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1. Introduction

Banks are connected with each other through a complicated network of financial claims

and obligations. The value of these claims depends on the financial health of the obligor

who himself might be an obligee such that his financial health depends on his obligors.

Through these linkages financial distress of one bank might draw other banks into default

and thereby create a domino effect of bank failures – a systemic crisis. Under the labels

of systemic risk and contagion this problem has gained considerable attention in the

literature on financial intermediaries (Allen and Gale (2000), Giesecke and Weber (2004),

Rochet and Tirole (1997), and Shin (2006)).

Modeling correlated defaults is not only an issue in the banking literature but also in

the literature on the valuation of complex portfolio credit derivatives such as collateral-

ized debt obligations (CDOs). The value of the different CDO tranches depends crucially

on the joint distribution of default of the underlying collateral securities. The linkages

between these securities (obligors) are not modeled explicitly but via the assumption

that the default intensities of these securities are correlated (Duffie and Gârleanu (2001),

Longstaff and Rajan (2008), and Errais et al. (2009)).

According to Boyd et al. (2005) the social costs of a systemic crisis range from 60%

to 300% of GDP. The prevention of a breakdown of financial intermediation is of vital

interest for central banks and regulatory authorities. To assess the probability and sever-

ity of such a cascade of defaults caused by interbank lending a large number of central

banks perform counterfactual simulations.1 In a first step bilateral credit exposures in

the interbank market are determined.2 Given these exposures there are two approaches

in the literature to simulate contagion. The first approach introduced by Furfine (2003)

assumes that a particular bank is not able to honor its obligations. All creditors of this

bank lose an exogenously specified fraction of their claims against this bank (loss given

default). If the losses of an affected bank exceed its capital, the bank is in default, too. In

the next round the creditors of all defaulting banks lose a fraction of their claims against

these banks. Again these losses are compared to the capital available. The procedure is

iterated until no additional bank goes bankrupt. If this simulation is performed for each

bank, it allows to determine which banks are systemically relevant in the sense that they

trigger contagious defaults. Yet, the approach is not able to assess the probability that a

particular bank defaults. Moreover, loss given default is not endogenous but exogenously

given.

1The different models used are discussed thoroughly in Upper (2007).
2Typically these exposures are not readily available. They have to be estimated from aggregate data.

Mistrulli (2006) discusses the consequences of estimation errors.
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The second simulation approach is based on a model developed by Eisenberg and Noe

(2001). In their framework banks are not only linked with each other via the interbank

market but are also endowed with exogenous income. Under the assumption of limited

liability of equity and absolute priority of debt Eisenberg and Noe (2001) show that

for a given level of exogenous income the equity values of the banks, default and loss

given default can be determined endogenously. Elsinger et al. (2006a) introduced this

approach to the contagion literature by applying it to the Austrian banking system.

They take the net position of all non-interbank related parts of the balance sheet as

exogenous income. Using standard risk management techniques they simulate changes

in the value of this exogenous income for all banks in the system simultaneously. Given

such a scenario the interbank market is cleared and the equity values of the banks and the

values of the interbank debt contracts are determined. The advantage of this approach is

that it not only allows to identify systemically important banks but also allows to assess

the probability of default and the level of loss given default endogenously. Yet, two

important features commonly observed in real world networks are not included in this

framework. Firstly, cross shareholdings between the banks are not explicitly modeled.

The value of such holdings has to be treated as a part of exogenous income. This leads

to inconsistencies. The (simulated) value of the holding will not equal the value after

the clearing procedure. Secondly, the seniority structure of debt is not modeled. It is

assumed that all debt in the interbank market is of the same seniority and that it is

junior relative to all other debt claims against the banks.

The aim of this paper is to extend the work of Eisenberg and Noe (2001) by taking

cross holdings and a detailed seniority structure of debt explicitly into account. Banks

are modeled as nodes in a network which are endowed with exogenous income. They

may have nominal obligations to other nodes in the network and to outside creditors.

Furthermore the nodes may hold equity shares of other nodes. I assume equity has

limited liability, absolute priority of debt, proportional rationing in case of default, and

that there is no subset of nodes where each node in the subset is owned entirely by the

other nodes in the subset. Given these assumptions neither equity nor debt values are

necessarily unique. Yet, banks with non-unique equity values have to be entirely owned

either by other banks with non-unique equity values or zero equity value. If the debt

payments of a bank are non-unique it has to hold that all claimants are themselves banks

with either non-unique debt payments or non-unique equity value. Hence, the values of

debt and equity claims that are held by outside investors are unique. Moreover, given

there are no bankruptcy costs it never pays for outside investors to bail out defaulting

banks.
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I develop a solution algorithm for the clearing problem which lacks the elegance of

the fictitious default algorithm developed by Eisenberg and Noe (2001) but which is

applicable under weaker assumptions on the structure of the network. This algorithm

allows to incorporate cross holdings and a detailed seniority structure.

In a financial network without cross holdings Eisenberg and Noe (2001) show that

equity values are convex and debt values are concave in the exogenous income. Using a

simple example I show that is not true as soon as cross holdings are included.

The paper is organized as follows. In Section 2 a financial network with cross holdings

is presented and the main concepts are developed. In Section 3 I show that a clearing

vector exists and characterize networks for which the clearing vector is not unique. In

Section 4 a solution algorithm is presented. I discuss the comparative statics in Section

5. In Section 6 the model is augmented with a detailed seniority structure. It is shown

that the main results remain valid. FI show that given there are no bankruptcy costs it

never pays for outside investors to bail out defaulting nodes. Finally, Section 7 concludes

the paper.

2. The Model

Consider an economy populated by n banks constituting a financial network. Each

of these banks is endowed with an exogenous income ei ∈ R which may be negative.

Without a detailed priority structure of debt ei may be interpreted as operating income

minus all liabilities except the most junior. Ruling out that ei might be negative would

be equivalent to assuming that all liabilities except the most junior are always repaid in

full.3 Any bank may hold shares of companies outside the network. The value of these

holdings is not determined endogenously. It is included in e.

Banks may have nominal obligations to other banks in the network. The structure of

these liabilities is represented by an n × n matrix L where Lij represents the nominal

obligation of bank i to bank j. These liabilities are nonnegative and the diagonal elements

of L are zero as banks are not allowed to hold liabilities against themselves. Liabilities

to creditors outside the network are denoted by Di ≥ 0. Furthermore, banks may hold

shares of other banks which are denoted by the matrix Θ ∈ [0, 1]n×n where Θij is the

share of bank i held by bank j. A bank may be among the shareholders of its own shares

(Θii > 0).

Suppose there are two banks, A and B. Bank A has an exogenous income of 1,

no outstanding debt, and owns bank B entirely. On the other hand bank B has an

3In Section 6 the framework is extended to deal with different seniority classes.
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exogenous income of 2, no debt and owns bank A. The equity value of A equals 1 plus

the equity value of B. B’s equity value equals 2 plus the equity value of A. The only

solution would be that both banks have an equity value of infinity. In this example

ownership is not well defined irrespective whether there is limited or unlimited liability.

To make sure that ownership is well defined it suffices to assume that there is no group of

banks where each bank is completely owned by other banks in that group. In particular,

a bank must not own itself entirely (Θii < 1).

Assumption 1. There exists no subset I ⊂ {1, . . . , n} such that

∑

j∈I

Θij = 1 for all i ∈ I.

with Θ ∈ [0, 1]n×n and Θ~1 ≤ ~1 where ~1 is an n × 1 vector of ones. Θ is called a holding

matrix if it fulfills this assumption.

A bank is defined to be in default whenever exogenous income plus the amounts

received from other nodes plus the value of the holdings are insufficient to cover the

bank’s nominal liabilities.4 Throughout the paper I assume that bank defaults do not

change the prices outside of the network, i.e. e is independent of defaults and exogenous.

If default changes prices due to e.g. fire sales, the story is different. Only in the special

case where defaults unequivocally decrease e the main results still hold.

Exogenous income e may be interpreted as a multidimensional random variable. For

each draw of e the system is cleared. All the results in the sequel are conditional on a

particular draw. Moreover, in principle the entire economy can be represented by such

a network with the limitation that the behavior of the nodes is not modeled.

In case of default the clearing procedure has to respect three criteria:

1. limited liability: which requires that the total payments made by a node must

never exceed the sum of exogenous income, payments received from other nodes,

and the value of the holdings,

2. priority of debt claims: which requires that stockholders receive nothing unless the

bank is able to pay off all of its outstanding debt completely, and

3. proportionality: which requires that in case of default all claimant nodes are paid

off in proportion to the size of their claims on firm assets.

4A bank is in default if liabilities exceed assets. Using a violation of capital requirements as default
threshold does not change the main results.
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To operationalize proportionality let p̄i be the total nominal obligations of node i, i.e.

p̄i =
n
∑

j=1

Lij + Di

and define the proportionality matrix Π by

Πij =

{

Lij

p̄i
if p̄i > 0

0 otherwise

Evidently, it has to hold that Π ·~1 ≤ ~1.

To simplify notation I define for any two vectors x, y ∈ R
n the lattice operations

x ∧ y := (min(x1, y1), · · · , min(xn, yn))

x ∨ y := (max(x1, y1), · · · , max(xn, yn))

and I introduce a matrix notation that allows to describe summation over index sets by

matrix multiplication conveniently.

Definition 1. Let y and x be n×1 vectors. Then Λ := diag(y ≥ x) is an n×n diagonal

matrix where Λii = 1 if yi ≥ xi and Λii = 0 otherwise. diag(y > x), diag(y ≤ x),

diag(y < x), diag(y 6= x), and diag(y = x) are defined analogously.

Let p = (p1, . . . , pn)′ ∈ R
n
+ be a vector of payments made by banks to their interbank

and non interbank creditors. To define the equity values V of the banks assume for a

moment that these values are exogenously given (V ≥ ~0) and define the map

Ψ1(V, p, e,Π, Θ) = [e + Π′p − p + Θ′V ] ∨~0 (1)

where ~0 denotes the n × 1 dimensional zero vector. Ψ1 returns the values of the nodes

given V and p. A necessary condition for V to be a vector of equity values is that V is

a fixed point, V ∗(p), of Ψ1(·; p, e,Π, Θ) : R
n
+ → R

n
+, i.e.

V ∗(p) = [e + Π′p − p + Θ′V ∗(p)] ∨~0. (2)

If Θ is a holding matrix, Lemma 4 in the Appendix establishes that V ∗(p) is unique

for any p. However, for arbitrary p it is possible that V ∗
i (p) > 0 and pi < p̄i. Absolute

priority would not hold. Given p the amount available for bank i to pay off its debt

equals ei +
∑n

j=1
Πjipj +

∑n
j=1

ΘjiV
∗
j (p). If this amount is less than zero, bank i will pay

nothing due to limited liability. If this amount is larger than the liabilities (p̄i), bank i

pays off debt completely. If the amount available is in the range from zero to p̄i, it is
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distributed proportionally amongst the debtholders. A vector of payments p∗ respects

the clearing criteria if

p∗i =































0 for ei +
n
∑

j=1

(

Πjip
∗

j + ΘjiV
∗

j (p∗)
)

≤ 0

ei +
n
∑

j=1

(

Πjip
∗

j + ΘjiV
∗

j (p∗)
)

for 0 ≤ ei +
n
∑

j=1

(

Πjip
∗

j + ΘjiV
∗

j (p∗)
)

≤ p̄i

p̄i for p̄i ≤ ei +
n
∑

j=1

(

Πjip
∗

j + ΘjiV
∗

j (p∗)
)

.

For such a payment vector V ∗
i (p∗) > 0 implies that p∗i = p̄i. V ∗(p∗) is a vector of equity

values consistent with limited liability, absolute priority, and proportional rationing in

the case of default. As V ∗(p) is unique for arbitrary p a vector of payments p∗ that

respects the clearing criteria can be defined unambiguously.

Definition 2. A vector p∗ ∈ [~0, p̄] is a clearing payment vector if

p∗ =
{

[

e + Π′p∗ + Θ′V ∗(p∗)
]

∨~0
}

∧ p̄ (3)

where V ∗(p∗) is the unique fixed point of Ψ1(·; p∗, e,Π, Θ).

Alternatively, a clearing vector p∗ can be characterized as a fixed point of the map

Φ1(·; Π, p̄, e,Θ) : [~0, p̄] → [~0, p̄] defined by

Φ1(p; Π, p̄, e,Θ) =
{

[

e + Π′p + Θ′V ∗(p)
]

∨~0
}

∧ p̄ (4)

In the framework without cross holdings (Θ = 0n,n) Eisenberg and Noe (2001) show that

such a clearing vector exists. Furthermore, they are able to specify sufficient conditions

to guarantee uniqueness.

3. Existence and Uniqueness of a Clearing Payment Vector

The definition of the equity value as stated in Equation (2) has to be adapted to prove

the existence of a clearing vector. Suppose – for a moment – that (Θ = 0n,n). In this

case the value of bank i is given by V ∗
i (p∗) = max(ei +

∑n
j=1

Πjip
∗
j − p∗i , 0) where p∗ is

a clearing vector. V ∗
i (p∗) > 0 implies that p∗i = p̄i. The value of bank i may therefore

be written as max(W ∗
i (p∗), 0) where W ∗

i (p∗) = ei +
∑n

j=1
Πjip

∗
j − p̄i. If Θ is arbitrary,

this translates into

W ∗(p) = [e + Π′p − p̄] + Θ′(W ∗(p) ∨~0). (5)

W ∗(p) is the vector of node values under the assumption of limited liability for the cross

holdings. Yet, W ∗(p) is not the equity value of the banks as W ∗(p) is not necessarily
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nonnegative. W ∗(p) may be defined as a fixed point of the function of Ψ2(·; p, p̄, e,Π, Θ) :

R
n → R

n, given by

Ψ2(W, p, p̄, e,Π, Θ) = e + Π′p − p̄ + Θ′(W ∨~0). (6)

Lemma 5 in the Appendix establishes that W ∗(p) is unique for arbitrary p and that

W ∗(p) is increasing in p. The definition of a clearing vector has to be adjusted to this

alternative definition of equity values by substituting W ∗(p) ∨ ~0 for V ∗(p). I define the

map Φ2(p; Π, p̄, e,Θ) : [~0, p̄] → [~0, p̄] by

Φ2(p; Π, p̄, e,Θ) =
{[

e + Π′p + Θ′(W ∗(p) ∨~0)
]

∨~0
}

∧ p̄ =
{

[W ∗(p) + p̄] ∨~0
}

∧ p̄ (7)

where W ∗(p) is the unique fixed point of Ψ2. If p∗ is a fixed point of Φ2(p) then it holds

that W ∗
i (p∗) ≥ 0 is equivalent to p∗i = p̄i. So, we may call p∗ a clearing vector and

W ∗(p∗) ∨~0 the vector of equity values.

Theorem 1. Let p̂ ∈ [~0, p̄] be a (super)solution of Φ1(p), i.e. p̂ ≥ Φ1(p̂; Π, p̄, e,Θ).5

Then p̂ is a (super)solution of Φ2(p) with W ∗(p̂) = e+Π′p̂− p̄+Θ′V ∗(p̂). If p̂ ∈ [~0, p̄] is

a (super)solution of Φ2(p) then p̂ is a (super)solution of Φ1(p) with V ∗(p̂) = (W ∗(p̂)∨~0).

Proof. I prove the assertion for the case of supersolutions. The proof for solutions

is analogous. Suppose that p̂ is a supersolution of Φ1(p), i.e. p̂ ≥ Φ1(p̂). Define

X = e + Π′p̂ − p̄ + Θ′V ∗(p̂). We have to show that X is a solution to Equation (5), i.e.

V ∗(p̂) = (X∨~0). By construction V ∗(p̂) ≥ X. If the equity value of bank i is larger than

0, it has to hold that ei +
∑n

j=1
Πjip̂j +

∑n
j=1

ΘjiV
∗
j (p̂) > p̂i. As p̂ is a supersolution of

Φ1(p) this implies that p̂i = p̄i and V ∗
i (p̂) = Xi. Therefore, (X ∨~0) = V (p̂). This yields

X = e + Π′p̂ − p̄ + Θ(X ∨~0) and p̂ ≥ Φ2(p̂).

Now suppose p̂ is a supersolution of Φ2(p). If W ∗
i (p̂) ≥ 0 then (7) implies that

p̄i ≥ p̂i ≥ Φ2
i (p̂) = p̄i and W ∗

i (p̂) = ei+
∑n

j=1
Πjip̂j− p̂i+

∑n
j=1

Θji(W
∗
j (p̂)∨0). If, on the

other hand, W ∗
i (p̂) < 0 then we get p̄i > Φ2

i (p̂) ≥ ei+
∑n

j=1
Πjip̂j +

∑n
j=1

Θji(W
∗
j (p̂)∨0).

The vector p̂ is a supersolution of Φ2 and therefore

0 ≥ Φ2
i (p̂) − p̂i ≥ ei +

n
∑

j=1

Πjip̂j − p̂i +
n
∑

j=1

Θji(W
∗
j (p̂) ∨ 0).

So, W ∗(p̂)∨~0 = [e+Π′p̂− p̂+Θ′(W ∗(p̂)∨~0)]∨~0 and X = W ∗(p̂)∨~0 solves (2). Plugging

X into (4) shows that p̄ is a supersolution of Φ1.

5p̂ is a supersolution if the proposed payments p̂ exceed the payments required by limited liability
and absolute priority under the assumption that the proposed payments are actually paid, i.e.
Φ1(p̂; Π, p̄, e, Θ).
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Any fixed point of Φ2(p) is a fixed point of Φ1(p) and vice versa. To prove that a

clearing vector exists it suffices to show that Φ2(p) has a fixed point. Note that by

construction Φ2(~0) ≥ ~0 and Φ2(p̄) ≤ p̄. The Tarski fixed point theorem guarantees that

there exists a least and a greatest fixed point for Φ2(p) if Φ2(p) is a monotone increasing

function on the complete lattice [0, p̄]. Lemma 5 shows that W ∗(p) and thereby Φ2(p)

are increasing in p.

Theorem 2. There exists a greatest (p+) and a least (p−) clearing vector.

If the clearing vector is not unique it might happen that the equity values of the banks

are different for different clearing vectors. In particular it could happen that a bank that

is in default at p− might have a positive equity value at p+. Eisenberg and Noe (2001)

show that for Θ = 0n,n the equity values of the nodes do not depend on the chosen

clearing vector. A bank defaulting at p− might not default at p+. Yet, the equity value

at p+ has to be zero and the bank is only just solvent. In the more general framework

under consideration in this paper the situation is more complicated as is illustrated by

the following example.

Example 1. Assume that the network is characterized by the following parameters.

e =

(

1

0

)

, Π =

(

0 0

1 0

)

, p̄ =

(

1

1

)

, Θ =

(

0 1

0 0

)

It is easy to check that any p(λ) = (1, λ)′ for λ ∈ [0, 1] is a clearing vector with corre-

sponding equity value V ∗(λ) = (λ, 0)′. The equity value of bank 1 is not unique. The

reason is that any amount λ ∈ [0, 1] paid by bank 2 is received entirely by bank 1 as it

is the only obligee of bank 2. Bank 1 is able to cover all liabilities by exogenous income.

Any additional payments received increase the equity value by the very same amount. But

bank 1 is entirely owned by bank 2. Hence, the value of the holdings of bank 2 increases

by λ and the initial payment of λ is affordable.

The existence of multiple clearing vectors is extremely sensitive to the chosen param-

eter values. If Π21 or Θ12 or both are smaller than 1, the unique clearing payment will

be (1, 0)′ with corresponding equity values (0, 0)′. Moreover, if the aggregate exogenous

income is not equal to 1, the clearing vector is unique, too.

Suppose that p2 and p1 are two distinct clearing vectors such that p2 ≥ p1. Denote

the corresponding equity values by V 2 and V 1. Lemma 5 implies that W 2 ≥ W 1 and

this in turn implies that V 2 ≥ V 1. Equity values are increasing in the clearing vectors.

Let Λ1 = diag(V 2 > V 1), Λ2 = diag(p2 > p1), and Λ = I − (I − Λ1)(I − Λ2). Λ1
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characterizes the set of banks that have different equity values under the different clearing

vectors. Λ2 characterizes the banks with different clearing vectors and Λ describes the

‘union’ of the banks that have either a non-unique equity value or a non-unique clearing

payment.6 If bank i is in Λ then p2
i > 0 and V 2

i = ei +
∑n

j=1
Πjip

2
j − p2

i +
∑n

j=1
ΘjiV

2
j .

Subtracting V 1 from V 2 yields Λ(V 2 − V 1) ≤ Λ[(Π′ − I)(p2 − p1) + Θ′(V 2 − V 1)]. Note

that V 2 − V 1 = Λ1(V 2 − V 1) = Λ(V 2 − V 1) and p2 − p1 = Λ2(p2 − p1) = Λ(p2 − p1).

After rearranging and premultiplying by ~1′ we get

~1′Λ(I − Θ′)Λ1(V 2 − V 1) ≤ ~1′Λ(Π′ − I)Λ2(p2 − p1).

The left hand side is larger than or equal to zero whereas the right hand side is smaller

than or equal to zero. For the inequality to hold both sides have to equal zero and the

inequality turns into an equality.

~1′Λ(I − Θ′)Λ1(V 2 − V 1) = ~1′Λ(Π′ − I)Λ2(p2 − p1) = 0 (8)

The left hand side of (8) implies that
∑n

j=1
Λ1

jj(1−
∑n

i=1
ΘjiΛii)Λ

1
jj(V

2
j − V 1

j ) = 0. If

bank j has a non–unique equity value then Λ1
jj = 1 and Λ1

jj(V
2
j − V 1

j ) > 0. Bank j has

to be owned entirely by banks in Λ as
∑n

i=1
ΘjiΛii has to equal 1. Analogously, if bank

j has a non–unique clearing payment,
∑n

i=1
ΠjiΛii has to equal 1. All obligees of bank

j have to belong to Λ.

Theorem 3. The clearing vector and the equity values are unique if there is no subset

I of banks such that for all i ∈ I either

∑

j∈I Θij = 1 or
∑

j∈I Πij = 1 (9)

For Θ = 0n,n the clearing vector is unique if Π fulfills Assumption 1.

Theorem 3 characterizes a sufficient but not necessary condition for uniqueness. Even

if the network structure allows for multiple clearing vectors, it is possible that the clearing

vector is unique. For very large exogenous income (e > p̄) p̄ is the only possible clearing

vector. To improve this condition on e, let Λ, Λ1, and Λ2 be defined as before and note

that ΛV 2 = Λ(e + (Π′ − I)p2 + Θ′V 2). Rearranging and premultiplying by ~1′ yields

~1′Λ(I − Θ′)ΛV 2 +~1′Λ(I − Π′)Λp2 = ~1′Λ(e + Π′(I − Λ)p2 + Θ′(I − Λ)V 2).

Banks with non-unique clearing payment but unique equity value have to have an

6In a slight abuse of notation I will sometimes use “bank i is in Λ” meaning that Λii = 1.
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equity value of 0, i.e. (Λ − Λ1)V 2 = ~0. Together with ~1′Λ(I − Θ′)Λ1 = 0 we get

~1′Λ(I − Θ′)ΛV 2 = 0. For banks with a unique clearing payment and non-unique equity

value it has to hold that the clearing payment equals the promised payment, i.e. (Λ −

Λ2)p2 = (Λ − Λ2)p̄. Using the fact that ~1′Λ(I − Π′)Λ2 = 0 yields

0 ≤ ~1′Λ(I − Π′)Λp̄ = ~1′Λ(e + Π′(I − Λ)p2 + Θ′(I − Λ)V 2). (10)

The interpretation of this relation is straightforward. The left hand side is the sum of

all promised payments made by banks with non-unique payment or equity value (~1′Λp̄)

minus the sum of all liabilities within these banks (~1′ΛΠ′Λp̄). So the left hand side is

the net obligation of banks in Λ to banks not in Λ and creditors outside the network.

The right hand side is the sum of the exogenous income of all banks in Λ (~1′Λe) plus

the sum of all debt payments from banks not in Λ to banks in Λ (~1′ΛΠ′(I − Λ)p2) plus

the value of shares of banks not in Λ that are held by banks in Λ (~1′ΛΘ′(I − Λ)V 2). In

the case of multiple clearing vectors the sum of the obligations of banks in Λ to banks

not in Λ has to equal the aggregate exogenous income of banks in Λ plus the value of all

claims of banks in Λ against banks not in Λ. An immediate consequence of (10) is that

~1′Λe > ~1′Λ(I − Π′)Λp̄ precludes the existence of multiple clearing vectors.

Theorem 4. Suppose for any subset I of banks with

∑

j∈I Θij = 1 or
∑

j∈I Πij = 1 for all i ∈ I

it holds that
∑

i∈I ei >
∑

i∈I(1 −
∑

j∈I Πij)p̄i then the clearing vector is unique. For

Θ = 0n,n the clearing vector is unique if
∑

i∈I ei > 0.

Proof. Only the claim for Θ = 0n,n remains to be shown. But in this case
∑

j∈I Πij = 1

for all i ∈ I.

It might be possible that the value of the debt and equity holdings of an outside

investor depends on the chosen clearing vector. Let ǫ be the (column) vector of shares

owned by an outside investor and let δ equal the investor’s share in debt. Given p∗ and

V ∗(p∗) the value of the outside investors portfolio equals ǫ′V ∗(p∗) + δ′p∗. Clearly, it has

to hold that the equity share in bank i owned by the outside investor (ǫi) has to be less

than or equal to 1 minus the shares held by banks in the network, i.e. ǫi ≤ 1−
∑n

j=1
Θij .

So, ǫ ≤ ~1′(I − Θ′) and analogously δ ≤ ~1′(I − Π′). If the equity value of bank i is

non–unique then the bank is entirely owned by other banks, i.e. 1 −
∑n

j=1
Θij = 0 and

ǫi = 0. If the clearing payment of bank i is non–unique then the only obligees are other

11



banks, i.e. 1−
∑n

j=1
Πij = 0 and δi = 0. For two different clearing vectors p1 and p2 and

corresponding equity values V 1 and V 2 it has to hold that ǫ′(V 2−V 1) = δ′(p2−p1) = 0.

Theorem 5. The value of an outside investor’s portfolio is independent of the chosen

clearing vector. In particular, for arbitrary clearing vectors p1 and p2 and corresponding

equity values V 1 and V 2 it holds that ~1′(I − Θ)(V 2 − V 1) = ~1′(I − Π′)(p2 − p1) = 0.

To model bankruptcy costs, the framework needs to be adapted. Denote the vector

of bankruptcy costs by b(p) and assume that b(p) is decreasing in p. The simplest type

of bankruptcy costs would be such that a bank i that is in default loses a specified

exogenous amount ci > 0, i.e. bi(p̄i) = 0 and bi(pi) = ci for all pi < p̄i. A sufficient

condition for a clearing vector to exist is that W ∗(p) is increasing in p. With bankruptcy

costs W ∗(p) has to be defined as a fixed point of

Ψ̂2(W, p, p̄, e,Π, Θ) = e(p) + Π′p − p̄ + Θ′(W ∨~0) (11)

where e(p) = e − b(p) and is increasing in p. W ∗(p) is unique and increasing in p by

Lemma 5 in the Appendix. Applying the Tarski fixed point theorem to

Φ̂2(p; Π, p̄, e,Θ) =
{[

e(p) + Π′p + Θ′(W ∗(p) ∨~0)
]

∨~0
}

∧ p̄ (12)

yields that a greatest and a least clearing vector exist. If e depends on p, the condi-

tions stated in Theorems 3 and 4 do not suffice to guarantee a unique clearing vector.

Moreover, the value of an outside investor’s portfolio will depend on the chosen clearing

vector. To bail out defaulting banks may be profitable.

4. Calculating a Clearing Vector

For the case Θ = 0n,n Eisenberg and Noe (2001) develop an extremely elegant algorithm

to calculate clearing vectors, the fictitious default algorithm. It has the nice feature that

it reveals a sequence of defaults. In the first round of the algorithm it is assumed that

the payments made equal the promised payments p̄. Banks that are unable to meet their

obligations are determined. These banks default even if all of their interbank claims are

honored. In the next step the payments of these defaulting banks are adjusted such that

they are in line with limited liability. If there are no additional defaults the iteration

stops. If there are further defaults the procedure is continued. The important point

is that the algorithm allows to distinguish between defaults that are directly related to

adverse economic situations – exogenous income – and defaults that are caused by the

12



defaults of other banks. The fictitious default algorithm works for e > ~0. For e ∈ R
n

the algorithm might break down as is demonstrated in the next example.

Example 2. To calculate a clearing vector for the case where Θ = 0n,n Eisenberg and

Noe (2001) propose the following iterative procedure. Let Λ(p) = diag((Π′p + e) < p̄)

and define the map p → FFp̂(p) as follows:

FFp̂(p) ≡ Λ(p̂)[Π′(Λ(p̂)p + (I − Λ(p̂))p̄ + e] + (I − Λ(p̂))p̄

This map returns for all nodes not defaulting under p̂ the required payment p̄. For all

other nodes it returns the node’s value assuming that non defaulting nodes pay p̄ and

defaulting nodes pay p. Under suitable restrictions this map has a unique fixed point

which is denoted by f(p̂). Note that the equation for the fixed point

f(p̂) = Λ(p̂)[Π′(Λ(p̂)f(p̂) + (I − Λ(p̂))p̄ + e] + (I − Λ(p̂))p̄

can actually be written quite compactly as

[I − Λ(p̂)Π′Λ(p̂)](f(p̂) − p̄) = Λ(p̂)(e + Π′p̄ − p̄). (13)

Premultiplying by (I − Λ(p̂)) yields

(I − Λ(p̂))(f(p̂) − p̄) = ~0.

For banks that do not default Λii(p̂) = 0 and fi(p̂) = p̄i. Premultiplying (13) by Λ(p̂)

gives

Λ(p̂)(I − Π′)Λ(p̂)(f(p̂) − p̄) = Λ(p̂)(e + Π′p̄ − p̄).

The ijth entry of Λ(p̂)(I − Π′)Λ(p̂) is zero unless Λii(p̂) = Λjj(p̂) = 1. To calculate the

fixed point, it suffices to consider the subsystem (submatrix) of defaulting nodes. The

original system of equations can be chopped up into two independent systems. This is a

major advantage if the number of nodes is large and default is a rare event.

Eisenberg and Noe (2001) show that under the assumption that e > ~0 (and Θ = 0n,n)

the sequence of payment vectors p0 = p̄, pi = f(pi−1) decreases to a clearing vector in

at most n iterations. The assumption that e > ~0 is essential as is illustrated by the

following example.
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e =







1
3

4

−9

8






, Π =







0 0 0
1

2
0 1

2

1

4

3

4
0






, p̄ =







1

2

1







Setting p0 = p̄ yields

e + Π′p0 =







9

4

3

2

−1

8






, Λ(p0) =







0 0 0

0 1 0

0 0 1






, and p1 = f(p0) =







1

− 3

20

−6

5






.

Hence, p1 is not feasible and the algorithm breaks down. A possible remedy would be

to use pi = [f(pi−1) ∨ ~0]. This procedure results in p2 = p1 = (1, 0, 0)′. It is easy to

verify that (1, 0, 0)′ is not a clearing vector. The unique clearing vector for the example

is given by p∗ = (1, 3

4
, 0)′.7

Even though the fictitious default algorithm might not work anymore it is still possible

to define a simple but admittedly less elegant iterative procedure to calculate a clearing

vector.

Theorem 6. If Θ is a holding matrix, the sequence pi+1 = [(W ∗(pi)+ p̄)∨~0)]∧ p̄ started

at p0 = p̄ is well defined, decreasing, and converges to the largest clearing vector p+.

Proof. pi+1 is well defined if W ∗(pi) is well defined. This is the case as Θ is a holding

matrix.

To calculate W ∗(pi) let u = e + Π′pi − p̄, W 0 = u, Λk = diag(W k > ~0), and W k+1 =

u + Θ′ΛkW k+1. As Θ′Λk is a holding matrix Lemma 1 implies that W k+1 exists and is

unique. By construction ΛkW k ≥ Λk−1W k. Therefore u + Θ′ΛkW k ≥ u + Θ′Λk−1W k =

W k. Let y = u+Θ′ΛkW k−W k ≥ ~0. It holds that W k+1−W k = y+Θ′Λk(W k+1−W k).

Applying Lemma 3 implies that W k+1 − W k ≥ y ≥ ~0. This in turn implies that

Λk+1 ≥ Λk. If Λk = Λk−1, it follows that W k+1 = W k and ΛkW k = W k ∨~0. Hence, W k

is a solution to W = u + Θ(W ∨ ~0). If Λk 6= Λk−1, the procedure has to be continued.

The iteration has to stop after at most n steps because Λk ≤ I for all k.

To prove that pi is decreasing note that p1 ≤ p0 = p̄ by construction. Now suppose

p0 ≥ p1 ≥ · · · ≥ pi. W ∗(p) is increasing in p. Hence, W ∗(pi) ≤ W ∗(pi−1) and therefore

pi+1 ≤ pi. Now suppose the series converges to some p̃. This implies that

p̃ = [(W ∗(p̃) + p̄) ∨~0)] ∧ p̄ =
{[

e + Π′p̃ + Θ(W ∗(p̃) ∨~0)
]

∨~0
}

∧ p̄.

7The fictitious default algorithm works if each pi is a supersolution. This can be guaranteed for e > ~0
and p0 = p̄. For e 6≥ ~0 this property may not hold.
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So p̃ is a clearing vector. Next note that W ∗(p0) ≥ W ∗(p+). This implies that p1 ≥ p+.

Now suppose it holds for i up to k that pi ≥ p+. Hence, W ∗(pk) ≥ W ∗(p+). But this

implies that pk+1 ≥ p+ and p̃ ≥ p+. As p+ is the largest clearing vector by assumption,

p̃ = p+.

The proposed solution algorithm detects the same sequence of defaults as the fictitious

default algorithm. Banks defaulting in the first round are those that default even if their

claims are honored fully. Banks defaulting in later rounds are dragged into default by

their interbank counter parties.

5. Comparative Statics

Without cross holdings the clearing vector is a concave function of e and p̄ as is shown

by Eisenberg and Noe (2001). A simple example shows that the clearing vector is not

concave as soon as cross holdings are included.

Example 3. Assume the network is characterized by the following parameters:

e =







0

λ

− 1

10






, Π =







0 1 0

0 0 0

1 0 0






, p̄ =







1

0

1






, Θ =







0 1

2
0

0 0 0

0 1

4
0







Table 1 shows the clearing vectors and equity values as a function of λ ∈ R
n. The

clearing payments of banks 1 and 3 are not concave in λ. The equity values of banks 1

and 2 are not convex in λ.

In Figure 1 the equity value of bank 2, V ∗
2 , increases faster than exogenous income e2,

i.e.
∂V ∗

2

∂e2
> 1. This seems to suggest that injecting money into the network might increase

the value of the bank by more than the supplied money. Let p∗(e) and V ∗(p∗(e), e) be the

clearing vector and the equity values corresponding to the financial network consisting

of (e,Π, p̄, Θ). Suppose some outside investor injects money into the network such that

ẽ ≥ e. Using that W ∗(p, e) increases in e and p it follows that p∗(ẽ) ≥ p∗(e) and

V ∗(p∗(ẽ), ẽ) ≥ V ∗(p∗(e), e). As both p∗(ẽ) and p∗(e) are clearing vectors, it holds that

ẽ + (Π′ − I)p∗(ẽ) + Θ′V ∗(p∗(ẽ), ẽ) ≥ e + (Π′ − I)p∗(e) + Θ′V ∗(p∗(e), e).

Putting this together and premultiplying by ~1′ yields

~1′(I − Θ′)(V ∗(p∗(ẽ), ẽ) − V ∗(p∗(e), e)) +~1′(I − Π′)(p∗(ẽ) − p∗(e)) ≤ ~1′(ẽ − e).
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Figure 1: Debt payments of node 1 (dotted line) and the equity value of node 2 (solid
line) as functions of e2 = λ in Example 3. Debt payments are not concave and
the equity value is not convex in λ.
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λ ≤ 0 p∗ =





0
0
0



 V ∗ =





0
0
0





λ ∈ [0, 0.2] p∗ =





λ
0
0



 V ∗ =





0
2λ
0





λ ∈ [0.2, 7

15
] p∗ =





3λ − 2

5

0
λ − 1

5



 V ∗ =





0
4λ − 2

5

0





λ ∈ [ 7

15
, 17

5
] p∗ =





1
0

λ
4

+ 3

20



 V ∗ =





3

4
λ − 7

20

λ + 1
0





λ ≥ 17

5
p∗ =





1
0
1



 V ∗ =





1

2
(λ + 1)
λ + 1

1

4
(λ + 1) − 11

10





Table 1: Clearing vector and equity value as functions of banks 2’s income λ in Example
3.

By increasing e to ẽ the value of an outside investor’s portfolio changes by

ǫ′(V ∗(p∗(ẽ), ẽ) − V ∗(p∗(e), e)) + δ′(p∗(ẽ) − p∗(e)).

Even if the entire network is owned by a single outside investor, i.e. δ′ = ~1′(I− Π′) and

ǫ′ = ~1′(I − Θ′), the amount gained will never exceed the amount injected, i.e. ~1′(ẽ − e).

If there are no bankruptcy costs, it does never pay to bail out.

Theorem 7. Given two financial networks (e,Π, p̄, Θ) and (ẽ,Π, p̄, Θ) with ẽ ≥ e then

it holds that

~1′(I − Θ′)(V ∗(p∗(ẽ), ẽ) − V ∗(p∗(e), e)) +~1′(I − Π′)(p∗(ẽ) − p∗(e)) ≤ ~1′(ẽ − e).

In particular, for ẽ ≥ ~0 the value of debt and equity held by outside investors equals the

sum of the exogenous income across the banks, i.e.

~1′(I − Θ′)V ∗(p∗(ẽ), ẽ) +~1′(I − Π′)p∗(ẽ) = ~1′ẽ.
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Proof. Only the second claim remains to be shown. Let e = ~0. Evidently, ~0 is a clearing

vector for the network (~0, Π, p̄, Θ) with equity values V ∗(~0,~0) = ~0. If there is another

clearing vector p̂(~0), Theorem 5 implies that ~1′(I−Π′)p̂(~0) = 0 and ~1′(I−Θ′)V ∗(p̂(~0),~0) =

~0. The inequality turns into an equality as V ∗(p∗(~0),~0)) = ~0+Π′p∗(~0)+Θ′V ∗(p∗(~0),~0)) =

~0.

6. Seniority Structure

Eisenberg and Noe (2001) interpret ei as exogenous operating cash flow. They restrict

ei to be nonnegative reasoning that any operating costs like wages can be captured by

appending a ”sink node“ to the financial system. Such a sink node has no operating

cash flow of its own, nor any obligations to other nodes. The implicit assumption is that

the operating costs are of the same priority as the liabilities in the financial system. If

these costs are of a higher priority, modeling them via a sink node is not correct.

Example 4. Assume that the financial system consist of two banks. Bank 1 has an

operating cash flow of 0.5. Bank 2 has revenues of 2 but has to pay wages of 4. In the

interbank market bank 1 owes bank 2 one unit and vice versa. If wages have the same

priority as the interbank liabilities, we append an additional node 3 to the system for the

workers. So

e =







1

2

2

0






, Π =







0 1 0
1

5
0 4

5

0 0 0






, p̄ =







1

5

0






, Θ = 03,3.

Clearing the system yields

p∗ =







1

3

0






and Π′p∗ + e − p∗ =







1

10

0
24

10






.

The shortfall of node 2 is proportionally shared between bank 1 and the workers. Each

of them loses 40% of the promised payments. If we assume by contrast that wages are of

a higher priority, the sink node approach can not be used. Yet, the problem is still well

defined and can be solved. The system

e =

(

1

2

−2

)

, Π =

(

0 1

1 0

)

, p̄ =

(

1

1

)
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has the solution

p∗ =

(

1

2

0

)

, Π′p∗ + e − p∗ =

(

0

−3

2

)

In this case node 1 is bankrupt. It loses all payments promised by node 2. Node 2 is not

able to pay off its obligations to the workers either (e2 + Π1,2p
∗
1 < 0). The workers lose

1.5 of the promised payments.

Finally, suppose there is a simple bilateral netting agreement between banks 1 and 2

which stipulates that crosswise nominal obligations are netted. In this case bank 1 has a

value of 1/2 and the entire losses have to be borne by the workers. In this case interbank

obligations would be of the highest priority.

The example demonstrates that the introduction of sink nodes is not as innocuous as

it may seem. If there are different levels of priority, the amount available to pay off the

most junior debt might be negative. Bank i’s income ei in the previous sections can

be interpreted as the amount available to pay off the most junior debt. This makes it

necessary not to restrict ei to be nonnegative.

To adapt the framework to a more elaborate seniority structure I introduce seniority

classes. Different liabilities are in the same seniority class if – in case of default –

repayment is rationed proportionally between them.8 Each bank may have a different

number of priority classes Si. Let S∗ be the maximum of these Si. Assume that debt

claims in class 1 are of the highest priority, i.e. have to be satisfied first, then the

claims in class 2 sequentially up to class S∗ are satisfied. Debt claims include interbank

positions as well as obligations to parties outside the banking system such as depositors

or bondholders. Denote by p̄is =
∑N

j=1
Lijs + Dis the liabilities of bank i in class s.

Define

Πijs =

{

Lijs

p̄is
if p̄is > 0

0 otherwise

and assume that if bank i has no debt in seniority class s then it has no debt in seniority

class s + 1 either (p̄is = 0 implies p̄is+1 = 0). Let p·s = (p1s, · · · , pns)
′ and

Πs =









Π11s · · · Π1ns

...
. . .

...

Πn1s · · · Πnns









.

8Lando (2004, pp. 247) and Elsinger et al. (2006b) discuss the consequences of bilateral netting agree-
ments in a network model. It is important to highlight that netting agreements can appropriately
be taken into account only if different priority levels exist. As can be seen in Example 4 netting of
nominal obligations is equivalent to assuming that the involved liabilities are of the highest priority.
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In analogy to the case of just one seniority class equity values V ∗(p) for a given p =

(p11 . . . p1S∗ , p21 . . . p2S∗ , . . . , pn1 . . . pnS∗) are defined as a fixed point of Ψ1(·; p, e,Π, Θ) :

R
n
+ → R

n
+

V ∗(p) = [e +

S∗

∑

s=1

(Πs)
′p·s −

S∗

∑

s=1

p·s + Θ′V ∗(p)] ∨~0.

Lemma 4 guarantees that V ∗(p) exists and is unique given that Θ is a holding matrix.

A clearing payment vector has to satisfy limited liability and the seniority structure of

the liabilities including absolute priority of debt.

Definition 3. p∗ ≥ ~0 is a clearing vector if ∀i ∈ {1, . . . , n} and ∀T ∈ {1, . . . , S∗}

p∗iT = min

(

max

(

ei +
N
∑

j=1

S∗

∑

s=1

Πjisp
∗
js −

T−1
∑

s=1

p∗is +
N
∑

j=1

ΘjiV
∗
j (p∗) , 0

)

, p̄iT

)

.

A clearing vector has the property that if debt in seniority class T is not fully honored

(p∗iT < p̄iT ), debt in seniority class T + 1 is not served at all (p∗iT+1
= 0). On the other

hand repaying at least a fraction of the debt in seniority class T + 1, i.e. p∗iT+1
> 0,

implies that debt in seniority class T is repaid in full. The definition insures that debt

is paid off according to seniority. As a consequence of a detailed priority structure ei

might as well be assumed to be nonnegative.

The introduction of a detailed seniority structure does not change the main results

which are proved in the Appendix.

Theorem 8. Provided that Θ is a holding matrix it holds that

1. there exist a greatest and a least clearing vector,

2. the wealth of outside investors does not depend on the chosen clearing vector, and

3. if there is no subset of banks I such that for each bank in I either
∑

j∈I Θij = 1

or
∑

j∈I Πijs = 1 for some s then the clearing vector is unique.

There are two ways to calculate a clearing vector. It can be done directly by a slight

modification of the procedure described in Theorem 6. Start with p0 = p̄ and calculate

W ∗(p0) using

W ∗(p) = e +
S∗

∑

s=1

(Πs)
′p·s −

S∗

∑

s=1

p̄·s + Θ(W ∗(p) ∨~0).

Let

pk
iT =

{[

W ∗
i (pk−1) +

S∗

∑

s=T

p̄is

]

∨ 0

}

∧ p̄iT
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and iterate the procedure. W ∗(p) is increasing in p implying that pk ≤ pk−1 for all k

and limk→∞pk = p+ where p+ denotes the largest clearing vector.

An alternative approach utilizes a sequential clearing procedure in which first a clear-

ing vector for the most junior liabilities is calculated assuming all other claims are

fully honored. If a bank is not able to honor any of its junior liabilities, we reduce the

payments for the liabilities next to the most junior and so on. To formalize this, let

H = (H1, . . . , Hn) be a n-tuple of seniority classes and define

eiH = ei +
n
∑

j=1

Hj−1
∑

s=1

Πjisp̄js −
Hi−1
∑

s=1

p̄is

ΠH =









Π11H1
· · · Π1nH1

...
. . .

...

Πn1Hn
· · · ΠnnHn









, pH =









p1H1

...

pnHn









, p̄H =









p̄1H1

...

p̄nHn









.

eiH is exogenous income of bank i plus all claims against other banks j that are more

senior than seniority class Hj minus all liabilities of bank i that are more senior than

Hi. Note that eH = (e1H , . . . , enH)′ is not necessarily positive even if e is positive. p̄iHi

is the nominal obligation of bank i in seniority class Hi. ΠijHi
is the fraction of nominal

liabilities of bank i in seniority class Hi that it owes bank j.

To calculate a clearing vector start with H0 = (S1, . . . , Sn) where Si is the most junior

debt of bank i. Calculate a clearing vector p̂H0 for the system (eH0 , ΠH0 , p̄H0 , Θ) by the

procedure described in Theorem 6. If eH0 +Π′
H0 p̂H0 − p̂H0 +Θ′V (p∗

H0) ≥ ~0, we are done.

Otherwise, let Λ0 = diag(eH0 + Π′
H0 p̂H0 − p̂H0 + Θ′V (p̂H0) < ~0). If Λ0

ii = 1, bank i is

not only in default. It is not able to repay even any debt in seniority class H0
i , p̂iH0

i
= 0.

The amount available to cover liabilities in H0
i is actually negative. For a bank i in Λ0

we discard debt in seniority class H0
i and set H1 = H0 − 1′Λ0.

If we apply the clearing procedure from Theorem 6 to the system (eH1 , ΠH1 , p̄H1 , Θ),

it could happen that the equity value of a bank i in Λ0 turns positive as debt in class

H0
i was deleted. To see why this problem does not occur note that

eH0 + (Π′
H0 − I)p̂H0 = eH1 + (Π′

H1 − I)
[

(I − Λ0)p̂H0 + Λ0p̄H1

]

.

It is easy to verify that p̃ = (I − Λ0)p̂H0 + Λ0p̄H1 ≥ Φ1(p̃; ΠH1 , p̄H1 , eH1
, Θ) and p̃i =

p̄iH1 > Φ1
i (p̃; ΠH1 , p̄H1 , eH1

, Θ) for i ∈ Λ0. p̃ is a supersolution but not a clearing vector.

The set of supersolutions consists of all clearing vectors and the set of all p that are

greater or equal to the largest clearing vector. This implies that the clearing vector p̂H1

of (eH1 , ΠH1 , p̄H1 , Θ) is smaller or equal to p̃H1 ≤ p̄H1 and p̂iH1 < p̄iH1 for all i ∈ Λ0.
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The value of a bank i that is not able to repay any debt in seniority class H0
i is zero.

Let Λk = diag(eHk + Π′
Hk p̂Hk − p̂Hk + Θ′V (p̂Hk) < ~0) and Hk+1 = Hk − 1′Λk

where p̂Hk is the clearing vector for the system (eHk , ΠHk , p̄Hk , Θ). Clear the system

(eHk+1 , ΠHk+1 , p̄Hk+1 , Θ) to get p̂Hk+1 . Iterate this procedure until Λk = 0n,n. Under

the assumption that e is nonnegative the algorithm terminates after finitely many steps.

Example 5. Using different priority classes we may rewrite Example 3 to show that

even if e > 0, p∗ is not necessarily concave in e. To do this interpret e in Example 3

as the net position after subtracting high priority debt from income. Assume that the

counterparties of the highest priority debt are not part of the network. These liabilities

are given by D·1 = (D11, D21, D31)
′ =

(

1, 1, 11

10

)′
. There are no liabilities of the same

priority within the network and hence L1 = 03,3. Let e = (1, 1+λ, 1)′. So the net position

after clearing highest seniority debt is equal to e in Example 3. The other parameters

are given by D·2 = ~0,

L2 =







0 1 0

0 0 0

1 0 0






, and Θ =







0 1

2
0

0 0 0

0 1

4
0






.

Hence, p̄ =
(

1, 1, 11

10
, 1, 0, 1

)

. It is easy to verify that the clearing payments of node 1 in

seniority class 2 equal the clearing payment of node 1 in Example 3. Hence, p∗ is not

concave in e.

7. Conclusions

In this paper I analyze networks of financial institutions that are linked with each other

via debt and equity claims. Limited liability of equity and a detailed seniority structure

of debt are taken into account explicitly. The values of these claims are finite but not

necessarily unique. Yet, whenever an outside investor holds a claim against a bank the

value of this claim is unique. By adjusting the fictitious default algorithm developed in

Eisenberg and Noe (2001) debt and equity values can be determined.

As long as bankruptcy costs are zero it never pays to bail out insolvent banks. Intro-

ducing bankruptcy costs does not change the main result that a solution to the clearing

problem exists. Yet, bailing out insolvent banks or forgiving debt may become profitable.

The model is static. But by the inclusion of a detailed seniority structure it allows

to take the timing of the payments into account and has thereby a dynamic flavor.

The contagion effects of a negative shock to the economy (low realization of e) can be

analyzed more precisely than in the case were all liabilities are modeled as pari passu.
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The model presented is part of a simulation software at the Oesterreichische Nation-

albank to assess the stability of the Austrian banking sector.9 The simulations rest on

the assumption that exogenous income e is a multidimensional random variable. For

each draw of e the system is cleared. If e is drawn from the objective distribution,

default probabilities and contagion effects can be assessed. If e is drawn from the risk

neutral measure, the value of debt and equity can be determined by averaging across

the simulations.

9A detailed description of the software is given in a technical document (Boss et al. (2006)) which is
available upon request.
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A. Appendix

Lemma 1. Let Θ ∈ [0, 1]n×n be a matrix of interbank share holdings and let I be the

n × n identity matrix. (I− Θ′) is invertible if and only if Assumption 1 is satisfied, i.e.

Θ is a holding matrix.

Proof. As I − Θ′ = (I − Θ)′, it suffices to show that (I − Θ) is invertible. Assume that

there is a subset I ⊂ {1, . . . , n} such that
∑

j∈I Θij = 1 for all i ∈ I. Let x be an n × 1

vector with components xi = 1 if i ∈ I and xi = 0 otherwise. Clearly, (I − Θ)x = ~0

where ~0 denotes the n × 1 dimensional zero vector. Thus (I − Θ) is not invertible.

Now assume that (I−Θ) is not invertible. Then there exists a vector x 6= ~0 such that

(I − Θ)x = ~0. Writing down this system equation by equation we have a linear system

given by

xi =
n
∑

j=1

Θijxj for i = 1, ..., n.

Taking absolute values on both sides and applying the triangle inequality yields

|xi| = |
n
∑

j=1

Θijxj | ≤
n
∑

j=1

Θij |xj | for i = 1, ..., n.

Now construct an index set I ⊂ {1, . . . , n} as follows. The index i is in I if and only

if |xi| ≥ |xj | for j = 1, ..., n. Since the triangle inequality holds for all i it holds in

particular for all i ∈ I. Thus we have

|xi| ≤
n
∑

j=1

Θij |xj | ≤ |xi|





∑

j∈I

Θij +
∑

j 6∈I

Θij



 ≤ |xi| for all i ∈ I

with equality only if
∑

j∈I Θij = 1. Hence, if (I−Θ) is not invertible it has to hold that
∑

j∈I Θij = 1 for all i ∈ I. This violates Assumption 1.

Lemma 2. Let Θ be an n×n holding matrix, let u be a n×1 vector, and let Λ = diag(u >

~0). If Λ 6= 0n,n where 0n,n is an n × n matrix of zeros, it holds that ~1′Λ(I− Θ′)Λu > 0.

Proof. Λ is idempotent. Hence,

~1′Λ(I − Θ′)Λu = ~1′Λ(I − Θ′)ΛΛu

Λu ≥ ~0 by construction. ~1′Λ(I − Θ′)Λ ≥ ~0′ as no row sum of Θ exceeds one. This

implies that ~1′Λ(I − Θ′)Λu ≥ 0. Now, suppose ~1′Λ(I − Θ′)Λu = 0 and define the index
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set I := {i|ui > 0}. Λ 6= 0n,n implies that I is not empty. It has to hold that

0 =
∑

i∈I

ui −
∑

i∈I

∑

j∈I

Θjiuj =
∑

i∈I

ui −
∑

j∈I

(

∑

i∈I

Θji

)

uj

This implies that
∑

i∈I Θji = 1 for all j ∈ I. But this violates Assumption 1.

Lemma 3. Let Θ be a n×n holding matrix and let y ≥ ~0 be a n× 1 vector. Then there

exists a unique x ≥ y such that x = y + Θ′x.

Proof. Lemma 1 implies that x is unique. Now, suppose x 6≥ y and let Λ = diag(x < y).

Λx = Λy + ΛΘ′Λx + ΛΘ′(I − Λ)x

By construction (I − Λ)x ≥ (I − Λ)y. So the last equation may be rewritten as

Λ(I − Θ′)Λ(x − y) ≥ ΛΘ′y.

Premultiplying by ~1′ yields

~1′Λ(I − Θ′)Λ(x − y) ≥ ~1′ΛΘ′y ≥ 0.

If Λ 6= 0n,n the left hand side is smaller than 0 by Lemma 2. Therefore, x ≥ y.

Lemma 4. Let u ∈ R
n and Θ be a holding matrix. Then the map F (·; u) : R

n → R
n
+

F (V ; u) = [u + Θ′V ] ∨~0 (14)

has a unique fixed point, V ∗ ≥ ~0.

Proof. Define Ṽ by Ṽ = [u ∨ ~0] + Θ′Ṽ . Given that Θ is a holding matrix , Lemma 1

implies that Ṽ is well defined and unique. Lemma 3 implies Ṽ ≥ [u ∨~0] ≥ ~0. Moreover,

F (Ṽ ; u) = [u + Θ′Ṽ ] ∨~0 = [u − (u ∨~0) + Ṽ ] ∨~0 ≤ Ṽ .

As F (V ; u) is increasing on the complete lattice [~0, Ṽ ] the Tarski fixed point theorem

(Theorem 11.E in Zeidler (1986)) implies that there exists a greatest and a least fixed

point, V + and V −, in the interval [~0, Ṽ ]. Suppose V ∗, not necessarily in [~0, Ṽ ], is yet

another fixed point. Let Λ = diag(V ∗ > V −). Note that ΛV ∗ = Λ(u+Θ′V ∗) and ΛV − ≥

Λ(u + Θ′V −). This implies that Λ(V ∗ − V −) ≤ ΛΘ′ (Λ(V ∗ − V −) + (I − Λ)(V ∗ − V −)).
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Rearranging and premultiplying by ~1′ yields

~1′Λ(I − Θ′)Λ(V ∗ − V −) ≤ ~1′ΛΘ′(I − Λ)(V ∗ − V −).

The right hand side of the above inequality is less than or equal to 0. Lemma 2 implies

that the left hand side is larger than 0 as long as Λ 6= 0n,n. So it has to hold that

V ∗ ≤ V −. Evidently, V ∗ ≥ ~0. But as V − is the smallest fixed point in [~0, Ṽ ] it follows

that V ∗ = V − and the fixed point is unique.

Lemma 5. Let Θ be a holding matrix. Then

W = u + Θ′(W ∨~0) (15)

has a unique solution W ∗ for any n×1 vector u. If u1 and u2 are two n×1 vectors such

that u2 ≥ u1 then W ∗(u2)−W ∗(u1) ≥ u2 −u1 and (I−Θ)(W ∗(u2)−W ∗(u1)) ≤ u2 −u1

where W ∗(u1) and W ∗(u2) are the respective fixed points.

Proof. Lemma 4 establishes that V ∗ = [u+Θ′V ∗]∨~0 is unique. Let X = u+Θ′V ∗. It is

easy to see that X solves (15). On the other hand if W ∗ solves (15) then X = [W ∗∨~0] is

a fixed point of F (·; u). To prove uniqueness assume there exist two solutions, W 1 and

W 2. As F (·; u) has a unique fixed point, [W 1 ∨ ~0] = [W 2 ∨ ~0]. But this in turn implies

that W 1 = W 2. Hence, Equation (15) has a unique solution.

To prove the second claim assume that u1 and u2 are two vectors in R
n such that

u2 ≥ u1. Let W ∗(u1) = u1 + Θ′(W ∗(u1) ∨~0) and W ∗(u2) = u2 + Θ′(W ∗(u2) ∨~0) be the

respective fixed points. Let x = u2 − u1 ≥ ~0. It holds that

W ∗(u2) − W ∗(u1) = x + Θ′([W ∗(u2) ∨~0] − [W ∗(u1) ∨~0])

Let Λ = diag(W ∗(u1) > W ∗(u2)). Note that Λ([W ∗(u2)∨~0]−[W ∗(u1)∨~0]) ≥ Λ(W ∗(u2)−

W ∗(u1)) and (I − Λ)([W ∗(u2) ∨~0] − [W ∗(u1) ∨~0]) ≥ ~0. Hence,

Λ(W ∗(u2) − W ∗(u1)) ≥ Λx + ΛΘΛ(W ∗(u2) − W ∗(u1))

Rearranging and premultiplying by ~1′ yields

~1′Λ(I − Θ′)Λ(W ∗(u2) − W ∗(u1)) ≥ ~1′Λx

The right hand side is larger or equal to 0. The left hand side is smaller than 0 by
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Lemma 2 unless Λ = 0n,n. Hence, W ∗(u2) ≥ W ∗(u1). This implies

W ∗(u2) − W ∗(u1) ≥ ([W ∗(u2) ∨~0] − [W ∗(u1) ∨~0]) ≥ 0

and therefore W ∗(u2)−W ∗(u1) ≥ u2−u1 and (I−Θ′)(W ∗(u2)−W ∗(u1)) ≤ u2−u1.

Theorem 8. Provided that Θ is a holding matrix it holds that

1. there exist a greatest and a least clearing vector,

2. the wealth of outside investors does not depend on the chosen clearing vector, and

3. if there is no subset of banks I such that for each bank in I either
∑

j∈I Θij = 1

or
∑

j∈I Πijs = 1 for some s then the clearing vector is unique.

Proof. In analogy to the case of only one seniority class a clearing vector can be defined

as a fixed point of the map

Φ1(p) = (Φ1
11 . . .Φ1

1S∗ , Φ1
21 . . .Φ1

2S∗ , . . . ,Φ1
n1 . . .Φ1

nS∗) : [~0, p̄] → [~0, p̄] defined by

Φ1
iT (p) =









ei +
N
∑

j=1

S∗

∑

s=1

Πjispjs −
T−1
∑

s=1

pis +
N
∑

j=1

ΘjiV
∗
j (p)



 ∨ 0







∧ p̄iT . (16)

Moreover,

W ∗(p) = e +
S∗

∑

s=1

(Πs)
′p·s −

S∗

∑

s=1

p̄·s + Θ′(W ∗(p) ∨~0) (17)

and

Φ2
iT (p) =









ei +
N
∑

j=1

S∗

∑

s=1

Πjispjs −
T−1
∑

s=1

p̄is +
N
∑

j=1

Θji(W
∗
j (p) ∨ 0)



 ∨ 0







∧ p̄iT . (18)

Part a) The existence of a greatest and a least clearing vector is proved in two steps.

The first step is to verify that any solution of Φ1 is a solution of Φ2 and vice versa. The

second step consists of showing that Φ2 is increasing in p and applying the Tarski fixed

point theorem.

I prove that any supersolution of Φ1 is a supersolution of Φ2 and vice versa. To show

that any solution of Φ1 is a solution of Φ2 and vice versa is analogous. Suppose that p̂

is a supersolution of Φ1, i.e. p̂ ≥ Φ1(p̂). Let X = e +
S∗

∑

s=1

(Πs)
′p̂·s −

S∗

∑

s=1

p̄·s + Θ′V ∗(p̂).
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Evidently, V ∗(p̂) ≥ X. Whenever, V ∗
i (p̂) > 0 it has to hold that

0 < ei +
N
∑

j=1

S∗

∑

s=1

Πjisp̂js −
S∗

∑

s=1

p̂is +
N
∑

j=1

ΘjiV
∗
j (p).

This implies that

p̂iT < ei +
N
∑

j=1

S∗

∑

s=1

Πjisp̂js −
T−1
∑

s=1

p̂is +
N
∑

j=1

ΘjiV
∗
j (p) ∀T ∈ {1, . . . , S∗}.

Given that p̂ is a supersolution of Φ1 we get p̂iT = p̄iT for all T ∈ {1, . . . , S∗}. Therefore,

V ∗(p̂) = (X ∨ ~0) and X solves (17). As Φ1(p̂) ≥ Φ2(p̂) the vector p̂ is a supersolution

of Φ2, too. Now, assume that p̂ is a supersolution of Φ2. Let X = (W ∗(p̂) ∨ ~0). If

W ∗
i (p̂) ≥ 0 then

p̄iT ≤ ei +
N
∑

j=1

S∗

∑

s=1

Πjisp̂js −
T−1
∑

s=1

p̄is +
N
∑

j=1

Θji(W
∗
j (p) ∨ 0)

implying that p̂iT = p̄iT for all T ∈ {1, . . . , S∗}. Hence, for all i with W ∗
i (p̂) ≥ 0 we get

Xi = ei +
N
∑

j=1

S∗

∑

s=1

Πjisp̂js −
S∗

∑

s=1

p̂is +
N
∑

j=1

ΘjiXj .

Suppose W ∗
i (p̂) < 0 and let Hi be the highest index such that p̂iHi

= p̄iHi
. If Hi = S∗

then

0 > ei +
N
∑

j=1

S∗

∑

s=1

Πjisp̂js −
S∗

∑

s=1

p̂is +
N
∑

j=1

ΘjiXj .

For Hi < S∗ it has to hold that

p̄iHi+1 > p̂iHi+1 ≥ ei +
N
∑

j=1

S∗

∑

s=1

Πjisp̂js −

Hi
∑

s=1

p̂is +
N
∑

j=1

ΘjiXj(p) (19)

as p̂ is a supersolution. Hence.

0 ≥ ei +
N
∑

j=1

S∗

∑

s=1

Πjisp̂js −
S∗

∑

s=1

p̂is +
N
∑

j=1

ΘjiXj(p).
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So we may write

X =

(

e +
S∗

∑

s=1

(Πs)
′p̂·s −

S∗

∑

s=1

p̂·s + Θ′X

)

∨~0.

To prove that p̂ is a supersolution of Φ1 note that for all s ≤ Hi + 1, Φ1
is = Φ2

is and for

all s > Hi + 1, it has to hold that 0 ≥ Φ1
is ≥ Φ2

is as can be seen by (19). The vector p̂ is

indeed a supersolution of Φ1.

Φ1 and Φ2 have the same (super)solutions. Lemma 5 establishes that W ∗(p) and

consequently Φ2(p) are increasing in p. Applying the Tarski fixed point theorem yields

that there exist a greatest and a least clearing vector for the problem.

Parts b) and c) Let p1 and p2 be two clearing vectors such that p2 ≥ p1. Denote the

corresponding equity values by V 1 and V 2. Without loss of generality it can be assumed

that e ≥ 0. This implies that for any clearing vector p∗ the corresponding equity values

can be written as

V ∗(p∗) = e +
S∗

∑

s=1

(Πs)
′p∗·s −

S∗

∑

s=1

p∗·s + Θ′V ∗(p∗).

Let Λ0 = diag(V 2 > V 1) and Λs = diag(p2
.s > p1

.s) for each s ∈ {1, . . . , S∗}. Let Λ

characterize all banks that either belong to Λ0 or some Λs, i.e. Λ = I −
∏S∗

s=0
(I − Λs).

Subtracting V 1 from V 2 and multiplying by ~1′Λ yields

~1′Λ(I − Θ′)Λ0(V 2 − V 1) =
S∗

∑

s=1

~1′Λ(Π′
s − I)Λs(p2

·s − p1
·s).

For this equality to hold the left hand side and each summand on the right hand side

has to equal 0.

~1′Λ(I − Θ′)Λ0 = ~1′Λ(Π′
s − I)Λs = 0 for all s.

Any bank i with a non–unique equity value has to be owned entirely by banks in Λ.

An outside investor can not own any share of such a bank. If the clearing payment of a

bank in seniority class s is non–unique then the bank owes all liabilities in this class to

banks in Λ. No claims are held by outside investors. The value of the outside investor’s

portfolio is independent of the chosen clearing vector. If there is no subset of banks such

that each bank is either owned entirely by banks in this subset or all obligees in at least

one seniority class belong to this subset then the equity values and clearing payments

have to be unique.
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