i, i.e., a

contradiction.

The remaining candidates are the symmetric ones. We have already shown that (iii) does

not form a symmetric equilibrium. Similarly, if both firms play (v), q̄i = a+c
3(1−β) . They produce

an additional quantity to sell qi,l = a−c
3(1+β) in the low-demand state. However, qi,l < q̄i, i.e.,

a contradiction.

Both playing (i) implies the symmetric equilibrium q̄i = a/3. Neither of the firms produce

or dispose of inventory in any state if βa ≤ min{c, d}. Similarly, both playing (ii) implies

q̄i = (a − d)/3(1 − β), which forms an equilibrium if d < min{βa, c}. Finally, both playing

(iv) results in q̄i = (a+ c)/3(1 + β), which is an equilibrium if c < min{βa, d}.
It remains to analyze the case where c = d. There may exist multiple equilibria, which

only differ in the inventory. Suppose both firms produce inventory q̄i ∈ [(a + c)/2(1 + β) −
qj,l/2, (a− d)/2(1− β)− qj,h/2], which implies sales volumes qi,h = (a− c)/2(1− β)− qj,h/2
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and qi,l = (a + c)/2(1 + β) − qj,l/2. Symmetry directly implies qi,h = (a − c)/3(1 − β) and

qi,l = (a+ c)/3(1 + β). This forms an equilibrium if qi,h − qi,l < 2(βa− c)(1− β2)⇔ βa > c.

The outcome is thus the same as if the firms sold their entire inventory in one state.

Plugging in the sales volumes yields the expected values. The disposal cost’s negative

effect immediately follows.

C Supplementary Material

Mixed Equilibrium. In this section, we discuss the unique symmetric equilibirum of the

model presented in Section 3. There, we have shown that the equilibrium is unique and

symmetric whenever both firms choose the same technology, i.e., whenever (A, A) or (S, S)

forms an equilibrium.28 Whenever the asymmetric equilibirum exists, a second asymmetric

equilibrium exists with the firms’ labels interchanged. Consequently, there also exists a

symmetric equilibrium in mixed strategies, where firms play S with probability

p =
E[π∗2]− E[π∗A]

E[π∗2]− E[π∗A] + E[π∗1]− E[π∗S ]
,

and play A with 1− p. Taking the derivative with respect to d yields

∂p

∂d
=

∂E[π∗
1 ]

∂d (E[π∗A]− E[π∗2]) +
(
∂E[π∗

2 ]
∂d − ∂E[π∗

A]
∂d

)
(E[π∗1]− E[π∗S ])

(E[π∗2]− E[π∗A] + E[π∗1]− E[π∗S ])2
≥ 0.

The mixed equilibrium only exists if E[π∗A] ≤ E[π∗2] and E[π∗S ] ≤ E[π∗1], thus, the sign follows

from Lemmas 1-3. Note that p is continuous in d and the derivative exists everywhere except

at d = β(a+ c)/2 and d = βa. The probability of playing strategy S, thereby, increases with

d.

A firm’s expected profit in this mixed equilibrium can be written as

E[πM ] = p2E[π∗S ] + p(1− p)(E[π∗1] + E[π∗2]) + (1− p)2E[π∗A].

Consequently,

∂E[πM ]

∂d
= 2p

∂p

∂d
E[π∗S ] + (1− 2p)

∂p

∂d
(E[π∗1] + E[π∗2]) +

p(1− p)
(
∂E[π∗1]

∂d
+
∂E[π∗2]

∂d

)
+ (1− p)2∂E[π∗A]

∂d
− 2(1− p)∂p

∂d
E[π∗A].

For β → βS(d)−, players more often use S, formally, p→ 1−. The second row goes to zero

and the first simplifies to ∂p/∂d(2E[π∗S ]− E[π∗1]− E[π∗2]) = ∂p/∂d(E[π∗S ]− E[π∗2]) ≤ 0, which

follows from the definition of βS(d) and Proposition 3. A firm’s expected profit decreases if

the disposal cost goes up.

28See Proposition 3 for details.
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For β → βA(d)+, expected profits are ambiguous. Formally, p → 0+, E[π∗2] → E[π∗A]+,

and E[π∗1] ≥ E[π∗A], which implies

∂E[πM ]

∂d
→ ∂E[π∗A]

∂d
+

E[π∗1]− E[π∗A]

E[π∗1]− E[π∗S ]
(
∂E[π∗2]

∂d
− ∂E[π∗A]

∂d
).

For d ∈ (β(a + c)/2, βa), we have ∂E[π∗2]/∂d = 0 while ∂E[π∗A]/∂d ≤ 0, resulting in a

decreasing profit if E[π∗S ] ≤ E[π∗A]. For example, let a = 1, c = 1/10, d = 3/10, and

β ≈ 0.413318 ≈ βA(d), implying E[π∗S ] ≈ 0.109 and E[π∗A] ≈ 0.113.

However, the expected profit may also increase: Let a = 1, c = 1/5, d = 3/10, and

β = 2/3 = βA(d). This implies ∂E[πM ]/∂d = 13/75 > 0.

In contrast to the main text, the expected profit is continuous if we focus on the sym-

metric equilibrium in mixed strategies instead of a pure strategy equilibrium. Yet, the effects

discussed in the main text are mixed, resulting in the non-monotonic expected profit.

N Firms. Here we extend the model from Section 4 with the combined technology to N

symmetric firms. Let us first repeat the setup. Each firm produces inventory q̄i at a zero

marginal cost. After the demand has materialized, firms choose their sales volume qi. On the

one hand, if the sales volume exceeds the firm’s inventory, the additional quantity induces a

marginal cost of c ≥ 0. On the other hand, if a firm’s sales volume is lower than its inventory,

the quantity disposed of induces a marginal cost of d > 0. Formally, a firm’s profit is

E[π(qi, q̄i)] = E[Pϑ(Q)qi − cmax{(qi − q̄i, 0} − dmax{(q̄i − qi, 0}],

where the inverse demand is Pϑ(Q) = a − bϑ(Q). The intercept a > 2c + d is common

knowledge, while the slope bϑ takes on the value bl = 1 + β or bh = 1 − β, each with equal

probability. Q is the total sales volume, i.e., the sum of qi over all N .

As in the main text, we assume that firms do not observe their competitors’ inventories.

In the second stage, a firm takes its own inventory as given and chooses qi ≥ 0 to maximize

π(qi|q̄i) = Pϑ(Q)qi − cmax{(qi − q̄i, 0} − dmax{(q̄i − qi, 0}.

The best response function can be derived as in the main text and written as

qi(Q−i|q̄i) = max

{
min

{
max

{
a+ d

2bϑ
− 1

2
Q−i, 0

}
, q̄i

}
,
a− c
2bϑ

− 1

2
Q−i

}
,

where Q−i =
∑

j 6=i qj is the other firms’ sales volumes. Since firms compete with a homoge-

neous product, it does not matter for firm i how Q−i is composed. By the same argument,

we immediately get the optimal inventory, for d < c it is

q̄i(Q−i,l, Q−i,h) =


a−d

2(1−β) − 1
2Q−i,h, if Q−i,h −Q−i,l ≤ 2(βa−d)

1−β2 ;

a
2 −

(1+β)
4 Q−i,l − (1−β)

4 Q−i,h, if 2(βa−d)
1−β2 ≤ Q−i,h −Q−i,l ≤ 2(βa+d)

1−β2 ;

a−d
2(1+β) − 1

2Q−i,l, if Q−i,h −Q−i,l ≥ 2(βa+d)
1−β2 ,
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q∗i high demand low demand

d < min{βa, c} a−d
(N+1)(1−β)

a+d
(N+1)(1+β)

βa ≤ min{c, d} a
(N+1)

a
(N+1)

c < min{βa, d} a−c
(N+1)(1−β)

a+c
(N+1)(1+β)

Table 8: N-firms’ inventory and sales volume with combined technologies. Inventory equals
the sales volume in the high (low) demand state if d < min{βa, c} (c < min{βa, d}).

and for c < d it is

q̄i(Q−i,l, Q−i,h) =


a+c

2(1+β) − 1
2Q−i,l, if Q−i,h −Q−i,l ≤ 2(βa−c)

1−β2 ;

a
2 −

(1+β)
4 Q−i,l − (1−β)

4 Q−i,h, if 2(βa−c)
1−β2 ≤ Q−i,h −Q−i,l ≤ 2(βa+c)

1−β2 ;

a+c
2(1−β) − 1

2Q−i,h, if Q−i,h −Q−i,l ≥ 2(βa+c)
1−β2 ,

whenever it is positive, resulting in the symmetric equilibrium summarized in Table 8.

Comparing Table 8 with Table 5 in the main text shows that the equilibrium is similar

and thus the results in Proposition 5 remain valid for any number of firms. However, an

interesting trade-off for policymakers arises: Suppose d < min{βa, c}, thus, firms discard if

demand materializes below their expectations. Expected consumer surplus can be written as

E[CS∗] =

(
N

2(N + 1)

)2((a− d)2

1− β +
(a+ d)2

1 + β

)
.

This increases with the number of firms, N/(N + 1) < (N + 1)/(N + 2) ⇔ N2 + 2N <

N2 + 2N + 1, which generally results from increased competition. The expected disposal,

however, also increases in the number of firms. Formally,

NE[(q̄∗i − q∗i )] =
N

(N + 1)

βa− d
(1− β2)

.

By the same argument as above, expected disposal goes up with the number of firms. A

decrease in the disposal cost reduces the quantity disposed of, as in the main text, moreover

even more strongly the more competitors are active in the market.

In this setup, increasing competition due to the number of firms benefits consumers, yet

increases the disposal. Policymakers concerned about the discarded quantities, therefore, face

a trade-off.

Suppose firms face a fixed cost, such that there exists an upper bound on N where firms

expect a positive profit. Let’s denote the fix cost by F . Thus, a firm expects the profit

E[π∗i ] =
1

2(N + 1)2

(
(a− d)2

1− β +
(a+ d)2

1 + β

)
− F.
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Increasing the disposal cost lowers this profit. Consequently, the upper bound on N goes

down, and some firms leave the market. This results in less competition and a lower consumer

surplus; firms may benefit from fewer competitors. Generally, consumers are worse off if

disposal is costly due to the lower production volume and, additionally, because firms’ market

power may increase.

Observable Inventories. Here, we formally derive the results discussed in Section 4.

Distinct Technologies. The game proceeds as follows. First, both firms choose their produc-

tion technology A or S simultaneously. Firms with technology A produce inventory q̄i ≥ 0

at zero marginal cost before the demand materializes. After the demand’s realization, they

can sell at most their production volume, qi ≤ q̄i, yet have to pay a marginal cost d > 0

to dispose of the residual quantity. Firms using technology S produce after the demand has

materialized at a marginal cost c ≥ 0. By contrast to the model in Section 3, we assume that

competitors can observe each other’s inventories.

Let us first analyze the symmetric subgames. Suppose both firms choose technology A.

When demand materializes, the production cost is sunk and firms maximize their profits,

yielding the best reply (5). Without loss of generality, let q̄i ≥ q̄j .

Lemma 4. The unique subgame equilibrium is

qi = q̄i, qj = q̄j, if q̄j <
a+d
bϑ
− 2q̄i ;

qi = a+d
2bϑ
− 1

2qj, qj = q̄j, if a+d
bϑ
− 2q̄i ≤ q̄j ≤ a+d

3bϑ
;

qi = a+d
3bϑ

, qj = a+d
3bϑ

, if q̄j ≥ a+d
3bϑ

.

Accordingly, the firm with the larger inventory first starts disposing of it if demand is

below expectations. However, note that it still sells a larger quantity than its competitor.29

Moreover, the sales volume is always higher in the high-demand state.30 Accordingly, firm i

produces an inventory that it can sell entirely in the high-demand state. Otherwise, it would

increase its expected profit by lowering its production in order to mitigate disposal costs. By

the same argument, firm j also produces an inventory that is entirely sold in the high-demand

state.

Firm i’s expected profit is

E[πi] =


(a− (q̄i + q̄j))q̄i, if q̄i ≤ a+d

2(1+β) − 1
2 q̄j ;

1
2(a− (1− β)(q̄i + q̄j) + d)q̄i+

1
2(a− (1 + β)(q̂i + qj,l) + d)q̂i − dq̄i, if q̄i ≥ a+d

2(1+β) − 1
2 q̄j ,

where q̂i does not depend on q̄i, and qj,l is firm j’s sales volume in the low-demand state.

Formally, for the optimal inventory it does not matter if firm j offers its entire inventory

or less, since firm i discards anyways. Firm i’s best response function is q̄i(q̄j) = max{(a −
q̄j)/2, (a− d)/2(1− β)− q̄j/2}.

29Formally, (a+ d)/(2bϑ) ≥ q̄j/2⇔ q̄j ≤ (a+ d)/bϑ, which is implied by q̄j ≤ (a+ d)/3bϑ.
30Formally, qj,h−qj,l is either 0 or 2(a+d)/3(1−β2), and qi,h ≥ qi,l ⇔ 2(a+d)/(1−β2) ≥ qj,h−qj,l.
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Taking into account that firm i never produces more than (a+d)/2(1−β)− q̄j/2, we can

write firm j’s expected profit as

E[πj ] =



(a− (q̄i + q̄j))q̄j , if q̄j <
a+d
1+β − 2q̄i;

1
2(a− (1− β)(q̄i + q̄j))q̄j+

1
2(a− (1 + β)( a+d

2(1+β) +
q̄j
2 ))q̄j , if a+d

1+β − 2q̄i ≤ q̄j ≤ min{ a+d
3(1+β) ,

a+d
1−β − 2q̄i},

1
2(a− (1− β)(q̄i + q̄j) + d)q̄j+

1
2(a− (1 + β)(q̂i + q̂j) + d)q̂j − dq̄j , if a+d

3(1+β) ≤ q̄j ≤ a+d
1−β − 2q̄i.

This yields three candidates for an interior solution. (i) q̄j = (a − q̄i)/2, (ii) q̄j = (3a −
d)/2(3− β)− q̄i(1− β)/(3− β), and (iii) q̄j = (a− d)/2(1− β)− q̄i/2.

Let us first focus on (ii). In this case, firm i’s best response is q̄i = (a−d)/2(1−β)− q̄j/2,

implying the equilibrium candidate q̄i = (3a−5d+βa+βd)/2(5−β)(1−β) and q̄j = 2a/(5−β).

A necessary condition is q̄j ≤ (a + d)/3(1 + β) ⇔ 7βa + a + βd − 5d ≤ 0, yet firm i’s best

response implies βa > d, resulting in a contradiction. Hence, candidate (ii) never forms an

equilibrium.

The remaining cases imply the unique symmetric equilibrium q̄i = q̄j = max{(a−d)/3(1−
β), a/3}, which is equivalent to the case when inventories are not observable. Therefore, the

equilibrium outcome is equivalent to Lemma 1.

When both firms choose technology S, the game is the same as in the main text. The

unique subgame equilibrium is described by Lemma 2. This concludes the analysis of the

symmetric subgames.

Now suppose one firm (she) uses technology A, while the other (he) uses technology S.

As in the main text, we index the first by 1 and the second by 2. For firm 1, production

is sunk when she chooses her sales volume resulting in the best reply given by (5). Firm 2

produces after the demand has materialized; his best response function is given by (8). The

two functions imply a unique subgame equilibrium for the sales volumes.

Lemma 5. If d ≤ a− 2c, the unique subgame equilibrium is

q1 = q̄1, q2 = a−c
2bϑ
− 1

2 q̄1, if q̄1 <
a+2d+c

3bϑ
;

q1 = a+2d+c
3bϑ

, q2 = a−d−2c
3bϑ

, if q̄1 ≥ a+2d+c
3bϑ

.

If d > a− 2c, the unique subgame equilibrium is

q1 = q̄1, q2 = a−c
2bϑ
− 1

2 q̄1, if q̄1 <
a−c
bϑ

;

q1 = q̄1, q2 = 0, if a−c
bϑ
≤ q̄1 ≤ a+d

2bϑ
;

q1 = a+d
2bϑ

, q2 = 0, if q̄1 ≥ a+d
2bϑ

.

This directly reveals why we impose our assumption a ≥ d + 2c: the first firm cannot

block the second.
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q∗1 d < t1 t1 ≤ d < t2 t2 ≤ d < t3 t3 ≤ d

high demand a+2d+c
3(1−β)

a−2d+c
2(1−β)

a+2d+c
3(1+β)

a+c
2

low demand a+2d+c
3(1+β)

a+2d+c
3(1+β)

a+2d+c
3(1+β)

a+c
2

Table 9: First mover’s inventory and sales volume with observable inventory. Inventory
equals the sales volume in the high-demand state.

q∗2 d < t1 t1 ≤ d < t2 t2 ≤ d < t3 t3 ≤ d

high demand a−d−2c
3(1−β)

a+2d−3c
4(1−β)

a−c
2(1−β)

− a+2d+c
6(1+β)

a−c
2(1−β)

− a+c
4

low demand a−d−2c
3(1+β)

a−d−2c
3(1+β)

a−d−2c
3(1+β)

a−c
2(1+β)

− a+c
4

Table 10: Second mover’s sales volume with observable inventory.

The first mover produces an inventory that she can sell entirely in the high-demand state;

otherwise she could mitigate her disposal costs by lowering the production. We can thus write

her expected profit as

E[π1] =


(a+c

2 − 1
2 q̄1)q̄1, if q̄1 ≤ a+2d+c

3(1+β) ;

1
2(a+c

2 − (1− β)1
2 q̄1)q̄1+

1
2(a− (1 + β)(q̂1 + q̂2))q̂1 − 1

2d(q̄1 − q̂1), if a+2d+c
3(1+β) ≤ q̄1 ≤ a+2d+c

3(1−β) .

Her profit maximizing production volume is

q̄∗1 =



a+2d+c
3(1−β) , if d < t1;

a−2d+c
2(1−β) , if t1 ≤ d < t2;

a+2d+c
3(1+β) , if t2 ≤ d < t3;

a+c
2 , if d ≥ t3,

where t1 := (a + c)/10, t2 := (a + c)(1 + 5β)/2(5 + β), and t3 := (a + c)(1 + 3β)/4. By our

assumption a ≥ d+ 2c, the thresholds are ranked t1 ≤ t2 ≤ t3. For d < t3, the firm disposes

of parts of her inventory if demand is lower than expected.

Table 9 summarizes the first mover’s inventory and sales volumes. The inventory is non-

monotonic with the disposal cost. Note that the sales volume in the low-demand state is

constant for d < t3.

The second mover’s sales volume is summarized in Table 10. By the best response, the

second mover’s sales volume goes in the opposite direction with d compared to the first

mover’s. His sales volume in the low-demand state also stays constant for d < t3.
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Due to the inventory’s observability, the equilibrium in the asymmetric subgame is dif-

ferent to the main text. We characterize its outcome in the following Lemma.

Lemma 6. In the (A,S) and (S,A) games’ unique subgame perfect equilibrium, the first

mover’s expected profit

E[π∗1] =



(a+2d+c)(a−d+c−3βd)
9(1−β2)

, if d < t1;

(a+2d+c)2

18(1+β) + (a−2d+c)2

16(1−β) , if t1 ≤ d < t2;

(a+2d+c)(a+c)
6(1+β) − (a+2d+c)2

18(1+β)2
, if t2 ≤ d < t3;

(a+c)2

8 , if d ≥ t3,

(18)

the second mover’s expected profit

E[π∗2] =



(a−d−2c)2

9(1−β2)
, if d < t1;

(a−d−2c)2

18(1+β) + (a+2d−3c)2

32(1−β) , if t1 ≤ d < t2;

(a−d−2c)2

18(1+β) + 1−β
2 ( a−c

2(1−β) − a+2d+c
6(1+β) )2, if t2 ≤ d < t3;

(a−3c)2+2β2(a−3c)(a+c)+β2(a+c)2

16(1−β2)
, if d ≥ t3,

(19)

expected consumer surplus

E[CS∗AS ] =



(2a+d−c)2
36(1+β) + (2a+d−c)2

36(1−β) , if d < t1;

(2a+d−c)2
36(1+β) + (3a−2d−c)2

64(1−β) , if t1 ≤ d < t2;

(2a+d−c)2
36(1+β) + 1−β

4 ( a−c
2(1−β) + a+2d+c

6(1+β) )2, if t2 ≤ d < t3;

(3a−c+β(a+c))2

64(1+β) + (3a−c−β(a+c))2

64(1−β) , if d ≥ t3,

and the expected disposal

E[q̄∗1 − q∗1] =


β(a+2d+c)

3(1−β2)
, if d < t1;

(1+5β)(a+c)−2(5+β)d
12(1−β2)

, if t1 ≤ d < t2;

0, if d ≥ t2,

all change non-monotonically with the disposal cost d.

Compared to the case where firms cannot observe each others inventory, both firms’

expected profits simultaneously go up with d ∈ [max{t1, (a + c)(1 + 17β)/2(17 + β)}, t2],

while the expected consumer surplus decreases.
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Finally, we can determine the equilibrium technology choice. Both firms producing in

advance forms an equilibrium if E[π∗A] ≥ E[π∗2], given by (7) and (19). Rearranging yields

β ≤ βA(d) :=



(a+d)2+(a−d)2−2(a−d−2c)
(a+d)2−(a−d)2

, if 0 < d < t1;

16(a+d)2+16(a−d)2−16(a−d−2c)2−9(a+2d−3c)2

16(a+d)2−16(a−d)2−16(a−d−2c)2+9(a+2d−3c)2
, if t1 ≤ d < t2;

(a−d)2−ΦΞ+
√

((a−d)2−ΦΞ)2−2(Φ2−a2−d2)(Ξ2−Φ2+4ad)

Ξ2−Φ2+4ad
, if t2 ≤ d < βa;

B, if βa ≤ d < t3;√
16a2−9(a−3c)2

16a2+9(a+c)2+18(a−3c)(a+c)
, if d ≥ t3,

with Φ = a− d− 2c, Ξ = 2a+ d− c, and B implicitly given by 2a2B3 + (2a2 + Ξ2−Φ2)B2 +

(2ΦΞ − 2a2)B − 2a2 = 0. At B = 0 the left-hand side is −2a2 < 0, while at B = 1 it is

4a2 + 5ac + 7ad − 5c2 − 5cd + d2 > 0. Moreover, the left-hand side is strictly convex for all

B ∈ [0, 1). Hence, a unique B exists that solves the equation.

Similarly, both firms produce on the spot if E[π∗S ] ≥ E[π∗1]⇔

β ≥ βS(d) :=



a−d+c
3d − (a−c)2

3d(a+2d+c) , if 0 < d < t1;

16(a−c)2−8(a+2d+c)2−9(a−2d+c)2

9(a−2d+c)2−8(a+2d+c)2
, if t1 ≤ d < t2;

κ+
√
κ2−24εφ
6ε , if t2 ≤ d < t3;√

9(a+c)2−8(a−c)2
3(a+c) , if d ≥ t3,

with κ = (a+2d+c)2−2(a−c)2, ε = (a+c)(a+2d+c), and φ = (a−c)2−(a+2d+c)(a−d+c).

Finally, if E[π∗A] ≤ E[π∗2] and E[π∗S ] ≤ E[π∗1], there exist two asymmetric equilibria: One

firm produces with technology A and the other with technology S. Note that for d < t1,

E[π∗A] ≥ E[π∗2], i.e., the threshold for β is above one. The asymmetric equilibrium does thus

not exist for d < t1. In equilibrium, the expected disposal weakly decreases.

Figure 5 illustrates the equilibria. Again, an asymmetric equilibrium only exists if the

disposal is costly, demand is uncertain, and there exists a cost advantage from early produc-

tion. Moreover, firms only forgo the early cost advantage if both demand uncertainty and

the disposal cost are simultaneously high.

A low disposal cost substitutes information about demand. With observable inventories,

an additional opposing effect is present: the first mover can credibly sell a large share of

her inventory. The two effects cause the non-monotonicity of the threshold functions. The

first mover only discards if d < t2; for large d, only the second effect remains present. βA(d)

reaches its minimum value at d = t2. Hence, there exist asymmetric equilibria in which the

firms’ expected profits simultaneously increase.

By contrast to the main text, with observable inventories, firms use technology A even

for c = 0. Due to the inventory’s observability there exists a strategic effect.

Combined Technology. Instead of only having access to one of the technologies, here we

assume that firms can produce in both periods, similar as in Section 4.
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d

β

βS(d)
βA(d)

1

0

(a) No cost advantage (c = 0)

d

β

βS(d)
βA(d)

1

0

(b) Low cost advantage (c = 0.1)

d

β

βS(d)
βA(d)

1

0

(c) Medium cost advantage (c = 0.5)

d

β

βS(d)

βA(d)

1

0

(d) High cost advantage (c = 1)

Figure 5: In the diagonally gray (vetically black) shaded area, both firms produce with
technology S (A). In the white area, firms choose an asymmetric strategy, one uses technology
A and the other S. (Demand intercept a = 10 and the abscissa is truncated at 8.)
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After the demand has materialized, firms take their inventories as given and offer their

sales volume to maximize their profit

π(qi|q̄i) = Pϑ(qi + qj)qi − cmax{(qi − q̄i, 0} − dmax{(q̄i − qi, 0},

yielding the best response function (14) in the main text.

Since competitors observe inventories, we derive the sales game’s subgame equilibrium

following any firm’s inventory choice. We denote the firm with the larger inventory by 1

and the other by 2, i.e., we assume without loss of generality q̄1 ≥ q̄2. We can derive the

unique subgame equilibrium for different ranges of parameters by combining the best response

functions, which we summarize in the following Lemma.

Lemma 7. Let q̄1 ≥ q̄2. The unique subgame equilibrium sales volumes following the inven-

tories

(i) q̄1 ≤
a− c
3bϑ

, are q1 = q2 =
a− c
3bϑ

;

(ii) q̄1 ∈ [
a− c
3bϑ

,
a+ c+ 2d

3bϑ
] and q̄2 ≤

a− c
2bϑ

− 1

2
q̄1, are q1 = q̄1 and q2 =

a− c
2bϑ

− 1

2
q̄1;

(iii) q̄1 ≤
a+ d

2bϑ
− 1

2
q̄2 and q̄2 ≥

a− c
2bϑ

− 1

2
q̄1, are q1 = q̄1 and q2 = q̄2;

(iv) q̄1 ≥
a+ c+ 2d

3bϑ
and q̄2 ≤

a− 2c− d
3bϑ

, are q1 =
a+ c+ 2d

3bϑ
and q2 =

a− 2c− d
3bϑ

;

(v) q̄1 ≥
a+ d

2bϑ
− 1

2
q̄2 and q̄2 ∈ [

a− 2c− d
3bϑ

,
a+ d

3bϑ
], are q1 =

a+ d

2bϑ
− 1

2
q̄2 and q2 = q̄2;

(vi) q̄2 ≥
a+ d

3bϑ
, are q1 = q2 =

a+ d

3bϑ
.

Only in subgames (ii) and (iii) does firm i sell its inventory entirely. Otherwise, it always

produces additional quantities or disposes of parts.

To derive all equilibria in pure strategies, we first exclude inventory ranges that are

never optimal and, therefore, contain no candidates for an equilibrium. Starting with q̄1 <

(a−c)/3(1+β), both firms produce additional quantities even if demand is below expectations.

By increasing their inventory, firms decrease their costs. Similarly, if q̄2 > (a + d)/3(1− β),

both firms dispose of some quantities even if demand is above expectations. Firms decrease

their costs by decreasing their inventories.

The maximal quantity that firm 1 could sell is (a + c + 2d)/3(1 − β); thus, any larger

inventory is never optimal. Similarly, the minimal quantity that firm 2 could sell is (a− 2c−
d)/3(1 + β); any lower inventory is never optimal.

If q̄1 > (a+d)/2(1−β)− q̄2/2, firm 1 discards even if demand is above its expectation. By

decreasing its inventory, the firm mitigates its costs. Similarly, if q̄2 < (a−c)/2(1+β)− q̄1/2,

firm 2 lowers its costs if it increases its inventory, because it produces additional quantities

even if demand is below its expectation.

There remain six different areas for the equilibrium inventory strategy. We summarize

them in the following Lemma.
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Lemma 8. Let q̄1 ≥ q̄2. The following six areas may contain an equilibrium.

(i) If q̄1 ≤ a−c
3(1−β) and q̄2 ≥ a−c

2(1+β) − 1
2 q̄1, firms sell their inventories in the low-demand

state and produce additional quantities if demand is above expectations.

(ii) If q̄1 ≤ a+d
2(1+β) − 1

2 q̄2 and q̄2 ≥ a−c
2(1−β) − 1

2 q̄1, firms sell their inventories regardless of the

demand’s realization.

(iii) If q̄1 ≤ a+d
2(1−β) − 1

2 q̄2 and q̄2 ≥ a+d
3(1+β) , firms sell their inventories if demand is above

expectations and disposes of parts of it otherwise.

(iv) If q̄1 ∈ [ a−c
3(1−β) ,

a+d
2(1+β) − 1

2 q̄2] and q̄2 ∈ [ a−c
2(1+β) − 1

2 q̄1,
a−c

2(1−β) − 1
2 q̄1], firm 1 sells its

inventory regardless of the demand’s state, while firm 2 sells its inventory if demand

is below expectation and produces additional quantities otherwise.

(v) If q̄1 ∈ [ a+d
2(1+β) − 1

2 q̄2,
a+d

2(1−β) − 1
2 q̄2] and q̄2 ∈ [ a−c

2(1−β) − 1
2 q̄1,

a+d
3(1+β) ], firm 1 sells its

inventory if demand is above expectation and disposes of parts of it otherwise, while

firm 2 sells its inventory regardless of the state of demand.

(vi) If q̄1 ∈ [ a+d
2(1+β)− 1

2 q̄2,
a+c+2d
3(1−β) ] and q̄2 ∈ [a−2c−d

3(1+β) ,
a−c

2(1−β)− 1
2 q̄1], firm 1 sells its inventory if

demand is above expectation and disposes of parts of it otherwise, while firm 2 sells its

inventory if demand is below expectations and produces additional quantities otherwise.

Next, we analyze each area separately. As in the proof in the main text, we use q̂1 if the

sales volume is not equal to the inventory and q̄1 if it does equal the inventory. In (i), firm

1’s profit is E[π1] = [(a − (1 − β)(q̂1 + q2,h) − c)q̂1 + (a − (1 + β)(q̄1 + q2,l) − c)q̄1]/2 + cq̄1,

implying a unique symmetric interior solution q̄i = (a+c)/3(1+β) if c < min{βa, d}. In (ii),

E[π1] = [(a−(1−β)(q̄1 +q2,h))q̄1 +(a−(1+β)(q̄1 +q2,l))q̄1]/2, implying the unique symmetric

equilibrium q̄i = a/3 if βa ≤ min{c, d}. In (iii), E[π1] = [(a−(1−β)(q̄1+q2,h)+d)q̄1+(a−(1+

β)(q̂1 + q2,l) +d)q̂1]/2−dq̄1, implying the unique symmetric equilibrium q̄i = (a−d)/3(1−β)

if d ≤ min{βa, c}. For the technical details, see the proof of Proposition 5 in the main text;

the symmetric equilibrium is outcome equivalent. Hence, the same symmetric equilibrium

exists regardless of whether the inventory is observed or not.

Finally, we analyze asymmetric equilibria. We first focus on (iv). The firms’ best replies

are technically already derived in the proof of Proposition 5. The unique equilibrium candi-

date is q̄1 = q1,h = q1,l = 2a/(5 + β) and q̄2 = q2,l = (3a + 5c − βa + βc)/2(1 + β)(5 + β),

which is only an equilibrium if βa ≥ c, a+ 5c ≥ β(7a− c) and a+ 5c ≤ 10d+ β(2d− 5a− c).
However, β(7a− c) ≤ 10d+ β(2d− 5a− c)⇔ 6a ≤ d+ 5βd, resulting in a contradiction.

Next, we show that in (v), no equilibrium exists. The unique candidate is given by

q̄1 = q1,h = (3a+βa−d(5−β))/2(1−β)(5−β), and q̄2 = q2,h = q2,l = 2a/(5−β). Necessary

conditions for its existence are d ≤ βa and d ≥ (a + 7βa)/(5 − β). Hence, the range for d

only exists if a+ 2βa+ β2a ≤ 0, which yields a contradiction.

Lastly, we derive the equilibrium in (vi). The inventories’ first order conditions are

already derived in the proof of Proposition 5. This implies the unique equilibrium candidate

q̄1 = q1,h = (a+c−2d)/2(1−β), q1,l = (a−2c+3d)/4(1+β), q̄2 = q2,l = (a+2c−d)/2(1+β),

55



Imperfect competition with costly disposal Severin Lenhard

and q2,h = (a−3c+2d)/4(1−β). This indeed forms an interior equilibrium if d ≥ (a+ c)/10,

(7 + β)d ≤ a+ 3βa+ 4c, and 4d ≥ a− 3βa+ 7c− βc. We summarize this equilibrium in the

following proposition.

Proposition 6. If max{(a+ c)/10, (a+ 7c− 3βa− βc)/4} ≤ d ≤ min{(a+ 4c+ 3βa)/(7 +

β), a− 2c}, the firms’ inventories

q̄∗1 =
a+ c− 2d

2(1− β)
, q̄∗2 =

a+ 2c− d
2(1 + β)

,

and their sale volumes

q∗1,h = q̄i; q∗1,l = a−2c+3d
4(1+β)

;

q∗2,h = a−3c+2d
4(1−β)

; q∗2,l = q̄2.

Firm 1 disposes of parts of her inventory if demand is lower than expected; firm 2 pro-

duces additional quantities if demand is higher than expected. Otherwise, firms sell their

inventories. Firm 1’s expected profit

E[π∗1] =
(a− 2c+ 3d)2

32(1 + β)
+

(a+ c− 2d)2

16(1− β)
,

is ambiguous with the disposal cost. Firm 2’s expected profit

E[π∗2] =
(a− 3c+ 2d)2

32(1− β)
+

(a+ 2c− d)2

16(1 + β)
,

increases with d. The expected consumer surplus and expected disposal

E[CS∗] =
(3a− c− 2d)2

64(1− β)
+

(3a+ 2c+ d)2

64(1 + β)
;

E[q̄∗1 − q∗1] =
a+ 3βa+ 4c− (7 + β)d

8(1− β2)
,

decrease with the disposal cost d. Moreover, the expected price E[P ] = (2a−c+d)/8 increases

with the disposal cost.

In contrast to the symmetric equilibrium, expected prices increase with the disposal cost.

Firms decrease their inventories, and thus the expected trade volume decreases, resulting in a

higher price. Firms hand an increase in their cost over to consumers. Interestingly, expected

prices decrease with c. The higher the production cost in the second period, the more firms

increase their inventory, which is produced at a zero cost. A part of this reduced production

cost is handed over to consumers.
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Expected disposal decreases in its cost, as in the other cases. The larger firm is the

one discarding if demand is below expectations. A higher disposal cost decreases the firm’s

inventory and disposal. Therefore, its sales volume in the high-demand state is lower, yet

higher if demand is below expectations. By contrast, the smaller firm sells less if demand is

below expectations and increases its sales volume if demand is above expectations.

Profits and consumer surplus are convex functions of d. Firm 1’s profit is ambiguously

affected by d. On the one hand, firm 1’s costs increase if demand is below expectations. On

the other hand, firm 1’s sales volume also increases, resulting in a larger market share. The

total effect on the profit is thus ambiguous.

Firm 2 mainly produces in the second period, i.e., with an information advantage: the

higher the disposal cost, the more severe this information advantage, increasing firm 2’s

expected profit.

Consequently, there exist parameter ranges where both firms’ expected profits increase

simultaneously. Consumer surplus, however, decreases with d. Firms produce less inventory

if the disposal is costly. If demand is higher than expected, firms indeed produce additional

quantities, yet at a higher cost. Therefore, the trade volume decreases and, thereby, so does

consumer surplus.

Finally, we present a numerical example to show that firms may oppose to observe their

competitor’s inventory. Suppose a = 1, c = 1/4, and β = 3/4. With d = 1/2, it follows that

E[π∗2] = 0.231 ≥ E[π∗i ] = 0.1746 ≥ E[π∗1] = 0.087, thus the smaller firm prefers if inventories

are observable but the larger one is worse off. With d = 1/3, E[π∗i ] = 0.1746 ≥ E[π∗2] =

0.1536 ≥ E[π∗1] = 0.1252, thus both firms prefers if inventories are private. Finally, with

d = 1/5, E[π∗1] = 0.2022 ≥ E[π∗i ] = 0.1879 ≥ E[π∗2] = 0.1132, thus the larger firm prefers if

inventories are observed.

Perfectly Elastic Demand. In this section, we adjust the demand function for perfect

elasticity if firms have the combined technology, i.e, can produce in both periods. Formally,

let the inverse demand function be Pϑ(Qϑ) = max{a− bϑQϑ, 0}.
Monopoly. After the demand has materialized, the monopolist offers the sales volume to

max
qϑ

πϑ(qϑ; q̄) = qϑ max{0, a− bϑqϑ} − cmax{0, qϑ − q̄} − dmax{0, q̄ − qϑ},

which is a weakly concave and continuous objective function. The firm may make a negative

profit if it disposes of large inventories, i.e., if q̄ ≥ (a+ d)2/4dbϑ. However, the price is zero if

qϑ ≥ a/bϑ. Since (a+ d)2/4dbϑ ≥ a/bϑ ⇔ (a− d)2 ≥ 0 , the firm can avoid losses by offering

its entire inventory. Accordingly, the optimal sales volume is

qϑ(q̄) =



a−c
2bϑ

, if q̄ < a−c
2bϑ

;

q̄, if a−c
2bϑ
≤ q̄ < a+d

2bϑ
;

a+d
2bϑ

, if a+d
2bϑ
≤ q̄ < a+d

2bϑ
a+d
2d ;

q̄, if q̄ ≥ a+d
2bϑ

a+d
2d .
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Obviously, q̄ < (a− c)/2(1 + β) is not profit-maximizing, the firm decreases its cost if it

produces more in the first period. Similarly, q̄ > (a+ d)/2(1− β) is not optimal. Decreasing

the inventory lowers the firm’s disposal costs.

For c 6= d, the firm has to sell its entire inventory either in the high- or low-demand state.

For c = d, this is still optimal. However, there may exist multiple optimal inventory levels,

which all result in the equivalent sales volume. For simplicity, we assume c 6= d.

E[πϑ] =



1
2 (a− (1 + β)q̄) q̄ + 1

2 ((a− c− (1− β)qh)qh + cq̄) , if q̄ ∈ Q1;

1
2 (a− (1 + β)q̄) q̄ + 1

2 (a− (1− β)q̄) q̄, if q̄ ∈ Q2;

1
2 ((a+ d− (1 + β)ql)ql − dq̄) + 1

2 (a− (1− β)q̄) q̄, if q̄ ∈ Q3;

1
20 + 1

2 (a− (1− β)q̄) q̄, if q̄ ∈ Q4,

with Q1 =
[

a−c
2(1+β) ,min

{
a−c

2(1−β) ,
a+d

2(1+β)

})
, Q2 =

(
a−c

2(1−β) ,
a+d

2(1+β)

]
,

Q3 =
(

max
{

a+d
2(1+β) ,

a−c
2(1−β)

}
,min

{
a+d

2(1−β) ,
a+d

2(1+β)
a+d
2d

}]
, and

Q4 =
(

max
{

a+d
2(1+β)

a+d
2d ,

a−c
2(1−β)

}
, a+d

2(1−β)

]
. There exists a local maximum in the first three

parts,

q̄ =


a+c

2(1+β) , if c < min{βa, d};
a
2 , if βa ≤ min{c, d};
a−d

2(1−β) , if d < min{βa, c} and β ≤ a2+3d2

a2+4ad−d2 ,

whereas the last part implies a local maximum at q̄ = a
2(1−β) if β ≥ a2+d2

a2+4ad+d2
. The first local

maximum implies an expected profit of

E[πϑ] =


(a+c)2

8(1+β) + (a−c)2
8(1−β) , if c < min{βa, d};

a2

4 , if βa ≤ min{c, d};
(a+d)2

8(1+β) + (a−d)2

8(1−β) , if d < min{βa, c} and β ≤ a2+3d2

a2+4ad−d2 ,

and the second E[πϑ] = a2

8(1−β) if β ≥ a2+d2

a2+4ad+d2
. The two coexist for certain parameter

regions.

Comparing the two, we get the optimal inventory. If c < min{βa, d}, selling at a zero

price yields a higher expected profit if β ≥ (a2 + 2c2)/(a2 + 4ac). Note that this is larger

than (a2 + d2)/(a2 + 4ad + d2) if c < d. For βa ≤ min{c, d}, selling at a zero price is only

better if β ≥ 1/2. This, however, contradicts β ≤ c/a ≤ 1/2. Finally, in the last part, selling

at a zero price is more profitable if β ≥ (a2 + 2d2)/(a2 + 4ad). Note that this is higher than
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(a2 + d2)/(a2 + 4ad+ d2). To summarize

E[π∗ϑ] =



(a+c)2

8(1+β) + (a−c)2
8(1−β) , if c < d and β ∈

[
c
a ,

a2+2c2

a2+4ac

]
;

a2

4 , if β ≤ min
{
c
a ,

d
a

}
;

(a+d)2

8(1+β) + (a−d)2

8(1−β) , if d < c and β ∈
[
d
a ,

a2+2d2

a2+4ad

]
;

a2

8(1−β) , else.

As in the case with distinct technologies, the firm may not produce in the second stage if

β is large. Figure 3 illustrates the parameters for which the firm produces after the demand’s

realization.

Competition. Similar as before, a firm may make a loss if it discards. The optimal sales

volume if a firm disposes of parts of its inventory is qi,ϑ = (a+ d)/2bϑ− qj,ϑ/2, resulting in a

negative profit if q̄i ≥ bϑ((a+d)/2bϑ−qj,ϑ/2)2/d. Note that the price is zero if the firm offers

qi,ϑ ≥ a/bϑ − qj,ϑ. Since bϑ((a + d)/2bϑ − qj,ϑ/2)2/d ≥ a/bϑ − qj,ϑ ⇔ (a − d − bϑqj,ϑ)2 ≥ 0,

the firm can avoid a loss by selling its entire inventory.

A firm’s optimal response function in the second stage can be written as

qi,ϑ(qj,ϑ; q̄i) =



a−c
2bϑ
− 1

2qj,ϑ, if q̄i <
a−c
2bϑ
− 1

2qj,ϑ;

q̄i, if a−c
2bϑ
− 1

2qj,ϑ ≤ q̄i < a+d
2bϑ
− 1

2qj,ϑ;

a+d
2bϑ
− 1

2qj,ϑ, if a+d
2bϑ
− 1

2qj,ϑ ≤ q̄i <
bϑ
d

(
max{0, a+d

2bϑ
− 1

2qj,ϑ}
)2

;

q̄i, if q̄i ≥ bϑ
d

(
max{0, a+d

2bϑ
− 1

2qj,ϑ}
)2
,

whenever it is larger than zero and qj,ϑ ≤ (a−d)/bϑ. A firm should sell its entire inventory at

a positive price in at least one state. This directly results in the candidates for an equilibrium,

summarized in Table 11.

(i) q̄i =
2a−(1+β)qj,l−(1−β)qj,h

4
qi,l = q̄i qi,h = q̄i

(ii) q̄i =
a−d−(1−β)qj,h

2(1−β)
qi,l = a+d

2(1+β)
− qj,l

2
qi,h = q̄i

(iii) q̄i =
a−d−(1+β)qj,l

2(1+β)
qi,l = q̄i qi,h = a+d

2(1−β)
− qj,h

2

(iv) q̄i =
a+c−(1+β)qj,l

2(1+β)
qi,l = q̄i qi,h = a−c

2(1−β)
− qj,h

2

(v) q̄i =
a+c−(1−β)qj,h

2(1−β)
qi,l = a−c

2(1+β)
− qj,l

2
qi,h = q̄i

(vi) q̄i =
a−(1−β)qj,h

2(1−β)
qi,l = q̄i qi,h = q̄i

(vii) q̄i =
a−(1+β)qj,l

2(1+β)
qi,l = q̄i qi,h = q̄i

Table 11: Equilibrium candidates
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The first five cases are equivalent to Section 4. It follows directly that the same equilibrium

exists whenever discarding does not result in a negative profit. Formally,

q̄∗i =


a+c

3(1+β) , if c < min{βa, d};
a
3 , if βa ≤ min{c, d};
a−d

3(1−β) , if d < min{βa, c} and β ≤ a2−ad+4d2

a2+5ad−2d2
.

(20)

Whenever firm i plays (vi), firm j has to play (vi), too: The price in the low-demand state

is going to be zero, any other case is not a best reply. Symmetry thus directly implies the equi-

librium q̄i = a/3(1− β). This indeed forms an equilibrium if β ≥ (2a+3d)(4a+3d)−12a
√
ad+2d2

(4a+3d)2+12ad
.

Similarly, if firm i plays (vii), firm j has to play (vii), too. Thus, q̄i = a/3(1 + β). The

price in the high-demand state has to be zero, formally, a − (1 − β)2q̄i ≤ 0 ⇔ 1 + 5β ≤ 0,

resulting in a contradiction.

Thus, there may exist multiple symmetric equilibria. We focus on the profit-maximizing

equilibrium. Comparing the expected profit

E[πi] =


(a+c)2

18(1+β) + (a−c)2
18(1−β) , if c < min{βa, d};

a2

9 , if βa ≤ min{c, d};
(a+d)2

18(1+β) + (a−d)2

18(1−β) , if d < min{βa, c} and β ≤ a2−ad+4d2

a2+5ad−2d2
,

(21)

to E[πi] = a2

18(1−β) if β ≥ (2a+3d)(4a+3d)−12a
√
ad+2d2

(4a+3d)2+12ad
yields the same threshold as for the

monopolist.

Note that (a2 + 2d2)/(a2 + 4ad) ≤ (a2 − ad + 4d2)/(a2 + 5ad − 2d2) for d < c ≤ a/2.

Thus, there exists a parameter range in which the monopolist discards, yet competitive firms

do not, and sell their entire inventory at a price of zero instead. The difference arises since

an individual firm faces a relatively smaller demand.

To summarize, if a
2+2c2

a2+4ac
≥ (2a+3d)(4a+3d)−12a

√
ad+2d2

(4a+3d)2+12ad
, and a2+2d2

a2+4ad
≥ (2a+3d)(4a+3d)−12a

√
ad+2d2

(4a+3d)2+12ad
,31

the unique profit maximizing expected profit for the competitive firms is

E[π∗i ] =



(a+c)2

18(1+β) + (a−c)2
18(1−β) , if c < d and β ∈ [ ca ,

a2+2c2

a2+4ac
];

a2

9 , if β ≤ min{ ca , da};
(a+d)2

18(1+β) + (a−d)2

18(1−β) , if d < c and β ∈ [da ,
a2−ad+4d2

a2+5ad−2d2
];

a2

9(1−β) , else.

We directly see that the monopolist and the competitive firm use technology S for the same

parameter range.

31We tested the inequality for several parameter combinations; all satisfied the inequalities.
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