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Abstract

The proxy VAR framework requires additional restrictions to disentangle the

structural shocks when multiple shocks are identified using multiple instru-

ments. I propose to employ restrictions on the forecast error variance (FEV).

Less restrictive assumptions that bound the contributions to the FEV can

replace or accompany inequality restrictions on e.g. the impulse responses.

This enables or sharpens the set identification of the structural parameters.

Furthermore, with the correct economic intuition the Max-Share framework

can be used to point identify the structural parameters without the need for

strict equality restrictions in the case when two shocks are identified with two

proxy variables.
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1 Introduction

In the last decade, proxy variables were highly prevalent in the structural vector

autoregression (SVAR) literature. The proxy VAR framework was developed by

Stock and Watson (2012) and Mertens and Ravn (2013). So far, it was applied to

identify the effects of various structural shocks. For example, Mertens and Ravn

(2013) estimate the effects of taxation shocks, Gertler and Karadi (2015) the effects

of monetary policy shocks and Piffer and Podstawski (2018) the impacts of uncer-

tainty shocks. As in the standard IV identification the proxy variables (also called

instruments in this context) need to satisfy two key conditions. Reminiscent of the

relevance and exogeneity assumption, the external series have to be related to the

target shocks of interest while being unrelated to the remaining structural shocks

that are not identified.

When multiple shocks are identified with multiple instruments, Mertens and

Ravn (2013) show that additional identifying restrictions are needed in order to dis-

entangle the structural shocks. For instance, Piffer and Podstawski (2018) have an

instrument related to an uncertainty shock and one instrument for a news shock.

If the two instruments are not related to structural shocks other than the uncer-

tainty and news shock, the proxy VAR successfully rules out the other shocks as

confounders. Yet, in order to disentangle the two identified shocks additional re-

strictions are needed. Different solution were proposed in the literature. Mertens

and Ravn (2013) assume a recursive structure, meaning that one of their two iden-

tified shocks has no contemporaneous impact on a specified variable. Piffer and

Podstawski (2018) distinguish between uncertainty and news shocks by enforcing

that each shock is correlated more strongly to the instrument targeting it.

For the latter strategy, the inequality restriction results in the set identification of

the structural parameters. Yet, the set identification strategies inherit the potential

to lead to rather large and uninformative sets if the identification restrictions are

not sharp enough. On the contrary hard equality restrictions which sharply identify

the structural parameters, as e.g. in Mertens and Ravn (2013), are typically hard to

defend. The difficulties in both cases highlight the importance of economic intuition

in the identification of SVARs. I propose to use restrictions on the contribution of

a specific shock to the forecast error variance (FEV) of a target variable in order

to disentangle the identified shocks in the proxy VAR. Depending on the available

economic intuition the FEV restrictions allows both point and set identification.

Set identification of shocks based on restrictions on the contributions to the FEV

were introduced by Volpicella (2021). The main idea is to bound the contributions of

the target shock to the FEV of a specified variable. These bounds induce inequality

restrictions on the structural model, similar to e.g. sign restrictions, and the identi-
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fied set consists of all the structural representations that satisfy them. The bounds

on the FEV can either replace or accompany existing inequality restrictions. Hence,

the bounds offer a possibility to identify the impulse responses, which are often

the key element of interest in the SVAR environment, without the need to impose

restrictions on exactly the parameters of interest. Yet, if the bounds on the FEV

accompany existing inequality restrictions they help to sharpen the identification

and alleviate the problem of large uninformative identified sets.

Point identification of shocks via restrictions on the FEV dates back to Faust

(1998) and Uhlig (2004a) and was originally an alternative to the bias prone long-run

restrictions. The shock is identified to be the shock that maximizes the contribution

to the FEV of a specific variable. Francis et al. (2014) coined the term ’Max-

Share’ for this identification strategy and in the following I use this expression to

refer to it. However, Dieppe et al. (2019) point out the as soon as more than one

shock contributes to the FEV of the chosen variable, the maximization of the share

identifies a combination of the contributing shocks. Due to this drawback the Max-

Share approach is only in specific situations applicable. In the literature it has, for

instance, been used by Barsky and Sims (2011) to identify technology news shocks

and by Ben Zeev and Pappa (2017) to identify defence spending news shocks.

The merit of fusing proxy VARs and the Max-Share approach is that sharp

point identification of the structural parameters is achieved without the need for

strict equality restrictions. Certainly, the drawback of the pure Max-Share frame-

work carries over to the application in the proxy VARs. Hence, the Max-Share

approach only correctly disentangles the underlying shocks if one of them exclu-

sively contributes to a variable in the system. Shocks that contribute to the FEV

but are not related to the proxies are cancelled out by the proxy VAR. Yet, if the

condition of exclusive contribution is not fulfilled the results will be biased. Thus, I

propose to augment the Max-Share framework with an inequality restriction to dis-

entangle the shocks while removing or reducing the bias. This strategy is limited to

the case when two shocks are identified with two instruments. However, in practice

this highly relevant as finding two suitable proxy variables is difficult enough. The

inequality restriction is of the form that the contemporaneous impact of shock one

on a specified variable is larger than the impact of shock two on the same variable. If

known, one can also incorporate the margin by which the response to the one shock

exceeds the response of the other shock into the inequality constraint to reduce the

bias further.

The simulation study shows that the Max-Share approach successfully disentan-

gles the shocks in the proxy VAR. In the case of exclusive contributions the basic

Max-Share identification is sufficient to disentangle the structural shocks. If the ba-

sic Max-Share framework is biased the augmentation with the mentioned inequality
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constraint reduces or removes the bias depending on the specification of the addi-

tional constraint. The closer the inequality constraint to the actual margin of the

restricted contemporaneous responses the closer the estimate to the true underlying

structural parameters.

Compared to the Max-Share framework the bounds offer a more flexible ap-

proach with less restrictive assumptions and it can be easily combined with other

types of restrictions. Yet, the benefits come with the cost of loosing the sharp point

identification. Nevertheless, bounding the FEV is a useful identification strategy

whose assumptions can be backed with economic theory and intuition. I present

an empirical illustration which highlights one useful application of the bound con-

straints. I weaken the strict identification assumption by Mertens and Ravn (2013)

and show that their results are, although qualitatively not considerably different,

statistically less convincing.

Section two commences with the introduction of the baseline SVAR framework

and the introduction of the proxy VAR. Section three describes the usage of re-

strictions on the FEV for the identification of the structural VAR. It starts with

the more general set identification approach via the bounds on the FEV and ends

with the more strict point identification via the Max-Share framework. Section four

and five present the results of the simulation study and of the empirical illustration,

respectively.

2 Econometric Framework

2.1 The Structural VAR

The starting point is the k dimensional stationary structural VAR(p) model:

yt =

p∑
m=0

Amyt−l +Bwt, t = 1, ...T, (1)

where the k × 1 vector wt depicts the economically meaningful structural shocks

(e.g. Kilian & Lütkepohl, 2017). The k×k impact matrix B maps the reduced form

innovations into the structural shock, ut = Bwt. The elements of the k × 1 white

noise vector ut are the reduced form innovations. To shorten the notation one can

rewrite the SVAR in (1) as:

yt = Axt +Bwt, t = 1, ...T, (2)

with xt = (y′t−1, ..., y
′
t−p)

′ and A = (A1, ..., Ap). A constant is omitted for the brevity

of the notation but it can be included in a straightforward way.
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Common to most identification strategies is the normalization E(wtw
′
t) ≡ Σw =

IK , which yields the set of covariance restriction E(utu′t) ≡ Σ = BB′. Without

further assumptions these restrictions do not suffice to pin down the structural

parameters as the resulting system of equation has many possible solutions. The

Cholesky decomposition of Σ, denoted by Σc, satisfies these covariance restrictions.

Yet, they will also hold for every rotation with an k × k orthonormal matrix Q,

Σ = ΣcΣ
′
c = ΣcQQ

′Σ′
c. Giacomini, Kitagawa, and Read (2021) refer to this repre-

sentation of the SVAR as the ’orthogonal reduced form’.

The moving average representation of the SVAR is then given by:

yt =
∞∑

m=0

CmΣcQwt−m, t = 1, ...T, (3)

where the k× k matrices Cm contain the moving average coefficients which give the

response of the system to the reduced form innovations m periods ago. The impulse

response of variable i to shock j at horizon h is given by:

ηi,j,h = e′iCmΣcqj, (4)

where ei and ej are the ith and jth column of Ik, respectively, and qj is the jth

column of Q.

Apart from the impulse response functions the FEV decomposition is are an ele-

ment of interest in the SVARs. In this paper the FEV decomposition is particularly

of importance as identifying restrictions are placed on it. To formalize the FEV

decomposition let the h-step-ahead forecast of yt be:

yt+h|t =
∞∑

m=0

Ch−mut−m. (5)

The h-step ahead forecast error is then given by:

yt+h − yt+h|t =
h−1∑
m=0

CmΣcQwt+h−m, (6)

and the h-step ahead forecast error covariance matrix is represented by:

Ω(h) =
h−1∑
m=0

CmΣcQQ
′Σ′

cC
′
m =

h−1∑
m=0

CmΣC
′
m. (7)

The contribution from shock j to the total forecast variance of variable i at horizon
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h is then:

Ωi,j(h) =
e′i(
∑h−1

m=0CmΣcqjq
′
jΣ

′
cC

′
m)ei

e′i(
∑h−1

m=0CmΣC ′
m)ei

, (8)

where ei is the ith column of the identity matrix Ik and qj is the jth column of Q.

In order to identify the structural parameters of interest restrictions have to be

placed on the model. As mentioned before two different identification schemes ex-

ist. Set identification amounts to finding all the rotation matrices Q that satisfy the

identification restrictions. In turn, they define the identified set for e.g. the impulse

response functions or the FEV decomposition. Common set identification restric-

tions are, for instance, inequality restriction on the structural impulse responses.

The stricter the identifying restrictions, the smaller the identified set. In point iden-

tification schemes the restrictions are such that only one admissible rotation matrix

Q exists. The typical point identification restrictions are equality restrictions on the

elements of the impact matrix B. For example, k(k − 1)/2 independent equality

restrictions on B are sufficient to point identify the structural parameters.

The proxy VAR framework that is introduced in the next subsection allows both

for point and set identification. If one shock is identified using one proxy variable

the parameters are point identified up to scale. With multiple shocks and multiple

proxies additional restrictions are needed in order to disentangle the shocks. In the

latter case the just mentioned sign or equality restrictions are one possibility and

depending on the type of imposed restrictions the structural parameters are either

point or set identified.

2.2 Proxy VAR

For the the proxy VAR framework I loosely follow the framework by Giacomini et

al. (2021) as the inference for the set identification part will be based on their work.

As in the standard instrumental variable (IV) framework, the proxy variables - also

called instruments interchangeably - have to satisfy two key assumptions. Without

loss of generality, let zt be a l× 1 vector of instruments that are related to the first

l structural shocks in wt. The two following two conditions have to be satisfied:

E(ztw(1:l),t) = Ψ and E(ztw(k−l+1:k),t) = 0, (9)

where Ψ is an l× l matrix of full rank. These two conditions resemble the relevance

and exogeneity conditions of the standard IV approach. The instruments have to

be related to the target shocks and unrelated to the remaining structural shocks.
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Assume that the proxies follow:

Γ0zt = Λwt +

pm∑
l=0

Γmzt−l + νt, t = 1, ..., T. (10)

The process in (10) indicates that the proxies are related to the structural shocks.

Giacomini et al. (2021) assume that (w′
t, νt)

′|Ft−1 ∼ N(0(k+l)×l, Ik+l), where Ft−1 is

the information set at time t− 1.

The assumptions in (9) together with process (10) yield:

E(ztw′
t) = Γ−1

0 Λ = [Ψ, 0l×(k−l)]. (11)

Plugging model (2) into the process in (10) and left-multiplying by Γ−1
0 yields:

zt = Dyt +Gxt +

pz∑
m=0

Hmzt−m + vt, t = 1, ..., T, (12)

where D = Γ−1
0 ΛB−1, G = −Γ−1

0 ΛA and Hm = Γ−1
0 Γl for each m = 1, ..., pz.

Giacomini et al. (2021) show that (11) can also be represented by:

E(ztw′
t) = DΣcQ = [Ψ, 0l×(k−l)], (13)

implying that the relevance assumption rank(Ψ) = l is fulfilled if and only if

rank(D) = l. The exogeneity and relevance assumption regarding the proxies re-

stricts the rotation matrices Q such that they follow the structure in (13). In this

fashion the proxy VAR shrinks the identified set.

In the following I deviate from the notation of Giacomini et al. (2021) and use the

proxy VAR framework by Piffer and Podstawski (2018). This allows me to handle

both the bounds on the FEVD and the combination with Max-Share approach in the

same proxy VAR framework. The next section describes how the robust bayesian

inference algorithm of Giacomini et al. (2021) is adapted to the representation of

the proxy SVAR below.

Following Piffer and Podstawski (2018), I decompose the reduced form errors

into two components:

ut = Bzw(1:l),t +B−zw(k−l+1:k),t, t = 1, ..., T, (14)

where Bz is the k×l block of the impact matrix B that contains the first l colums and

B−z is the according remaining part of B. Bz contains the structural parameters of

the shocks related to the proxies whose identification is the goal of the proxy VAR.

I refer to this matrix as the ’proxy impact matrix’. Considering (14) together with
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the assumption regarding the proxies in (9) yields E(utz′t) = BzΨ
′ = Z. Equation

(13) lets me rewrite this expected value:

E(utz′t) = BE(wtz
′
t) = BE(ztw′

t)
′ = ΣD′, (15)

with B = ΣcQ and E(ztw′
t) = DΣcQ. Hence, ΣD′ = Z = BzΨ

′. Partitioning the

matrix ΣD′ and Bz yields:

ΣD′ = Z =

(
Z1

Z2

)
and Bz =

(
B11

B21

)
(16)

and thus

B21 = Z2Z
−1
1 B11 = ZlB11, (17)

where Z1 is the upper l × l block of the matrix Z and B11 is the upper l × l block

of Bz. Hence,

Bz =

(
B11

ZlB11

)
, (18)

and if the upper l× l block B11 is identified the remaining block of the proxy impact

matrix is identified as well. In order to identify the upper block of Bz decompose

the matrices of the standard covariance restrictions E(utu′t) ≡ Σ = BB′ such that:(
Σ11 Σ12

Σ21 Σ22

)
=

(
B11 B12

B21 B22

)(
B11 B21

B12 B22

)
, (19)

where Σ11 is the upper left l× l block of Σ. B11 is again the upper l× l block of Bz

and therefore the upper left block of B. The remaining blocks of the two matrices

have the according dimensions. It can be shown that B11B
′
11 = Σ11 − B12B

′
12 (see

Piffer & Podstawski, 2018) with:

B12B
′
12 = (Σ21 − ZΣ11)

′Π−1(Σ21 − ZΣ11), (20)

Π = Σ22 + Z ′Σ11Z
′ − Σ21Z

′ − ZΣ′
21. (21)

Similar to the covariance restrictions E(utu′t) ≡ Σ = BB′, the equation B11 =

Σ11 − B12B
′
12 does not pin down the parameters of B11 uniquely. Let Bc

11 be the

Cholesky decomposition of Σ11 − B12B
′
12, then every rotation of Bc

11 with an l × l

orthonormal matrix Q will also satisfy B11 = Bc
11B

c′
11 = Bc

11QQ
′Bc′

11 = Σ11−B12B
′
12.

The exogeneity and relevance restriction regarding the proxies is satisfied for

Bz by construction. Hence, the identification boils down to finding the set of l ×
l orthonormal matrices Q that satisfy the additional identifying restrictions, e.g.

inequality restriction on structural parameters. In the next section I describe how
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inequality restrictions on the FEV like in Volpicella (2021) fit into this framework.

It is also possible to point identify the structural parameters, what again comes

down to finding the one rotation matrix for which the restrictions are satisfied. If the

resulting recursive structure of Bc
11 for the contemporaneous impacts of the identified

shocks is economically justifiable, the Cholesky decomposition immediately point

identifies the structural shocks. This is, for instance, the identification assumption

used in Mertens and Ravn (2013) and the corresponding rotation matrix is just

Q = Il.

A special case arises when l = 2, meaning that two shocks are identified with two

instrument. In the proxy VAR the rotation matrix will be of dimension 2 × 2. In

this case, knowing one column of the rotation matrix also gives the second column

of the rotation matrix Q up to a sign normalization. If the first column of a 2 × 2

orthogonal matrix is known the second column is pinned down up to sign through

following equations:

Q =

(
q11 q12

q21 q22

)
, 1 = q221 + q222 and 1 = q211 + q212.

Hence, restrictions on one of the two shocks are sufficient to identify both shocks

of interest. The second shock is pinned down due to the properties of orthogonal

matrices. I make use of this special case in combination of the proxy VAR with the

Max-Share framework where I point identify two shocks with restrictions on only

one of the two shocks.

To avoid confusion, in the following sections every rotation matrix is of dimension

l × l. For the parts describing identification of the proxy VAR with the Max-Share

approach l = 2.

3 Proxy VAR with Restrictions on the FEV

3.1 Proxy VARs with Bounds on the FEV

The bounds on the contributions to the FEV where introduced by Volpicella (2021)

and this section applies them to the proxy SVAR framework. In doing so, I loosely

follow the notation of Volpicella (2021). Such bounds on the FEV are inequality

restrictions in the spirit of the well known sign restrictions on impulse response

parameter, an thus the structural parameters are set identified. Naturally, the chal-

lenges the set identification literature deals with also apply to this identification

scheme.
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3.1.1 Bounding the contribution to the FEV

In the proxy VAR framework the contribution of shock j to the FEV of variable i

at horizon h is:

Ωij(h) =
e′i(
∑h−1

m=0CmBzqjq
′
jB

′
zC

′
m)ei

e′i(
∑h−1

m=0CmΣC ′
m)ei

. (22)

Uhlig (2004b) shows that equation (22) can also be written as:

Ωi,j(h) = q′jRi,hqj, (23)

where

Ri,h =

∑h−1
m=0 c

′
i,mci,m

e′i(
∑h−1

m=0CmΣC ′
m)ei

, (24)

with ci,m = eiCmBz is the ith row vector of CmBz. Ri,h is a positive semidefinite

and symmetric l × l real matrix.

Given equation (23) the bounds on the contribution to the FEV of variable i by

shock j at horizon h can be represented by:

τ i,j,h ≤ q′jRi,hqj ≤ τ i,j,h,

where τ i,j,h and τ i,j,h depict the lower and upper bound, respectively, and 0 ≤
τ i,j,h ≤ τ i,j,h ≤ 1. Let Ij be a set of indices that depict whether the FEV of variable

i is bounded and Hij collects the horizons h = 0, 1, ... for which these bounds are

imposed. The whole set of bound constraints is then characterized by

τ i,j,h ≤ q′jRi,hqj ≤ τ i,j,h, for i ∈ Ij and h ∈ Hij.

These bounds on the contributions to the FEV can also be applied together with

already existing set identifying inequality restrictions, like e.g. sign restrictions.

Furthermore, restrictions on the correlations of the proxies with the identified shocks

are possible. These type of restrictions constrain the elements of Ψ. They can be

checked employing the routine used by Piffer and Podstawski (2018). The identified

set is then characterized by all the rotation matrices Q for which these FEV bounds

and other potential restrictions are satisfied. As pointed out by Volpicella (2021)

such bounds on the FEV contributions can be derived either through economic

theory or simply by strong beliefs due to economic intuition.
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3.1.2 Nonemptiness of the Set

The bound restrictions, together with potential additional restrictions, are subject

to set-identification specific considerations. On the one hand, if the bounds are not

restrictive enough one gets potentially large identified sets which yield a fuzzy iden-

tification of the underlying structural effects. If, on the other hand, the bounds are

to restrictive the identified set might be empty because no structural representation

of the model satisfies them.

Unfortunately, no formal guidance helps to assess the restrictions in this regard,

what in turn highlights the importance of the economic theory or intuition behind

them. Yet, if the identified set is empty, this might be a sign that the imposed

restrictions are not reasonable.

Furthermore, it is important to know whether the set is empty for the estimation

procedure. Volpicella (2021) provides sufficient conditions for the nonemptiness of

the identified set when only one shock is restricted. These sufficient conditions also

apply in the same fashion to the proxy VAR framework. Recall that the contribution

of the target shock j to the FEV of variable i is:

Ωij(h) = q′jRi,hqj, (25)

Let λihm the real eigenvalues of Ri,j with i ∈ Ij, h ∈ Hij and m = 1, ..., l. Uhlig

(2004b) shows that finding the maximum (minimum) of (25) with respect to qj

amounts to finding the largest (smallest) eigenvalue λihm of Ri,j and the maximum

(minimum) is achieved by using the corresponding eigenvector qm as a rotation

vector qj. Hence, the eigenvalues λ
ih
m correspond to the contributions to the FEV of

variable i at horizon h.

Proposition 3.1 follows from Proposition 3.1 of Volpicella (2021) and gives suffi-

cient conditions for the nonemptiness of the identified set when a single target shock

j is restricted.

Proposition 3.1. (Nonemptiness) If the following conditions hold:

(a) ∃i ∈ Ij,∃h ∈ Hij | τ i,j,h ≤ λihm ≤ τ i,j,h, Rqm = λihmqm for some m = 1, ..., l,

(b) given qm from (a), τ i,j,h ≤ q′mRi,hqm ≤ τ i,j,h∀i ∈ Ij and ∀h ∈ Hij, and all

other additional restrictions are satisfied,

then the identified set is non-empty and bounded.

If the contribution to the FEV of a single variable i is bounded the condition

reduces to a simple check whether one of the eigenvalues λihm lies within the bounds.

When additional restrictions, like sign restrictions, are imposed one also has to check

whether they are satisfied for qj = qm.
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Apart from Volpicella (2021) Proposition 3.1 not only applies when only one

shock is constrained. In the special case of l = 2, Proposition 3.1 also helps to

detect nonemptiness also when both shocks are subject to identification restrictions.

Knowing qm amounts to knowing the whole 2 × 2 rotation matrix Qm due to the

properties of orthonormal matrices. Hence, in step (b) of Proposition 3.1 also the

restrictions on the second shock can be checked.

Another difference to Volpicella (2021) is the number of eigenvalues that are

available for assessment of the nonemptiness. In the proxy VAR only l eigenvalues

are at hand compared to the k eigenvalues in Volpicella (2021). In practice the

sufficient conditions will be met more frequently compared to the case with only l

eigenvalues. On top of that, the largest and smallest eigenvalue in the proxy VAR

case represents the maximum and minimum contribution to the FEV at the specific

horizon. Hence, if l = 2 only the maximum and minimum contribution can be used

to check the nonemptiness. If the bounds do not encompass the extreme values the

sufficient conditions are not satisfied. Yet, in practice it might be interesting to set

the bounds on the FEVD such that they are close to the maximum or minimum

and the empirical illustration highlights this case.

If the sufficient conditions of Proposition 3.1 are not fulfilled a different approach

helps to approximate the nonemptiness of the identified set. As often done in the

literature, one can draw a specified number of matrices Q from the orthonormal

space. If none of this draws satisfies the restrictions one can conclude that the set

is empty.

Lastly, one can see that the set is empty if the upper bound τ i,j,h is smaller than

the minimum eigenvalue for one of the imposed bounds, or if the lower bound τ i,j,h is

larger than the maximum eigenvalue. In these cases the just mentioned alternative

is obsolete.

3.1.3 Estimation and Inference

This subsection introduces the robust bayesian inference framework by Giacomini

et al. (2021). The benefit of this approach is that it avoids specifying a prior over

the rotation matrices Q that is not updated by the data. Baumeister and Hamilton

(2015) show that when the prior for the rotation matrices Q is a uniform distribution

over that space of orthonormal matrices, the common approach in the literature, the

structural parameters are influenced by the prior distribution even asymptotically.

The remedy is to use a distribution-free approach. In the robust bayesian in-

ference the endpoints of the identified set are calculated numerically or analytically

if possible. The endpoints, or boundaries, of the identified set are the maximum

and minimum values of the structural parameters of interest given all admissible

rotation matrices Q. Giacomini et al. (2021) show that this procedure yields prior
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robust inference over the structural parameters.

As mentioned previously, I adapt the algorithm used in Giacomini et al. (2021) to

the specification of the proxy VAR framework in the previous section. I incorporate

the exogeneity and relevance restriction regarding the proxies via the proxy impact

matrix Bz and only rotate the upper block B11 with an orthonormal matrixQ. Apart

from the benefit that I can fit bounding the FEVD and the Max-Share approach

in the same proxy VAR framework, two additional advantages arise. One merit

is that I do not need to draw the rotation matrices Q subject to the exogeneity

restriction as depicted in (13). For large iteration counts of the inference algorithm

this potentially saves some computation time. Further, I avoid a specific ordering of

the variables in the VAR. The ordering convention defined in Giacomini et al. (2021)

might be difficult to incorporate in practice when it is not obvious which structural

shock is linked to which variable in the VAR system.

To describe the bayesian algorithm let ϕ ∈ Φ collect all the reduced form param-

eters in (2) and (12). For the following algorithm it is not important which prior

for ϕ is used as long as one is capable to draw from the posterior distribution of

the reduced form parameters. For the results derived in the next sections I follow

Giacomini et al. (2021) and use an (improper) Jeffrey’s prior.

Suppose that the impulse responses ηi,j,h = e′iCmBzqj are the structural parame-

ters of interest. The upper and lower boundary of the identified set with respect to

the imposed restrictions are depicted by ui,h(ϕ) and li,h(ϕ). Algorithm 1 describes

how to conduct robust bayesian inference for the identified set of ηi,j,h.

Algorithm 1.

Step 1: Obtain draws ϕ from its posterior distribution and compute Bc
11.

Step 2: Check whether the identified set is empty. If the set is empty go back

to Step 1. If the set is non-empty proceed with Step 3.

Step 3: Compute the boundaries of the identified set:

li,h(ϕ) = min
Q
e′iCmBzqj

s.t τ i,j,h ≤ q′jRi,h(ϕ)qj ≤ τ i,j,h, ∀i ∈ Ij and ∀h ∈ Hij,

QQ′ = Il,

potential sign restrictions and/or restrictions on Ψ.

The upper boundary ui,h(ϕ) is obtained analogously.

Step 4: Repeat Steps 2 and 3 N times.
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Step 5: Approximate the set of posterior means and the robust credible region

as described in Giacomini et al. (2021).

Especially, Step 2 differs from the algorithm of Giacomini et al. (2021) as Propo-

sition 3.1 helps to gauge whether the identified set is empty. If the sufficient con-

ditions of Proposition 3.1 are not fulfilled a specified number of rotation matrices

Q are drawn to approximate the set as being empty if none of the draws satisfies

the identification restrictions. In this case, Step 2 differs from Giacomini et al.

(2021) as the l × l rotation matrices Q do not need to be drawn considering the

exogeneity conditions for the proxies. These conditions are already incorporated in

the construction of Bz. Step 3 differs in the specification of the proxy VAR, and

thus the dimension of the rotation matrix Q. Second, the added constraint in the

maximization problem that represents the restrictions on the FEV are a distinction

to the algorithm in Giacomini et al. (2021).

Step 3 poses a nonconvex optimization problem. Hence, the typical approaches

to handle with gradient based optimization techniques are necessary. The simple

remedy is to use different initial values and to compute the maximum or minimum

over the set of solutions which are derived with the different initial values.

Giacomini et al. (2021) also provide an algorithm to approximate the boundaries

of the identified set in order to check the convergence of the numerical optimization

or simply as an alternative.

Algorithm 2. Replace Step 3 of Algortihm 1 with:

Step 3: Draw Q until N draws hat satisfy the identification restrictions are

reached. For each Qn, 1, ..., N compute ηn,i,j,h = e′iCmBzqn,j and approximate

ui,h(ϕ) and li,h(ϕ) by the maximum and minimum of ηn,i,j,h over all N draws.

Montiel Olea and Nesbit (2021) show that the random sampling approximation

of Algorithm 2 can be represented as a supervised learning problem. They provide

the number of admissible draws of Q that are needed to learn the set with a certain

precision. Generally, the approximated set will be smaller than the true set, yet with

a sufficient amount of draws the approximation error will be small. The theoretical

results of Montiel Olea and Nesbit (2021) can be used to judge the precision of the

approximation at a certain amount of draws N .

Giacomini et al. (2021) argue that this approximation might be favourable under

certain circumstances. Firstly, if the VAR system is large and one is interested in

the impulse responses for many variables at many horizons. Drawing many rotation

matrices Q is computationally less costly than optimizing for every variable at every

horizon. This is especially true with the representation of the proxy VAR used in

this paper as it is quite easy to draw simple l × l rotation matrices considering

that l is small in most empirical applications. Second, if not only the impulse
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responses but also e.g. the FEV decomposition is of interest the approximation has

an advantage. Each draw of Q can be used to compute the impulse responses and

FEV decomposition of each variable at every horizon, while the optimization has to

be carried out for each parameter, variable and horizon individually.

3.2 Proxy VAR and Max-Share

This sections describes how the shocks in the proxy VAR can be disentangled using

the Max-Share framework that was introduced by Faust (1998) and Uhlig (2004b).

The key assumption behind the Max-Share approach is, that the shock of interest j

is the one that maximizes the contribution to the FEV of a target variable i. This

amounts to finding the rotation vector qj for which this maximum is achieved:

q∗j = argmax
H∑

h=0

Ωz
i,j(h) s.t. q′jqj = 1. (26)

In the proxy VAR, Ωz
i,j(h) is given by:

Ωz
i,j(h) =

e′i(
∑h−1

m=0CmBzqjq
′
jB

′
zC

′
m)ei

e′i(
∑h−1

m=0CmΣC ′
m)ei

, (27)

where qj is the jt column of the l×l orthonormal matrix Q. The closed form solution

of the maximization problem shown by Uhlig (2004b) also applies to the proxy VAR

case in (26).

Yet, recently Dieppe et al. (2019) highlighted that this identification assumption

fails if another shock also contributes to the FEV of the same target variable. To give

an example assume that the technology shock is accountable for most of the FEV

of a total factor productivity (TFP) measurement. If then the technology shock is

identified as the shock that maximizes the contribution to the TFP measurement, the

results will be biased because also other shocks contribute to the same FEV. Dieppe

et al. (2019) present strategies how to circumvent this problem of confounding shocks

in the baseline Max-Share identification without proxies. In this section I focus on

the remedies to the bias concerns that the proxy VAR framework offers.

3.2.1 Ruling out Confounders via the Proxy VAR

First and foremost, the proxy VAR helps with the confounding shocks as it rules

out confounding shocks that are not related to the proxies. For example, assume

two proxies are used to identify two shocks. One of the shocks contributes the most

to the FEV of a specified variable and out of the two shocks that are related to

the proxies it contributes exclusively to the FEV of this variable. Suppose another
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shock that is not related to the proxies also contributes to the FEV of this target

variable. Yet, as it is not related to the proxies it is ruled out as a confounding

shock. As out of the two shocks that are related to the proxies only one exclusively

contributes to the FEV of the target variable, the Max-Share framework correctly

disentangles the shocks of interest.

This particular example is depicted in the simulation study of the next section

and provides evidence that the proxy VAR rules out potentially confounding shocks.

(More to come)

3.2.2 Reducing the Bias - Two Shocks

In the special case of two shocks additional inequality restrictions can tackle bias

concerns even when both shocks related to the proxies contribute to the FEV of

the target variable. In practice the case of to instruments is highly relevant, as

finding multiple convincing proxy variables is difficult and finding two of them is

already a challenging task. If two shocks are identified using two instruments the

rotations matrix Q has dimension 2×2. Then identifying the first column of a 2×2

orthogonal matrix also identifies the second column up to a sign normalization due

to the properties of orthonormal matrices:

Q =

(
q11 q12

q21 q22

)
, 1 = q221 + q222 and 1 = q211 + q212. (28)

Hence, the identification of one shock via the Max-Share framework also gives the

structural parameters of the second shock. Suppose, the first shock is identified with

the Max-Share strategy, then the impulse responses of the second shock are pinned

down up to sign. Recall, that the structural impulse response of variable i to the

first shock at horizon h is given by:

ηi,1,h = e′iChBzq1.

The additional inequality restriction that I propose restricts the relative magni-

tude of the impulse response of the same variable to the two shocks in the system.

The corresponding augmented optimization problem for the Max-Share strategy is

given by:
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q∗j = argmax
H∑

h=0

Ωz
i,j(h) (29)

s.t.

q′1q1 = 1,

q′1q2 = 0,

ηi,1,0 − ηi,2,0 > ϵ,

where ηi,1,0 and ηi,2,0 are the contemporaneous responses of variable i to the first

and second shock, respectively.

Two things regarding this added inequality restriction have to be accounted for.

Firstly, the added restriction has to be binding. To see if the restriction is binding

one first has to compute the biased results using the basic Max-Share strategy (26) in

the proxy VAR. Given the biased results one is able to check whether the inequality

restriction that wants to be imposed is already satisfied or not. If the restriction is

already satisfied including it as in the optimization problem in (29) will not change

the biased results as the constraint is not binding. Hence, in practice the first step

is to check the biased results in order to see whether a suitable economic intuition

can serve as a binding constraint to eliminate the bias. Certainly, it can be the

case that given the application no suitable economic intuition is available, and thus

the identification via the augmented Max-Share framework fails. Yet, the weaker

bound restrictions on the FEV, described in the previous section, can serve as an

alternative to the more strict Max-Share setting in these cases.

Second, specifying the margin ϵ by which the response to one shock exceeds the

one to the other shock is difficult in practice. Even with a sound economic intuition

on the relative magnitudes of the responses it is probably hard to have an intuition

for the margin ϵ. Thus, I propose to specify a range for ϵ for which one is confident

that the true margin is contained and report the results for a grid of these ϵ values.

The simulation study will depict examples how to assess whether the constraint is

binding and also results for different values of ϵ.

Furthermore, it is potentially possible to restrict other horizons of the impulse

responses as well. This needs to be explored further. However, it is most likely

easier to argue with the initial responses in practice.

3.2.3 Estimation and Inference

The combination of the proxy VAR with the Max-Share framework can also be han-

dled with the bayesian Algorithm 1 that was depicted above. In combination with
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the Max-Share framework, steps two and three are simply replaced with carrying

out the Max-Share optimization. Note that this reduces the robust bayesian ap-

proach to conventional bayesian inference. Step three in Algorithm 1, the core of

the robust bayesian inference, computes the boundaries of the identified set and in

the point identification case the identified set is a singleton. Hence, computing the

bounds reduces to the computation of the point estimate.

However, in point identification scheme bootstrap inference is popular. In this

case, I propose the bootstrap by Jentsch and Lunsford (2019a), which is based on the

heteroskedasticity robust bootstrap by Brüggemann, Jentsch, and Trenkler (2016).

This approach relies on estimating Z and Σ to get an estimate for Bc
11 (see Piffer

& Podstawski, 2018). The bootstrap confidence intervals are constructed in the

conventional way.

4 Simulation Results

In the simulation studies of this section I simulate a trivariate system. I follow Piffer

and Podstawski (2018) and use the New Keynesian model by An and Schorfheide

(2007) and Komunjer and Ng (2011). The model contains interest rates rt, output

xt and inflation πt. TFP shocks wz
t , government spending shocks wg

t and monetary

shocks wr
t are the structural shocks that hit the system. As pointed out by Giacomini

(2013), calibrating the parameter gives following DGP: rt

xt

πt

 =

 0.79 0 0.25

0.19 0.95 −0.46

0.12 0 0.62


 rt−1

xt−1

πt−1

+

 0.61 0 0.69

1.49 1 −1.16

1.49 0 −0.75


 wz

t

wg
t

wr
t

 .

(30)

In contrast to Piffer and Podstawski (2018) I set the variance of the structural shocks

to unity in order easily compute the actual contribution to the FEV decomposition.

Hence, the structural shocks are drawn from a normal distribution with mean zero

and unit variance and then used to simulate the data with equation (30). The

instruments are constructed with:

m1t = τ1w
z
t + (1− τ1)w

g
t + τ2ν1t

m2t = (1− τ1)w
z
t + τ1w

g
t + τ2ν2t,

where τ1 governs the strength of the relation of the first to shocks with the instru-

ments and τ2 governs the effect of the white noise disturbances ν1t and ν2t. I set

τ1 = 0.55 and τ2 = 0.01 which leads to the proxies being sufficiently strong.
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The technology shock wz
t is accountable for the most part of the FEV of the

interest rate rt. An interesting feature of this DGP is that the government spending

shock does not contribute to the FEV of the interest rate and inflation at any

horizon. This enables me to construct two scenarios:

Scenario A: The proxies are constructed such that they are related to the

technology shock z
t and the government spending shock wg

t . Out of this two

shocks wz
t contributes exclusively to the FEV of the interest rate rt.

Scenario B: The proxies are constructed such that they are related to the

technology shock wz
t and the monetary policy shock wr

t . Both of this two

shocks contribute to the FEV of the interest rate rt.

These two scenarios will be if particular interest for the subsection in which the

shocks are disentangled with the Max-Share approach.

4.1 Simulation Results - Bound Restrictions

To come.

4.2 Simulation Results - Max-Share

This subsection presents the simulation results for the case when to shocks are

disentangled in the proxy VAR. The first results compare Scenario A and B which

were described above. In Scenario A out of the two identified shocks, only the

technology shocks contributes to the FEV of the interest rate. In Scenario B both

shocks contribute to the FEV of the interest rate. Up to horizon H = 13 the

technology shock wz
t contributes on average 82%, the government spending shock

wg
t does not contribute to the FEV and the monetary policy shock wr

t contributes

the remaining 18%. In this section the interest rate is always the target variable in

the Max-Share framework. Hence, the underlying assumption is that the technology

shock is the one that maximizes the contribution to the FEV of the interest rate.

Table 1 depicts the results for the identification via maximization of the FEV

after incorporating the information of the instruments as in (26) and without further

inequality restrictions on relative magnitudes. As this is more of a confirmation

exercise in which cases the Max-Share approach succeeds and fails I choose a large

sample size of T = 1, 000 with M = 1, 000 Monte-Carlo iterations. The first two

columns of the table show the true structural parameters of the DGP, the next

two columns the combination of proxy VAR and Max-Share and the last two the

identification via the Cholesky decomposition as in e.g. Mertens and Ravn (2013),

i.e. B11 = Bc
11 is lower triangular. Looking at the results for Scenario A shows that
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after incorporating the proxies the shock that is not related to them is purged from

the maximization problem. Only the two shocks that are related to the instruments

are factored in and as one of the shocks contributes exclusively to the FEV of

the target variable the Max-Share approach is suitable to disentangle these two.

Yet, this set-up with exclusive contribution implies a recursive structure for the

contemporaneous impacts of the shock, and thus the Cholesky decomposition for the

upper 2× 2 block of the proxy impact matrix will also identify the true underlying

structural parameters.

Hence, the potentially more interesting case is when both identified shocks con-

tribute to the FEV of the target variable as in Scenario B. As seen in the panel

for Scenario B of Table 1, the Cholesky decomposition fails to identify the true

impact matrix as there is no recursive structure between the two identified shocks.

However, as expected also the combination of the proxy VAR with the Max-Share

approach yields biased results because both shocks contribute to the FEV of the

target variable. As pointed out by Dieppe et al. (2019), the Max-Share framework

will be biased due to the confounding shock.

To successfully disentangle the two shocks when both shocks contribute to the

FEV, the Max-Share framework needs to be augmented. As mentioned above, I pro-

pose to use restrictions on the contemporaneous responses of a specified variable.

For the illustrative purpose I restrict the relative contemporaneous response of out-

Table 1: Two Shocks without Exclusive Contribution

DGP Proxy + Max-Share Proxy + Cholesky

Scenario A

0.61 0
0.609
(0.007)

0.004
(0.004)

0.609
(0.007)

0
(0)

1.49 1
1.487
(0.016)

1.014
(0.036

1.485
(0.012)

1.004
(0.03)

1.49 0
1.488
(0.008)

0.015
(0.008)

1.488
(0.008)

0.004
(0.023)

Scenario B

0.61 0.69
0.766
(0.008)

0.512
(0.004)

0.921
(0.006)

0
(0)

1.49 -1.1
1.161
(0.021)

1.624
(0.019

0.163
(0.022)

1.845
(0.016)

1.49 -0.75
1.25
(0.016)

1.578
(0.014)

0.426
(0.017)

1.6131
(0.011)

The table depicts the average of the estimated structural parameters over the 1,000 Monte-
Carlo simulation iterations derived with the proxy SVAR. The shocks are once disentangled
with the baseline Max-Share approach and once with the Cholesky decomposition. The
value in the bracket depicts the respective standard deviation.
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put to the two identified shocks. In this DGP, a common, one standard deviation,

expansionary technology shock has a more pronounced positive effect (1.49) than

a common expansionary monetary policy shock (1.1). Augmenting the maximiza-

tion problem such that this inequality constraint holds helps to disentangle the two

shocks.

Yet, as pointed out before the constraint needs to be binding, meaning that the

biased results of the basic combination of proxy VAR and Max-Share in (26) do not

already satisfy this relation between the shocks. Looking at Scenario B in Table

1, one sees that the contemporaneous response of output to the technology shock

is η2,1,0 = 1.161 while the response to the monetary shock is η2,2,0 = 1.6124. The

constraint that the contemporaneous response to the technology shock has to be

Table 2: Max-Share with Additional Inequality Constraint - Scenario B

DGP Max-Share+, T=1000 Max-Share+, T=250

Panel A: ϵ = 0.38

0.61 0.69
0.613
(0.029)

0.688
(0.026)

0.612
(0.057)

0.688
(0.052)

1.49 -1.1
1.486
(0.044)

-1.106
(0.044)

1.481
(0.087)

-1.101
(0.087)

1.49 -0.75
1.487
(0.031)

-0.755
(0.038)

1.483
(0.062)

-0.755
(0.075)

Panel B: ϵ = 0.2

0.61 0.69
0.659
(0.027)

0.644
(0.027)

0.658
(0.055)

0.643
(0.054)

1.49 -1.1
1.406
(0.044)

-1.206
(0.045)

1.405
(0.075)

-1.205
(0.074)

1.49 -0.75
1.432
(0.032)

-0.856
(0.037)

1.429
(0.062)

-0.858
(0.072)

Panel C: ϵ = 0

0.61 0.69
0.706
(0.026)

0.592
(0.027)

0.706
(0.053)

0.591
(0.055)

1.49 -1.1
1.311
(0.037)

-1.311
(0.037)

1.31
(0.075)

-1.309
(0.074)

1.49 -0.75
1.362
(0.032)

-0.963
(0.036)

1.36
(0.063)

-0.965
(0.07)

The table depicts the average of the estimated structural parameters over the 1,000 Monte-
Carlo simulation iterations. The estimates are derived with the Max-Share+ framework
in the proxy VAR with different values of ϵ.
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larger is binding in this case. Note that for this example the bias is such that every

variable could be used.

In order to impose such a constraint, one would need to argue that from prior

knowledge or economic theory it is known that the common expansionary technology

shock affects output more than the common expansionary monetary policy shock on

impact. Without knowledge about the true DGP this margin ϵ is typically unknown

and needs to be gauged by the researcher.

The full maximization problem for this particular simulation with the just men-

tioned restrictions is:

q∗1 = argmax
H∑

h=0

Ωz
1,1(h) (31)

s.t.

q′1q1 = 1,

q′1q2 = 0,

η2,1,0 − (−η2,2,0) > ϵ,

η2,1,0 > 0,

η2,2,0 > 0.

Table 2 depicts the results for this augmented Max-Share identification, denoted

by Max-Share+. The first two columns again depict the true DGP parameters, while

columns three and four give the results of the Max-Share+ framework with T = 1000

while the last two columns give the results for T = 250. Panel A shows the results

for ϵ = 0.38 which is very close to the true margin by which η2,1,0 exceeds η2,2,0 in

absolute terms. Panel B shows the results for ϵ = 0.2 and Panel C the results for

ϵ = 0. The latter represents the case when restriction boils down to a sign restriction

on the relative magnitudes of the two shocks.

Comparing the estimates throughout the panels reveals that having the (almost)

correct economic intuition with the inequality restriction (ϵ = 0.38) removes almost

all of the bias of the Max-Share approach. Yet, if the true margin is not met part of

the bias remains and it is larger the less close the true margin is met. This is true

for both the technology as well as the monetary policy shock.

Comparing the results in terms of the sample sizes shows that even for smaller

sample sizes like T = 250 the true structural parameters are identified reliably with

the correct economic intuition. Naturally, the bias also remains for smaller sample

sizes when ϵ is not very close to the true margin.

Figure 1 and 2 show the 2,5% and 97,5% quantiles (dashed lines) of the estimated

impulse responses identified by the augmented Max-Share throughout the 1,000
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Figure 1: 95% Point Estimate Bands, ϵ = 0.38 - Scenario B

The solid lines depict the true impulse responses of the DGP. The dashed lines are the
2,5% and 97,5% quantile of the solutions found for the 1,000 Monte-Carlo simulation
iterations.

Monte-Carlo simulation rounds. The true impulse responses are depicted by the

solid lines. Figure 1 presents the responses obtained with the ϵ = 0.38, close to the

true margin while Figure 2 presents the results for ϵ = 0. The impulse responses for

ϵ = 0.2 can be found in the Appendix B.

The figures are in line with the results of Table 2. The estimated responses in

Figure 1 closely identify the true structural impulse response parameters while the

responses in Figure 2 reflect the bias of the impact matrix parameters in the bias of

the impulse responses especially at earlier horizons. As the horizon of the responses

increases the bias sees to shrink.

The bias of the structural impulse responses at different horizon and for different

values of ϵ is depicted in Table 3 for the technology shock and in Table 4 for the

monetary policy shock. Comparing the results throughout the panels the bias is

larger when ϵ is farther away from the true margin. Comparing the results along the

columns shows that the bias is typically larger for earlier horizons of the responses

and is small at later horizons. These patterns are consistent throughout both tables,

and therefore both identified shocks. Results for T = 250 are presented to the

Appendix B.
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Figure 2: 95% Point Estimate Bands, ϵ = 0 - Scenario B

The solid lines are the true impulse responses of the DGP. The dashed lines are the 2,5%
and 97,5% quantile of the solutions found for the 1,000 Monte-Carlo simulation iterations.

The patters found in Tables 3 and 4 are visualized in Figures 3 and 4. The

coloured lines depict the bias of the structural impulse responses at different horizons

and for different values of ϵ. The same visualization for T = 250 is again relegated

to the Appendix B.

Lastly, the additional constraints in the maximization problem (29) or (31) can

also serve a pure inequality restrictions in order to set identify the shocks. Hence,

one could also try to disentangle the shocks in the Proxy VAR with this inequality

restrictions. The resulting sets of impulse responses are depicted in Figure 13 of the

Appendix. The picture shows that the use of the Max-Share framework helps to

estimate the structural impulse responses more precisely, as the simulated sets are

rather wide compared to the range of simulated point estimates of the Max-Share

approach for the majority of the impulse responses.

23



Table 3: Bias of the IRFs to the Technology Shock, T = 1000 - Scenario B

Variable H = 0 H = 6 H = 12 H = 18

Panel A: ϵ = 0.38

rt 0.0025 -0.0178 -0.0198 -0.0136

xt -0.0045 -0.0108 -0.0055 -0.0018

πt -0.0026 -0.0146 -0.0113 -0.0065

Panel B: ϵ = 0.2

rt 0.0486 -0.0186 -0.0207 -0.014

xt -0.0844 -0.0131 -0.0061 -0.0022

πt -0.0584 -0.0163 -0.0117 -0.0067

Panel C: ϵ = 0

rt 0.0958 -0.0233 -0.0235 -0.0154

xt -0.1795 -0.016 -0.0068 -0.0025

πt -0.1273 -0.0199 -0.0129 -0.0072

The table depicts the average of the estimated structural parameters over the 1,000 Monte-
Carlo simulation iterations. The estimates are derived with the Max-Share+ framework
in the proxy VAR with different values of ϵ.
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Table 4: Bias of the Impulse Response Functions to the Monetary Shock, T = 1000.

Variable H = 0 H = 6 H = 12 H = 18

Panel A: ϵ = 0.38

rt -0.0021 -0.0059 -0.0025 -0.0008

xt -0.0055 -0.0005 0.0009 0.001

πt -0.0051 -0.0029 -0.0007 -0.0001

Panel B: ϵ = 0.2

rt -0.0462 -0.0546 -0.0278 -0.0138

xt -0.1056 -0.0088 -0.0025 -0.0007

πt -0.1062 -0.0249 -0.0115 -0.0057

Panel C: ϵ = 0

rt -0.0982 -0.1084 -0.0557 -0.0282

xt -0.2105 -0.0184 -0.0067 -0.0029

πt -0.2135 -0.0491 -0.0234 -0.0119

The table depicts the average of the estimated structural parameters over the 1,000 Monte-
Carlo simulation iterations. The estimates are derived with the Max-Share+ framework
in the proxy VAR with different values of ϵ.

25



Figure 3: Bias of the IRFs to the Technology Shock, T = 1000 - Scenario B
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The coloured lines depict the average bias of the impulse response functions over 1,000
Monte-Carlo simulations for different values of ϵ.
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Figure 4: Bias of the IRFs to the Monetary Shock, T = 1000 - Scenario B

0 5 10 15 20

Horizon

-0.15

-0.1

-0.05

0

B
ia

s

Interest Rate

0 5 10 15 20

Horizon

-0.25

-0.2

-0.15

-0.1

-0.05

0

B
ia

s

Output

0 5 10 15 20

Horizon

-0.25

-0.2

-0.15

-0.1

-0.05

0

B
ia

s

Inflation

=0.38

=0.3

=0.2

=0.1

=0

The coloured lines depict the average bias of the impulse response functions over 1,000
Monte-Carlo simulations for different values of ϵ.
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5 Empirical Illustration

5.1 Empirical Illustration - Bound Restrictions

An example for an empirical application in which the bounds on the FEV are fitting,

is the setting of Mertens and Ravn (2013). They estimate the dynamic causal effects

of shocks to the personal and corporate tax rates in the United States. For this

purpose their model consists of the personal income tax base, the corporate income

tax base, government purchases of final goods, gross domestic product and federal

government debt the average personal income tax rate (APITR) ass well as the

average corporate income tax rate (ACITR). In this application I adopt the model

of Mertens and Ravn (2013), so details about the variables can be found in their

study. In order to identify the two tax shocks of interest they construct two proxy

variables. They use the list of exogenous tax changes by Romer and Romer (2010)

and classify them whether they constitute personal or corporate tax rate changes.

Again, I refer the reader to Mertens and Ravn (2013) for further details.

Alongside the relevancy and exogeneity restrictions implied by the proxy VAR,

their key identification assumption is that the shock to the personal income tax rate

does not affect the ACITR at impact. To check the robustness of the results they

also consider the alternative case that APITR does not respond to a shock in the

corporal tax rate. This type of equality restriction enables point identification of the

two shocks. Yet, the hard equality restrictions need solid reasoning to be convincing.

If, for example, legal or political links between personal and corporate taxes exist,

the imposed causal ordering of the variables is questionable. Then ACITR would

potentially react immediately to a shock in personal taxes and vice versa.

In the literature the results of Mertens and Ravn (2013) sparked some debate.

Researches looked, for instance, at weaker identifying restrictions in order to avoid

the hard equality restrictions imposed in the original study. E.g. Giacomini et

al. (2021) use a mixture of sign restrictions on the correlation matrix ψ and the

impulse responses. On top of that they provide robust bayesian inference as an

alternative to the frequentist bootstrap confidence intervals employed in Mertens

and Ravn (2013) that were also subject to debate in the literature. Jentsch and

Lunsford (2019b) provide bootstrap inference that is robust to heteroskedasticity.

In summary, these additional iterations of the Mertens and Ravn (2013) study by

no means invalidate the results of the original study but rather add layers to the

robustness analysis of their results.

This section aims to contribute to this task by transforming equality restrictions

imposed by Mertens and Ravn (2013) into a weaker version using bounds on the

FEV. Zero equality restrictions on the response of a specific variable at impact are

equivalent to imposing that the contribution to the FEV of that variable of the
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target shock is zero (see e.g. Volpicella, 2021). Hence, one can weaken the zero

restriction in the original study by bounding the contribution of the FEV to be

close to zero. In this empirical application I impose that the contribution of the

personal (corporate) tax rate shock to the FEV of the ACITR (APITR) is below

5% at impact and for the first three quarters after the shock.

Figure 5: Responses to the APITR shock.
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The results are based on 1,000 draws from the posterior of the reduced form coeffi-
cients and 1,000 draws of admissible rotation matrices are used to approximate the
bounds of the identified set. If after 10,000 draws of rotation matrices none of the
draws satisfied the identification restrictions, the identified set is considered to be
empty.
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Figure 6: Responses to the ACITR shock.
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The results are based on 1,000 draws from the posterior of the reduced form coeffi-
cients and 1,000 draws of admissible rotation matrices are used to approximate the
bounds of the identified set. If after 10,000 draws of rotation matrices none of the
draws satisfied the identification restrictions, the identified set is considered to be
empty.
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Additionally, I impose that the correlation of the shock with its respective in-

strument is positive and each shock is more strongly correlated to its respective

proxy than to the proxy for the other tax shock. These restrictions were also used

by the robustness check in the work of Giacomini et al. (2021). However, different to

their study I do not impose any sign restrictions of the impulse responses. The data

spans the years 1950Q1 until 2006Q4 and are available in quarterly frequency. Like

in the original study I estimate the VAR with four lags of the variables in the system

and I employ the robust bayesian confidence bands for proxy VARs introduced by

Giacomini et al. (2021). Doing so I follow their study and use independent Jeffreys’

priors for the reduced form parameters of the proxy VAR.

Figure 5 and 6 depict the responses to the APITR and ACITR shock, respec-

tively. In summary the results do not differ qualitatively substantially compared to

the responses of the original study. Comparing the posterior means of the bound-

aries of the identified set (black dashed lines) and the results obtained with the

identification strategy by Mertens and Ravn (2013) (red dashed lines) shows similar

structural impulse responses. This is not surprising as the identification strategy em-

ployed in this robustness check is just a weaker version of the equality restrictions in

Mertens and Ravn (2013). The weaker restrictions are reflected in less pronounced

responses for many variables where the results of Mertens and Ravn (2013) are at

or beyond the outer edge of the posterior mean bounds.

Looking at the robust bayesian credible regions reveal hardly any significant

responses. This is consistent with the other findings by Jentsch and Lunsford (2019b)

and Giacomini et al. (2021) who also fails to replicate the significant responses of

Mertens and Ravn (2013) with more robust inference and/or less strict identification

assumptions.

In conclusion this section provides evidence that this part of the results of

Mertens and Ravn (2013) are qualitatively rather robust to weaker identification

assumptions. Yet, they are statistically less convincing compared to the original

study.

5.2 Empirical Illustration - Max-Share

This sections briefly describes a potential application for the combination of proxy

VAR and Max-Share discussed above. The goal is to disentangle uncertainty shocks

further into a portion that propagates through financial markets and a remaining

part. Hence, the goal is to disentangle the uncertainty shock into two orthogonal

’sub-shocks’.

Financial frictions play a key role in the uncertainty literature for several reasons.

Firstly, it is difficult to distinguish between financial frictions caused by uncertainty
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Table 5: Propagation Mechanisms of Uncertainty

Contractionary Ambiguous Expansionary

Real options Precautionary motives Growth options

Risk premia ’Oi-Hartmann-Abel’

Different transmission channels described in the literature. See Bloom (2014) for a com-
prehensive overview.

and coming from other causes like e.g. changes in the banking sector or other

systemic reasons. Both of the causes affect the economy similarly as the uncertainty

shock at least partly consist of an financial market shock caused by it. Thus, it is

hard to tell apart pure financial market shocks from uncertainty shocks and vice

versa.

Second, financial frictions are viewed as a key transmission mechanisms of un-

certainty on the real economy. Uncertainty is often further classified into financial,

macroeconomic and policy uncertainty and the effects of the different types of uncer-

tainty are studied separately. Similarly, to the financial market shocks it is difficult

to tell apart the different types as uncertainty is also inherently hard to measure.

So far the literature concludes that uncertainty as well as financial market shocks

have contractionary effects on the real economy (see e.g. Piffer & Podstawski, 2018;

Bassett et al., 2014). Furthermore, studies that distinguish between financial un-

certainty and macroeconomic/policy uncertainty tend to find more pronounced or

exclusive effects for financial uncertainty (see e.g. Caldara et al., 2016; Alessandri

& Mumtaz, 2019; Shin & Zhong, 2020). Yet, the identification strategies rely on

measurements of the different uncertainty types, and therefore on the success of

capturing them.

The approach I propose to disentangle how uncertainty affects the economy does

not rely on the different types of uncertainty, but on the theoretical transmission

channels identified by the literature. Under certain assumptions the proxy VAR

framework together with the Max-Share approach can be employed to estimate the

effects for different propagation mechanisms. Suppose two valid instruments for a

common uncertainty shock are available. Then the combination of the two methods

as described in section 2.4 is applicable. Assuming that the part of the uncertainty

shock that propagates through financial markets maximizes the contribution to a key

financial market variable, maximization problem (4) disentangles the two shocks. If

the two instruments are solely related to the uncertainty shock other shocks are not

considered in the maximization problem (as shown by the simulation in section 3.2)

and the uncertainty shock is partitioned into two orthogonal components.

However, it is necessary to understand what the assumption implies. Table 8 lists
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different transmission mechanisms identified by the literature. The contractionary

ones are real option effects, which describe a ’wait and see’ attitude that is implied by

uncertainty, and increasing risk premia. According to empirical results these chan-

nels seem to dominate the remaining ones. Precautionary effects have ambivalent

effects. On the one hand, precautionary savings have again contractionry effects,

but on the other hand precautionary motives could also have expansionary effects.

For example, economic agents could work more now in order to ensure for the un-

certain future. Lastly, theory predicts also purely expansionary effects, yet, judging

by the empirical results they are of minor importance. For a more comprehensive

overview of the different transmission mechanisms see Bloom (2014).

One possibly interesting way to break up the uncertainty shock is to disentangle

the effects of the risk premium channel from the rest, that is most likely dominated

by the real option effects. Assuming the risk premium channel is the only channel

propagating through financial markets on could identify the shock by maximizing

the contribution to the FEV of a key financial market variable. Besides, one could

also exploit the underlying recursive structure in this case and use the Cholesky

decomposition.

Yet, if more than one transmission channel contributes to the FEV of the key

financial market variable the results are potentially nevertheless interesting. The

simulations show that in this case one identifies a combination of the these channels.

In the example of an uncertainty shock one would identify a combination of all the

channels propagating through the financial markets.

If, for example, two transmission channels propagates through the target vari-

able, one identifies a combination of these two transmission channels as the first

shock and again a mixture of the remaining ones as the second shock. In this

case, the clear interpretation of a single transmission channel is not possible. What

remains is the that the shock is broken up into two components and one of the com-

ponents has the interpretation that it affects a specified variable exclusively. With

the running example of the uncertainty shock, this would be the compound effect

of all the channels that propagate through that variable.

Lastly, if all channels contribute to the FEV of the specified variable, one iden-

tifies the combination of all the different channels that maximizes the contribution.

Now the other portion of the baseline shock has to the according orthogonal com-

bination of the channels. Again, no clear interpretation regarding single channels is

possible. One rather identifies the portion of the different channels that propagate

through that one variable. In the running example, the portion that propagates

through financial markets.
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5.2.1 Disentangling Uncertainty with Proxies and Max-Share

To illustrate this strategy for the uncertainty shock I rely on the results of Piffer

and Podstawski (2018). They identify an uncertainty shock using the variation

of the gold price around exogenous events as an instrument. Furthermore, they

identify a news shock as their instrument is also likely to be related to it. Assuming

their identification strategy is successful I use their estimated median target shock

as a purely exogenous instrument for a common uncertainty shock. In order to

disentangle the uncertainty shocks in its ’sub-shocks’ via the Max-Share approach

I need a second proxy. As the second instrument I take two alternatives. Firstly, I

regress their initial gold price instrument on the median target news shock and use

the residual portion of the instrument as the second proxy. The idea is to purge the

relation with news shocks, as e.g. done in a similar fashion by Bassett et al. (2014)

Second, I use the median target shock in a single instrument proxy SVAR and use

Figure 7: Uncertainty Shock

Structural impulse responses of an uncertainty shock identified with the median target
shock of Piffer and Podstawski (2018) as a single instrument. Grey shaded areas depict
the 95% wild bootstrap confidence bands.
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the the resulting estimated shock as the second instrument.

I estimate a VAR model containing excess bond premium by Gilchrist and Za-

kraǰsek (2012), log difference of the S&P 500, stock market volatility index VXO, log

difference of industrial production, federal funds rate and the average weekly work-

ing hours. The shock is partitioned employing the maximization problem (4), in

which I maximize the contribution to the excess bond premium. This credit spread

measurement serves as the key financial market variable to single out the portion

of the shock propagation financial markets. Restrictions on the relative correlation

like in Piffer and Podstawski (2018) of the instruments with the uncertainty shock

portions are not possible as it requires knowledge about which instrument is more

strongly correlated to which shock portion.

Figure 5 shows the responses of an uncertainty shock identified using the median

target uncertainty shock of Piffer and Podstawski (2018) as a single instrument. The

grey shaded areas are the 95% wild bootstrap confidence bands. Higher uncertainty,

depicted by the increase of the VXO, affects financial markets, output and also the

labour market. Excess bond premium and the S&P 500 react as well as industrial

production and the federal funds rate. Average weekly working hours decrease as

Figure 8: Partitioned Uncertainty Shock - Estimated Shock

Structural impulse responses of the partitioned uncertainty shock. The two intruments
are the median target shock of Piffer and Podstawski (2018) and the estimated shock
behind Figure 5. Grey shaded areas depict the 95% wild bootstrap confidence bands.
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a representative for the labour market side. For Figure 6, I use the median target

shock of Piffer and Podstawski (2018) and the estimated shock behind Figure 5

as instruments for the multi-instrument application. For Figure 7 I use again the

median target shock of Piffer and Podstawski (2018) and their cleaned gold price

proxy. With the two estimated shocks as proxies (Figure 6) the identified portion

of the shock contributes on average 43.24% to the FEV of the excess bond premium

for H = 13 while the residual portion only contributes 0.61%. However, it is unclear

whether the first shock depicts the effects of increasing risk premia alone or other

transmission mechanism also affect the financial markets. When using the cleaned

instrument, the identified portion contributes on average 87.82% and the residual

portion 1.36%. This could indicate that the cleaned proxy is not purely exogenous

and structural shocks other than the uncertainty shock are factored in, because it

is unlikely that the uncertainty shock alone contributes roughly 90% to the FEV of

the excess bond premium over the chosen horizon.

Figures 6 and 7 present the structural impulse responses for the partitioned un-

certainty shock. Figure 6 show the results using the two estimated shocks as proxies

and Figure 7 the responses using the cleaned instrument of Piffer and Podstawski

Figure 9: Partitioned Uncertainty Shock - Cleaned Instrument

Structural impulse responses of the partitioned uncertainty shock. The two intruments
are the median target shock of Piffer and Podstawski (2018) and their cleaned gold price
proxy. Grey shaded areas depict the 95% wild bootstrap confidence bands.
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(2018). In both figures the portion of the shock that maximizes the contribution to

the excess bond premium is depicted on the left. Throughout both sets of responses

it is visible that the contractionary effects on industrial production are more pro-

nounced for the financial market portion of the the shock. In Figure 6 industrial

production even exclusively reacts to this portion of the shock and has an initially

expansionary tendency for the residual portion of the uncertainty shock. This is

potentially surprising, yet, it could be explained, for example, by precautionary

motives. Also the responses of the federal funds rate and working hours are more

pronounced or exclusive. Only the S&P 500 and the VXO do not follow this pattern.

Overall, the results are in line with previous results of the literature that suggest

that financial frictions are the key propagation mechanisms of uncertainty shocks.

However, the cleaned proxy is potentially prone to endogeneity issues.

5.2.2 Disentangling Uncertainty with Proxies and augmented Max-Share

To come.

6 Conclusion

Identifying restrictions on the FEV can be used in multiple ways to disentangle the

shocks in the proxy VAR framework. Firstly, bounds the FEV as introduced by

Volpicella (2021) replace or accompany other inequality restrictions to disentangle

the shocks in the proxy VAR. This paper provides the general framework of the

bounds applied to the proxy VAR, how to conduct robust bayesian inference in this

setting and an empirical illustration that showcases a case where less restrictive

bounds can be used to replace strict equality restrictions. In the empirical example

I revisit the analysis of Mertens and Ravn (2013) and show that their results are

overall less pronounced and less statistically convincing with less restrictive identi-

fication assumptions and robust inference.

Second, the structural parameters are sharply point identified in the proxy VAR

with the help of the Max-Share framework. In the highly relevant case of two

proxies the bias due to confounding shocks in Max-Share approach can be tackled.

The simulation study shows that the proxies variables rule out confounding shocks

which are not related to them. If confounding shocks are related to the proxies

a correct inequality restriction on relative magnitudes of responses enables to get

rid of the bias. Formalization of these findings and a suiting empirical illustration

are prospect to further work. Lastly, the Max-Share approach augmented with the

correct inequality restriction identifies the structural parameters more sharply than

a set identification scheme based on the same inequality restrictions alone.
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A Appendix A

Proof of Proposition 3.1.

The proof of Proposition 3.1 closely follows the ideas of the proof for Proposition

3.1 in the article by Volpicella (2021). The contribution of shock j to the FEV of

variable i at horizon h is given by:

Ωi,j(h) = q′jRi,hqj, (32)

where Ri,h is a positive semidefinite symmetric l×l real matrix. As Ri,h is symmetric

it can be diagonalized such that:

P ′Ri,hP = D, (33)

where P is an orthogonal matrix and D a diagonal matrix with the real eigenvalues

λihm of matrix Ri,h as entries on the diagonal for m = 1, ..., l.

For the l × 1 orthogonal eigenvector qm it holds that:

Ri,hqm = λihmqm, (34)

and thus:

q′mRi,hqm = λihmq
′
mqm = λihm. (35)

The bound restrictions on the FEV are collected by:

τ i,j,h ≤ q′jRi,hqj ≤ τ i,j,h, for i ∈ Ij and h ∈ Hij. (36)

Hence, if there exists an eigenvalue for which τ i,j,h ≤ λihm ≤ τ i,j,h it holds that:

τ i,j,h ≤ q′mRi,hqm ≤ τ i,j,h, (37)

and condition (a) is satisfied for qj = qm. Condition (b) states that qm satisfies also

the remaining bound restrictions for all i ∈ Ij and h ∈ Hij and the all the other

identifying restrictions that are imposed. It follow that there exists an orthogonal

matrix Q = [q1, ..., qm, ..., ql] for which all restrictions are satisfied and the identified

set is non-empty.

Given that the identified set for the structural impulse responses is non-empty

ηi,j,h = e′iCmBzqj exists. Due to the restriction that the reduced-form VAR process is

invertible in holds that ||e′iCmBz|| <∞. Thus, it holds that |ηi,j,h| ≤ ||e′iCmBz|| <∞
and the identified set for the impulse responses is bounded.

■
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B Appendix B

Figure 10: 95% Point Estimate Bands, ϵ = 0.2

The solid lines are the true impulse responses and the dashed lines are the 2,5% and 97,5%
quantile of the solutions found for the 1,000 simulation iterations.
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Table 6: Bias of the IRFs to the Technology Shock, T = 250 - Scenario B

Variable H = 0 H = 6 H = 12 H = 18

Panel A: ϵ = 0.38

rt 0.0023 -0.0745 -0.0736 -0.0473

xt -0.0084 -0.0381 -0.0173 -0.0059

πt -0.0072 -0.0576 -0.0398 -0.0219

Panel B: ϵ = 0.2

rt 0.0484 -0.0748 -0.0739 -0.0474

xt -0.0846 -0.0394 -0.0171 -0.0058

πt -0.0607 -0.059 -0.0399 -0.0219

Panel C: ϵ = 0

rt 0.0956 -0.0795 -0.0764 -0.0485

xt -0.1803 -0.0421 -0.0176 -0.006

πt -0.1302 -0.0624 -0.0409 -0.0224

The table depicts the average of the estimated structural parameters over the 1,000 Monte-
Carlo simulation iterations. The estimates are derived with the Max-Share+ framework
in the proxy VAR with different values of ϵ.
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Table 7: Bias of the IRFs to the Monetary Shock, T = 250 - Scenario B

Variable H = 0 H = 6 H = 12 H = 18

Panel A: ϵ = 0.38

rt -0.0026 -0.0105 -0.003 -0.0001

xt -0.0016 0.0032 0.0049 0.0039

πt -0.005 -0.0046 -0.0003 0.0004

Panel B: ϵ = 0.2

rt -0.0465 -0.0561 -0.0249 -0.011

xt -0.1053 -0.0041 0.0017 0.0021

πt -0.1082 -0.024 -0.0093 -0.0042

Panel C: ϵ = 0

rt -0.0986 -0.1052 -0.0486 -0.0228

xt -0.2086 -0.011 -0.0012 0.0005

πt -0.2146 -0.0449 -0.0189 -0.0092

The table depicts the average of the estimated structural parameters over the 1,000 Monte-
Carlo simulation iterations. The estimates are derived with the Max-Share+ framework
in the proxy VAR with different values of ϵ.
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Figure 11: Bias of the IRFs to the Technology Shock, T = 250 - Scenario B
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The coloured lines depict the average bias of the impulse response functions over 1,000
Monte-Carlo simulations for different values of ϵ.
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Figure 12: Bias of the IRFs to the Monetary Shock, T = 250 - Scenario B
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The coloured lines depict the average bias of the impulse response functions over 1,000
Monte-Carlo simulations for different values of ϵ.
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Figure 13: Point Estimate Bands and Sign Restriction Sets, ϵ = 0.

The solid lines are the true impulse responses and the dashed lines are the 2,5% and
97,5% quantile of the solutions found for the 1,000 simulation iterations. The red dashed
line are the maximum and minimum responses of the identified set of the proxy SVAR
disentangled via pure sign restrictions. The sign restrictions correspond to the constraints
of the maximization problem.
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