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Abstract 
 
The deterrent effect of law enforcement rests on the link between the actual and the perceived 
detection risk. We study the role of word of mouth for this linkage. Our approach makes use 
of micro data on compliance with TV license fees allowing us to distinguish between 
households who have been subject to enforcement and those who have not. Exploiting local 
variation in field inspectors’ efforts induced by snowfall, we find a striking response of 
households to increased enforcement in their vicinity, with compliance rising significantly 
among those who had no interaction with inspectors. As we can exclude other channels of 
information transmission, our finding establishes a substantial deterrent effect mediated by 
word of mouth. 
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1 Introduction

Over the last decade, a growing number of studies have provided evidence supporting

Becker’s (1968) model of crime. While several contributions have identified a deterrent

impact of sanctions (Kessler and Levitt, 1999; Drago et al., 2007) and a negative effect of

police on crime (Corman and Mocan, 2000; Levitt, 2002; Di Tella and Schargrodsky, 2004),

the channels through which deterrence is actually achieved are less clear. In particular, we

know little about the mechanisms through which an increase in enforcement will ultimately

affect the behavior of individuals.

Evidently, the link between the actual level of law enforcement and the corresponding

perceptions of individuals is of key importance for enforcement policies to become effective.

Relaxing Becker’s assumption that the detection probability is common knowledge, Sah

(1991) has analyzed the evolution of individual risk perceptions and the corresponding co-

evolution of crime. In his model, the agents update their perceived detection risk based on

information obtained from sampling in their vicinity. This updating establishes a positive

linkage between enforcement and compliance. Although empirical studies have shown that

individual beliefs about the detection risk are indeed responsive to personal experience with

the criminal justice system (Lochner, 2007),1 there is still no evidence on the responsiveness

of compliance behavior to information obtained from sampling. This dearth of evidence on

the policy-to-perception and perception-to-behavior link is considered as one of the major

gaps in deterrence research (Nagin, 1998).

The present paper provides results which contribute to closing this gap. More precisely,

our aim is to distinguish empirically between a direct and an indirect deterrent effect of

enforcement. While the direct effect works through the updating of risk perceptions based

on personal experience, the indirect effect is driven by ‘word of mouth’, i.e. an updating

based on sampling among acquaintances. To disentangle these effects, we exploit micro

1Earlier contributions include Richards and Tittle (1982), Horney and Marshall (1992), Parker and
Grasmick (1979), Paternoster et al. (1985), and Piliavin et al. (1986). Further evidence is discussed in
Nagin (1998).
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data on the enforcement of TV licence fees and households’ compliance behavior. In this

setting, enforcement is not publicly observable and targeted to individual households. This

distinctive feature enables us to distinguish between households who have been subject to

enforcement and those who have not. The empirical investigation then tracks the response

of ‘untreated’ households to the level of enforcement targeted at other households in their

vicinity. We find striking evidence of a strong behavioral response to increased enforce-

ment. Since our setting allows us to exclude other channels of information transmission,

we conclude that the change in behavior of untreated households must be driven by treated

households communicating their experience within their circle of acquaintances. Hence, our

empirical findings establish an indirect deterrent effect of enforcement which is mediated

by word of mouth.

Our analysis builds on unique data on the Austrian TV licence fee system. There are

several reasons which render this institution ideal for the purpose of our study. Firstly,

the enforcement of the fees involves licensing inspectors approaching individual households,

providing us with an unambiguous measure of detected violations of the law. Secondly, the

activity of the inspectors is not observable to the public: their presence in a community is

not announced, they are non-uniformed and they do not use any police-like cars. Hence,

there remain two ways in which households can learn about the local level of enforcement –

personal experience and word of mouth. Thirdly, we benefit from using households’ unso-

licited registrations for the payment of licence fees as a measure for the behavioral response

to enforcement. Focusing on quit decisions, i.e. the decision of households who deviate from

the law and stop doing so, is a novel approach in empirical studies of deterrence.2 Apart

from allowing us to avoid typical problems associated with the measurement of crime rates

(see Levitt, 1998; MacDonald, 2002), the use of quit decisions assures that there is no

scope for crime displacement – in particular, the relocation of law violations in response to

increased local enforcement – to drive our results (Jacob et al., 2007).

Based on a record of household-level data on all unsolicited registrations for TV licence

2As we will discuss below, these decisions can be understood as an implicit form of self-reporting as
studied in Kaplow and Shavell (1994).
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fees and enforcement by inspectors for the period from November 2005 to March 2006, we

construct a panel of monthly enforcement and registration rates. The rates are aggregated

at the level of municipalities with a median size of 900 households. We then estimate

the impact of enforcement on unsolicited registrations. To avoid problems related to the

likely endogeneity of inspectors’ enforcement activities, we follow an instrumental variables

strategy. We use descriptors of local weather and driving conditions – snowfall and the

frequency of car accidents – as instrumental variables.3 These instruments are motivated

by a number of facts: first of all, licensing inspectors work under piece-rate contracts

without being reimbursed for the time spent on traveling, and they independently choose

when and where to become active. Furthermore, the time period under consideration

was characterized by record breaking levels of snowfall. Hence, for licensing inspectors,

the decision where to go became an important one in terms of the opportunity costs of

traveling. Finally, Austria is an alpine country with strong regional variation in terms of

accessibility during periods of heavy snowfall, providing most inspectors with an option to

trim their traveling plans towards areas with reasonable driving conditions. It turns out

that our instruments are strong predictors for actual enforcement levels. As conjectured,

inspectors respond to their piece-rate incentives, avoiding regions which are more difficult

to access in the presence of poor driving conditions.

Exploiting the exogenous variation in enforcement induced by our instruments, we find

that an increase in enforcement has a significant impact on unsolicited registrations: on

average, three detections by licensing inspectors trigger one additional unsolicited registra-

tion. Given that the scope for the indirect deterrence effect is limited by a high overall

compliance level, the estimated effect is sizable. We analyze the sensitivity of this result

with respect to cases which could potentially be driven by direct exposure to enforcement.

All our additional estimations confirm that the observed deterrence effect is driven by the

dispersion of information on enforcement through word of mouth.

The remainder of the paper is organized as follows. We first describe the institutional

3Using weather conditions as instrumental variables relates our approach to Miguel et al. (2004) and
Jacob et al. (2007).
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background. Section 3 motivates our empirical approach and discusses estimation methods

and data. Section 4 presents the results, and Section 5 concludes.

2 Institutional Background

In most countries of the world, a significant share of broadcasting is provided by public

broadcasters, which are mostly funded by broadcasting licence fees (Newcomb, 2004). A

typical licence fee system is in place in Austria. According to the Austrian Broadcasting

Licence Fee Act (BLFA in the following), every household must register its operational TVs

and radios. Irrespective of the number of household members, only one licence fee has to

be payed per household. Technically, however, public broadcasting programs can also be

received without paying the annual fee, which ranged from e 206 to e 263 in 2005/2006.4

Licence fees are managed by ‘Fee Information Service’, henceforth FIS, a subsidiary of the

Austrian Public Broadcasting Company. In 2005, 94% of all Austrian households were

registered and payed a total of e 650 million (0.3% of GDP).5

The number of registered households is in permanent flux. In principle, households can

always de-register, stating that they no longer operate any broadcasting receiver. Those who

do so, however, will be thoroughly checked by the FIS enforcement division (see below).

An easier way to escape fees emerges in case of moving. Broadcasting registrations are

attached to the place of residence, and the law requires moving households to update their

registration details with FIS. De-registering at the old place without registering at the new

place gives households an opportunity to start evading without the need to explicitly state

the absence of TV and radio receivers.

FIS tracks evasion of fees by comparing residence data with its own data base. In

principle, all residents who have not registered a TV or radio are treated as potential

evaders. Of course, this mechanism does not perfectly identify those who do not comply with

4License fees are typically paid by direct debit. There also exists a reduced fee which only covers radios
(e 60 – e 76 p.a.). All fees differ between the federal states.

5Less than one percent of households hold neither a radio nor a TV (Statistics Austria, 2006). The
figure of 94% therefore gives a reasonable proxy for the overall compliance rate.
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the BLFA, but it provides FIS with well-defined targets for specific enforcement measures:

potential evaders are first addressed in a mailing, which asks them to clarify their status

and register for licence fees.6 The data of those who do not respond to a mailing are then

handed over to FIS’ enforcement division. Members of this division, so called “licensing

inspectors”, enforce the BLFA in the field by personally approaching target households. FIS

can impose a fine of up to e 2,180 on detected evaders. In addition, a detected household

eventually has to pay evaded fees for several past months. Note that the maximum level

of fines is also communicated in the 100,000 mailings which are sent by FIS every year.

The availability of this penalty is reflected in a recent national survey, finding that 55% of

Austrian households expect ‘severe’ or ‘very severe’ sanctions if they are detected cheating

on licence fees.7

¿From November 2005 to March 2006, mailings resulted in 12,327 registrations, while

field inspections contributed a total of 28,193 new registrations. However, as shown in Table

1, the bulk of registrations came from unsolicited registrations. Such registrations originate

from households who send in a hard-copy registration form which is available at municipal

and post offices as well as at branches of banks. Alternatively, one may also register online,

using a web form, or by phone. In the five months covered by our data, hard-copy forms

accounted for 31,164 unsolicited registrations, while 17,864 households registered online or

via phone.

For what follows, it will be useful to highlight several features of FIS’ enforcement sys-

tem. During the period under consideration, 207 inspectors were active, most of them

working part-time. As mentioned above, inspectors are non-uniformed and do not use any

official, police-like but their private cars. In contrast to police on the streets, the presence

of licensing inspectors is therefore not visible to the general public. Each inspector gets

assigned a limited number of municipalities (18 on average, with several overlaps). They

6See Fellner, Sausgruber, and Traxler (2009) for a field experiment testing different strategies in these
mailings.

7For black labor market participation [skiving off work], the corresponding figure is 60% [38%]. The
data from this survey (N = 1138), which are further discussed in Traxler and Winter (2009), are available
from the authors.

5



Table 1: Number of new registrations by type (Nov 2005 – Mar 2006)

Type of registration Count Percentage
Response to mailing 12,327 13.77
Field inspection 28,193 31.48
Unsolicited registration 49,028 54.75
– hard-copy 31,164 34.80
– online and phone 17,864 19.95

Total number of registrations 89,548 100.00

are payed according to a simple piece-rate contract (without any fixed income component),

earning a premium of e 20 for every new registration they deliver. Equipped with infor-

mation on target households, inspectors independently choose their effort. In particular,

they independently decide when and where to become active. Neither are there any public

announcements which municipalities are going to be inspected nor is there any coordina-

tion among individual inspectors. FIS solely requires inspectors to cover every municipality

within their domain at least once per year. However, as travel expenses are not reimbursed,

inspectors seem to have little incentives to regularly cover remote and sparsely populated

areas.

Inspectors are credited for two types of registrations. First of all, they get the piece-rate

for each registration generated by face-to-face interaction with a target household. When it

does not come to personal interaction (e.g. nobody was met at home), inspectors leave an

information brochure with a registration form. If the form is returned later, FIS identifies

the respective inspector from a code printed on the form and credits the inspector with the

registration (8% of all registrations credited with field inspectors emerge in this way).

3 Measuring Deterrence

Our analysis focuses on the choice to register for licence fees and the impact of enforcement

on this decision. Before turning to the estimation approach and the data, we briefly discuss

the relation between registering, self-reporting and enforcement.
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3.1 Registering, Self-Reporting and Enforcement

Consider the decision of an agent j to register or not to register his TV in a simple one

period setting. If he does register, he has to pay licence fees and his utility is U r
j . If he does

not register, he may get detected by a licensing inspector resulting in a utility level of Ud
j .

In case he remains undetected, he does not pay fees and his utility is Uu
j , with Uu

j > Ud
j .

The agent will prefer to register whenever

U r
j ≥ pj U

d
j + (1− pj)U

u
j , (1)

where pj denotes the perceived risk of detection.8

Our analysis focuses on potential evaders, for which Uu
j > U r

j > Ud
j . For these agents,

evading fees is potentially attractive. For a sufficiently high detection risk pj, however,

condition (1) will be met and the potential evader is deterred: he would register.9 Such a

registration can be interpreted as an implicit form of self-reporting: whenever these agents

register, they do so because they “fear more severe treatment if they do not” (Kaplow and

Shavell, 1994, p. 583). In our case, they avoid fines, supplementary payments of fees and

the embarrassing interaction with a field inspector.

Let us now turn to the link between self-reporting behavior and the enforcement activity

of licensing inspectors. We consider the formation of agents’ risk perceptions, pj, as the

process through which enforcement can affect registrations.10 Generally, one might think

of individuals updating their beliefs about the detection risk based on their own experience

8The case of heterogenous risk perceptions is supported by many studies which report substantial varia-
tion in the perceived risk of detection. E.g., see Lochner (2007), Montmarquette et al. (1985), and Richards
and Tittle (1982).

9FIS runs intensive campaigns to support registration. For instance, during the time considered in
this study, FIS placed about three spots per day in countrywide broadcasted TV and radio channels.
We therefore do not consider unintentional evasion as a problem of any practical importance. One could
nevertheless consider a different type of agents with Ur

j ≥ Uu
j > Ud

j , reflecting a preference for registering
– irrespective of the risk perception. For these agents, non-compliance can never yield a utility gain, even
if it remains undetected. As a consequence, changes in risk perceptions will not trigger any behavioral
response.

10One could equivalently study the formation of the agents’ perceptions of sanctions, reflected in Ud
j . As

our data cover information on detections but not on fines, we follow Sah (1991), focussing on the perceived
detection risk.
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(establishing a direct deterrent effect of enforcement) as well as on information obtained

from others (giving rise to an indirect deterrent effect). A formal analysis of the indirect

channel is provided by Sah (1991). In his model, agents update their beliefs on the detection

risk, making use of information obtained from sampling in their vicinity. An increase in the

number of detections within this sample would ceteris paribus result in an increased risk

perception. In turn, the propensity to commit a crime decreases.

Hence, learning about detections establishes a positive link between the actual and the

perceived detection risk. Given that such a link exists we expect a rise in the number

of detections within a municipality to trigger an increase in local self-reporting: the more

households are detected by licensing inspectors, the more likely an evader will be confronted

with a higher number of detections among his neighbors, friends and acquaintances. As a

consequence, the perceived risk of detection rises, and so does the evader’s inclination to

register. Due to this link between detections and individual perceptions, enforcement has

the potential to exert an indirect deterrent effect on individuals who have not been subject

to enforcement. It is this spillover that we are going to study in the following.

3.2 Empirical Approach

The primary aim of our empirical analysis is to identify the causal effect of enforcement on

self-reporting. More precisely, we want to assess to which extent licence fee evaders register

their broadcasting receivers in response to an increased number of detections within their

municipality.

We employ monthly data on enforcement and unsolicited registrations at the munici-

pality level. Our two key variables are the effective enforcement rate (Enforcement it) and

the registration rate (Registration it). The former measures monthly detections within a

municipality – the number of registrations credited with field inspectors – per 1,000 house-

holds, whereas the registration rate is the corresponding rate of unsolicited registrations.
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The latter rate is taken to be determined by

Registration it = α+ βEnforcement it + γMobility it + θi + ηt + εit, (2)

where the subscripts i and t denote municipalities and months, respectively. Mobility it

captures individuals moving into or within the municipality relative to the total number of

households,11 α is a constant, θi and ηt account for unobserved municipality and period-

specific effects, respectively, and εit is a residual. The parameter of interest, β, measures

the impact of enforcement on registrations.

Conceptually, our approach differs from other work on law enforcement as we study the

link between enforcement and ‘quit decisions’ of those who violate the law (the decisions

of households who currently evade licence fees and stop doing so) rather than the link with

crime. By focusing on quit decisions, we avoid typical problems with the measurement of

crime as well as the possibility of crime displacement: if a local increase in enforcement has

a positive effect on quit rates, this clearly captures deterrence and cannot be due to the

relocation of unlawful activity to other places.

As in many related contributions, the estimation of the model parameters is complicated

by the likely endogeneity of the enforcement rate. The problem is akin to the simultaneity

problem in studies addressing the impact of police on crime (Corman and Mocan, 2000;

Di Tella and Schargrodsky, 2004; Levitt, 1997, 2002). The endogeneity derives from the fact

that the level of enforcement is not randomly assigned to communities; it rather depends

on the level of compliance. If field inspectors are more likely to be present in communities

with lower compliance levels (i.e. lower rates of unsolicited registration), we would expect

the covariance between Enforcementit and the residual εit to be negative. As a consequence,

the OLS estimate of β would be biased downwards. Hence, similar as with estimations of

the deterrent impact of police on crime, we need to account for the simultaneity between

11The reason for including mobility is that moving will generate registrations whenever households de-
register at the old and re-register for licence fees at the new place. Recall, however, that FIS asks households
to just update their address in case of moving instead of de- and re-registering. If most households comply
to this procedure, the effect of mobility on the registration rate should be modest.
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enforcement and compliance to obtain consistent parameter estimates.

To cope with the endogeneity of the enforcement rate, we make use of instrumental

variables (IVs). Our selection of IVs builds upon the incentives faced by the field inspectors.

Recall that inspectors independently decide on their effort level (hours worked per month,

the number of target households approached, etc.) as well as on which municipalities within

their domain to inspect in a given month. Remember further that licensing inspectors are

payed a constant piece rate for each registration they enforce, irrespective of the time

and effort spent on driving to target households. Given these incentives, we presume the

inspectors’ overall effort as well as their choice of target households to be sensitive to the

costs of going to different areas.

In search of instrumental variables, we draw on descriptors of local weather and driving

conditions. These instruments appear promising for two reasons. Firstly, our data cover

the winter 2005/06, a long enduring winter with extraordinary heavy snowfalls. In the

south-eastern regions of Austria, for instance, the snowfall during November 2005 alone

amounted to more than 70% of the total snowfall in an average winter season. In December,

weather stations in the north and east registered record breaking snow levels – the average

amount of fresh snow measured at 241 stations located over all Austria was 73 centimeters

(with a median of 59 and a maximum of 235 centimeters). In January (February) 2006,

the average depth of snow was 50% (37%) above the long-term average. In March, the

corresponding number was 120%. These extraordinary weather conditions are also reflected

in the statistics on car accidents: the number of accidents which occurred on snow covered

streets was 90% above the level recorded for the mild winter of 2007.

Secondly, due to its location in the Eastern Alps, Austria is a very mountainous country

with substantial variation in altitude: while the lowermost parts of Austria are around 100

meters above sea level, only 32% of the municipalities are located below 500 meters. 25%

of all municipalities are located at altitudes higher than 675 meters, and 10% at altitudes

above 900 meters. In the lowermost parts of Austria, reasonable driving conditions are

typically restored rather quickly, even after heavy snowfalls. In the more mountainous
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areas, however, conditions often remain critical for many days, in particular during periods

of persistent snowfall. Driving to more remote, alpine municipalities then requires special

equipment like snow chains.

Based on these considerations, we selected three variables as instruments for the enforce-

ment rate: the amount of fresh snow (Snowfall), the interaction with the average altitude

of a municipality (Snowfall×Altitude), and – as an additional measure capturing variation

in driving conditions – the frequency of car accidents within the different municipalities

(Accidents). While the main effect of altitude is captured by the municipality fixed ef-

fects, the interaction of snowfall with the local altitude allows a given level of snowfall to

have a different, presumably stronger, impact in more mountainous areas. The first-stage

regression then reads

Enforcement it = ϑ+ λ1 Snowfall it + λ2 (Snowfall × Altitude)it + λ3 Accidents it (3)

+ µMobility it + ψi + χt + ωit,

where ψi and χt denote municipality and period effects, respectively, and ωit is the first-stage

residual.

3.3 Data

Our data set is based upon a record of all licence fee registrations by individual households

between November 2005 and March 2006. FIS provided us with comprehensive micro data

comprising a total of roughly 90,000 observations. For each individual registration, we

observe detailed information on the households’ place of residence (complete street address

and ZIP code) as well as the type of registration as listed in Table 1. For unsolicited

registrations, we know the date of the registration. For enforced registrations, we have

information on the month in which the household was detected.

In a first step, we geocoded the micro data by matching geographic coordinates to each

individual registration. We then assigned each observation to one of the 2,380 Austrian
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municipalities (larger cities are split into zip code areas) and aggregated the micro data

to municipality-month cells, using the five month period starting with November 2005.

Effectively, this procedure provided us with a municipality-by-month panel data set with

enforcement rates as well as registration rates for the different registration types. All

these rates give the number of incidents relative to the number of households within a

municipality.

Our main results are based on a sample which essentially cuts the lower tail of the

municipality distribution in terms of population size. Firstly, we exclude municipalities

with less than 500 households. The main reason for doing so is that these municipalities

rarely see any enforcement. As a consequence, our key explanatory variable does not show

significant variation in very small municipalities: almost 80% of the dropped municipalities

do not contain a single enforced registration over all five months. Secondly, we exclude

municipalities where we could not assign sufficiently precise geographic coordinates to the

individual observations. This restriction assures a high accuracy in the assignment of reg-

istrations and incidents of enforcement to municipalities as well as in various measures

of physical distance between incidents which are introduced below. Thirdly, we eliminate

municipalities without any location (bank, postal office, etc.) offering FIS’ hard-copy reg-

istration forms. This removes municipalities where the lack of hard-copy registration forms

could potentially induce correlation between the registration rate and our weather-related

instruments, which would question the validity of the exclusion restrictions (see discussion

below). Effectively, the three restrictions leave us with 1,275 municipalities observed over

five months.12

Summary statistics on our key variables and several municipality characteristics are

listed in Table 2. On average, we observe 1.13 enforced registrations per 1,000 households.13

12Our parameter estimates are robust to relaxing these sample restrictions. In particular, the estimated
effect of enforcement is virtually the same if we include all municipalities. However, using the full sample
weakens the IVs in the first-stage regression. A similar finding is reported by Levitt (1997, p. 283–4).

13The maximum of the enforcement rate comes from a municipality with 740 households where 13% of
them were detected evading. In the same month, the rate of unsolicited registrations jumped to 1.5% – 10
times the municipality’s mean registration rate in the four remaining months.
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Table 2: Descriptive Statistics

Variable Mean Std. Dev. Min Max

Enforcement rate 1.13 5.10 0 130
Registration rate, unrestricted 2.60 2.43 0 46.4
Registration rate, restriction A 1.80 2.13 0 46.4
Registration rate, restriction A & B 1.75 2.05 0 46.4
Registration rate, restriction A & C50 1.70 2.01 0 46.4
Registration rate, restriction A & C75 1.68 2.00 0 46.4
Registration rate, restriction A & C100 1.67 1.99 0 46.4
Registration rate, restriction A & C125 1.65 1.98 0 46.4
Registration rate, restriction A & C150 1.64 1.97 0 46.4
Snowfall 0.42 0.34 0.01 2.60
Accident rate 0.34 0.64 0 9.46
Mobility rate 15.5 13.4 0 548
Altitude 456 222 117 1444
Number of households 2359 7278 500 115245
Population density 360 1622 5.15 25629
Municipality size 39.5 38.0 1.09 285
Number of observations: 6375 (N = 1275, T = 5). All rates defined as total number of monthly incidents per 1000
households. Snowfall and Altitude are measured in meters, Municipality size in square kilometers, Population density in
inhabitants per square kilometer. Restrictions on the registration rate: Restriction A excludes unsolicited registrations
which were made online or by phone. Restriction B excludes unsolicited registrations which from households living in
multi-unit dwellings, where in the same month a registration was enforced by a field inspector. Restriction C` excludes
unsolicited registrations from household living within ` meters to a place, where in the same month a registration was
enforced by a field inspector.
Data sources: FIS (enforcement and registrations); Institute for Meteorology and Geodynamics, Vienna (snowfall); National
Council on Traffic Safety (accidents); Austrian Bureau of Statistics (mobility, altitude, number of households, municipality
size, population density).

With a mean registration rate of 2.6, unsolicited registrations are more frequent. For

a number of refinements to be discussed below we will impose restrictions on this rate.

First, we compute a registration rate which excludes all online and phone-call registrations

(Restriction A). This restricted rate, which is only based on unsolicited registrations from

hard-copy forms, has a mean value of 1.8. Next, we impose additional restrictions based

on the geographical proximity of households with unsolicited registrations to evaders who

got detected by an inspector: Restriction B eliminates unsolicited registrations which come

from multi-unit dwellings (apartment houses, blocks, etc.), where in the same month a

registration was enforced by a field inspector. Finally, we compute the minimum distance

of each unsolicited registration to the next enforced registration in the same month. Based

on this distance measure, we impose Restriction C`, which omits unsolicited registrations

from households living within ` meters to the next enforcement incidence. Drawing larger
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circles around cases of enforced registrations gradually reduces the restricted registration

rate from 1.70 (for ` = 50) to 1.64 (` = 150).

Turning to our instruments, we use data from two additional sources. From the Insti-

tute for Meteorology and Geodynamics in Vienna we obtained the monthly records of 241

weather stations located over all Austria. To each municipality we assigned the records

from the closest weather station (in terms of the great-circle distance between each sta-

tion and the centroid of the respective municipality). For the snowfall variable, we use

the accumulated amount of fresh snow for each month. Together with the municipalities’

altitude above sea level, this provides us with our first two instruments, Snowfall and Snow-

fall×Altitude. The National Council on Traffic Safety provided us with data on monthly

accidents at the municipality level. We use the number of daytime accidents as a descrip-

tor of driving conditions.14 The corresponding accident rate (relative to 1,000 households)

forms our third instrument.

The measure for mobility is based on data provided by the Austrian Bureau of Statistics.

We computed the mobility rate as the number of individuals who moved into or within a

municipality relative to the number of households.15 Finally, note that our sample covers

municipalities from an altitude of 117 to more than 1400 meters, with an average number of

2359 households (median: 905), an average size of about 40 square kilometers and a mean

population density of 360 inhabitants per square kilometer (median: 96).

4 Results

This section describes our empirical findings. We show that enforcement has a sizable

impact on unsolicited registrations, and we demonstrate that the effect is not driven by

personal observation or experience. Hence, our analysis suggests that the indirect deterrence

14Driving under the influence is the main cause for nighttime accidents. We focus on daytime accidents
to avoid variation in the instrument that is driven by this type of accidents.

15The mobility rate attains unusual high values in some small communities in Austria’s main tourist areas,
where seasonal workers are officially registered as new residents. Excluding these or any other outliers does
not change our results.
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Table 3: First-stage regression

Dependent variable: Enforcement rate

Snowfall 3.761???

(1.044)
Snowfall×Altitude -0.711???

(0.213)
Accidents -0.135

(0.089)

Sample size (N × T ) 6375
F -statistic for excluded IVs 9.60

Standard errors (robust to heteroscedasticity and clustering on municipalities) in
parentheses. F -statistic valid for i.i.d. errors. Additional regressors: Mobility rate
and a full series of period as well as municipality effects. Snowfall is measured in
meters and altitude in 100 meters. Significance level: ??? 1%.

effect of enforcement is based on word of mouth. Finally, we provide evidence that the

spillover is limited to the close vicinity of detected households. This points to the role of

neighborhood communication in the dispersion of information on the actual enforcement

level.

First-Stage Regression

Before turning to the main results, let us briefly discuss the performance of the IVs in the

first-stage regression. Table 3 reports the fixed-effects regression of the enforcement rate on

the instruments, i.e. snowfall, snowfall interacted with altitude, and the accident rate, as

well as the mobility rate and a full series of period effects. We find that the snowfall-related

instruments are strongly partially correlated with the enforcement rate. Interestingly, the

coefficient of snowfall is positive whereas the one for the interaction is negative. The first-

stage coefficients imply that snowfall raises the enforcement rate in municipalities with an

altitude below 530 meters, but lowers enforcement in municipalities located higher. The

accident rate as a direct measure of driving conditions shows the expected negative sign

and is almost significant at the 10% level: for given weather conditions, inspectors are less

active in municipalities where the accident rate is high.

Taken together, the results of the first-stage regression indicate that the behavior of the

licensing inspectors is significantly affected by local weather and driving conditions. More
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precisely, the coefficients of the first-stage regression suggest that the activity of inspectors

is driven by a sort of substitution effect: they seem to avoid driving to more mountainous

areas in periods of heavy snowfall. Instead of reducing their overall effort, however, they just

shift their focus and enforce more registrations in more easily accessible municipalities.16

Note also that the F -statistic of 9.6 indicates that our IVs have substantial predictive

power in the first-stage regression, making us confident that we have identified instrumental

variables which are sufficiently strongly correlated with the enforcement rate to solve our

identification problem.17

With respect to the validity of the instruments, one might be concerned about a direct

impact of local weather conditions on households’ registration behavior. Note, however,

that we excluded municipalities without locations offering FIS’ hard-copy forms from our

analysis, since an impact of weather conditions on registrations (if it is present) appears

most likely to occur in such municipalities. Note further that online and phone – in contrast

to hard-copy registrations – registrations should (if anything) be positively affected by harsh

weather conditions. One might therefore conjecture that our IVs have a negative impact on

the share of hard-copy to all unsolicited registrations. To test this conjecture, we regressed

the share of hard-copy registrations on our instruments. The results (presented in the

Appendix) indicate that all our IVs are far from being statistically significant predictors

of the ratio of hard-copy registrations. Further evidence on the validity of the exclusion

restrictions (also reported in the Appendix) is based on the fact that a substantial share of

all municipalities do not see any enforcement. In this sample, enforcement cannot have any

explanatory power, and we can run a reduced form regression that tests for a direct impact

of the IVs on registration behavior. Again, our IVs pass the test without any difficulty,

making us confident that we have identified a set of valid instruments.

16This finding seems to be in line with the notion of income targeting (compare the discussion in Camerer
et al., 1997, and Farber, 2008).

17Using a Stock-Yogo test on weak instruments (Stock and Yogo, 2005), we can reject the null of the
2SLS bias exceeding 10% of the OLS bias. We also replicated all our estimations using limited-information
maximum likelihood (LIML) and its modification by Fuller (1977) (compare Andrews and Stock, 2005,
Hahn et al., 2004). All these alternative estimators provided point estimators as well as standard errors
which are almost identical to those reported below.
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Effect of Enforcement

Table 4 reports our main estimation results on the effect of enforcement. Column (I)

displays the fixed effects OLS estimation of Equation (2), ignoring the likely endogeneity

of enforcement. The coefficient of the enforcement rate is estimated to be 0.134, and it is

highly significant. Moreover, we find a positive impact of mobility on registrations, but the

effect is far from being economically significant.18

As outlined above, we expect the OLS estimate of β to be biased downwards. This

expectation is confirmed if we turn to the fixed effects IV estimations. Columns (II) to

(IV) report results derived from estimating Equation (2) by two-stage least squares (2SLS)

while instrumenting enforcement by snowfall, snowfall×altitude and the accident rate. In

Column (II), we retain the unrestricted registration rate as the dependent variable. The

effect of enforcement is now estimated to be 0.361, suggesting that the bias in the OLS

estimate is substantial. The effect for household mobility is not significantly different from

zero.19

The coefficient of the enforcement rate indicates a remarkably strong effect. According

to the estimates in Column (II), one additional detection leads to about 0.36 additional

unsolicited registrations. Hence, on average three additional detections trigger more than

one additional registration. Taking into account that the scope for any deterrence effect of

detections is limited by the high compliance rate – nationwide only 6% of all households

are evading licence fees – the estimated effect is sizable. To illustrate this point, consider

a municipality with 1000 households and an initial enforcement rate of zero. On average,

there will be 60 households who have not registered for licence fees. If now a field inspector

enforces 20 registrations, we predict another seven unsolicited registrations (assuming a

linear effect). In this case, the indirect effect of enforcement would deter 17.5% of the

18This is in line with our conjecture that most moving households just update the address in their FIS
account instead of de-registering at the old and re-registering at the new place of residence.

19Throughout the paper, we focus on the contemporary effect of enforcement. OLS estimations incor-
porating lagged values of enforcement indicate that this approach is justified: magnitude and significance
of the impact of present enforcement are hardly effected, whereas the lagged enforcement rate is neither
economically nor statistically significant.
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Table 4: Effect of enforcement

(I) (II) (III) (IV)
Estimator FE OLS FE IV FE IV FE IV

Dependent variable
Registration rate unrestricted unrestricted restriction A restriction A & B

Enforcement rate 0.134??? 0.361??? 0.321??? 0.273???

(0.015) (0.114) (0.104) (0.094)
Mobility rate 0.007??? 0.003 0.003 0.004

(0.002) (0.003) (0.003) (0.003)

Sample size (N × T ) 6375 6375 6375 6375
Hansen test (p-value) – 0.287 0.200 0.222

Standard errors (robust to heteroscedasticity and clustering on municipalities) in parentheses. All estimations include a full
series of period effects. Significance levels: ??? 1%.
Restrictions on the registration rate: Restriction A excludes unsolicited registrations which were made online or by phone.
Restriction B excludes unsolicited registrations which were made by a household living in multi-unit dwellings, where in
the same month at least one registration was enforced by a field inspector.

remaining evaders.

Regarding the figures from table 1, our estimates suggest that the roughly 30,000 en-

forced registrations triggered about 10,000 unsolicited registrations (assuming again a linear

relationship). Thus, 20% of all unsolicited registrations emerge as a direct response to local

field inspections.

Own Experience or Word of Mouth

We argue that the impact of enforcement is driven by the local dispersion of information,

establishing a positive link between the actual and the perceived detection risk: evaders

learn about more frequent detections in their municipality, update their risk perception and

are ceteris paribus more inclined to register. In this vain, enforcement triggers a deterrence

spillover driven by word of mouth.

The updating of risk perceptions may be based on own experiences and observations as

well as on information obtained from neighbors, friends or acquaintances. Regarding the

design of optimal enforcement policies, however, it is important to discriminate between

both channels. In particular, it is crucial to identify the power of information spread

by word of mouth. If communication among acquaintances is sufficient to establish a
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positive detection–perception link, even non-public enforcement activities (e.g. the auditing

of potential tax evaders) would result in a deterrence spillover. Otherwise, deterrence relies

on the public visibility of enforcement measures.20

Despite the fact that the presence of inspectors is not observable to the public, one

can think of several ways in which personal experience could drive the deterrent effect of

enforcement. For instance, consider people who were absent while a field inspector was at

their door. Recall that in these cases inspectors leave an information brochure together

with a registration form at the door. Registrations which are made using these forms

are identified in our data as enforced registrations. Thus, they do not spoil the count

of unsolicited registrations. However, households could (i) ignore the registration form

which was left at their door, go to one of the municipal or post offices to pick up another

registration form (which looks exactly like the form distributed with inspectors’ information

brochures) and register with this form. Alternatively, they could (ii) register via phone or

internet. We consider the first case as extremely unlikely to happen. In contrast, the second

case, i.e. phone or online registration after being approached by an inspector, seems to be

quite realistic. Fortunately, our data allow us to identify this type of registrations. Hence,

we can compute the rate of unsolicited registrations excluding those which were made by

phone or online (Restriction A) and check the robustness of our findings.

Another scenario where own experience could contribute to the deterrent effect of en-

forcement is the immediate observation of door-to-door inspections by neighbors. If by-

standers who evade fees respond to their observation with a registration, this would still

reflect a deterrence spillover from enforcement, but it would be driven by personal expe-

rience.21 Again our data allow us to run a robustness check testing to which extent such

cases might potentially drive our finding. We can do so by excluding all unsolicited reg-

20We consider it as obvious that public visibility strengthens deterrence (not taking into account effects
from stigmatization). In a wide range of applications, however, establishing a clear public observability of
sanctions can be quite costly to implement (think of tax enforcement, for instance) and even undesirable
from a normative viewpoint (e.g. to avoid undesirable stigmatization in case of false charges, ‘lynch law’,
etc.).

21Note that such cases can only emerge if the fact that the bystander evades licence fees is unknown to
the field inspector. Otherwise the inspector would directly approach the bystander to enforce a registration.
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istrations from households living in apartment buildings or multi-family houses where the

data indicate the presence of a licensing inspector in the same month (Restriction B).

Results based on the restricted registration rates are reported in Columns (III) and

(IV) of Table 4. As with the unrestricted registration rate, we find significant effects of

enforcement. Despite the fact that restriction A excludes roughly 40% of all unsolicited

registrations and reduces the registration rate from 2.6 to 1.8 (see Table 2), the estimated

coefficients for enforcement in Column (III) is only slightly below the one from (II). As

shown in Column (IV), the coefficient further decreases if we impose restrictions A and B

at the same time. This could mean that some registrations in the neighborhood are indeed

driven by personal experience. However, the smaller point estimates could also arise from

our restrictions excluding truly unsolicited registrations which are induced by communica-

tion among immediate neighbors. In either case: enforcement still has a sizable spillover on

registrations, even if we exclude those cases which could be driven by personal experience.

Hence, our data suggest that the deterrence spillover is due to word of mouth, mediating

the dispersion of information on enforcement and thereby stimulating registrations.

Spatial Limits of the Spillover

The findings reported so far demonstrate a significant indirect deterrence effect of enforce-

ment. We now want to trace the spatial limits of this effect, i.e. we want to study how

far-reaching the behavioral impact of word of mouth is. This is important for assessing

whether widely (spatially) spread enforcement activities trigger a larger deterrence spillover

than locally focused measures.

Our approach takes advantage of the detailed micro structure of the data base. Exploit-

ing the fact that we observe the exact location of all households with enforced or unsolicited

registrations, we computed the distance of each household with an unsolicited registration

to the most nearby household who was detected by a field inspector in the same month.

Across all individual observations, we find a median distance of 269 meters (mean: 593 me-

ters). 75% [25%] of all unsolicited registrations emerge more than 74 meters [680 meters]
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Table 5: Fixed effects IV estimations under spatial restrictions

(I) (II) (III) (IV) (V)

Dependent variable
Registration rate A &C50 A &C75 A &C100 A &C125 A &C150

under restriction:

Minimum distance to
enforcement incident: 50m 75m 100m 125m 150m

Enforcement rate 0.207?? 0.186?? 0.154? 0.153? 0.130
(0.092) (0.092) (0.091) (0.092) (0.092)

Mobility rate 0.0047 0.0054? 0.0050? 0.0044 0.0025
(0.0029) (0.0029) (0.0028) (0.0028) (0.0027)

Sample size (N × T ) 6375 6375 6375 6375 6375
Hansen test (p-value) 0.307 0.364 0.342 0.414 0.405

Standard errors (robust to heteroscedasticity and clustering on municipalities) in parentheses. All estimations include
a full series of period effects. Significance levels: ??? 1%, ?? 5%, ? 10%.
Restrictions on the registration rate: Restriction A excludes unsolicited registrations which were made online or by
phone. Restriction C`’ excludes unsolicited registrations from households who live within ` ∈ {50, 75, ..., 150} meters
to a place with an enforced registration in the same month.

away from the next incidence of enforcement.

Based on the distance measure, one can impose another set of restrictions on our de-

pendent variable. For each municipality, we compute the rate of unsolicited registrations

excluding those emerging within 50, 75, 100 meters, etc. to the next enforced registration.

Maintaining our focus on indirect deterrence, we also adhere to restriction A, which ex-

cludes all phone and online registrations. Tightening the spatial restriction, i.e. drawing

larger circles around detected households, excludes more unsolicited registrations and yields

lower registration rates. As Table 2 reveals, the resulting decline in the rate is quite small.

The results displayed in Table 5 show that the spatial restrictions nevertheless have a strong

impact on our estimates.

Column (I) reports the fixed effects IV estimation of Equation (2), where the dependent

variable is restricted to unsolicited registrations with a minimum distance of at least 50

meter to the next enforced registration. We still find a sizable effect of enforcement, statis-

tically significant at the 5% level. On average, five detections would trigger one additional

unsolicited (‘hard-copy’) registration beyond the 50 meter circle around enforcement inci-

dences. As compared to the point estimate from Column (III) in Table 4, the coefficient
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is reduced by one third. If we increase the spatial constraint to 75 meters, the effect of

enforcement declines further but remains significant at the 5% level. In Column (III), with

a distance threshold of at least 100 meters, the significance level drops to 10%. Finally,

Column (V) shows that for a minimum distance of 150 meters, enforcement is no longer

statistically significant at conventional levels. Further tightening the restriction beyond

150 meters does not change the pattern indicated in Table 5: the point estimates for the

coefficient continue to decline steadily, while the standard errors remain roughly constant.

The findings reported in Table 5 suggest that the indirect deterrence effect of enforce-

ment is limited to the close vicinity of households who have been subject to enforcement.

This supports the interpretation that the spillover effect is mainly driven by word of mouth

on enforcement within neighborhoods. However, caution is warranted when interpreting

this result, as our data do not allow to identify the role of alternative layers of social inter-

action. Communication at the workplace, for instance, could contribute to a spillover which

may work beyond neighborhoods and even municipalities. Notwithstanding, the results in

Table 5 suggest that in our setting, communication within neighborhoods is an important

channel that mediates information on detections and thereby shapes the deterrent effect of

enforcement.22

5 Concluding Discussion

This paper studies the role of word of mouth for deterrence. Using data on TV licence

fee registrations, we ask whether households who have not been subject to enforcement by

licensing inspectors react to changes in the local level of enforcement. Since the actual level

of enforcement is likely to be endogenous to registration behavior, our estimations rely on

22The fact that the deterrence spillover is concentrated in the close neighborhood of detection incidences
could – in principle – also stem from the segregation of households into evader and non-evader neighbor-
hoods. Our data render this explanation implausible, since detected households are broadly spread within
municipalities. Across all municipalities, the median distance between detected households within a mu-
nicipality is more than 1300 meters. Compared to the median minimum distance of unsolicited to enforced
registrations of 269 meters, this is quite a large distance. In addition, the mere fact that a spatial exclusion
with a radius of ` = 200 meters reduces the respective registration rate by only 10% (compare Table 2)
contradicts this interpretation.
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instrumental variables capturing variation in local weather and driving conditions.

We derive three main results. Firstly, we find a strong deterrent effect of enforcement.

If enforcement is increased such that three unregistered households are forced to register,

this will, on average, induce the registration of one additional household which has not been

subject to enforcement. Hence, we show that an increase in enforcement has a significant

effect on compliance behavior. Our study therefore corroborates the existing evidence on

the deterrent impact of police. This is an important result in its own right since, due to the

specific features of our setting, we can exclude the presence of crime displacement effects

or erroneous measurement of crime rates.

Secondly, we demonstrate that the deterrent effect works through word of mouth. Dis-

tinguishing between households which have been subject to enforcement and those which

have not, we are able to show a change in registration behavior of households for which

word of mouth on the actual level of enforcement is the only plausible source of new in-

formation. Our findings suggest that the key mechanism analyzed by Sah (1991), i.e. the

updating of risk perceptions by sampling among acquaintances, can give rise to a strong

indirect deterrent effect of enforcement.

Finally we provide evidence pointing to an important role of neighborhood communica-

tion for the dispersion of information on enforcement. This relates our findings to studies

demonstrating the importance of neighborhood communication for decision making in many

different contexts as, for instance, investment decisions (Hong et al., 2005 ) and job search

(Ioannides and Loury, 2004).

Having identified the deterrent power of word of mouth, it is self-evident that personal

experiences contributes to deterrence, too. This is also confirmed by Lochner (2007), who

documents the link between personal experience and individuals’ beliefs about arrest proba-

bilities. While in his study beliefs are also correlated with county-level arrest rates, this link

is weak – eventually due to the high level of aggregation. In this vein, our municipality-level

evidence complements Lochner’s findings.

Our study carries a number of implications for the design of optimal enforcement poli-
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cies. When communication among individuals is sufficient to establish a positive link be-

tween actual enforcement and the perceived risk of detection, even ‘hidden’ enforcement

activities can have significant deterrence spillovers. Furthermore, the sizable indirect de-

terrent effect found in our data illustrates that it is crucial to consider indirect deterrence

effects when assessing the marginal social benefits from enforcement activities. For law

enforcement in a domain where public visibility is costly to implement, it might be efficient

to stick to hidden enforcement measures. This applies particularly to cases where there

are either normative (e.g. avoiding undesirable stigmatization in case of false charges) or

strategic reasons to prevent publicity.

Several points are left for future research. In particular, we would like to know more

about the long-run role of word of mouth on enforcement in altering risk perceptions and

behavior. While our results focus on the short-run linkage, a better understanding of the

long-term formation of perceptions might be useful to improve the effectiveness of enforce-

ment. Due to the short time spell covered by our data, a proper analysis of this issue

is beyond the scope of the present study. The same holds true for the potential hetero-

geneity of deterrence through word of mouth. It would be interesting to explore how the

transmission of information on enforcement depends on municipality or neighborhood char-

acteristics. The identification of this heterogeneity, however, is complicated by additional

layers of cross-sectional variation (in terms of risk aversion, the level of non-compliance,

etc.), which all interact in shaping the actual deterrent effect of enforcement. Further em-

pirical research on the link between enforcement and the formation of individual perceptions

is needed to clarify this and several other related questions.
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Appendix: Validity of Instruments

A potential concern regarding our IV strategy is that unsolicited registrations, in particular

those made by hard-copy forms, could be directly influenced by the local weather conditions.

This would be the case if the willingness to go to one of the locations that provide the

necessary registration form is affected by snowfall. The forms are available at almost 6,400

municipal and post offices as well as at branches of banks. On average, there are 4.5 such

locations per 1,000 households. Moreover, these locations are typically located at central

places within a community and in shopping areas. In general, it is hard to think of people

who are – for an entire month – detained from passing these areas due to weather conditions.

Let us nevertheless address the concern in more detail. Note first that we have excluded

municipalities which do not have any location offering FIS forms from our sample of munic-

ipalities, because in such municipalities a dependence of hard-copy registrations on snowfall

is most likely. A straightforward approach to test the validity of our IVs is to check for a

potential impact of our descriptors of local weather conditions on registration behavior by

means of regressions. Obviously, harsh weather conditions could decrease the willingness

of households to register via hard-copy forms, as this implies some sort of outdoor mobil-

ity, suggesting that the share of hard-copy registrations among all unsolicited registrations

should go down (and, vice versa, the share of online and phone registrations should go up)

in months with heavy snowfalls.23

We test this hypothesis by regressing the share of hard-copy registrations on our in-

struments. The results (see Table 6) indicate that snowfall is far from being a statistically

significant predictor of the share of hard-copy registrations, lending further support to the

view that our identification relies on a set of valid instruments.

A second test exploits the fact that a substantial share of all municipalities do not see

any enforcement over all five months considered. If we restrict our attention to the sample

23Telecommunication networks in Austria are designed to remain unaffected even by severe winter con-
ditions. Hence, there is no reason to think that online and phone registrations will be negatively affected
by snowfall.
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Table 6: Fixed Effects Estimation – Share of hard-copy form registrations

(I) (II) (III) (IV) (V)

Snowfall -0.024 -0.001 -0.024 - -0.001
(0.025) (0.062) (0.025) (0.062)

Snowfall×Altitude - -0.004 - - -0.004
(0.010) (0.010)

Accidents - - -0.004 -0.004 -0.004
(0.008) (0.008) (0.008)

Sample size 5412 5412 5412 5412 5412
Dependent variable is the share of hard-copy form registrations on all registrations. Municipality-month cells with
a registration rate of zero have been dropped. Standard errors (robust to heteroscedasticity and clustering on
municipalities) in parentheses. All estimations include a full series of period effects.

of these municipalities, enforcement cannot have any explanatory power. With no need to

account for enforcement and, thus, to impose an exclusion restriction with respect to the

IVs, we can estimate a reduced form,

Registration it = α+ ρ1 Snowfall it + ρ2 (Snowfall × Altitude)it + ρ3 Accidents it (4)

+ γMobility it + θi + ηt + εit.

In this regression, we just have to evaluate the t-statistics of ρ1, ρ2 and ρ3 to test for a

direct impact of our IVs on registration behavior. Table 7 reports two different reduced form

regressions. Column (I) uses the unrestricted registration rate as the dependent variable and

derives the direct effect of the IVs on registrations. The estimation is based on a balanced

panel of municipalities with zero enforcement over the whole period considered (note that

this is a subsample of those communities which were used to derive our main results). It

turns out that for all IVs, i.e. Snowfall, Snowfall×Altitude, and Accidents, the null of no

impact on the registration rate cannot be rejected at any reasonable level of significance.

Since a potential effect of weather and driving conditions on registrations is most likely for

hard copy registrations, we report in Column (II) the reduced form regression using the

registration rate under Restriction A (phone and online registrations excluded). The results

closely match those obtained in the first Column. Moreover, the IVs remain insignificant

also if we regress the registration rate one each instrument separately (results not reported).
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Table 7: Reduced-form estimation for municipalities with zero enforcement

(I) (II)
Dependent variable:
Registration rate unrestricted Restriction A

Snowfall 0.159 0.224
(0.628) (0.661)

Snowfall×Altitude -0.068 -0.062
(0.108) (0.112)

Accidents -0.035 -0.042
(0.046) (0.054)

Mobility rate 0.003 0.002
(0.005) (0.005)

Sample size 2690 2690
Fixed effects estimation including a full series of period effects. Sample consists of balanced
panel of municipalities with zero enforcement over all five months. Standard errors (robust
to heteroscedasticity and clustering on municipalities) in parentheses.

Hence, estimations of the reduced form for the subsample of municipalities with zero overall

enforcement provide strong support for the validity of the exclusion restriction on our IVs.
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