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Abstract 
 
This paper estimates the impacts of climate change in sub-Saharan Africa (SSA) on migration and 
other economic outcomes. I develop a quantitative spatial model that captures the role of trade 
networks, migration barriers, and agricultural yields on the geography of the economy. I combine 
the model with forecasts of future crop yields to find that climate change, by the end of the century, 
reduces SSA real GDP per capita by 1.8 percent and displaces 4 million individuals. Migration 
barriers in SSA are very stringent: if absent, climate-induced migration exceeds 100 million 
individuals. Still, migration and trade are powerful adaptation mechanisms. Reducing migration 
barriers to the European Union (EU) standards eliminates the aggregate economic losses of 
climate change in SSA, but at the cost of more climate migration and higher regional inequality. 
Also reducing trade frictions to the EU levels attenuates this cost and makes SSA better off on 
aggregate and distributional terms.  
JEL-Codes: O150, Q540, R120. 
Keywords: climate change, migration, economic geography. 
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1 Introduction

One of the most concerning potential consequences of climate change is population
displacement, recently coined as the Great Climate Migration (Lustgarten, 2020). Sub-
sistence rural economies, like the sub-Saharan African (SSA henceforth) countries, lie
at the center of this issue. They are agriculture-dependent economies whose popu-
lations are expected to increase remarkably during the next decades (United Nations
and Social Affairs, 2019). Understanding how these economies would adjust to a
climate-changing world, with potentially different crop yields, is crucial for identify-
ing how this growing population will reallocate geographically.

Assessing the potential decisions of SSA economic agents when adapting to cli-
mate change is challenging. Changing agricultural yields could lead farmers to switch
production towards alternative crops, yet remaining in the agricultural sector. Alter-
natively, they could sort out of agriculture, potentially moving geographically. Trade
frictions would determine the extent to which specialization between agriculture and
non-agriculture is feasible. Migration barriers would discipline the capacity of factors
to reallocate geographically, potentially limiting sectoral reallocation. Thus, under-
standing how these forces (production switching, trade, and migration) respond to
climate change is key to evaluating its impact on the economy.

In this paper, I develop a quantitative spatial model that accounts for these forces
and can be used to quantify how their response to climate change translates into
population displacement and economic losses. I take the model to a high-resolution
(1� ⇥ 1� degree) geographical dataset that covers 42 countries of SSA. By simulating
it for a future scenario by the end of the century, I estimate the aggregate and distri-
butional impacts of climate change in terms of migration flows, welfare losses, and
sectoral and spatial reallocation of production. In addition, I show that trade and mi-
gration are important adaptation mechanisms, and investigate the mitigating capacity
of real-world trade and migration policies.

I begin by showing empirically that the expected changes in SSA agricultural
yields for the future are heterogeneous across locations and crops. This will affect
comparative advantages in agriculture differently for each crop, permitting local agri-
cultural production to reshuffle across crops as a response to climate change.

Informed by this evidence, I develop a multi-sector quantitative spatial model that
accommodates this mechanism. In the model, trade and migration between locations
are costly. In each location, farmers produce goods from multiple agricultural sec-
tors (crops) and firms produce non-agricultural goods. Differences in sectoral total
factor productivities and market access across locations generate trade, shaping the
spatial pattern of sectoral specialization. Relative sectoral prices and real income de-
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termine sectoral expenditure shares, generating endogenous structural transformation
through substitution and income effects.1

The model takes the perspective of subnational locations, so that trade and mi-
gration happen both within and across countries in SSA.2 The intensity of the spatial
frictions depends primarily on the distance between locations over the transportation
network. However, they are also determined by country-level institutional factors. In
particular, frictions for international trade are subject to an additional tariff-like cost.
International migration is subject to an additional mobility cost related to barriers to
foreign migrants at the destination country. Therefore, I map the model into real-
world trade and migration policies, which allows me to investigate their role on the
resulting climate change effects and the efficiency of alternative policy schemes.

To quantify the model, I assemble a 1� ⇥ 1� degree spatial dataset on, among
others, population, economic activity, transportation infrastructure, and agricultural
production and suitability in SSA. Following Costinot et al. (2016), I model climate
change as a shock to the suitability for growing crops. In practice, I draw on the
GAEZ (IIASA and FAO, 2012) estimates of crop-specific potential yields for several
grain crops in recent, past, and future (under climate change) periods. These potential
yields reflect only local natural characteristics (e.g. topographic and climatic) and thus
provide a measure of geographical natural advantages for growing a specific crop.3,4

I also match the data to bilateral trade and migration flows at the country level.
I link the data to my model in three steps. First, I use the GAEZ yields for 2000 as

the measure of the fundamental productivity for each crop. Second, I use transporta-
tion and geographical data to build an optimal trade network between all location
pairs in SSA. Third, I quantify the unobserved fundamentals and parameters: the sets
of fundamental productivities of the non-agricultural sector, sectoral productivity and
preference shifters, amenities, country-level barriers to foreign migrants, and the de-
gree of tariffs on international trade.5 The latter two are quantified using country-level
bilateral migration and trade data, thus capturing the strictness of the migration and
trade policies in place in SSA as of 2000.

1I model preferences over agricultural and non-agricultural goods as nonhomothetic and assume
the former to be a necessity (subsistence) good. Thus, my model features key aspects of structural
change; in particular a downward slopping demand for agricultural goods with respect to income.

2Hence, I do not consider migration and trade with the rest of the world. The underlying motivation
is that about 75% of international migrants from SSA countries (between 1990 and 2000) moved within
SSA (Abel and Cohen, 2019). My model is however flexible and can be extended along this dimension.

3Hereafter, I refer to these potential yields as fundamental productivities/advantages indistinctly.
4To focus on subsistence agriculture, I consider only the main staple crops produced and consumed

in the region (cassava, maize, millet, rice, sorghum, and wheat; see Table D.2). They account for 80%
of the agricultural production, as of 2000, and 50% of the caloric intake in SSA (Porteous, 2019). An
additional motivation for not considering cash crops is that I do focus on trade outside SSA.

5This last step requires the inversion of the spatial equilibrium so that the model achieves an exact
fit of the data in terms of several characteristics of the SSA economy in 2000.
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Next, I validate the calibrated model using a backcasting exercise. It consists of
using the crop suitabilities for 1975 in a simulation whose outcome is contrasted with
observable data. The model predicts well the grid cell-level changes in population
between 2000 and 1975, reassuring its capacity of providing similar numbers for future
periods. An additional overidentification test shows that the model identifies closely
the degree of specialization in agriculture across countries.

My main counterfactual exercise consists of simulating a climate-changed SSA by
the end of the century. I draw the estimates for crop yields in 2080 with climate change
and simulate the model with them, keeping all other fundamentals unchanged.6,7 The
results show that climate change reduces SSA’s real GDP per capita (the measure of
welfare) by 1.8 percent and displaces 4 million individuals.8 Most of the climate mi-
grants move out of the Western Sahel and DR Congo, regions severely hit by climate
change, into nearby countries like Nigeria or Tanzania. Damaged countries also expe-
rience large internal migration flows, and overall the population in country capitals
increases. Importantly, the welfare results are very heterogeneous across space: the
bottom and top deciles of the real GDP per capita change across countries are -6.5 and
6 percent, respectively, and some countries experience losses of up to 15 percent.

Moreover, climate change increases aggregate agricultural employment in SSA by
about 0.85 percentage points. This happens because I model crops to be necessary
(subsistence) goods. Thus, the economy responds to the reduced crop yields by al-
locating more labor into that sector (in order to produce the needed amount of agri-
cultural goods). Nonetheless, this effect is spatially heterogeneous, and the direction
of sectoral specialization roughly follows the relative changes in sectoral productivity
(i.e. affected countries specialize out of agriculture, and the opposite for the least
damaged). Interestingly, however, the resulting welfare effects across countries go in
several directions and depend on a rich interaction between the forces driving migra-
tion, sectoral specialization, and trade.

I emphasize the role of these forces with additional simulations centered on the
main mechanisms of the model. I start with bilateral migration frictions: eliminat-
ing them in the counterfactuals increases climate migration flows by more than 100
million individuals and reverses welfare losses (SSA real GDP per capita increases by
9.23 percent). That happens because lower mobility barriers boost the push-aspect of

6The GAEZ estimates are available for different hypothetical scenarios for the future. I pick the one
that compares the closest to the most severe and pessimistic scenario: the Representative Concentration
Pathway (RCP) 8.5. I check the robustness of my results to different scenarios in Section 6.4.

7The simulations for 2080 also account for the estimated future population growth. In the baseline,
the fertility rates are taken exogenously from data by demographers. I however check the robustness
of my results if allowing fertility to depend on climate change in Section 6.4.

8Population displacement is defined as the difference between the model-implied population, at the
grid-cell level, of two simulations for 2080: with and without climate change. Grid-cells with positive
values experience population inflows (or outflows if the opposite). See Section 6.1 for details.
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climate change, reallocating labor out of unproductive rural regions and permitting a
welfare-improving process of structural transformation. Importantly, these aggregate
gains hide an underlying cost: the distribution of welfare changes across countries
widens remarkably, with some countries experiencing losses larger than 30 percent.
Thus, reducing mobility frictions poses a trade-off of reverting aggregate losses at the
expense of higher regional inequality.

Next, I analogously investigate the role of two additional mechanisms in the
model: trade and crop-switching. For the former, I find that trade openness reduces
migration and welfare losses by providing more room for sectoral specialization. For
the latter, I show that the capacity of producers to reallocate production across crops
is a crucial margin of adaptation for SSA farmers. Ignoring this margin overestimates
the productivity and welfare losses of climate change by not considering that crop
yields are differently affected within locations.

I close my investigation with a policy experiment that assesses the potential miti-
gating role of migration and trade policies. I simulate a counterfactual scenario where
migration and trade frictions in SSA drop to the levels of the European Union (EU).
Doing so requires quantifying EU tariffs and country barriers to foreigners within
the structure of the model (and using the result in the SSA simulations).9 Adopting
the migration policy of the EU eliminates the aggregate welfare losses in SSA at the
cost of higher regional inequality. However, setting tariffs to EU levels on top of the
migration policy attenuates that. In particular, the policy mix increases the efficiency
of the allocation of factors across sectors and locations, which makes SSA better off
both in aggregate and distributional terms. This last result has important policy im-
plications: by combining both tools, SSA policymakers would take advantage of the
changes in the climate and allow the economy to structurally change, through trade
and migration, in a welfare-improving manner.

This paper contributes to three strands of the literature. One contribution is to a
growing body of research that applies the tools of the quantitative spatial literature
(e.g. Allen and Arkolakis, 2014; Redding, 2016; Redding and Rossi-Hansberg, 2017) to
study the spatial aspects of the consequences of climate change, such as global warm-
ing (Desmet and Rossi-Hansberg, 2015; Conte et al., 2021; Cruz and Rossi-Hansberg,
2021; Rudik et al., 2021) and coastal flooding (Desmet et al., 2021; Balboni, 2021). My
contribution is to incorporate, into a unique framework, a threefold set of features that
are crucial to model climate migration in rural developing economies. First, by intro-
ducing labor mobility within and across countries into the framework of Costinot et al.
(2016), I account for the heterogeneity of the climate shock across crops and show that

9More specifically, I build a likewise rich spatial dataset for the EU in 2000. I then link it to my
model (with the same quantification procedure), retrieve the EU policy-related parameters (tariffs and
country barriers to foreigners), and use them in the SSA simulations. See section 6.3 for details.
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this dimension matters for understanding the migration and welfare consequences of
climate change in SSA. Second, I allow for the subsistence aspect of agriculture to
limit structural change as adaptation, as in Nath (2022) and Cruz (2021), but show
that migration is a margin that attenuates this issue. Third, I account for real-world
policies (tariffs and country-level barriers to foreign migrants) and show how they in-
teract with sectoral specialization, trade, and the aggregate and distributional welfare
effects of climate change.10

I also contribute to the macroeconomic literature centered on structural change
(Duarte and Restuccia, 2010; Herrendorf et al., 2014; Comin et al., 2021) and its spatial
aspects (Desmet and Rossi-Hansberg, 2014; Eckert and Peters, 2018; Fan et al., 2021;
Fajgelbaum and Redding, 2022; Takeda, 2022). My core contribution is showing the
role of climate change in incentivizing this process and the resulting aggregate and
compositional welfare effects in SSA. Moreover, by showing the role of migration in
that process, I also add to studies on the importance of reducing migration barriers in
developing economies and their importance for structural change and development
(Bryan and Morten, 2019; Caliendo et al., 2021; Morten and Oliveira, 2018; Lagakos
et al., 2018). Along the same lines, my results on the mitigating role of trade policy
add to a large literature on the importance of market integration for development
(Asturias et al., 2019; Donaldson, 2018; Nagy, 2022; Ducruet et al., 2020; Sotelo, 2020;
Atkin and Donaldson, 2015; Donaldson and Hornbeck, 2016; Atkin et al., 2021).

Lastly, I contribute to the current academic and policy research on future climate
migration.11 Several policy institutions produced results to guide policymakers in this
matter, such as the Pulitzer Center (Lustgarten, 2020) and the World Bank (Rigaud et
al., 2018). They use a partial equilibrium spatial framework that disregards several
mechanisms present in my model, most notably bilateral migration barriers. Other
related studies include Benveniste et al. (2020) and Burzyński et al. (2022), who model
climate migration as a response to global warming and coastal flooding. My contri-
bution lies in modeling the spatial links behind the adaptation decisions to climate
change (where migration is a key mechanism of the long-run structural adjustment of
the economy) and in providing policy-relevant results that are informative about the

10Naturally, there are aspects in this literature that my paper does feature. These include, among
others, the absence of dynamics and the endogenous feedback between the economy and the climate.
The reason for the former is data-driven: the GAEZ estimates are available for specific points in time
(2000, 2050, and 2080) which inhibits modeling the transition towards the end of the century. The
reason for the latter is that Africa emits about 3 percent of global CO2 emissions, as of 2015, which
makes it reasonable to assume that climate change is exogenous to economic activity.

11A large body of reduced-form research assesses the causal relationship between past weather
shocks and migration in rural economies (Baez et al., 2017; Gröger and Zylberberg, 2016; Cai et al., 2016;
Albert et al., 2021) and the resulting increasing urbanization (Barrios et al., 2006; Castells-Quintana et
al., 2021; Henderson et al., 2017). Their results however cannot be extrapolated to the future and thus
are not informative about potential future climate migration.
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reach and interplay of migration and trade policies.
The rest of the paper is organized as follows. Section 2 describes the main data

sources, and Section 3 documents a number of empirical facts related to the poten-
tial impact of climate change on SSA economy. Section 4 presents the theoretical
framework. Section 5 details how the model is brought to the data, and Section 6 the
results of the climate change counterfactuals, policy experiments, and several robust-
ness checks. Section 7 concludes.

2 Data

I collect and aggregate several sources of geographical data within 1� ⇥ 1� grid cells
(about 100 km2 at the equator), the empirical unit of observation. The set of cells cov-
ering 42 countries of SSA contains 2,007 cells. The sources, collection, and aggregation
of the data follow below; see Appendix C for details.

GDP. Grid cell-level data on GDP per capita in US$ PPP (2000) comes from the Global
Gridded Geographically Based Economic Data v4 (G-Econ, Nordhaus et al., 2006).

Population. The G-Econ database also provides the population count at the grid cell-
level for 1990 and 2000. This was complemented with the gridded 1975 population
data from the Global Human Settlement Project (GHSP, Florczyk et al., 2019). Finally,
projections for future population at the country level for 2001–2100 were taken from
United Nations and Social Affairs (2019).

Agricultural suitability. I construct a spatial and time-varying dataset of crop-specific
suitabilities using the Food and Agriculture Organization’s Global Agro-Ecological
Zones database (GAEZ, IIASA and FAO, 2012). This data is generated by a state-of-
the-art agronomic model that combines geographic characteristics (e.g. soil, elevation,
etc.) with yearly climatic conditions to produce estimates of agro-climatic potential
yields (at the 0.083 degrees resolution) for different crops and periods.12 I collect and
aggregate the potential yields for the 6 crops of interest for 1975, 2000, and 2080, with
the latter based on estimates for a climate-changed world. The final data is a crop-cell
level panel of potential yields for 1975, 2000, and 2080.

Agricultural production. Grid cell-level crop production comes from two sources:
grid cell-level production data (in tonnes) for 2000 from GAEZ and country-level crop
production (in current US$) for 2000-2010 from FAO-STAT. I convert current US$ to
US$ PPP using their ratio on the G-Econ data.

12These potential yields, measured in tonnes/hectares, refer to the yield that a certain cell would
obtain, on average, if its surface was fully devoted to a specific crop.
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Transportation network. I build up a network connecting all grid cells of SSA by first
combining the African extract of the Global Roads Open Access Data Set (gROADS,
CIESIN, 2013)13 with the transportation friction surface from the Accessibility to Cities
project (Weiss et al., 2018).14 As discussed in Section 5.2, this overcomes potential
missing roads in some particular countries, and captures links between locations not
necessarily through roads.

Bilateral trade and migration flows. Since bilateral trade and migration data at the
grid-cell level does not exist, I focus on country flows. In particular, I extract the bilat-
eral crop trade flows (in current US$, scaled to PPP as above) between all SSA country
pairs from the International Trade and Production Database (ITPD-E, Borchert et al.,
2021).15 Moreover, I obtain the bilateral gross migration flows between SSA countries
(between 1990 to 2000) from Abel and Cohen (2019)’s database.

3 Motivating facts

This section documents two facts about the potential impact of climate change in
SSA. I establish that (i) these effects are expected to be strong and heterogeneous and,
as such, (ii) potentially determinant in the future organization of the SSA economy.
Overall, these facts provide empirical support for the channels I embed in the model.

Fact 1: Climate change is expected to bring about substantial and spatially hetero-
geneous changes in agricultural suitability in SSA.

I use the GAEZ estimates of agro-climatic potential yields for 2000 and 2080 to show
the expected degree of severity and heterogeneity in climate change’s impact.16 I
define DA

k

i
as the changes in the yields of crop k (in tonnes/ha) in location i between

the two periods, and DAi as the average change within locations.
Panel A of Figure 1 illustrates the high level of heterogeneity in the average climate

change shock to agricultural yields. In terms of levels, several locations will become
less suitable for agriculture, with average yields declining by 3 tonnes/ha (50 percent

13This data aggregates the best available public-domain road data by country into a global roads
coverage database. Because the data is gathered from different sources, the period of the road network
representations ranges from the 1980s to 2010, depending on country.

14This high-resolution surface (0.01 degrees resolution) provides the instantaneous cost of passing
through a cell conditional on geographical features (e.g. type of terrain, steepness, etc.) as well as
infrastructure (whether the cell is on a road, railroad, river, etc.).

15The ITPD-E closely tracks the traded sectors globally and is thus a data benchmark for statistical
estimation. In particular, the ITPD-E contains consistent data on international and domestic trade for
243 countries and 170 industries between 2000 and 2016.

16The 2080 GAEZ forecasts are calculated assuming a hypothetical scenario for the future evolution
of the world’s climate. Appendix C.1 describes how I chose the scenario from which to draw the data
in order that the results come closest to Representative Concentration Pathway (RCP) 8.5.
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Figure 1: Expected impact of climate change on average crop yields (left) and the
standard deviation of crop-yield changes (right) in SSA between 2000 and 2080

Panel A: Change in average suitability to
agriculture.

Panel B: Standard deviation of changes in crop
suitabilities at the location level.

Notes: Panel A shows the estimated change (truncated for ease of visualization) in average potential
yields between 2000 and 2080. Panel B shows the standard deviation of the crop-level yield changes
within cells. See Section 2 and Appendix C for details.

of average yields) or more. However, other locations will become more suitable and
to a similar extent. This finding contradicts a general view of climate change as a
spatially homogeneous shock.

To illustrate the heterogeneity across crops, Panel B of Figure 1 documents the
dispersion of climate change effects at the cell level (in standard deviations of DA

k

i
).

The changes in yields are not homogenous across crops, differentially shifting the
relative ranking of crop suitabilities within cells. Hence, climate change will affect
agricultural comparative advantages heterogeneously across both space and crops.

Thus, adjusting crop choices is a potential coping margin for affected farmers in
SSA. However, the extent to which such Ricardian production adjustments can take
place in SSA depends on the strength of these natural comparative advantages in
shaping effective agricultural production. The next empirical fact provides evidence
that such a mechanism indeed exists and emphasizes the importance of embedding it
in my theoretical framework.

Fact 2: Natural crop suitability explains to a large degree the patterns of crop spe-
cialization within and across countries in SSA.

Figure 2 shows how observed production in 2000 correlates with the GAEZ yields. In
particular, Panel A plots crop production against the yields at the location-crop level.
The raw data values are first net out of location and country-crop fixed effects, so

9



Figure 2: Comparative advantage and the organization of the SSA economy: relation-
ship of crop yields with effective production

Panel A: Grid cell-level crop production. Panel B: Country-level crop production.

Notes: Panel A (B) plots the correlation between GAEZ potential yields and effective grid cell-level
(country-level) production. The blue line stands for an estimated polynomial regression, and
grey-shaded areas the 95% confidence bands.

that confounding factors at both levels are controlled for. There is a strong correlation
between natural advantages and effective production. As robustness, Panel B shows a
likewise positive correlation between country-level crop production and average crop
suitability within countries.17

Overall, the data conveys a sound message: crop specialization happens both
across and within countries. To generate this pattern, my general equilibrium model
will take the perspective of subnational units that specialize in (and trade) crops based
on comparative advantage.

4 Model

This section describes a static quantitative spatial model that quantifies the general
equilibrium impacts of future climate change. It provides a tractable framework to ac-
count for the role of geographical heterogeneity along several dimensions (i.e. sectoral
productivities, market access, and migration barriers, among others) in determining
the spatial distribution of economic activity and population.18

17The grid cell-level production data is also produced by the GAEZ agro-climatic model. Thus, pro-
duction and crop yield data could be (hypothetically) mechanically correlated. The FAOSTAT country-
level data, obtained from national statistics, would not incorporate such a hypothetical correlation.

18Refer to Appendix A for further details and derivations of the model.
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4.1 Environment

The economy S is composed by N locations, denoted by i, j, or s. Each i belongs to
a country c(i) 2 {1, ..., C} and is initially populated by L

0
i
2 {L

0
i
}i2S ⌘ L of workers

who supply their labor inelastically. There are K sectors k 2 {1, ..., K} in the economy:
K � 1 crops and a non-agricultural composite K sector. Locations can produce a lo-
cally differentiated variety of each sector’s goods. Each location has a sector-specific
fundamental productivity parameter A

k

i
2 A = {A

1
1, ..., A

K

N
} that partially drives the

degree of comparative advantage across space in each sector. Moreover, workers re-
siding in i enjoy an amenity value ui 2 {ui}i2S ⌘ U .

Goods and labor units are mobile in S, subject to frictions. In particular, T =

{tij}i,j2S is the bilateral trade friction matrix where tij = tji � 1 represents the units
required to ship 1 unit of good from location i to j. Frictions in labor mobility depend
on an analogous bilateral migration cost m̄ij 2 M and on an idiosyncratic taste shock
to the migration choices of agents.

The geography of the economy is the set G(S) = {L,A,U , T ,M}, i.e. the spatial
fundamentals that interact with the economic forces of the model and determine the
spatial distribution of the economic activity. In what follows, I describe how the eco-
nomic component is structured.

Technology and Market Structure. In every location i, a representative firm pro-
duces goods of each sector k with labor as the unique input of the following linear
production function:

q
k

i
= b

k

i
A

k

i
L

k

i
, (1)

where b
k

i
stands for a location-sector efficiency shifter unrelated to i’s natural advan-

tage in producing sector k goods (e.g. technology adopted in production). The output
can be locally consumed or traded with other locations. Trade takes place in a per-
fectly competitive framework with full information. Thus, the price of the sector k

variety produced in i and shipped to location j is given by:

p
k

ij
= (wi/b

k

i
A

k

i
)⇥ tij, (2)

where the first and second subscripts stand for, respectively, the production and con-
sumption locations, and wi is the wage in location i.

Preferences. Each location i is initially populated by a continuum of heterogeneous
workers who decide where to live and how much to consume of the varieties of the K

sectors. In particular, a worker v initially living in location i who decides to migrate
to j enjoys

Uij(v) = Cj ⇥ m̄
�1
ij

⇥ # j(v), (3)
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where Cj stands for the utility obtained from consumption in j and m̄ij is the mobility
cost of migrating to j. Moreover, v’s final utility is affected by a destination taste shock
# j(v), which disciplines workers’ heterogeneous taste with respect to their preferred
destination.

Consumption choice. Workers in a location j decide how much to consume of all
possible i varieties of goods from all K sectors, {q

k

ij
}i,k. Their preferences feature love

for varieties, which is modeled using a sectoral CES tier:

C
k

j
=

 

Â
i2S

⇣
q

k

ij

⌘ h
k
�1

h
k

! h
k

h
k
�1

. (4)

Each worker earns wage wj, so that Âi2S Âk2K p
k

ij
q

k

ij
= wj is the budget constraint of a

worker living in j. Utility maximization with respect to consumption implies that the
share of j’s spending on i’s variety of sector k is

lk

ij
=

p
k

ij
q

k

ij

Âi2S p
k

ij
q

k

ij

=
�

p
k

ij
/P

k

j

�1�hk , where (5)

P
k

j
=

✓
Â
i2S

�
p

k

ij

�1�hk

◆ 1
1�h

k

(6)

is the Dixit-Stiglitz price index of sector k at j and hk > 1 sector k’s Armington CES.
Thus, workers devote a larger expenditure share to varieties from the cheapest sup-
pliers (with the lowest p

k

ij
). The sectoral CES hk determines the extent to which this

occurs: the larger it is, the more substitutable varieties within crop k become, and the
larger the share of expenditure on the cheapest supplier.

Worker choices across the K � 1 crops have a similar form. All crop CES compos-
ites are further aggregated into an agricultural CES tier (denoted by a):

C
a

j
=

 

Â
k 6=K

⇣
C

k

j

⌘ ga�1
ga

! ga

ga�1

. (7)

ga > 1 is the CES between crops which drives their degree of substitutability. Follow-
ing (5), j’s share of expenditure on crop k relative to total crop expenditure is:

Xk

j
=
�

P
k

j
/P

a

j

�1�ga , where (8)

P
a

j
=

✓
Â

k 6=K

�
P

k

j

�1�ga

◆ 1
1�ga

(9)
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is the price index of the aggregate agricultural sector a. Therefore, workers also substi-
tute crops based on their relative prices. Larger values of ga imply more consumption
of the locally cheapest crop and a stronger degree of specialization in crop consump-
tion across locations.

Finally, the consumption choice between agricultural and non-agricultural goods
is modeled with a further nonhomothetic CES tier in the spirit of Comin et al. (2021).
In particular, the utility from consuming goods, Cj, is implicitly determined from:

Â
k2{a,K}

⇣
Wk

⌘1/s �
Cj

�ek/s
⇣

C
k

j

⌘(s�1)/s
= 1, (10)

where s > 0 is the CES between the a and K aggregate sectors, ek is their nonho-
mothetic elasticity of substitution, and Wk are sectoral preference shifters. Utility
maximization implies that total consumption equals real wages, i.e. Cj = wj/Pj in
each location j. Moreover, price indexes and expenditure shares are respectively de-
termined as:

Pj =

0

@ Â
k2{a,K}

✓
Wk

⇣
P

k

j

⌘1�s
◆ 1�s

#
k ⇥

⇣
µk

j
w

1�s
j

⌘ #
k
�(1�s)

#
k

1

A

1
1�s

, and (11)

µk

j
= P

k

j
C

k

j
/wj

= Wk ⇥
⇣

P
k

j
/Pj

⌘1�s

| {z }
substitution

⇥
⇣

wj/Pj

⌘ek�(1�s)

| {z }
nonhomotheticity

8k 2 {a, K}. (12)

Equation (12) shows that workers’ choices between agricultural and non-agricultural
goods are more complex than within agriculture. The reasons are two: first, it con-
tains a substitution component analogous to eqs. (5) and (8) that nevertheless permits
a lower degree of substitutability between sectors (s < 1). That makes it possible
for changes in sectoral expenditures to be relatively lower (in magnitude) than the
changes in relative prices. Second, it features a nonhomothetic component that maps
changes in real income onto changes in sectoral expenditure shares – essentially, an
income effect. The elasticities ek determine this relation: if ek < 1 � s, then sector
k goods are a necessity whose expenditure decreases with income(and the opposite
if ek > 1 � s). Note that if ek = 1 � s for all k, then the nonhomothetic component
vanishes and eqs. (11) and (12) become isomorphic to eqs. (8) and (9).19

In equilibrium, the per capita demand for i variety of sector k goods in j is
19Such a demand structure is required in order to account for the necessity (subsistence) aspect of

agricultural goods when endogenizing sectoral shifts from agriculture to non-agriculture (i.e. structural
change). This is what Gollin et al. (2007) refer to as the food problem and what Nath (2022) shows to
be a limitation of structural change as a response to climate change. I discuss this further in Section 4.3.
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q
k

ij
= lk

ij
Xk

j
µa

j
wj for crops and q

K

ij
= lK

ij
µK

j
wj for the K

th sector. Therefore, the total
expenditure in j on goods produced in i, Xij, is defined as:
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!eK�(1�s)

wjLj. (13)

Location choice. Workers choose where to live in order to maximize utility. In partic-
ular, worker v initially living in i chooses a destination j in order to solve:

max
j

Uij(v) =
�
wj/Pj

�
⇥ m̄

�1
ij

⇥ # j(v). (14)

Therefore, workers will prefer locations with higher real wages, although subject to
the bilateral migration cost m̄ij and the destination taste shock # j (v). Formally, the
former is modeled as

m̄ij = mij ⇥ mc(j) if c(i) 6= c(j), and m̄ij = mij otherwise, (15)

where mij and mc(j) � 1. Thus, mobility costs depend on mij (which accounts for
bilateral characteristics like distance) and potentially mc(j). The latter matters only if
the location choice requires workers to switch countries. Hence, it captures country-
specific characteristics of destination j in terms of national barriers to foreigners.

Moreover, I assume that the taste shock is drawn independently (across workers
and locations) from an extreme-value distribution with shape parameter q > 0 and
scale parameter uiL

�a
i

. That is,

# j ⇠ Gj(z) = e
�z

�q⇥
⇣

ujL
�a
j

⌘

. (16)

The parameter q drives workers’ heterogeneity with respect to their location tastes
(and, to some extent, the dispersion forces in the economy). A higher q makes agents
more homogeneous and their location decisions more dependent on real wages wj/Pj.
That drives down the dispersion forces in the economy. In contrast, a lower q implies
greater heterogeneity among agents who are more likely to draw higher values of
taste shocks for every location. In that case, dispersion forces increase. Moreover, the
scale parameter ujL

�a
j

determines the average of the preference draws; uj stands for
the fundamental amenity of destination j; and a > 0 determines the extent to which
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population density diminishes quality of life.
The distributional assumption on taste preferences allows for a closed-form solu-

tion to the location choice of workers. Following Eaton and Kortum (2002), the share
of workers initially in i who choose to move to j is equivalent to:

Pij = P

✓
Wj(v) � max{Ws(v)}s 6=j

◆
=

(wj/Pj)q
m̄

�q
ij

ujL
�a
j

Â
s2S

(ws/Ps)qm̄
�q
is

usL
�a
s

. (17)

Therefore, the total number of workers that choose to live in destination j is:

Lj = Â
i2S

Pij ⇥ L
0
i
. (18)

This is an intuitive result: locations with higher real wages (wj/Pj) and/or density-
adjusted amenities (ujL

�a
j

) will have a higher population in equilibrium. The magni-
tude of this effect is partially driven by q, which is the elasticity of the location choice
with respect to real wages and to bilateral migration costs.

4.2 Spatial equilibrium

Given the geography G(S) and the exogenous parameters Q ⌘ {Wk, hk, ga, ek, s, q, a},
a spatial equilibrium is a vector of factor prices and labor allocations {wj, Lj}j2S such
that eqs. (2), (6), (9), (11) to (13) and (18) hold, and markets for goods clear. For-
mally, market clearing requires that each j’s wage bill equals total exports to and total
imports from all locations i 2 S, including itself. That is,

wjLj = Â
i2S

Xji = Â
i2S

Xij. (19)

This condition is equivalent trade-balancing in all locations. Note that factor markets
clearing is determined by eq. (18), since SiPij = 1 for all j by construction. Moreover,
by using eq. (13) on (19), one characterizes the spatial equilibrium with the following
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system of 6 ⇥ N equations and unknowns:
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⌘1�s⇣
wj/Pj

⌘ek�(1�s)

(25)

I solve this high-dimensional, non-linear system of equations with the iterative algo-
rithm described in Appendix A.4, where I also discuss aspects related to the existence
and uniqueness of the equilibrium and practical aspects of the counterfactuals using
the calibrated model.

4.3 Illustration and discussion of the underlying mechanisms

I illustrate how changes in the fundamentals shape the geographical distribution of
economic activity and population by representing it as a line with a discrete number of
locations. By doing so, I emphasize the effect of the model’s underlying mechanisms
on the agent’s mobility decisions in response to a climate shock to the economy.

The locations i 2 {1, ..., N} are distributed over a line and are homogeneous
with respect to amenities, efficiency shifters, and initial population (ui = u, b

k

i
=

b, and L
0
i
= l 8i, k). The economy is composed of two countries, where the ten left-

most locations stand for country 1. I initially set K = 2, so that the agricultural a

sector consists of one crop only. I assume that the distribution of sectoral fundamen-
tal productivities is increasing in the right-most locations and that every location is
more productive in the K

th sector. I also set bilateral trade and mobility frictions to be
proportionate to the bilateral distances and make it costly to migrate to country 2. In
terms of preferences, I assume that the agricultural crop is a necessity good and the
opposite for the K

th sector.20

20That is, ea < 1 � s and the opposite for k = K = 2. Other values for this economy are m1 = 1,
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Figure 3: Equilibrium values of {L
1
i
, L

2
i
}i2S for an economy represented on a line

Panel A: Migration barriers, sectoral
specialization, and CD.

Panel C: CD and migration barriers.

Panel B: CD, the food problem, and
the role of trade frictions.

Panel D: CD and crop switching.

Notes: Equilibrium labor allocations for the model described in Section 4.3. Panel A describes the
equilibrium of the baseline and climate change simulations (country 1 becomes less suitable for
crops). Panel B, C, and D plot the results of the climate change scenario with, respectively, lower trade
frictions (a reduction in t), no migration barriers between countries (mc = 1 for all c) and multiple
crops (K = 3).

Panel A of Figure 3 plots the equilibrium distributions of {L
k

i
} as dashed lines

(baseline). Overall, the economy produces more non-agricultural goods, which is the
most productive sector. In distributional terms, the rightmost locations in each coun-
try have a higher level of economic activity and a larger population. The discontinuity
at the country boundaries (i = 10) illustrates the role of country migration barriers (i.e.
m2 > 1). There is a higher population density on country 1’s side due to the inability
of workers to cross into country 2, where productivities and real wages are higher.

Subsequently, I simulate a climate shock by reducing country 1’s crop productiv-
ities even further. The result is shown in Panel A of Figure 3 using solid lines (CD).
Country 1 changes its patterns of sectoral specialization by increasing its relative em-

m2 = 1.5, tij = mij = e
t⇥|i�j|, and A

k

i
= ak ⇥ i, where t = 0.05 and a2 > a1.
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ployment in agriculture. This is driven by the necessity aspect of agricultural goods.
Climate change reduces crop productivity in country 1, which reacts by increasing
agricultural employment so to produce the needed quantity of crops. This reduces
real income in that country, increasing its share of expenditure on crops. Country 2,
if anything, gets benefitted. Its population and non-agricultural employment increase
due to the climate migrants from country 1.

This simple exercise illustrates the limitations of structural transformation as a
response to climate change. As rightly argued by Nath (2022), economies will switch
production out of affected sectors only if capable of importing subsistence goods from
unaffected regions. He refers to this as the food problem, inspired by previous studies
of structural change and development (Gollin et al., 2007; Herrendorf et al., 2014).
Panel B of Figure 3 provides further quantitative evidence of how this mechanism
works in my model. When facing lower trade frictions, country 1 switches production
out of agriculture, since it can now outsource crops from the nearest locations in
country 2 (which shifts its production towards agriculture).

The novelty of my framework lies in the addition of two dimensions that further
interact with the mentioned adaptation mechanisms. The first is migration barriers,
whose role is illustrated in Panel C of Figure 3 (the climate change scenario without
country migration barriers, i.e. mc = 1 for all c). The results are intuitive: instead
of reacting to the food problem, workers in country 1 migrate to country 2. Over-
all, workers enjoy higher real wages and spend lower income shares on agricultural
goods, making climate change less of a problem. Thus, migration can have a welfare-
improving role as a response to climate change. It permits individuals to move out
of unproductive rural regions, allowing for a more efficient sectoral spatial sorting of
workers. This echoes the insights obtained from research on spatial structural change
(Eckert and Peters, 2018) and on the gains from lowering migration barriers in rural
developing economies (Bryan and Morten, 2019; Lagakos et al., 2018; Pellegrina and
Sotelo, 2021).

The second additional dimension is the multi-crop aspect of the agricultural sector.
Crops are partial substitutes as subsistence, and Section 3 shows that climate change
is expected to alter their yields heterogeneously within locations. Thus, a potential
response of farmers in affected locations would be to switch production towards less-
affected crops. The role of this margin is shown in Panel D of Figure 3. Dashed
lines represent the outcomes of a simulation with two crops, where only crop 1 is
affected in country 1. As a result, locations in that country switch production towards
(unaffected) crop 2. This increases non-agricultural employment, real wages and wel-
fare. Country 2 remains qualitatively unaffected, and overall the economy is better
off relative to the one-crop scenario.
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5 Bringing the model to the SSA data

I calibrate the model to match SSA data for the year 2000. To do so, I use a mix of
calibration and parametrization methods that map the model to observable features
of the SSA economy. The goal is to quantify the parameters Q and the fundamentals
G (S). Table 1 summarizes the methods and sources used. Section 5.6 documents the
results of a number of overidentification tests that validate the calibrated model.21

5.1 Preference parameters

I draw the values for the preference parameters {hk, ga, ek, s, q, a} from the related
literature. I set the lower-tier CES as hk = 9.5 for crops and hK = 5.5 (as in Pelle-
grina and Sotelo, 2021; Caliendo and Parro, 2015), and the mid-tier CES as ga = 2.5
(following Sotelo, 2020). As for the upper-tier nonhomothetic CES, I follow Nath
(2022) and set s = 0.27, ea = 0.29, and eK = 1. Therefore, agricultural goods in my
framework are a necessity, as opposed to non-agricultural K goods. Finally, I set q = 2
and a = 0.32 following Monte et al. (2018) and Desmet et al. (2018), respectively.

5.2 Transportation network and trade costs

I follow the related literature (e.g. Allen, 2014; Donaldson, 2018; Pellegrina, 2022), by
assuming that trade frictions are proportional to the travel distance between locations:

tij = distance(i, j)d ⇥ tF

ij
, (26)

where distance(i, j) stands for the shortest bilateral distance between the two locations
and tF

ij
� 1 for an additional tariff-like trade friction. That is, tF

ij
> 1 only if c(i) 6= c(j).

To calculate the distances between all location pairs, I first overlay the gROADS
road network data onto the Accessibility to Cities friction surface data and set the
lowest value for the pixels over the roads.22 I then use a pathfinding algorithm to
calculate the shortest routes and respective distances between all neighboring cells.23

With these distances in hand, I use the Dijkstra algorithm to calculate the shortest
distance between all location pairs. To map these distances onto T , in line witheq. (26),

21In addition, Appendix A.5 discusses the data used and the numerical algorithms implemented,
while Appendix A.6 discusses the implications of the parameter values drawn from the literature.

22The advantage of this strategy is that it provides additional information for my algorithm in the
case of routes between coordinates not linked by roads. My method ”connects” to a road by way of
an optimal path with respect to topography, which is more realistic than assuming a linear path to the
closest road.

23I obtain the coordinates of each cell from the longitude and latitude of the most populated settle-
ment/city in each cell. See Appendix C for more details and fig. D.3 for the results.
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Table 1: Fundamentals, parameters, estimation methods and sources from the literature

Parameters Description Reference / Moment matched
hk = 9.5 Lower-tier CES (k 6= K, crops) Pellegrina and Sotelo (2021)
hK = 5.5 Lower-tier CES (non-agriculture) Pellegrina and Sotelo (2021)
ga = 2.5 Mid-tier CES (across crops) Sotelo (2020)
s = 0.26 Upper-tier CES Nath (2022)
#a = 0.29 Non-homoth. CES (agriculture) Nath (2022)
#K = 1 Non-homoth. CES (non-agriculture) Nath (2022)
{Wk}a,K Sectoral preference shifters Aggregate sectoral expenditure
q = 2 Workers’ (inverse) heterogeneity Monte et al. (2018)
a = 0.32 Congestion to population density Desmet et al. (2018)

Fundamentals Subset Description Data source / Moment matched
L - SSA’s initial Population data in 2000

population and 1990

{b
k

i
}i2S - Productivity shifters Matched to location-sector

production data in US$

A {A
k

i
}i2S,k 6=K Agricultural produc- GAEZ data

tivities
{A

K

i
}i2S Non-agricultural pro- Matched to GDP data in US$

ductivities

U - Amenities Matched to population data

T dist(i,j) Bilateral travel Transportation data
distance

d = 0.3 Distance elasticity Moneke (2020)
of t

tF

ij
= 2.175 Tariff-like Matched to aggregate trade

trade friction flows in US$

M dist(i,j) Bilateral travel Transportation data
distance

f = 0.5 Distance elasticity Matched to total internal
of mij migration data

{mc}C

c=1 Country migration Matched to country migration
barriers data (from bilateral flows)
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Figure 4: Estimated trade network for SSA – Western and Eastern Africa

Notes: Notes: Estimated trade network for Western Africa (left) and Eastern Africa (right). The
network is built by finding the shortest path between all neighboring cells over the road infrastructure.
tij represents the estimated iceberg trade costs with respect to the capital of Nigeria (left) and the
capital of Kenya (right), both represented by a black dot. See Section 5.2 for details.

I first I set d = 0.3 following Moneke (2020). I then calibrate tF

ij
= 2.175 by matching

the model-generated aggregate trade flows to the observed data. This last step is done
simultaneously with the calibration of other fundamentals, as explained in Section 5.3.

Figure 4 illustrates a subsample of the calibrated T . It shows the complexity
of the trade network, which replicates well the existing transportation infrastructure
both within and across countries. As expected, trade frictions increase with distance.
Moreover, the discontinuity of the gradient is evidence of the additional cost of inter-
national trade captured by the parameter tF

ij
.

5.3 Fundamental productivities, sectoral shifters, and tariffs

The set of fundamentals and parameters {A, b
k

i
, Wk, tF

ij
}i,j,k are quantified as follows.

First, I use the agro-climatic yields from GAEZ as the fundamental productivities
of the agricultural crops {A

k

i
}i2S,k 6=K.24 The underlying rationale is that the GAEZ

data provides potential yields and is thus informative about the yield variation across
location-crops that is driven exclusively by differences in natural characteristics, in-
cluding the climate. The variation in effective yields across locations, conditional on
the former, is embedded in {b

k

i
}i,k.

24To be consistent with the SSA rural context in 2000, I use the agro-climate potential yields calculated
for rain-fed agriculture with low usage of modern inputs. See Appendix C.1 for details.
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To quantify the remaining elements, I implement the following two-stage calibra-
tion algorithm. Starting with a guess for tF

ij
, the first stage (inner loop) simultaneously

solves for {A
K

i
}i, {b

k

i
}k, and {Wa, WK} by inverting the spatial equilibrium so that the

model matches, respectively, the spatial distributions of GDP, the spatial distribution
of sectoral production, and the relative a and K aggregate expenditure shares.

Importantly, my method identifies the product {b
K

i
A

K

i
}i (since its two elements

cannot be separated), and pins down {b
k

i
}k 6=K in relative terms within locations.

Therefore, the latter is identified using within-crop variation in observed produc-
tion across locations, conditional on the fundamental productivities of A. The former,
conditional on the latter, is identified using spatial variation in GDP.

The second stage (outer loop) is much simpler: it iterates the first stage over several
values of tF

ij
and pins down the one for which the model matches actual values of

aggregate bilateral trade flows across countries. The calibrated tF

ij
= 2.175 is close to

values from the literature, such as 1.15 from Baum-Snow et al. (2020) or 2.375 from
Antràs et al. (2022).

5.4 Migration frictions and amenities

As with tij, I set the bilateral component of migration frictions to be proportional to
distance, i.e. mij = distance(i, j)f. Thus, the remaining elements to be quantified are
{f, mc, ui}i,c, which are solved for with an analogous two-stage procedure.

The inner loop first uses the quantified elements in Section 5.3 to solve for prices
(eqs. (21), (22) and (24)) and real wages in the economy. Then, starting with a guess
for f, it inverts the spatial equilibrium for {mc}c and {ui}i such that the model repli-
cates, respectively, the gross migration flows at the country level and the spatial dis-
tribution of population.25 The separate identification of {mc}c and {ui}i is possible
because they are additively separable in the denominator of eq. (23). That provides
within-country variation in terms of potential origins from which the migration cost
is or is not scaled by {mc}c, and allows for a separate identification conditional on
{ui}i.26 The latter, conditional on the former, is identified with spatial variation in
population.27

25Importantly, the migration data represent cross-country gross flows between 1990 and 2000. Thus,
my estimation requires a measure of the initial population in 2000, i.e. {L

0
i
}i. I calculate it by scaling

the distribution of the population in 1990 to the levels of SSA population in 2000, while accounting for
the observed natural population growth rates (fertility minus mortality) across countries during the
period. Intuitively, this represents the population distribution in SSA if there had been no mobility
during that period.

26Intuitively, the additive separation holds because, for each destination, there are several origins of
migrants, some of them being other countries and others not.

27Therefore, amenities stand as a structural residual of my model: it rationalizes all location choices
observed in the data that cannot be explained by differences in real wages and migration frictions.
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The outer loop consists of a similar grid search over f. It iterates the inner loop for
several values and chooses the one for which the model-generated internal migration
matches the data. The value f = 0.5 is larger than comparable estimates from the
literature, such as 0.06 for the US (Allen and Donaldson, 2022) and 0.35 for Brazil
(Morten and Oliveira, 2018).28 Yet, it squares with recent evidence in the literature that
suggests an inverse relation between economic development and mobility frictions.29

5.5 Discussion of the results

Figure 5 illustrates the spatial distribution of some of the quantified fundamentals.
Panel A and B show that more productive locations (which have higher real wages)
have higher fundamental productivities in the K

th sector. Thus, the model rationalizes
that, net of the variation in the K � 1 sectors, locations with a high level of economic
activity must be very productive in non-agriculture. This pattern stands out in some
capitals and in high-GDP countries, such as South Africa. Panel C illustrates an anal-
ogous aspect of the quantified sectoral shifters of cassava. Thus, there are high {b

k

i
}i

values for locations in countries that are large cassava producers, such as Nigeria.
Moreover, Panel D and E show that high-amenity locations have relatively high

population density and very low real wages. DR Congo and Zimbabwe are two
examples. Their higher amenities are utility compensations that explain why individ-
uals are not living somewhere else in SSA. Intuitively, this captures local cultural or
institutional characteristics that work as pull factors (which will be kept constant in
the counterfactuals).

However, these characteristics do not include migration frictions, since they are ac-
counted for separately in my framework. To illustrate, Panel F plots the distribution
of the quantified country-level migration barriers, i.e. {mc}c. High-barrier countries
display two characteristics: higher income differentials relative to neighboring coun-
tries and relatively low inflows of migrants. The Central African Republic and South
Africa (which are geographically close to DR Congo and Zimbabwe, respectively)
illustrate this. Their relative income differences (with respect to their surrounding
countries) are disproportionally larger than the observed total flow of immigrants,
which implies higher migration barriers.30

28Note that Morten and Oliveira (2018) estimate an elasticity of bilateral migration flows with respect
to bilateral travel distance of about -0.7. Through the lens of my model, this elasticity reads as �q ⇥ f.

29Bryan and Morten (2019), for instance, estimate average mobility frictions in Indonesia that are
three times higher than in the US.

30A second mechanism explaining the variation in country barriers is the absolute variation in mi-
gration flows. Countries with low migration flows, even if at the left of the real wage distribution,
must have, at least to some extent, relatively high migration barriers. The reason for this is the id-
iosyncratic component of workers’ preferences, which generates some migration that must somehow
be rationalized.
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Figure 5: Comparison between the calibrated fundamentals and the observed endoge-
nous variables

Panel A: Real wages Panel B: Non-agric. prod.

Panel C: Sectoral shifters (cassava) Panel D: Population

Panel E: Amenities Panel F: Migration barriers

Notes: Each panel plots the spatial distribution of the quantified fundamentals as explained in sec-
tions 5.3 and 5.4. The results are shown in percentiles, where 1 and 100 stand for the bottom and top
percentiles of each sample, respectively. Panel F documents results analogously, but in deciles.

24



5.6 Validating the model

Before using the calibrated model to simulate the future, I test its capacity to repli-
cate observed moments. I start with a backcasting exercise that solves for the spatial
equilibrium in 1975 using the GAEZ agricultural productivities and population en-
dowments in that year. The result illustrates the extent to which the model is able to
replicate the population changes in SSA between 1975 and 2000 using the observed
changes in climate conditions during that period.31

Panels A and B of Figure 6 report the results in levels. The model closely replicates
the spatial distribution of the population in 1975 both within and across countries.
Moreover, Panel C shows that the results closely fit the population changes between
1975 and 2000, with a slope of 0.83 and R2 = 0.92. Importantly, the major change in
this backcasting exercise is on the agricultural suitabilities, i.e. {A

k

i
}i,k 6=K. According

to the GAEZ estimates, about 75 percent of the locations in SSA experienced a decline
in crop yields between 2000 and 1975. Thus, the fact that using this variation in the
model can explain the changes in population during the period confirms the model’s
capacity to provide reliable forecasts of the future using the GAEZ estimates.32

As an additional overidentification test, in Panel D I compare country-level agri-
cultural employment shares (for all crops) generated by the model for 2000 against
World Bank data. The model closely replicates the ranking of countries with respect
to agricultural employment shares, though it underestimates their levels. In aggre-
gate, the model predicts about a 20 percent share of employment in agriculture as
compared to 58 percent in the data. The main reason for this discrepancy is that I
include only a subset of the crops produced in SSA.

6 Climate change and migration: the 2080 forecast

I quantify potential climate migration in SSA by performing a series of counterfactual
simulations using the calibrated model. The benchmark exercise consists of solving
for the spatial equilibrium in 2080 with and without climate change. By comparing
the two, I am able to quantify the population reallocation driven by climate change.

31The data source for the 1975 population (GHSP) differs from that used in the calibration (G-Econ).
I check their compatibility using the correlation between them for the population in 2000 (available in
both datasets) at the grid-cell and country level. Furthermore, in order to have an initial population for
solving the model for 1975 – i.e. {L

0
i
}i – I project the 2000 population distribution onto the 1975 levels.

Appendix A.7 discusses that in detail.
32A complementary explanation for the good fit in this exercise is path dependence (i.e. the densest

locations in 1975 are also the densest in 2000). That is, in a context of high mobility frictions, such as
in SSA, the geography of the economy needs extreme shocks to its fundamentals in order to generate
dramatic changes in this kind of counterfactual. As shown in Figure A.2, the changes between 1975
and 2000 are not as dramatic as the ones expected by 2080.
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Figure 6: Validation of the calibrated model in levels and differences

Panel A: Observed population in 1975

Panel C: Population changes, DLi

Panel B: Estimated population for 1975

Panel D: Agricultural employment (%)

Notes: Panels A shows the observed 1975 population distribution in SSA while Panel B shows the
distribution produced by the model. The values are shown in percentiles, where 1 (100) stands for
the bottom (top) percentile of each sample. Panel C plots the model fit in terms of population change
(between 1975 and 2000, in thousands) while Panel D plots the model fit for country-level agricultural
employment in 2000 (in percentage points).

Subsequently, I study the role of the model’s mechanisms and conduct a policy exper-
iment that investigates the impact of climate change if SSA becomes as frictionless as
the EU (in terms of migration and trade barriers). I conclude with robustness checks.

6.1 Benchmark counterfactual

I solve for the spatial equilibrium in 2080 by inserting the 2080 forecasts of the initial
population L and crop productivities A into the calibrated model. The former is ob-
tained by scaling the observed population of 2000 using the estimates of country-level
population increase from the Population Prospects of United Nations and Social Af-
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fairs (2019) for 2080.33 The latter, in contrast, is taken directly from the GAEZ data.
For the climate change simulations, I use the estimates of potential crop yields in 2080
based on the most extreme future scenario available. Hence, the benchmark climate
change results represent an upper bound in terms of magnitudes since they reflect the
most pessimistic future for SSA.34 The simulations with no climate change assume no
changes in A and thus capture only the increase in population L.35

I quantify climate migration, DLi, using the differences between the equilibrium
populations of the two simulations – with and without climate change. Hence, it mea-
sures migration pressure in each location i net of the potential migration inflows and
outflows. Similarly, I infer the changes in sectoral specialization from the differences
in non-agricultural employment DL

K

i
(in percentage points) and the welfare changes

from the percentage change in real wages, Dwi/Pi.
Figure 7 shows the results on a map. At the country level, Panel A shows large

climate migration flows – on the order of half a million individuals or more – from the
Western Sahel countries to nearby non-Sahel Western Africa (e.g. Liberia, Ivory Coast,
Ghana, and Nigeria) and from DR Congo to Eastern Africa countries. Panel B, which
presents grid-cell-level results, shows a high degree of within-country heterogeneity.
Countries experiencing the largest migration outflows, such as Mali and DR Congo,
also experience a high level of internal migration. There are large movements from
their central and northern locations, which are highly affected by climate change, to
their relatively less affected southern locations. Overall, countries heterogeneously
hit by climate change experience large internal migration flows and large population
increases in their capitals.36

Panels C to F show the results in terms of structural change and real GDP per
capita. The countries that benefit from climate change, such as Tanzania, Rwanda,
and Uganda, specialize into agriculture (Panel C). This occurs because such an in-
crease in comparative advantage transforms them into the new agricultural power-
houses of SSA. As a consequence, their real wages increase (Panel E), which attracts

33These estimates project the observed country-level natural rates of population growth (fertility
minus mortality without migration) at the beginning of the 21st century onto subsequent years. Hence,
I assume that fertility is exogenous. Section 6.4 shows how the results change if fertility is endogenized.

34When drawing the GAEZ data for 2080, I chose the scenario that is closest to Representative Con-
centration Pathway (RCP) 8.5 (the standard for a severe and fuel-intense future; see Appendix C.1for
details). I also smooth out positive outliers in the spatial aggregation by centering it on the bottom
deciles within grid cells. As robustness, I check the sensitivity of the results to this aggregation method
and to the choice of less severe future scenarios. As expected, assuming a less pessimist scenario re-
duces the magnitude of the climate change impact. See Section 6.4 and Appendix D.1 for details.

35Note that the spatial distribution of outcomes in the no-climate-change simulations differs from
the observed distribution for 2000 due to dispersion forces driven by q and a.

36See Table D.3 for details. Note that the large estimated increase in the populations of capital cities
is consistent with the findings in the empirical literature on the high urbanization rates associated with
climate change (e.g. Henderson et al., 2017; Peri and Sasahara, 2019; Castells-Quintana et al., 2021).
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Figure 7: Counterfactual results for a climate-changed SSA in 2080

Panel A: Climate migration - country level Panel B: Climate migration - grid cell level

Panel C: Non-agric. employment - country level Panel D: Non-agric. employment - grid cell level

Panel E: Real GDP pc - country level Panel F: Real GDP pc - grid cell level

Notes: Panel A and B plot the results of climate migration in thousands of individuals. Panel C and
D describe the results in terms of non-agricultural employment, in percentage points. Panel E and F
present the welfare results in terms of percentage changes in real GDP per capita.
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migrants from nearby countries, such as DR Congo, Kenya and Ethiopia. Panel D
and F illustrate the richness of these results in terms of within-country heterogeneity.
Even within countries that benefit from climate change, there is substantial variation
in terms of sectoral specialization and welfare effects.

Nevertheless, some countries forcedly shift towards agriculture in a non welfare-
improving way. Nigeria is an example: compared to the no climate change scenario,
it needs to produce higher crop quantities to supply food to nearby countries that,
being much more affected by climate change, specialize out of agriculture (e.g. Mali
and Senegal). This shows that the necessity aspect of crops limits the Western African
economies to adapt to climate change (through structural change) and force them
into a climate change-driven poverty trap. Interestingly, the opposite holds for DR
Congo. Climate change pushes individuals from its poorest regions either abroad or
to its more productive south. As it stands among the poorest SSA countries in the
no climate change scenario, such a productivity-improving reallocation drastically
increases real wages in relative terms.

In aggregate, the estimated climate migration flows in SSA total about 4 million
individuals (Panel A of Table 2 column 1). This is much lower than Rigaud et al.
(2018)’s estimates of 90 million climate migrants in SSA by 2050. This discrepancy
is explained by the migration frictions that I account for and estimate using actual
migration data. Without them, my estimates of climate migration increase by more
than 100 million individuals.37 I explore this result in detail, together with other
aspects of the role of migration barriers, in Sections 6.2 and 6.3.

Table 2 also shows that climate change reduces real GDP per capita by about 1.2
percent. Importantly, this seemingly small effect hides a large degree of heterogeneity.
At the country level, the bottom and top deciles of changes in real GDP per capita
are -6 percent and 6.5 percent, respectively (Panel B). Thus, the adaptation to climate
change will lead to unequal consequences across SSA, generating winners and losers.
This final outcome depends on several mechanisms that interact with each other,
such as migration barriers and the heterogeneous forces driving sectoral specialization
and structural change across countries. I investigate the welfare importance of these
mechanisms in Section 6.2.

Furthermore, the overall negative impact of climate change on agricultural pro-
ductivity reduces aggregate non-agricultural employment by 0.85 percentage points.
This is because more labor now needs to be employed in agriculture in order to pro-
duce the necessary aggregate quantity of crops (which makes the economy poorer

37This pattern is consistent related findings that show that large mobility frictions in developing
economies may have an inhibiting effect on future climate migration and thus may exacerbate welfare
losses (e.g. Peri and Sasahara, 2019; Benveniste et al., 2020; Burzyński et al., 2022).

29



Table 2: Aggregate and disaggregate results of the climate change counterfactuals for 2080

(1) (2) (3) (4) (5)
Baseline No country No migration Higher trade Higher trade

barriers frictions costs + low mig.

Panel A - Aggregate CD effects:

Climate migration1 4.02 62.05 114.63 17.4 59.17
D GDP pc (%) -1.18 3.65 9.23 -7.05 -3.40
DL

K

i
(non–agric. -0.85 0.27 1.36 -3.19 -2.33

employment, %)

Panel B - Country–level CD effects:

Median D Population1 0.03 0.03 -0.35 0.16 0.68
Bottom/top deciles [-0.31; 0.25] [-4.55; 2.63] [-7.21; 7.32] [-1.05; 1.53] [-5.75; 3.14]

Median D GDP pc (%) -0.72 1.2 -0.43 -2.32 -0.19
Bottom/top deciles [-6.01; 6.53] [-9.35; 19.62] [-13.21; 49.59] [-29.65; 17.82] [-34.93; 42.45]

Median DL
K

i
(%) -0.31 0.71 1.72 -2.45 -1.83

Bottom/top deciles [-7.57; 3.7] [-3.66; 6.94] [-4.64; 9.54] [-11.3; 3.92] [-8.59; 3.74]

Panel C - Gross migration with CD:

Ratio: International/Inter- 0.11 5.06 19.42 0.14 0.25
nal migration flows

Notes: The results present the outcomes in 2080 for several counterfactual simulations of a climate-changed SSA.
In particular, column 1 shows the baseline results, column 2 shows the results with no country migration barriers
(mc = 1 for all c), and column 3 shows the results with no bilateral migration barriers of any kind (mij = 1 for
all i,j). Column 4 shows the results of the counterfactual with greater trade frictions (an increase of 50 percent in
d). Column 5 shows the results with greater trades friction and lower bilateral migration barriers (a decrease of 50
percent in f). 1Climate migration in million individuals.

and increases the agricultural expenditure share).38 In distributional terms, however,
this effect is heterogeneous and negatively skewed: the top and bottom deciles of the
country-level changes in non-agricultural employment are -7.5 percentage points and
3.7 percentage points, respectively.

Finally, Panel C shows that the aggregate gross internal migration flows in the
climate change scenario are almost ten-fold larger than the international migration
flows. This suggests that the country migration barriers {mc}c are playing a cen-
tral role in individuals’ migration decisions in response to climate change. In what
follows, I investigate the importance of these barriers relative to the bilateral compo-
nent of mobility frictions, as well as the role of several other underlying mechanisms
driving the results presented so far.

38This result is consistent with related findings in the literature. For instance, Nath (2022) estimates
an increase in agricultural expenditure shares of about 2.7 percentage points in the world’s poorest
quartile of countries, whereas Cruz (2021) estimates an increase in global agricultural employment of
about 2 percent. The main channel explaining the differences in magnitude between those estimates
and my own (0.85) is the multi-crop feature of my framework. By not taking into consideration the
potential production reallocation within agriculture (i.e. across crops), the consumption specialization
effect of climate change is overestimated. I discuss this extensively in Section 6.2.
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6.2 Investigating the underlying channels

I investigate the extent to which the model’s underlying channels (migration fric-
tions, trade, and crop-switching) affect the estimated climate migration flows and the
associated welfare and sectoral specialization effects. To do so, I perform additional
simulations centered on each of the channels and highlight how they interact with
one another.

Migration frictions. I start with the role of country migration barriers {mc}c. Column
2 of Table 2 summarizes the results of a counterfactual in which country barriers
are eliminated (i.e. mc = 1 for all c).39 As expected, aggregate migration flows
increase substantially – by almost 60 million climate migrants. Perhaps surprisingly,
the welfare losses associated with climate change are fully reversed: real GDP per
capita in SSA increases by 3.65 percent. These patterns are further amplified in the
counterfactual that eliminates bilateral mobility frictions completely (i.e. m̄ij = 1 for
all i,j; results appear in column 3). In that case, climate migration flows increase by
about 110 million individuals and real GDP per capita increases by 9.23 percent.

What explains this welfare-improving role of migration as adaptation? The an-
swer lies in its interaction with sectoral specialization. In the absence of mobility fric-
tions, workers in affected areas can migrate to farther-away, more productive regions,
which improves the efficiency of the SSA economy in terms of sectoral comparative
advantage. In the climate change scenario, this means that agricultural production
reallocates to the climate-change-benefitted regions, while non-agricultural produc-
tion moves to the most developed countries in SSA. This efficiency gain increases
real income in SSA, which reduces the demand for agricultural goods and employ-
ment in that sector. Thus, migration allows SSA to benefit from the push-aspect of
climate change by permitting individuals to move out of unproductive rural regions
and allowing the economy to go through a welfare-improving process of structural
transformation.

Table 2 Panel B provides quantitative evidence of this result. The distribution of
non-agricultural employment changes across countries shifts rightwards when mo-
bility frictions are reduced, thus confirming that more countries specialize out of
agriculture in this scenario. Table 3 presents results for selected countries. Reducing
mobility frictions intensifies the welfare losses in the most affected countries (such as
Senegal) and the previously discussed patterns in DR Congo and Nigeria. Their non-
agricultural employment increases because benefitted countries, such as Tanzania,

39In particular, this counterfactual assumes no country barriers in the simulations with and without
climate change. Thus, the comparison of the two isolates the climate change effect and shows how they
compare with the baseline in the absence of these barriers. The same applies to the counterfactuals
below.
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Table 3: Results of selected climate change counterfactuals for selected countries

(1) (2) (3) (4) (5)
Senegal DR Congo Nigeria Tanzania South Africa

Panel A - Baseline results:

D Population1 -0.58 -1.20 0.34 0.48 0.25
D GDP pc (%) -14.07 20.00 -2.58 2.77 -3.43
D Non-agric. employm. (%) 8.10 -0.10 -0.44 -2.53 1.78

Panel B - No country migration barriers:

D Population1 -5.11 -21.97 -0.31 6.57 10.12
D GDP pc (%) -14.15 43.01 -2.59 4.86 2.89
D Non-agric. employm. (%) 8.87 2.47 0.67 -3.41 3.09

Panel C - No migration frictions:

D Population1 -5.62 -32.05 -6.79 16.59 9.98
D GDP pc (%) -23.93 49.59 -3.45 11.21 3.90
D Non-agric. employm. (%) 9.54 4.85 1.23 -6.89 5.09

Notes: Panel A documents the results of the baseline counterfactual (column 1 of Table 2) for selected
countries. Panel B and C present the results for the same countries for the counterfactuals corresponding
to columns 2 and 3 of Table 2. 1Climate migration in million individuals.

shift even more into crop production and become the destination for larger climate
migration inflows. In fact, this also permits developed countries like South Africa
to further specialize in non-agriculture (by outsourcing crops), to attract additional
climate migrants, and to overcome the welfare losses from climate change.

Importantly, these aggregate gains hide an increase in inequality across countries.
Columns 2 and 3 of Table 2 Panel B show that the distribution of changes in real GDP
per capita widens as migration frictions are reduced. That is, migration allows SSA
to adapt to climate change in an aggregate welfare-improving manner, although it
makes the individuals remaining in the most-affected regions worse off.40 Therefore,
the results imply that mitigating climate change by reducing migration barriers poses
a trade-off between aggregate gains and increasing inequality. In Section 6.3, I explore
this in detail and show that trade policy can attenuate this trade-off.

The role of trade. Table 2 Column 4 presents the results of a counterfactual with
higher trade frictions (i.e. increasing d by 50 percent). On aggregate, climate mi-
gration flows and welfare losses increase dramatically, by about four-fold and seven-
fold, respectively. This occurs because greater trade friction inhibits the ability of
the economy to adapt through sectoral specialization, thus incentivizing migration

40Note that eliminating migration frictions m̄ij completely does not remove the congestion forces in
the economy. The heterogeneity of agents with respect to their location choice (disciplined by q and
a) still works as a dispersion force, thus preventing all agents from moving to the best locations in the
economy.
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(as in Conte et al., 2021). Moreover, higher trade friction intensifies the food prob-
lem: aggregate agricultural employment increases and the country-level distribution
of non-agricultural employment shifts leftwards. This is consistent with the theoreti-
cal insights in Section 4.3 and shows that trade has a crucial adaptive role, disciplining
both climate migration and welfare losses in SSA.

Next, I investigate how that effect interacts with migration in another simulation
that, on top of the higher trade frictions, reduces migration barriers (i.e. reducing f

by 50 percent; results in column 5). Climate migration flows triples, welfare losses de-
crease by half, and agricultural employment decrease by one third. That emphasizes,
once again, that migration as adaptation can be welfare-improving, on aggregate, by
allowing for structural change at the cost of increasing inequality.

Crop switching. To investigate the importance of the multi-crop feature of my frame-
work, I perform a counterfactual exercise in which agriculture is comprised of a sin-
gle crop (results in Table 4 column 2).41 Compared to the baseline, climate migration
decreases only slightly. However, welfare losses and non-agricultural employment in-
crease dramatically. This is explained by the heterogeneity of the expected crop yield
changes within locations (Figure 1). Affected producers can, in the multi-crop model,
reallocate agricultural production to the less-affected crop (but not in the case of a sin-
gle crop). Hence, assuming a single crop overestimates the impact of climate change
on agricultural productivity and amplifies the necessity for the economy to allocate,
on aggregate, more labor into agriculture.42 Thus, accounting for this margin is key
in correctly predicting the impact of climate change on agriculture and the resulting
effects in subsistence rural economies like those in SSA.

6.3 Policy experiment - SSA as frictionless as the EU

One of the key takeaways from Section 6.2 is the tradeoff that migration policy poses:
it allows SSA to be better-off when adapting to climate change at the expense of higher
regional inequality. Hence, a question that naturally emerges is whether other policy
tools can attenuate this tradeoff. In what follows, I focus on trade policy. In particular,
I conduct a policy experiment that quantifies the consequences of climate change for
SSA in the hypothetical scenario where migration and trade frictions are reduced to
the levels prevailing in the EU.

Doing so requires the quantification of the migration and trade frictions in the
EU within the structure of the model. I do that by mapping the country migration

41I assume a representative crop whose spatial distribution of potential yields is the cross-crop aver-
age within a location. See Appendix B.1 for details.

42In fact, assuming a single crop brings my sectoral specialization results much closer to the findings
of related studies that assume the same structure (e.g. Cruz, 2021; Nath, 2022, see footnote 38).
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Table 4: Aggregate and disaggregate results of the climate change counterfactuals and policy
experiments for 2080

(1) (2) (3) (4) (5)
Baseline Agriculture as EU trade EU mig. EU trade +

one crop frictions barriers mig. barriers

Panel A - Aggregate CD effects:

Climate migration1 4.02 3.23 2.78 29.14 21.08
D GDP pc (%) -1.18 -3.48 -0.31 0.03 0.54
DL

K

i
(non–agric. -0.85 -2.73 0.33 -0.64 0.64

employment, %)

Panel B - Country–level CD effects:

Median D Population1 0.03 0.01 0.02 0.11 0.09
Bottom/top deciles [-0.31; 0.25] [-0.27; 0.25] [-0.31; 0.25] [-2.83; 1.56] [-1.47; 1.16]
Median D GDP pc (%) -0.72 -4.42 -0.09 -0.12 -0.01
Bottom/top deciles [-6.01; 6.53] [-10.45; 1.27] [-2.97; 1.68] [-7.02; 12.36] [-2.76; 5.4]
Median DL

K

i
(%) -0.31 -1.95 0.03 0 0.1

Bottom/top deciles [-7.57; 3.7] [-7.04; 1.78] [-4.38; 6.92] [-7.08; 4.84] [-5.35; 8.16]

Panel C - Gross migration with CD:

Ratio: International/Inter- 0.11 0.11 0.11 1.21 1.38
nal migration flows

Notes: The results relate to several counterfactual simulations of a climate-changed SSA in 2080. In particular,
column 1 corresponds to the baseline results, while column 2 presents the results when assuming a single crop.
Columns 3 to 5 present the results of policy experiments in which frictions are equated to EU levels: in column 3,
SSA adopts the same level of tariffs as the EU; in column 4 it adopts the same migration policy, and in column 5
it combines both policies. 1Climate migration in million individuals.

barriers {mc}c and the tariff component of trade frictions tF

ij
to EU migration and

trade policies. Focusing on these parameters is particularly convenient because they
reflect the institutional characteristics of the EU in terms of trade and migration poli-
cies. In other words, they are more tangible – being policy tools – than the elasticity
parameters f or d.43

In practice, I quantify {mc}c and tF

ij
by bringing the model to the EU data using

the procedure described in Section 5.44 The estimated EU frictions are substantially
lower than those in the SSA. With respect to trade, I estimate tF

ij
= 0.025, which is

almost a hundred-fold less than in SSA. This is shown in Figure 8 Panel A, where
the discontinuity in bilateral frictions for cross-country trade is barely visible. It also
shows that the estimated EU country migration barriers are much less stringent. The
average {mc}c is 35 percent lower than in the SSA case, and its distribution is shifted

43Moreover, a comparison to the EU provides results that are more policy-relevant: equating the
parameters to EU levels reflects tangible policy actions with a real-world connection. This is less the
case with arbitrary changes, as in Section 6.2.

44This requires data for the same period and therefore the estimated values for the EU are also for
2000. Importantly, I focus on isolating the variation in the observed trade and migration flows within
the EU. Thus, the values of the preference parameters and the bilateral elasticities d and f remain as
described in Table 1. See Appendix A.8 for details.
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Figure 8: Estimated trade and migration frictions in the European Union

Panel A: Tariff-like trade frictions tF

ij
in the EU Panel B: Country migration barriers {mc}c in the EU

Notes: Panel A presents trade frictions in the EU as was done for SSA in Figure 4 (in this context, trade
frictions are relative to Barcelona (Spain), represented by the black dot). Panel B plots the distribution
of country migration barriers {mc}c in SSA and the EU.

far more to the left (Panel B).
Armed with that, I perform counterfactual simulations that replace the trade and

migration barriers with the EU values. Table 4 Column 3 shows the results for trade
policy only. Reducing tariffs to EU levels reduces climate migration flows by almost
half, attenuates aggregate losses, and slightly shifts the economy out of agriculture.
As in Section 6.2 (though, in this case, in the opposite direction of Table 2 Column
4), the underlying channel is the higher adaptive capacity achieved through sectoral
specialization. Thus, trade policy can be a powerful tool for a policy maker interested
in reducing migration flows and attenuating the aggregate and distributional impacts
of climate change.

I next conduct an analogous exercise that instead reduces country migration bar-
riers to EU levels (column 4).45 In line with previous results, there is an increase in
climate migration (Panel A), and primarily between countries (Panel C), which sets
off the migration-induced process of structural change described in Section 6.2. The
magnitude of the results is not as stark as in that case. Nonetheless, they do show
that by reducing country migration barriers to EU levels, a policy maker in SSA can
eliminate the aggregate losses due to climate change, although at the cost – as before
– of an increase in climate migration and regional inequality.

45I match the EU {mc}c values to the SSA countries by deciles (i.e. scaling the barriers of the SSA
countries to the value of their respective decile in the EU distribution). See Appendix A.8 for details.
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Finally, I combine both policies (column 5) and find that trade policy drastically
attenuates the inequality effect of the migration policy. In particular, Panel B shows
a narrowing of the differences in welfare consequences between the most- and least-
affected countries. The policy mix also increases the efficiency of the SSA economy,
actually converting the aggregate losses into gains, and boosts the structural change
process driven by migration. The importance of this policy experiment cannot be
overstated: by combining both tools, a policy maker can take advantage of climate
change by enabling SSA to reorganize more efficiently through trade and migration.

6.4 Robustness checks

In what follows, I check the robustness of the previous results in several dimensions:
the friction parameters (trade and migration), the model’s assumptions, and the cli-
mate change data used in the simulations. Table 5 below documents the main results,
while Appendix B provides further details of the alternative models.

Friction parameters. Panel A illustrates the sensitivity of the benchmark results to
changes in the friction parameters (i.e. increasing or decreasing f or d by 50 percent).
The changes in the results are consistent with previous findings: trade frictions limit
the capacity of the economy to adapt through sectoral specialization, and migration
barriers prevent individuals from leaving affected locations, thus increasing losses.

Homothetic preferences. I now show that the nonhomotheticity feature of the pref-
erences for agricultural goods and non-agricultural goods is a key driver of climate
change’s welfare consequences. Panel B shows the results of a counterfactual which
assumes homothetic preferences (see Appendix B.2 for details). The aggregate flows
of climate migration are not overly affected, but the welfare losses are dramatically
reversed. This occurs because, by disregarding the subsistence aspect of agricultural
goods, agents replace agricultural goods with non-agricultural goods. This intensi-
fies the patterns of sectoral specialization (i.e. more production and consumption of
non-agricultural goods takes place in the most affected regions). The opposite holds
for the benefitted regions, which absorb most of the climate migrants and shift almost
completely into agriculture (increasing aggregate agricultural employment).

Endogenous fertility. I perform a simple exercise that illustrates how the results
change if fertility is allowed to be endogenous to climate change. To do so, I adjust the
estimates for population growth taken from the Population Prospects of United Na-
tions and Social Affairs (2019) using a damage function that depends on the average
change in potential crop yields.46 This reduces the initial population L assumed in the

46In particular, I assume that the rate of net population growth changes by 50 percent of the change
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Table 5: Robustness of the benchmark results with respect to trade and migration fric-
tions, model assumptions, and climate change scenarios

(1) (2) (3)

Climate migration D GDP per D Non–agricultural
(million individuals) capita (%) employment (%)

Benchmark results 4.02 -1.18 -0.85

Panel A: Robustness to frictions

Higher trade frictions 17.41 -7.05 -3.19
Lower trade frictions 2.01 0.10 0.50
Higher migration frictions 0.37 -1.78 -1.11
Lower migration frictions 24.47 1.06 -0.33

Panel B: Robustness to assumptions and CD scenario

Homothetic preferences 3.52 4.38 -1.94
Endogenous fertility 2.52 2.72 1.77
RCP 4.5 scenario 1.34 1.86 1.28

Notes: Panel A presents the aggregate effect of climate change for different levels of trade and migration
frictions, driven by the parameters d and f, respectively. Panel B presents the results of the benchmark
simulation when (separately) assuming homothetic preferences between agriculture and non-agriculture,
endogenous fertility, and a less severe climate change scenario.

counterfactuals for 2080, and particularly in the most-affected countries. This in turn
reduces the potential number of climate migrants, as can be seen in Panel B. More-
over, endogenizing fertility results in an improved initial population distribution in
2080 (i.e. relatively higher initial populations in less-affected locations). This reduces
the need for workers to migrate to the better-off locations in the economy and indeed
reverses the aggregate welfare losses due to climate change.

Assumption of climate change scenario. I also check the sensitivity of the results
to the severity of the underlying climate change scenario, by switching to the RCP
4.5 scenario (which assumes that carbon emissions will peak by mid-century and
decrease thereafter). I simulate the model with the suitability data for this scenario
(see Panel B of Table 5). As expected, climate migration is attenuated. Moreover, the
results in terms of welfare losses and sectoral specializations are reversed. This occurs
because the RCP 4.5 scenario reduces the losses from climate change more than the
gains, which broadens the ability of the SSA to adapt through structural change.

in average potential yield in each location. Appendix B.3 provides further details and documents
additional results with alternative scaling rules. Importantly, I adopt this approach for simplicity,
rather than the more elaborate approaches in the literature (Delventhal et al., 2018, 2021; Cruz and
Rossi-Hansberg, 2021), due to the static feature of my model.
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7 Conclusion

The main message of this paper is that climate change must not lead to bad out-
comes if rural economies like SSA can adapt to it. If mobility barriers can be reduced,
climate change can encourage the shift of population out of poor, low-productivity ru-
ral locations and set off a process of structural change. Openness to trade determines
the aggregate and distributional welfare effects of this process, by allowing affected
economies to switch production to less-affected sectors. The interaction of these – and
other – mechanisms in general equilibrium is complex and interconnected. I never-
theless model that with a transparent framework that I develop and connect to SSA
data for 2000.

I identify that frictions in SSA are remarkably high and inhibit the welfare-improving
process just described. My estimates suggest sizeable welfare losses of climate change
and migration flows in many orders of magnitude smaller than reduced-form esti-
mates from the literature. However, a policy experiment shows that, by becoming as
frictionless as the EU, SSA adaptation to climate change could increase welfare both
in aggregate and distributional terms. My climate migration estimates when relaxing
migration frictions approach those from other studies that disregard these barriers.

My results deliver important contributions to the literature and the policy debates.
I connect the findings from the literature on the gains from incentivizing migration
in developing economies with those from the literature on the importance of sectoral
specialization and trade in adapting to climate change. I also deliver a policy-relevant
message on the potential role of real-world trade and migration policies in adapting
to climate change.
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, Robert E. Kopp, Scott A. Kulp, Dávid Krisztián Nagy, Michael Oppenheimer,
Esteban Rossi-Hansberg, and Benjamin H. Strauss, “Evaluating the Economic
Cost of Coastal Flooding,” American Economic Journal: Macroeconomics, April 2021,
13 (2), 444–86.

Donaldson, Dave, “Railroads of the Raj: Estimating the impact of transportation
infrastructure,” American Economic Review, 2018, 108 (4-5), 899–934.

and Richard Hornbeck, “Railroads and American economic growth: A “market
access” approach,” The Quarterly Journal of Economics, 2016, 131 (2), 799–858.

Duarte, Margarida and Diego Restuccia, “The Role of the Structural Transformation
in Aggregate Productivity,” Quarterly Journal of Economics, 2010, 125 (1), 129–173.

41
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Appendix

Appendix A documents theoretical derivations that support the main results of Sec-
tion 4. Appendix B describe alternative models used in the robustness. Appendix C
provides more details about the data sources mentioned in Section 2 and other data
sources not mentioned therein. Appendix D contains additional figures and tables.

A Theory Appendix

A.1 Derivation of shipping prices

The representative firm in location i uses labor as the unique input of a linear produc-
tion technology. Locations trade with one another; following the iceberg-like formula-
tion of trade costs, the quantity of a good from sector k produced by the representative
firm from i shipped to location j is
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As a constant returns to scale problem, the solution is straight-forward: at an interior
optimum, shipping prices will equal marginal shipping costs, i.e.
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A.2 Derivation of bilateral trade shares

When maximizing welfare with respect to consumption of varieties, worker v solves
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where Cj is (implicitly) defined in eq. (10) and the sectoral CES composites C
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eq. (4). Then, taking the taking first order conditions of {q
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}j to maximize utility
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from sectoral k consumption, C
k

j
, yields (µ stands for the Lagrange multiplier):

hk

hk � 1
w

1/hk�1
j

hk � 1
h

�
q

k

ij

��1/hk � µp
k

ij
 0 8i, j, = 0 for interior solution. Assume so:

�
q

k

ij

��1
h

k = µp
k

ij
⇥ w

1�hk

i
8i, j, (A.2)

Then, the ratio of the consumption of two i and s varieties consumed at j becomes:
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Then, by defining lk

ij
as the share of j’s expenditure on j’s variety of sector k goods

(and making use of eq. (A.3)), one obtains:
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where the last equation takes advatage of the definition of the price index from eq. (6).
By proceeding analogously for the choice of crop composites (Ck

j
) (middle CES nest)

and the choice bewtween non-/agricultural composites (upper nest), one finds equiv-
alent results to eqs. (8) and (12). Note that, for the latter, the derivation of the addi-
tional income effect follows Comin et al. (2021).

A.3 Derivation of migration shares

Take the definition of the welfare attained by a worker v living in i and moving to j

as Wij(v) = (wj/Pj)m̄
�1
ij

# j(v), #i ⇠ Gj(v) = e
�v

�q
ujL

�a
j . Following Eaton and Kortum

(2002), one can obtain the distribution of the welfare from one specific location i as
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Thus, the joint distribution of welfare of all destinations s from i can be derived as
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Now, recalling the share of workers moving from i to j is equivalent to the probability
that the welfare attained by moving to j, w, is the highest among all other possible s

46



destinations, one writes
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With that, it is possible to obtain the unconditional probability Pij by integrating over
all possible values of w 2 R+, i.e.
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which is the equivalent of eq. (17).

A.4 Numerical algorithm for solving the model

I find {wj, Lj}j2S that solves for the spatial equilibrium characterized by the system of
equations (20) to (25) with an algorithm that nests three loops in one another.

Inner loop. I start with a guess for {wj, Lj}j and solve for sectoral price indexes in
eqs. (22) and (24). Then, with a guess for {Pj}j, I iterate over eqs. (21) and (25) to find
a simultaneous solution for {Pj, µk

j
}j,k. In particular, with the guess for {Pj}j, I solve

for {µk

j
}k in eq. (25), replace it on eq. (21) to update solve for {Pj}j, and iterate until

both solutions converge.

Middle loop. I use the solution for {Pj, µk

j
}j,k and the guesses for {wj, Lj}j in eq. (20)

to obtain an update for {wj}j, iterating it until the solution converges.

Outer loop. I use the solution of {wj, Pj}j and the guess for {Lj}j in eq. (23) to obtain
an update for {Lj}j, iterating it until the solution converges.

I then replace the solutions for {wj, Lj}j back in the inner loop and repeat the proce-
dure above until all solutions converge to a fixed point.

Existence and Uniqueness. My model is not isomorphic to the general set up of
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Allen and Arkolakis (2014) and, as a consequence, the existence and uniqueness of
the equilibrium cannot be guaranteed under their conditions for such. The reason
for that is the additional non-linearity introduced by the middle- and upper-level
CES structures. I address that by solving my model for several parametric choices,
starting from many different initial guesses. The equilibrium found is invariant across
all cases.

Winsorzing data and fundamentals. I winsorize both data and fundamentals when
(i) bringing the model to the data (Appendix A.5) and (ii) solving the model with the
calibrated geography. This procedure is standard as it removes the role of extreme
values on the counterfactual results. Importantly, I check that such a procedure does
not affect sensibly the equivalence between the calibrated model and the data that it
fits. Appendix D.1 provides further details.

A.5 Model Inversion

The inversion of the spatial equilibrium consists of two steps that respectively back out
fundamentals related to technology and location choice. Each of these steps consist
of a two-stage procedure.

A.5.1 Technology

Its inner loop solves for {A
K

i
}i, {b

k

i
}k, and {Wa, WK} conditional on a guess for tariffs

{tF

ij
}, the parameters taken from the literature, {A

k

i
}k 6=K measured from GAEZ, and

the observed following endogenous variables: real wages {wi}i, population {Li}i,
sectoral production {X

k

i
}i,k, and aggregate sectoral expenditure ratios X

K/X
a.47,48

Then, the outer loop matches model-generated bilateral country trade to observed
data to pin down the levels of tariffs {tF

ij
}.

Inner loop. I use the market clearing condition of the model to build the equations

47All monetary values, built from the data in US$ PPP units (see Section 2), are further normalized to
the wages of the first location w1. This is done as I am not able to pin down levels in my quantification,
but instead the spatial distribution of fundamentals up to a normalization.

48I reduce the role of outliers and extreme values in the data used in the inversion by winsorizing it.
In particular, the observed real GDP per capita, {wj}j, is truncated at the 97,5th percentile. Moreover,
the effective crop production, {X

k

j
}j,k 6=K, is truncated at the bottom and top quartiles within countries.
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for nominal GDP, sectoral wage bills, and aggregate sectoral expenditure shares:49
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Then, one can invert each of the equations above to obtain the expressions for the
unobserved fundamentals of interest. For instance, for {A

K

j
}j, one inverts eq. (A.4) to

obtain:
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Analogously inverting eqs. (A.5) to (A.7) yields:
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The inversion algorithm finds {A
K

j
, {b

k

j
}j,k, WK/Wa} such that eqs. (A.8) to (A.11)

hold simultaneously. However, because {b
K

j
}j and {A

K

j
}j cannot be separated out in

49By targetting the relative sectoral expenditures, I am implicitly normalizing one of the preference
shifters to one and indentifying their ratio.
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levels, I do normalize the latter to one and identify the product of them in eq. (A.10).
That also gives me tractability, as then eq. (A.8) is not needed anymore for inverting
the spatial equilibrium.50

I solve for the fundamentals as follows: with a guess for {b
k

j
}j,k, I solve for WK/Wa

in eq. (A.11). I then plug the solution in eqs. (A.9) and (A.10) (embedded in {µk

j
}j,k)

to solve for {b
k

j
}j,k. I iterate it until all solutions converge.

Outer loop. The inner loop uses a guess of the tariff parameter tF

ij
, which the outer

loop solves for. In particular, it repeats the inner loop for a range of tF

ij
2 {1, 1.05, ..., 3}

and finds tF

ij
= 2.175 to be the value such that the model-generated international trade

flows, X
F = Âj2S Âi/2c(j) Xji, matches the observed data from the ITPD-E (Borchert et

al., 2021).51. Figure A.1 shows the results of the grid search.

A.5.2 Location choice

Its inner loop solves for {ui}i and {mc}c conditional on all previsouly quantified
parameters and fundamentals, a guess for f, and the observed following endogenous
variables: population {Li}i and country-level total inflow of foreign migrants, {Lc}c

(obtained from Abel and Cohen (2019)’s database). Then, the outer loop matches
model-generated total internal migration to observed data to pin down f.

Inner loop. I use eq. (18) to calculate Lc. Then, I analogously invert that to obtain
an expression for country barriers as a function of Lc and other endogenous variables
and fundamentals as follows:
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Note that the denominator in the equations above is equivalent to eq. (18)’s – it sepa-
rates the inter/intranational bilateral choices to illustrate the identification of param-
eters later on. Analogously, I invert eq. (23) to pin down amenities {uj}j as a function

50In particular, that equation holds by construction if eqs. (A.9) and (A.10) hold simultaneously.
51In practice, as I do not identify levels in the inversion, I match the share of exports over total SSA

GDP
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of population distribution and other endogenous variables and fundamentals:
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I solve eqs. (A.12) and (A.13) as follows: with a guess for {uj}j, I solve for {mc}c

in eq. (A.12), plug it in eq. (A.13) to solve for {uj}j, and iterate it until all solutions
converge. Importantly, I am able to separate out {uj}j from {mc}c because location
pairs can refer to either intra or international migration. That is, conditional on a
guess of {uj}j, there are distinct origins s for which a destination j stand for one type
of migration of the other (the denominator of eq. (A.12)), and thus where amenities
multyplies or not the country migration barriers {mc}c. Considering all possible or-
gins s and destinations j in S, there is at least one pair for which they do and do not
multiply one another, which then allows me to separately identify them.

Outer loop. The inner loop uses a guess for f, which the outer loop solves for.
In particular, it repeats the inner loop for a range of f 2 {0, 0.05, ..., 1.5} and finds
f = 0.5 to be the value such that the model-generated internal migration flows, L

D =

Âc2C Âj2c Âi2c Lij, matches the observed internal migation flows between 1990 and
2000. Importantly, Abel and Cohen (2019) do not provide data on internal migration.
Thus, I rely on policy reports and other evidence to find that the approximated total
internal migration flows in SSA between 1990 and 2000.52. I find it to be 50 million of
individuals and thus target this value in the quantification of f. Figure A.1 shows the
results of the grid search.

A.6 Discussion of the parameters taken from the literature

Lower CES tier. The values taken for {hk}k come from Pellegrina and Sotelo (2021);
Caliendo and Parro (2015). While initially used in Caliendo and Parro (2015) at the
country level, Pellegrina and Sotelo (2021) use the same values to study intranational
trade and migration in rural Brazil by mid 20th century (which is a good approxima-
tion of rural SSA as of 2000). Assuming different values for {hk}k (say, substitution
of varieties within countries being more intense than across countries) would mainly

52In particular, Myers (1993, 1997, 2002) suggest that climate displaced individuals by the end of the
20th century in SSA were in the order of 52 million. Gemenne et al. (2022) instead suggest internal
migration flows in the order of 25 million. Finally, Brown et al. (2007), basing upon sources such as
Myers (2002) or UNHCR (UN’s Refugee Agency) suggests flows in the order of 60 million.
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Figure A.1: Results of the outer loops that solve for tF

ij
and f

Panel A: tF

ij
Panel B: f

Notes: Panel A: Grid search over tF

ij
(x-axis) and the resulting model-generated international trade

flows (y-axis). The dashed red line stands for the target of the observed trade flows in the data. Panel
B: analogous grid search over f and the resulting model-generated internal migration flows.

affect the model-generated trade flows, and consequently the parameters associated
to trade frictions.

Middle CES tier. The value ga = 2.5 comes from Sotelo (2020), who studies rural
Peru by early 2000s and focus on intranational trade in that country. Thus, it stands
for a context similar to rural SSA as of 2000.

Upper CES tier. The values for {#k} and s come from the global estimation of Nath
(2022). The parameters therefore reflect preferences between agricultural and non-
agricultural goods from a global representative consumer. Thus, the values can un-
derestimate the subsistency aspect of agricultural goods in SSA, where the negative
slope of the Engel curve could be steeper vis-à-vis the rest of the world. If so, then,
my results would underestimate the welfare losses associated to that mechanism.

A.7 Details on the Backcasting Exercise for 1975

The backcasting exercise consists of solving for the spatial equilibrium of the SSA in
1975. In particular, it uses the calibrated model for 2000 and replaces two fundamen-
tals that reflect the reality of the economy in 1975:

Population. I calculate and estimate of the initial population in 1975 by projecting
the distribution of the observed population in 2000 into the levels of the SSA popula-
tion in 1975. The reversibility of the spatial equilibrium follows Desmet et al. (2018),
who characterize the possibility of backcasting exercises such as mine (i.e. validating
spatial models calibrated in a cross section).
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Crop yields. I replace the fundamental productivities {A
k

j
}k 6=K used in the calibration

with the values of 1975. Importantly, during the period there was already climate-
driven changes in these productivities so that the model can generate climate migra-
tion. Figure A.2 illustrates that.

Figure A.2: Percentual changes in average crop potential yields within locations in
the past and estimates for the future

Panel A: 1975-2000 Panel B: 2000-2080

Notes: Panel A: Within grid cell changes (%) in crop suitabilities between 1975 and 2000. Panel B:
Analogous changes between 2000 and 2080 (under climate change). Grey areas stand for locations
with no zero potential yields in both periods.

Finally, the validating exercises consists of comparing the model outcomes with
observed population data for 1975. Because the data source of the latter (GHSP, Flor-
czyk et al., 2019) differs from the source of population data used in the calibration
(G-Econ, Nordhaus et al., 2006), I check the consistency of these two datasets for the
period of 2000 (for which data in both sources is available) in terms of grid cell- and
country-level population correlation.

A.8 Details on the calibration with EU data

I take the model to EU data so to retrieve the levels of the tariffs and country barriers
paramters tF

ij
and {mc}c. To do that, I build a likewise rich spatial dataset for the EU.

I use the same sources described in Section 2, as all of them have a global coverage.
Subsequently, I link that data to my model with the procedure described in Sec-

tion 5. Importantly, when doing so, I use the same preference parameters and elas-
ticities to bilateral distance, d and f. Thus, my quantification for the EU embeds the
differences between cross country trade (or migration) in EU and SSA in the policy
parameters tF

ij
(or {mc}c).
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Figure A.3: Correlations between populations from G–Econ and GHSP datasets for
the year of 2000

Panel A Panel B

Notes: Panel A: Population counts in SSA from G–Econ (x axis) and GHSP (y axis) aggregate at
country level. Panel B: Population counts in SSA from G–Econ (x axis) and GHSP (y axis) aggregate at
1 degree grid cells.

Finally, when replacing the EU policy parameters into the SSA counterfactual, I
must match the country level EU parameters {mc}c to SSA countries. I do that by
quantiles. That is, I assign the country barrier value for the bottom decile of the EU
sample to the countries in the bottom decile of the SSA county barrier distribution,
as so forth for the other deciles. Importantly, to make the levels of {mc}c comparable
across EU and SSA, I normalize the former as a ratio with the minimum. Thus, I in
practice simply scale SSA’s country barriers in relatives (e.g. the ratio between the
least and most strict country) so to reflect the relative ratios of the EU barriers.

B Alternative models

B.1 Agriculture as a unique crop

The model with a unique crop is identical to the model of Section 4. However, by
assuming a unique crop (K = 2), there is no subsitution within agriculture, so that the
middle CES tier vanishes (i.e. X1

j
= 1 and P

a

j
= P

1
j

for all j).
I take this model to the data following the procedure described in Section 5. The

only difference from the baseline model is that the unique crop is an aggregate of
the 6 crops. In particular, the agricultural fundamental productivity {A

k

j
}k 6=K is a

cross-crop average of the within grid cell productivities (and likewise for the 2080
estimates). Moreover, the crop expenditures used in the baseline quantification are
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summed up for the single-crop case.

B.2 Homothetic preferences

I model homothetic preferences in a simple model where crops and non-agricultural
goods are imperfect substitutes. That is, I assume a two-level CES structure where the
lower nest is identical to the baseline. The upper nest, instead, is a CES aggregator of
both crops and non-agricultural CES composites:
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When taking this model to the data, I use s = 2.5 following Sotelo (2020) and
follow almost the same procedure as in Section 5. The only difference in this case is
that I disregard the parameters related to the upper tiers of the baseline model (i.e.
{Wk

j
}k). In practice, that means matching only sectoral output in the inversion for the

fundamentals related to the technology (eqs. (A.8) to (A.10) in appendix A.5.1).

B.3 Endogenous fertility

I endogenize fertility, with respect to climate change, with a simple damage function
that assumes that the projected grid-cell-level initial population for 2080 is affected by
the average change in local crop yields. Formally:

L̂
0
j
=
�
i ⇥ DAj

�
⇥ L

0
j
,

where DAj is the average crop yield change in j (as in Section 3) and i a shitfer that
maps the latter into fertility changes.

When doing so, the initial population of SSA L reduces dramatically if compared
to the baseline case. In particular, it decreases more in the locations and countries
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that are most affected by climate change. Thus, in distributional terms, the initial
population of SSA starts better distributed, which leads to lower climate migration
flows. Moreover, because of the lower level of aggregate population, there are less
congestion forces in the economy (driven by a), which allows more people, in relative
terms, to move into the best locations in the economy (compared to the baseline
simulations).

The fertility robustness results of Table 5 use L̂
0
j

and i = .5 in the climate change
simulations. As of completeness, Table B.1 below document how these results are
sensitive to the choice of i.

Table B.1: Robustness of the endogenous fertility exercise with respect to i

(1) (2) (3)

Climate migration D GDP per D Non–agricultural
(million individuals) capita (%) employment (%)

Endogenous fertility i = 0.1 2.55 2.71 1.76
Endogenous fertility i = 0.25 2.54 2.71 1.76
Endogenous fertility i = 0.5 2.52 2.72 1.77

C Data Appendix

Table C.1 below documents all data sources used and their temporal coverage. Next,
I provide further detail on the data choices and aggregation.

Table C.1: Main data sources

Type of data Coverage Source

GDP and Population 2000 G-Econ Project v4.0 (Nordhaus et al., 2006)
Population 1975, 2000 Global Human Settlements Project (Florczyk et al., 2019)
Population projections 2021 – 2100 United Nations and Social Affairs (2019)
Agric. Productivities 1960–2000 GAEZ v3.0 (IIASA and FAO, 2012)
Climate D projections 2020, 2050, 2080 GAEZ v3.0 (IIASA and FAO, 2012)
Transportation data 2000 gROADS project (CIESIN, 2013)
Friction transportation surface 2000 Accessibility to Cities’ project (Weiss et al., 2018)
Bilateral crop trade data 1995–2005 ITPD-E (Borchert et al., 2021)
Bilateral country migration data 1990–2000 Abel and Cohen (2019)

C.1 GAEZ agro-climatic yields.

The GAEZ’s database provides estimates of agricultural potential yields for several
crops, in different time periods, and for different degrees of technology usage in
agriculture. As my interest in subsistence agriculture setup of SSA, I aim at building a
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Figure C.1: Yield gains from adoption of high inputs in agriculture vis–à–vis low
inputs for selected crops.

Panel A: Gains for adoption of high inputs for rice Panel B: Gains for adoption of high inputs for sorghum

Notes: Panels A and B show the ratio of high/low input usage yields for growing two selected crops
according to GAEZ long–run estimates. The values are shown in deciles; 1 (10) stands for the bottom
(top) decile of each sample.

time varying dataset of potential yields over the entire subcontinent, for several crops,
at low usage of modern inputs: with rainfed water access, labor intensive techniques,
and no application of of nutrients, no use of chemicals for pest and disease control
and minimum conservation measures.

A challenge, however, is that the time varying potential yields from GAEZ are
available only for high usage of modern inputs (based on improved high yielding va-
rieties, fully mechanized with low labor intensity techniques, and usage of optimum
applications of nutrients and chemical pest, disease and weed control). The estimates
for different input levels are only available for the long–run estimates (averages be-
tween 1960–1990).

Therefore, to obtain a time varying dataset of the agro–climatic yields at low input
usage, I first use the long–run values to calculate the GAEZ–implied ratio between
high inputs (A

k,h
i
) / low inputs (A

k,l
i
) yields for each crop. This procedures reveals

how the gains from adopting higher input levels differ across locations and crops –
Figure C.1 illustrates the results for two selected crops in deciles. I use the calculated
ratios to scale down the time varying estimates for high inputs that I collect.

Armed with the location–crop technology scales, I collect the time varying esti-
mates of agro–climatic yields for high input usage. For the estimates in the past,
retrieve those for 1971–1975 and 1996–2000. I average out the 5 years’ blocks so to
avoid year-specific outliers. The reason is to capture long term changes, which could
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Figure C.2: Equivalence between long and longer–run estimates of radiative forcing
(proportional to carbon emissions) between SRES and RCP scenarios.

Source: IPCC (2012), chapter 1, Figure 1.15 (left) and Chapter 12, Figure 12.3 (right).

be contaminated if a certain year faces unusual climate conditions.
The yield estimates for future periods require another parametrical selection: the

underlying scenario for which the data is produced and with which climatic (general
circulation) model (GCM) the data is produced. As carefully discussed by Costinot et
al. (2016), the GAEZ v3.0 database provides such estimates produced with four main
GCM, and for several future scenarios. The latter is of key importance: it contains the
underlying assumption on how the global carbon emissions are going to evolve in the
future so to produce the changes in the climate.

I choose the scenario A1 from the GAEZ database, which is the baseline scenario
of Costinot et al. (2016) that matches closely the current standard of severe evolution
of the global climate for the future: the RCP 8.5.53 This scenario assumes a steady
increase in carbon stocks in the atmosphere througout the 21st and 22nd centuries,
becoming stable by mid–23rd century. A milder scenario that I use for my robustness
checks is the B1, which is similar to the nowadays–standard RCP 4.5. It assumes that
the global stock of carbon will peak by late 21st century, becoming stable thereafter.

C.2 ITPD-E data.

The trade data used in this paper is obtained from the ITPD-E database (Borchert et
al., 2021). I collect all available bilateral trade flows, in current US$, for all country-
crops combinations of my study.

53The GAEZ v3.0 forecasts are based on the Special Report on Emission Scenarios (SRES; see IPCC,
2000). The SRE Scenarios were later updated by IPCC as the RCP scenarios, which are now the
standards in the climate community (IPCC, 2012). Figure C.2 illustrates the equivalence between the
SRES and RCP scenarios.
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Consistent with good practice with trade data, I collect import flows rather than
exports. The reson for that is the usual discrepancy between total import and exports
at the country–pair–product level. While import flows are registered between country
of production and final country of shipment, export data usually register intermediate
countries on the trade chain as final destination, biasing the trade flows (Veronese and
Tyrman, 2009).

Finally, to transform the trade data to monetary unit of my study (US$ PPP from
G–Econ), I proceed as follows. First, I calculate the share of trade flows, at the
importer–exporter–crop–year levels, over the GDP of of the importing country in each
year, in current values. Subsequently, I average out the shares over the 2000–2010 pe-
riod, so to avoid outliers in the year of 2000. Finally, I multiply the shares at the
importer–exporter–crop level by the importer GDP of G–Econ for the year of 2000.

C.3 Building the agricultural production data.

To build a dataset for agricultural production at the location–crop level for 2000, I
combine the GAEZ data of production (in tonnes) with the FAOSTAT agricultural
production data (country–crop level) and World Bank country GDP data (both in
current US$). First, I use the GAEZ data at the cell–crop level to calculate the share
that each cell is observed to produce, of each crop, over its country’s total production.
Second, I obtain with the FAOSTAT and WB data the share of each country crop
production for the years of 2000 to 2010. I average out such shares and multiply them
by the country GDP implied by the G–Econ data, so that the unit is consistent with
the monetary unit of the model (US$ PPP). Finally, I multiply the country–crop PPP
values by the location–crop shares. For very liitle locations, however, the outcome can
exceed the their total GDP. In these cases, I simply trim the value by 99.99% of its
GDP.

C.4 Additional data sources

Main populated places. I collect the coordinaes of the main populated places of SSA
from the Populated Places data set from Natural Earth. It consists of a geo-referenced
dataset with the coordinates of about 90% of all cities, towns and settlements in the
World. I use it to set coordinates for each of the cells of SSA. If a certain cell contains
more than one location, I pick the one with the highest population. If another does
not have any location to obtain the coordinates, I set them to be the cell’s centroid.
Finally, if any of the centroids are not located in the mainland (i.e. ocean, lakes), I set
it to be the closest coordinate to the centroid that is on the mainland. See fig. D.3 for
the result.
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D Additional material

D.1 Further details on winsorizing and the spatial aggregation method

D.1.1 Winsorizing of data and fundamentals

The calibration of the geography G(S) for 2000 fits perfectly the observed data for that
period. Therefore, the quantified fundamentals incorporate all possible measurement
error present in the data. I address it by, first, winsorizing the data used in the
inversion as explained in Appendix A.5 (see footnote 48). However, that procedure
does not eliminte fully the extreme outliers obtained in the fundamentals, especially
with respect to the efficiency shifters {b

k

j
}j,k. Thus, when solving the model for any

simulation using the calibrated model, I also winsorize {b
k

j
}j,k at the 97.5% percentile.

Importantly, doing so does not affect sensibly the equivalence between the cali-
brated model and the observed data. For instance, there are nearly no differences
between the results of the validation of Section 5.6 with the actual fundamentals and
the winsorized ones. Figure D.1 illustrates that, and Table D.1 document the sensitiv-
ity of the climate change counterfactuals to that.

Figure D.1: Backcasting exercise with and without winsorizing of {b
k

j
}j,k

Panel A: Backcasting with winsorizing Panel B: Backcasting without winsorizing

Notes: Observed (x-axis) and model-generated (y-axis) population changes between 2000 and 1975.
Panel A shows the results if winsorizing the fundamentals, and Panel B if not.

D.1.2 Spatial aggregation of GAEZ data

As discussed in Section 6.1 (see footnote 34), Appendix A.4, and Appendix C.1, I
choose and aggregate the GAEZ estimates of crop yields for 2080 so to capture the
most pessimistic scenario available. The first choice in that direction is to choose
the scenario available at GAEZ that reflects the closest the RCP 8.5 scenario (see
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Appendix C.1). Several sources (data generated using a specific Global Circulation
Model – GCM), for that scenario, are available. For consistency with the literature
and comparability, I choose the one from Costinot et al. (2016) (Hadley CM3).

However, the Hadley CM3 forecasts differ sensibly from other sources. Again in
line with the principle of capturing the most pessimistic possible future scenario, I
aggregate the raw GAEZ data for 2080 centered at the bottom 5th percentile of the
within-grid cell distribution. Thus, my results reflect an upper bound in terms of mag-
nitudes of losses. 54 Figure D.2 shows the sensitivity of the average crop yield changes
(equivalent to Figure 1 Panel A) with respect to this aggregation method. Moreover,
Table D.1 document how the aggregate baseline results change if using other meth-
ods. Intuitively enough, choosing a less pessimistic rule reverts the aggregate welfare
losses of climate change by providing more room for sectoral specialization (more
agricultural production centered in the benefitted areas).

Figure D.2: Sensitivity of DAi with respect to the spatial aggregation rule - 5th and
25th percentiles, and average changes

5th percentile 25th percentile Average

Table D.1: Sensitivity of the climate change counterfactuals to truncation of fundamentals
and spatial aggregation

(1) (2) (3)

Climate migration D GDP per D Non–agricultural
(million individuals) capita (%) employment (%)

Aggregation at 5th percentile 4.02 -1.18 -0.85
(baseline)

Aggregation at 25th percentile 2.58 2.71 1.76

Aggregation at the mean + 3.44 5.33 5.82
no truncation of {b

k

j
}j,k

54By targetting an upper bound of climate losses, I do not need to check the sensitivity of my results
to all different GCM sources provided by GAEZ.
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D.2 Further results

Table D.2: Share of grain crop production (in
tonnes) over total production of the main staple and
cash crops in SSA.

Crop Share of production

Grain crops:

Cassava 56.65%
Maize 11.75%
Millet 4.59%
Rice 2.18%
Sorghum 6.15%
Wheat 1.13%
Total: 82.45%

Cash crops:

Coffee 1.13%
Cotton 1.14%
Groundnut 2.72%
Palm oil 4.93%
Soybean 0.33%
Sugarcane 7.31%
Total: 17,55%

Source: GAEZ production data for 2000 aggregated in over
the 42 countries of my empirical setup. SSA includes all sub–
Saharan African countries but Somalia.

Figure D.3: Coordinates for SSA grid cells (localities) for Western (left) and Eastern
(right) Africa.
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Table D.3: Climate migration results for country capitals

Country Capital DLi (K) Country Capital DLi (K)
Angola Luanda 41.89 Lesotho Maseru -14.27
Burundi Bujumbura -25.33 Mali Bamako 141.06
Benin Cotonou -11.39 Mozambique Maputo 66.75
Burkina Faso Ouagadougou 45.17 Mauritania Nouakchott 56.29
Botswana Gaborone 0.79 Malawi Lilongwe -43.38
Central African Republic Bangui 17.80 Namibia Windhoek 9.43
Ivory Coast Abidjan 96.35 Niger Niamey -55.70
Cameroon Yaounde 16.67 Nigeria Abuja 48.62
Congo (Kinshasa) Kinshasa 830.26 Rwanda Kigali 735.19
Congo (Brazzaville) Pointe-Noire 22.34 Sudan Khartoum 21.60
Djibouti Djibouti 0.34 Senegal Dakar 179.32
Eritrea Asmara 10.03 Sierra Leone Freetown -101.60
Ethiopia Addis Ababa 12.83 Swaziland Mbabane 4.50
Gabon Libreville 9.25 Chad Ndjamena -5.23
Ghana Accra -111.79 Togo Lome 10.24
Guinea Conakry 0.76 Tanzania Dar es Salaam 63.87
The Gambia Banjul -47.31 Uganda Kampala -7.74
Guinea Bissau Bissau -2.42 South Africa Johannesburg -25.18
Equatorial Guinea Malabo 0.55 Zambia Lusaka 24.38
Kenya Nairobi 341.50 Zimbabwe Harare -1.38
Liberia Monrovia 31.47
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