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Abstract

Negative emissions technologies (NETs) feature prominently in most scenar-
ios that halt climate change and deliver on the Paris Agreements temperature
goal. As of today, however, their maturity and desirability are highly debated.
Since the social value of new technologies depends on how novel knowledge fuels
practical solutions, we take an innovation network perspective to quantify the
multidimensional nature of knowledge spillovers generated by twenty years of
research in NETs. In particular, we evaluate the likelihood that scientific ad-
vances across eight NET domains stimulate (i) further production of knowledge,
(ii) technological innovation, and (iii) policy discussion. Taking as counterfactual
scientific advances not related to NETs, we show that NETs-related research gen-
erates overall significant, positive knowledge spillovers within science and from
science to technology and policy. At the same time, stark differences exist across
carbon removal solutions. For example, the ability to turn scientific advances
in NETs into technological developments is a nearly exclusively feature of Di-
rect Air Capture (DAC), while Bio-energy with Carbon Capture and Storage
(BECCS) lags behind. Conversely, BECCS and Blue Carbon (BC) have gained
relative momentum in the policy and public debate, vis-à-vis limited spillovers
from advances in DAC to policy. Moreover, both scientific advances and collab-
orations cluster geographically by type of NET, which might affect large-scale
diffusion. Finally, our results suggest the existence of coordination gaps between
NET-related science, technology, and policy.

1 Introduction

There is increasingly robust evidence that meeting ambitious climate targets, perhaps with

limited temperature overshooting [1], will require removing large stocks of carbon dioxide from
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the atmosphere [2, 3]. Tackling climate change by removing CO2 from the atmosphere has been

a tantalizing idea for quite some time [4]. Planting trees, or more precisely, designing forest

management programs, has probably been the first solution to arise [5]. Over time though,

a broader set of technical solutions have been developed, generally going under the label of

Negative Emissions Technologies (NETs).

The large majority of Integrated Assessment Models (IAMs) now mention carbon removal as

a pivotal element to meet the Paris Agreement requirements and thus tackle global warming [6,

7, 3]. According to these models, the transition toward zero emissions will require the extensive

deployment of NETs to balance the inevitable difficulties of cutting short-term emissions even

more drastically [8]. Furthermore, NETs might contribute to smooth out the so-called green

transition, which will prove challenging from an economic, social, technological, and, of course,

political perspective [9].

As of today, there are doubts on the possibility of immediate large-scale deployment of

NETs, and their use as technical or policy panacea could not only be implausible, but even

hazardous [10, 11, 12, 13]. The inclusion of these technologies in the design of climate policy

pathways could risk delivering misleading guidelines if it underestimates the long and uncertain

process that moves from basic research to the systemic diffusion of complex technical artifacts

[14, 15, 16, 17, 18, 19]. In addition, little is known about how NETs at full regime could interact

with other Sustainable Development Goals (SDGs) [15, 20]. NETs are indeed a peculiar set of

technologies, whose economic value and market size largely depends on the strength of current

and future climate policy, as well as from the global trajectory of emissions [21]. Against

this backdrop, the available evidence about how different NETs could develop and diffuse is

inconclusive.

Our paper provides new evidence about the relationships between scientific research in NETs,

its diffusion and policy coverage, as well as their technological developments. In particular, we

quantify the likelihood that scientific advances in NETs research (i) stimulate the production of

further knowledge, (ii) foster technological innovation, and (iii) enter the policy debate. More-

over, we investigate the geographical distribution of NETs-related knowledge production, using

relative comparative advantage and network analytic measures to identify the scientific special-

izations of countries and single out the main research hubs of the global innovation system.

Our paper contributes to a recent stream of studies acknowledging a relatively marginal role

of NETs-related research within the broader climate discourse [22], and emphasise the need to

better understand the scientific trends, the diffusion and up-scaling issues of NETs [23, 24, 25],

as well as their broader economic challenge. Different NETs have been mostly evaluated along
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five dimensions (Figure 1B): negative emissions potential (i.e., Gt Ceq per year), energy and

natural resource requirements (i.e., land and water use) and economic costs (US$ per t Ceq)

[26, 27]. Overall, no universally superior option has been identified [28]. This paper provides

novel dimensions to the multi-faceted comparison of various carbon removal technologies and

provides the first estimates of knowledge spillovers generated by research in NETs.

We focus on the following list of options (see Figure 1A and Table S1 for a summary de-

scription): Afforestation and Reforestation (AR), Bio-energy with Cabon Capture and Storage

(BECCS), Biochar, Blue carbon (BC), Direct Air Capture (DAC), Enhanced weathering (EW),

Ocean fertilization (OF), and Soil carbon sequestration (SCS). DAC does not explicitly include

storage options [29]; see Section 4.1 and S1 for more details.

We measure knowledge spillovers by using citations networks, as is standard in the innovation

and applied economics literature [30, 31, 32]. Given the critical role played by climate-related

technologies, we move beyond the standard citation counts to incorporate knowledge flows to

practical innovations (i.e., patents) and the public discourse (i.e., policy documents) [33, 34, 35].

We also include the broader public impact of NETs research through different media channels

to take into account a more complete and multidimensional set of knowledge spillovers. More

in detail, by analyzing 20 years of academic literature via network and regression techniques

[36, 37], we first provide a quantitative comparison of the impact of different NETs. Next, we

focus on knowledge spillovers of NETs research in science, technology, and policy. Finally, we

provide additional geographical and network analyses to study the spatial heterogeneity of cities

and countries that can serve as research hubs for supporting future collaborations.

In extreme synthesis, by unpacking the multidimensional impact of knowledge spillovers,

this paper suggests the existence of coordination gaps between science, technology and policy

in the domain of carbon removal solutions. Our results show that (i) knowledge spillovers in

science play a non-negligible role in the development of negative emissions solutions, (ii) in

terms of impact, NETs are characterized by great heterogeneity, and only very few options are

substantially linked to marketplace inventions, and (iii) negative emissions research activities

are geographically concentrated around hubs with different specialisations from the viewpoint

of the global division of labour. Interestingly, DAC appears as the most promising solution

concerning technological developments (as indicated by patent citations); however, it is still

relatively overlooked by policymakers (as indicated by policy reports citations).
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Figure 1: Negative emissions research. (A) The list of eight NETs included in our analysis. (B)
A multidimensional comparison among different NETs (authors assessment adapted from [26, 27, 24]).
(C) NETs articles from 1998 to 2017 collected though WoS text search. The category General is defined
as a residual class including articles that match NETs keywords but do not specifically include words
patterns in their titles or abstracts. (D) A stylized representation of the diverse sources of data necessary
to keep track of knowledge flows to science, technology and policy. (*) The aforementioned references
provide a detailed review of each NET. Summary radars concerning OF and BC not included (fewer
conclusive information currently available [38, 39]).
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2 Results

2.1 Knowledge base and spillovers: the landscape of negative emissions re-

search

Technological and scientific breakthroughs are often the result of knowledge recombination pro-

cesses, wherein past scientific advances become themselves knowledge components of future,

often unexpected, innovative research paths [40, 17, 41, 42]. Our exploration of the NETs’ re-

search landscape starts by mapping the knowledge base (i.e., scientific fields on which NETs rely

upon) and the potential spillover directions (i.e., scientific sub-fields influenced by NETs research

developments). To identify them, we collected a large amount of bibliometric information re-

lated to NETs articles published in scientific journals (see section 4.1). We retrieve NETs papers

by querying Web of Science (WoS) on the basis of keywords and their combinations in titles and

abstracts [22, 23]. From 1998 to 2017, we collect 3301 published articles, distinguishing eight

different NETs and considering a general residual category. Figure 1c shows the growing number

of publications per year, with details for the different NETs. Next, we collect citations data from

scientific papers, patents, and policy documents, along with non-technical media mentions (e.g.,

in social media, newspapers, blogs). To do so, we integrate several data sources, namely: Web

of Science (WoS), Reliance on Science (RoS) and Altmetric (see sections 4.1 and S1 for more

details). Figure 1d provides a schematic representation of the different sources of data used in

our analysis to keep track of the multidimensionality of knowledge spillovers.

Negative emissions technologies are not all alike: crucial differences have been reported in

relation to measurement, verification, accounting, and durability of carbon stored [43], as well

as to costs and requirements [26, 27]. Against this background, we investigate the heterogene-

ity that characterizes NETs’ knowledge base and spillover directions (Figure 2). Nature-based

and technology-based approaches differ in both aspects. Figures 2A,B,C,D show a qualita-

tive comparison between two nature-based methods (i.e., forest management and soil carbon

sequestration) with the most popular technological solutions (BECCS and DAC). As expected,

nature-based NETs are scientifically grounded in soil science and ecology, while solutions such as

BECCS and DAC are engineering-driven methods. More interestingly, NETs build on different

scientific fields, and the directions of potential spillovers follow accordingly. To better illumi-

nate this, we show the overlap rates among subjects most frequently reported in the knowledge

base (Figure 2E) and in set of spillover directions of each NETs pair (Figure 2F). Overall, our

descriptive observation signals a prominent feature of NETs: the scientific heterogeneity of their

knowledge base closely reflects the direction of spillovers effects. Some NETs can certainly be
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compatible in applications, but they are not synergic in the knowledge they develop and build

upon.

In the following sections, we investigate the impact of negative emissions research on several

dimensions, revealing that NETs generate substantial but heterogeneous spillovers, and that

research activities are not evenly distributed from a geographical perspective.

A B

C D

E F

Figure 2: NETs knowledge base and spillovers. (A–D) Flows diagrams for AR, BECCS,
DAC, and SCS. Top 10 WoS subjects that affect (backward citations) and are affected (forward citations)
by NETs research. The first ten subjects comprise the large majority of citations (see figure S6 for details).
(A) Afforestation and Reforestation – AR. (B) Bio-energy with Carbon Capture ans Storage – BECCS.
(C) Direct Air Capture – DAC. (D) Soil Carbon Sequestration – SCS. (E) Matrix of overlapping subjects
in NETs knowledge base (% values). (F) Matrix of overlapping subjects in NETs knowledge spillovers
(% values). Full list of flows charts included in S5.
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2.2 Multidimensional impact of NETs research

As mentioned above, NETs comprise a heterogeneous group of carbon removal solutions stem-

ming from a diversified range of scientific disciplines. In this section, by exploiting the richness

of different sources of data, we characterize, for the first time, the multidimensional nature of

NETs impact, measuring their spillovers within and beyond their scientific reach.

Our quantitative comparison among scientific articles relies on identifying suitable control

groups. Therefore, we employ a matching procedure to construct a “baseline” control, including

articles published in the same year and the same journal, not directly related to NETs. In addi-

tion, to better characterize the role of NETs within the broader climate change academic debate,

we construct a second control group (i.e., “climate control”), following the same strategy but

focusing on the climate change literature. (see section 4.1 and S2 for more detailed information

related to our matching strategy). It is worth noticing that our matching procedure has the

purpose of balancing the comparison taking into account articles of the same age and ideally the

same quality. However, such a matching scheme does not guarantee an exact counterfactual; it

ensures that we compare articles with some key common characteristics.

Using Altmeric data, we compute the normalized number of mentions for each NET to

gauge how the different streams of research are covered in academic, policy, technical, and

media outlets. Figure 3 summarizes a first quantitative comparison in terms of impact (with the

control group fixed at 1): each radar chart (Figure 3A–I) shows the multidimensional impact

profile that characterizes research articles belonging to different NETs. We perform the same

empirical exercise using as benchmark the climate control group (see Figure S7). Two main

observations must be made: first, as NETs are intrinsically different, their impact mirrors such

differences both from a qualitative and a quantitative perspective. Some negative emissions

solutions have momentum beyond the academic realm, with some of them, such as BECCS or

Blue Carbon, being relatively popular in policy documents and media outlets. In addition, EW

research has been discussed on social media such as Facebook. Second, very few options are

linked to practical technological developments (i.e., mentions in patents), the only exception

being DAC. Given the crucial role of the nexus between science, technology, and policy for

developing specialized climate solutions, we investigate these three dimensions in greater detail

in the next section.
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Figure 3: Multidimensional coverage of NETs research. (A–I) Radar charts for each
NET, showing multidimensional spillovers (control group fixed at 1). (A) General. (B) Afforestation
and reforestation – AR. (C) Bio-energy with Carbon Capture and Storage – BECCS. (D) Biochar.
(E) Blue Carbon – BC. (F) Direct Air Capture – DAC. (G) Enhanced weathering – EW. (H) Ocean
fertilization – OF. (I) Ocean fertilization – OF.
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2.3 Quantifying knowledge flows to science, technology and policy

It has widely been argued that tackling climate change will require novel scientific research,

practical technological innovations as well as policy support.1 This section quantifies the impact

that knowledge accumulation in NETs produces on technology, policy, and science itself.

We rely on econometric methods based on generalized linear models to estimate the size

of knowledge spillovers. Our preferred specifications employ negative binomial regressions for

citations counts and logistic regressions for citation likelihoods. We run a set of regressions on

one-to-one matched samples to check the stability of our results and to quantify the uncertainty

around our estimates (see section 4.2 and S2 for econometric and matching details). Results are

summarized in Figure 4. In particular, Figure 4A highlights that several negative emissions op-

tions generate relative more spillovers than control groups. For instance, Biochar, BECCS and

DAC articles collect, on average, 2.59, 1.84 and 1.83 times more citations than the non-NET

control group, respectively. However, it is just for few NETs that scientific advances signifi-

cantly impact on technological development (Figure 4B). Namely, DAC and Biochar research is

somehow related to patenting activities, with a significant gap in favor of DAC. Indeed, DAC

scientific advances are 7.89 times more likely to be cited by a patent. Contrarily, when looking

at the probability of being cited by a policy document, BECCS and BC stand out among all

the options (see Figure 4C).

To better quantify the variability of our point estimates as possible control groups vary, we

compute the confidence interval around our mean effects size (i.e., β∗
k). Table 1 summarizes the

mean effects for each coefficient across different runs of our statistical model (i.e., point estimates

for all our NETs) and its variability. Our estimates prove relatively stable to possible differences

in the matched control groups. Nevertheless, as far as scientific spillovers are concerned, we

notice some differences between the baseline and climate control. As expected, climate change

is a very active area of research, leading to smaller coefficients in our setting. In addition,

we re-estimate our model including controls related to fields (or combination of fields) and

whether articles are open access (see Figure S14 and S15). To further check the robustness of

our results, we run our analysis using alternative control groups, different data sources, and

alternative models (see section S6 for all the details). The insights of our empirical investigation

are confirmed irrespective of specifications, data sources, and alternative measures. While there

is plenty of evidence that citations, at least partially, capture positive knowledge spillovers

for science and technology advances [44, 45], little is known about the references in policy

documents. Hence, to better understand the role of citations coming from policy documents,

1See, for example, calls for attention by the EU Commission and the UK government.
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we select a subset of policy reports to measure their overall sentiment. Our analysis shows that

the overall sentiment of the documents citing NETs articles is positive (see section S3).

Our results already bring important implications for climate and innovation policy: NETs

constitute an active research area with great potential and attract substantial attention within

the scientific community. Nevertheless, our multidimensional spillovers estimates signal that

most NETs hardly move beyond the scientific realm: only DAC research turns into marketplace

innovations. In addition, the policy dimension seems to be relatively disconnected from the

general scientific and technological trends. Finally, to better understand the trends that char-

acterize NETs research efforts, we focus on the geography of NETs research and collaborations

in the next section.

Table 1: Point estimates variability for baseline and climate control. IRRs and ORs
(i.e. average exponentiated coefficients β∗

k) estimated through regression models – Eq. (1) – and
relative variability of point estimates βk [C.I. 95%].

Baseline control Climate control

NET Science Technology Policy Science Technology Policy

General 1.71 0.75 2.88 1.40 0.99 1.93
[1.55,1.88] [0.720,0.77] [2.81,2.94] [1.39,1.42] 0.961,1.03] [1.90,1.96]

AR 1.23 0.042 2.66 0.96 0.06 1.75
[1.10,1.39] [0.0412,0.04] [2.61,2.72] [0.95,0.97] [0.0629,0.07] [1.73,1.78]

BECCS 1.84 1.32 5.58 1.55 1.43 3.74
[1.54,2.21] [1.27,1.37] [5.45,5.71] [1.53,1.56] [1.38,1.49] [3.68,3.80]

Biochar 2.59 2.34 1.28 2.18 3.26 0.88
[2.29,2.95] [2.26,2.43] [1.25,1.31] [2.16,2.20] [3.14,3.38] [0.864,0.89]

BC 2.19 7 4.67 1.78 7 3.19
[1.75,2.78] [4.57,4.78] [1.76,1.80] [3.13,3.25]

DAC 1.83 7.89 2.08 1.82 12.3 1.47
[1.54,2.19] [7.59,8.19] [2.04,2.13] [1.17,1.20] [11.9,12.8] [1.44,1.49]

EW 1.46 2.50 4.27 1.19 4.02 2.50
[1.11,1.97] [2.41,2.59] [4.13,4.40] [1.17,1.20] [3.85,4.18] [2.46,2.53]

OF 0.896 0.401 2.27 0.70 1.03 1.34
[0.702,1.16] [0.39,0.42] [2.21,2.33] [0.69,0.71] [1.00,1.06] [1.31,1.37]

SCS 1.68 0.138 3.81 1.37 0.20 2.49
[1.47,1.92] [0.133,0.14] [3.72,3.89] [1.36,1.39] [0.198,0.210] [2.45,2.53]

Note: No valid estimates for BC in Technology due to absence of citations from patent documents.
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A B C

Figure 4: NETs spillovers to science, technology and policy. Coefficients (exponentiated)
of the regression models of Eq. (1). Results are obtained by fitting 30 negative binomial regressions (A)
and 30 logistic regressions (B–C) on one-to-one matched samples with year dummies. (A) Incident Rate
Ratio (IRR) for each NET on the number of scientific citations. (B) Odds Ratio (OR) for each NET on
the probability of being cited by a patent (BC estimates set to zero since there is no patent documents
citing BC papers). (C) Odds Ratio (OR) for each NET on the probability of being cited by a policy
document.
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2.4 The geography of NETs research collaborations

So far, we have provided empirical evidence on the heterogeneity of NETs research in terms of

knowledge base, scientific impact, and spillovers to practical applications.

Empirical evidence shows that proximity matters for complex activities and, more precisely,

that innovation is disproportionately concentrated in cities [46, 47, 48]. So, in this section, we

turn our attention to the geography of negative emissions research. First, we geo-localize NETs

scientific articles using author affiliation data from WoS. Then, we derive countries’ relative

specializations by looking at the geographical distribution of research activities. Finally, we map

scientific collaborations (at both the country and city level) to shed light on the identification of

potential research hubs (see section 4.1 for more details on the geo-localization of NETs articles).

Figure 5A depicts the aggregate geographical distribution of research activities. The map

shows the total number of articles related to NETs, the centrality (i.e., nodes’ strengths) both

at the city and country level and the overall collaboration network. For the sake of clarity,

we filter out cities that appear less the ten times in our sample (see section 4.3 for network

construction details). Beijing stands out as the city associated with the most significant number

of articles and appears to be the most central city in the collaboration network. At the country

level, though, the USA maintain their role as the primary research hub worldwide. However, the

aggregate collaboration network can hardly allow us to dig deeper into a single technology, as

it might be influenced by the distribution of articles across specific NETs. Therefore, we focus

on different NETs separately. First, to better capture the relative specialization of countries in

different NETs, we compute the Relative Scientific Advantage (RSA, see 4.3 for more details).

Figure 5B summarizes the values of the RSA for a subset of countries, signaling, for instance,

the greater specialization of European countries and the USA concerning engineering-based

options such as BECCS and DAC. Intuitively, relative specializations still underline the links

between research potentials and local opportunities. According to the RSA, Switzerland appears

primarily specialized in DAC research, while Indonesia – one of the largest reserves of coastal

forests – is almost fully specialized in BC. Next, we construct collaboration networks for all the

NETs in our sample. Formally, we identify the largest connected component (i.e., the largest

subset of nodes that can be reached from one another) and pin down the most central cities

for each specific negative emissions option. As in Figure 2, we focus on AR, BECCS, DAC,

and SCS (see section 4.3 for all NETs). Figure 5C points out that basic network measures

can already allow us to spot different geographical specializations: Beijing and Canberra result

as the most central locations as far as AR is concerned. Postdam and College Park are the

most important hubs for BECCS research, while Fort Collins stands above in the SCS research.
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Figure 5: NETs geography and collaborations. (A) Geographical distribution of NETs re-
search activities across cities (i.e., total number of NETs publications). Cities and countries centrality (i.e.,
node strength) scores are computed by analyzing the aggregate collaboration networks. (B) Revealed
Scientific Advantage of selected countries (white spaces indicate values lower than 1). (C) Centrality
ranking in the research collaboration networks related to AR, BECCS, DAC, and SCS.

Finally, Zurich appears as the most central city for DAC research. Interestingly, the company

that first made it to the market with a commercial DAC solution was founded as spin-off of the

ETH in Zurich (as of today, several companies are active in the DAC sector). The Zurich example

highlights the importance of basic scientific research in developing technologically viable climate
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solutions and the role of geographical proximity between science and technology hubs. Innovative

activities benefit from co-location, allowing scientists and inventors to form collaborations and

share valuable knowledge. The potential research hubs identified above might well pave the way

to accelerate advances in NETs.

3 Discussion

The urgent need for a rapid scale-up of NETs development and deployment should go hand

in hand with extensive R&D efforts worldwide. Indeed, keeping track of the knowledge flows

generated by negative emissions research would be crucial to inform scientists, market players,

and policymakers on the potential opportunities for such technologies in the next few years.

Our analysis provides a first quantitative comparison among different negative emissions solu-

tions from the science-innovation nexus standpoint. Looking at knowledge spillovers within and

outside the academic world, we find that negative emissions research is highly heterogeneous

and spread across different hubs. Only a few options will eventually turn into marketplace in-

ventions. As of today, DAC appears to be the most promising as far as practical technological

innovations are concerned.

A quantitative benchmark of multidimensional spillovers for NETs can be considered as a

starting point to evaluate the potential impact of NETs technological trajectories (or different

climate-related technologies) from science to practical applications. In other words, it is an

instrument that can be used by climate scientists and policymakers to keep track of scientific

and technological trends from a systematic quantitative perspective.

Our empirical analysis is not without limitations, and some of these limitations point towards

future research directions. First, the scientific literature on negative emissions is growing fast

and in an interdisciplinary way. We follow a well-defined query strategy for the retrieval of

data, relying on specific patterns and keywords. However, identifying the relevant articles and

their disciplinary span might need more advanced criteria in the future. Machine learning/NLP

models might prove helpful in finding better clusters of articles and consequently the direction of

their spillovers. Second, we employ a matching procedure and propose an intrinsically stable re-

sampling strategy to compare similar articles robustly. Nevertheless, we do not identify causal

mechanisms or the impact of funding on the trajectories of such negative emission options.

Relatively small advances might lead to sudden and sizeable changes for early-stage technologies.

We can not rule out the possibility that some universally superior NET will appear in the

following years or that some technological breakthroughs would make some existing ideas more

likely to be patented. Finally, citations are only an imperfect measure of knowledge spillovers.
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Although our methodology relies on different data sources, our quantification might still be

subject to possible measurement errors.

From a policy perspective, our findings provide at least two clear insights. First, when

considering the applicability of a diversified portfolio of NETs, their knowledge base, spillovers

and trajectory of development should be considered carefully. Indeed, our analysis support

evidence of little synergies between various NETs. Second, given the current distance of negative

emissions research from the technological frontier, the prospective diffusion of NETs at scale

would benefit from both conventional and unconventional innovation policies [49, 50, 51, 52]. In

practice, R&D subsidies, public procurement, grants as well as the reinforcement of university-

industry linkages could be coupled with the proposal of innovation prizes (e.g., XPRIZE) and

Advance Market Commitments (AMC, e.g., Frontier), previously used to serve different scientific

and policy purposes [53]. In addition, the evidence of strong positive knowledge spillovers could

support a mission-oriented approach towards NETs [54]. Innovation can play an essential role

in dealing with the climate change crisis [55]; however, science, technology, and policy need to

be better coordinated to boost the efficacy of research endeavors.

4 Materials and methods

4.1 Data & matching

To track down the evolution of NETs research, we use three main sources of data: Web of Sci-

ence (WoS), Reliance on Science (RoS), and Altmetric. WoS is a large global citations database

collecting millions of research articles information and maintained by the private company Clar-

ivate. RoS is a publicly available database that includes citations from patents to scientific

articles [56]. Altmetric is a curated database that collects metrics complementary to standard

citation-based data, such as mentions on a diverse set of outlets. Altmetric data can be freely

available upon request for scientific purposes.

To identify the first sample of NETs relevant articles, we look at keywords, titles, and

abstracts in WoS, as previously done in the literature [22, 23]. We retrieve a total of 3301

scientific articles from 1998 to 2017 for 8 different NETs. Note that the queries we used to

filter DAC articles do not explicitly include storage (see S1), contrary to BECCS and in line

with previous studies [22, 23]. All the articles that match the keywords search with no explicit

reference in their titles or abstracts are included in the NET category General (see section S1

to find further descriptions of the sample and the full queries). Most of the articles retrieved

from WoS are also covered in Altmetric (∼ 62%). From WoS and Altmetric we can collect all
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cited and citing articles of our focal NETs sample. We use both RoS and Altmetric to recover

patents-articles citation links, and Altmetric to keep track of all mentions from policy documents,

mainstream media outlets as well as blogs and social media platforms such as Facebook or

Twitter.

As far as the geo-localization of NETs scientific output is concerned, starting from authors’

affiliation data, we use OpenStreetMap and the R package tmap to identify the coordinates of

the cities linked to the publications in our sample. After a manual inspection, we can geo-localize

a total of 3255 articles (∼ 98% of the initial set of articles).

To quantify multidimensional spillovers of NETs research, taking care of possible sources of

bias, we employ an exact matching procedure and construct two controls groups: a “baseline”

and a “climate” specific sample. First, for each focal negative emissions paper, we select up to

10 articles published in the same year and the same journal (the final pool of articles includes

about 23k articles). Then, for our regression analysis, we further refine our procedure to match

articles one-to-one. In detail, to check the stability of our results we create 30 sub-samples

with replacement. We repeat the aforementioned procedure to construct a second set of control

groups, specifically designed to match climate-change related articles. We retrieve climate-

specific papers by querying WoS as in [57] (the final pool of climate-specific articles includes

about 20k articles). Sections S2 and S1 describe in greater detail the matching scheme, the

queries to collect the climate-specific control, and the overall compatibility among our different

sources of data.

4.2 GLM regressions

To quantify knowledge spillovers in sections 2.3, we employ generalized linear regression models.

After the construction of our one-to-one matched sub-samples, we estimate a negative binomial

regression to model citation counts coming from scientific papers. Next, we use logistic regres-

sions to model the probability of being cited by a patent or a policy document. The baseline

specification can be written as follows:

g(E(Sikt|NETik, Tit,Xi)) = α+
∑
k

βkNETik +
∑
t

γtTit + δXi (1)

where Sikt is the number of forward citations (alternatively, the occurrence of a citation from a

patent or a policy document), NETik refers to the corresponding technology and Tit represents

a year dummy, and Xi a vector of control variables such as free accessibility of the articles or

sub-fields categories (see section S6 for more details). Within this setting, the link function
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allows us to derive the relationship between the linear predictions and the expected value of the

response variable (in our case a measure of knowledge spillovers). The link functions used for

the binomial and negative binomial case are the following:

if g(·) = log µ
1−µ with µ = E(Sikt|NETik, Tit) −→ Logistic regression

if g(·) = logµ with µ = E(Sikt|NETik, Tit) −→ Poisson/Negative Binomial regression

In practice, we estimate the models 30 times, to check the stability our results as the matched

control groups vary. The boxes in figure 4 highlight the average effect: β∗
k = 1

30

∑30
c=1 βkc, where

c = {1, . . . , 30} represent different matched control groups. The lower and upper bound of the

boxes are instead the average confidence interval ⟨C.I.⟩, corresponding to the average value of

the 95% confidence intervals across our estimates. In Table 1 we collect βk and quantify the

range of variation of these coefficients around their mean β∗
k (C.I. 95%).

4.3 Geographical specialization and collaboration networks

We employ the Revealed Scientific Advantage (RSA) to gauge countries’ relative specialization.

Such a metric was initially developed in [58] to analyze comparative international trade ad-

vantages among countries (i.e., Revealed Comparative Advantage – RCA). Later it has been

extensively used in several applications beyond trade [59, 60]. Within our setting, for each

country or location l and NET k, this is defined as

RSAlk =

wl,k∑
k wl,k∑
l wl,k∑

l,k wl,k

, (2)

where wl,k is the number of articles published in country l covering NET k. RSA values greater

the 1 signal relative specialization.

By exploiting the geo-localization of NETs articles, we construct collaboration networks

among cities to better understand where and how novel developments in negative emissions take

place. The most straightforward way to analyze collaborations at different geographical levels

is by using bipartite networks. A bipartite network is defined as a graph in which nodes are

split into two separate sets (or layers). No link connects pairs of nodes that belong to the same

layer. In our case, the two layers represent articles and cities, respectively. The binary case is

simply described by a bi-adjacency matrix of dimensions NA ×NC . The number of rows NA is

the number of nodes in layer A (i.e., articles), and the number of columns NC is the number of

nodes in layer C (i.e., cities), as follows:

17



bac =


1 if node a ∈ A and c ∈ C are linked

0 otherwise
(3)

In this setting, we draw a link in the bipartite network if any of the authors of a NET research

article a is affiliated with an institution of a given city c. A weighted monopartite projection

on the article layer is constructed by counting the co-occurrences in the bipartite network and

takes the form of a square NC ×NC matrix M with elements:

mcc′ =

NA∑
a=1

bacba′c (4)

Before computing our centrality measures (i.e., nodes’ strength), we first derive the largest

connected component to filter out unconnected nodes (or groups of irrelevant nodes). Having

information about cities, we can also derive the aggregate network at the country level. See

section S7 for an additional description of our network analysis results.

Acknowledgements

We thank Luca Insolia, Matteo Coronese, Gianluca Pallante, the participants of the CCS-2021

conference in Lyon, the participants of the IEARE-2022 conference in Cagliari, and the mem-

bers of the CSSI at Kellogg School of Management for useful discussions and feedback, and the

EMbeDS Department of Excellence of the Sant’Anna School of Advanced Studies. FC acknowl-

edges support from the Huck Institute of the Life Sciences of the Pennsylvania State University.

FL acknowledges support by the European Union – Horizon 2020 Program under the scheme

“INFRAIA-01-2018-2019 – Integrating Activities for Advanced Communities”, Grant Agreement

n.871042, “SoBigData++: European Integrated Infrastructure for Social Mining and Big Data

Analytics”.

References

[1] Keywan Riahi, Christoph Bertram, Daniel Huppmann, Joeri Rogelj, Valentina Bosetti,

Anique-Marie Cabardos, Andre Deppermann, Laurent Drouet, Stefan Frank, Oliver Fricko,

Shinichiro Fujimori, Mathijs Harmsen, Tomoko Hasegawa, Volker Krey, Gunnar Luderer,

Leonidas Paroussos, Roberto Schaeffer, Matthias Weitzel, Bob van der Zwaan, Zoi Vron-

tisi, Francesco Dalla Longa, Jacques Després, Florian Fosse, Kostas Fragkiadakis, Mykola

Gusti, Florian Humpenöder, Kimon Keramidas, Paul Kishimoto, Elmar Kriegler, Malte

18

http://www.sobigdata.eu
http://www.sobigdata.eu


Meinshausen, Larissa P. Nogueira, Ken Oshiro, Alexander Popp, Pedro R. R. Rochedo,

Gamze Ünlü, Bas van Ruijven, Junya Takakura, Massimo Tavoni, Detlef van Vuuren, and

Behnam Zakeri. Cost and attainability of meeting stringent climate targets without over-

shoot. Nature Climate Change, 11(12), 2021.

[2] M. Allen, P. Antwi-Agyei, F. Aragon-Durand, M. Babiker, P. Bertoldi, M. Bind, S. Brown,

M. Buckeridge, I. Camilloni, A. Cartwright, W. Cramer, P. Dasgupta, A. Diedhiou,

R. Djalante, W. Dong, K.L. Ebi, F. Engelbrecht, S. Fifita, J. Ford, S. Fuß, B. Hayward,

J.-C. Hourcade, V. Ginzburg, J. Guiot, C. Handa, Y. Hijioka, S. Humphreys, M. Kainuma,

J. Kala, M. Kanninen, H. Kheshgi, S. Kobayashi, E. Kriegler, D. Ley, D. Liverman, N. Ma-

howald, R. Mechler, S. Mehrotra, Y. Mulugetta, L. Mundaca, P. Newman, C. Okereke,

A. Payne, R. Perez, P.F. Pinho, A. Revokatova, K. Riahi, S. Schultz, R. Seferian, S. Senevi-

ratne, L. Steg, A.G. Rogriguez, T. Sugiyama, A. Thonas, M.V. Vilarino, M. Wairiu, R. War-

ren, G. Zhou, and K. Zickfeld. Technical summary: Global warming of 1.5?c. an ipcc

special report on the impacts of global warming of 1.5?c above pre-industrial levels and

related global greenhouse gas emission pathways, in the context of strengthening the global

response to the threat of climate change, sustainable development, and efforts to eradicate

poverty, 2019.

[3] P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak,

S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, et al.

Climate change 2022: Mitigation of climate change. contribution of working group iii to the

sixth assessment report of the intergovernmental panel on climate change, 2022.

[4] C. F. Baes, S. E. Beall, D. W. Lee, and G. Marland. The Collection, Disposal, and Storage

of Carbon Dioxide, pages 495–519. Springer Netherlands, Dordrecht, 1980.

[5] Freeman J Dyson. Can we control the carbon dioxide in the atmosphere? Energy, 2(3):287–

291, 1977.

[6] Joeri Rogelj, Gunnar Luderer, Robert C Pietzcker, Elmar Kriegler, Michiel Schaeffer, Volker

Krey, and Keywan Riahi. Energy system transformations for limiting end-of-century warm-

ing to below 1.5 c. Nature Climate Change, 5(6):519–527, 2015.

[7] Clarke L., K. Jiang, K. Akimoto, M. Babiker, G. Blanford, K. Fisher-Vanden, J.-C. Hour-

cade, V. Krey, E. Kriegler, A. Löschel, D. McCollum, S. Paltsev, S. Rose, P.R. Shukla,

M. Tavoni, B.C.C. van der Zwaan, , and D.P. van Vuuren. Assessing transformation path-

19



ways. in: Climate change 2014: Mitigation of climate change. contribution of working group

iii to the fifth assessment report of the intergovernmental panel on climate change, 2014.

[8] Detlef P Van Vuuren, Andries F Hof, Mariësse AE Van Sluisveld, and Keywan Riahi. Open

discussion of negative emissions is urgently needed. Nature energy, 2(12):902–904, 2017.

[9] H. de Coninck, A. Revi, M. Babiker, P. Bertoldi, M. Buckeridge, A. Cartwright, W. Dong,

J. Ford, S. Fuss, J.-C. Hourcade, D. Ley, R. Mechler, P. Newman, A. Revokatova, S. Schultz,

L. Steg, T. Sugiyama, M. Araos, S. Bakker, A. Bazaz, E. Belfer, T. Benton, I. Camiloni,

S. Connors, D. Dasgupta, K. Ebi, M. den Elzen, P.F. Pinho, P. Forster, J. Fuglestvedt,

F. Ghersi, V. Ginzburg, A. Grandis, B. Hayward, E. Haughey, O. Hoegh Guldberg, K. Jiang,

J. Kala, R. Klein, K. de Kleijne, D. Liverman, M. Dominguez, S. Mehrotra, L. Mundaca,

C. Opio, A. Payne, M. Plazzotta, J. Pereira, A. Reisinger, K. Rhiney, T. Roberts, J. Ro-

gelj, A. van Rooij, R. Seferian, D. Shindell, C. Singh, R. Slade, G. Sparovek, A. Suarez,

S. Seneviratne, J. Sillmann, W. Solecki, A. Suarez, M. Taylor, A. Thomas, E. Trutnevyte,

A. van Valkengoed, and L. Wollenberg. Chapter 4: Strengthening and implementing the

global response. In Global Warming of 1.5 ?C an IPCC special report on the impacts of

global warming of 1.5 ?C above pre-industrial levels and related global greenhouse gas emis-

sion pathways, in the context of strengthening the global response to the threat of climate

change. Intergovernmental Panel on Climate Change, September 2018.

[10] Kevin Anderson and Glen Peters. The trouble with negative emissions. Science,

354(6309):182–183, 2016.

[11] Detlef P Van Vuuren, Elke Stehfest, David EHJ Gernaat, Maarten Van Den Berg, David L

Bijl, Harmen Sytze De Boer, Vassilis Daioglou, Jonathan C Doelman, Oreane Y Edelen-

bosch, Mathijs Harmsen, et al. Alternative pathways to the 1.5 c target reduce the need

for negative emission technologies. Nature climate change, 8(5):391–397, 2018.

[12] Arnulf Grubler, Charlie Wilson, Nuno Bento, Benigna Boza-Kiss, Volker Krey, David L

McCollum, Narasimha D Rao, Keywan Riahi, Joeri Rogelj, Simon De Stercke, et al. A

low energy demand scenario for meeting the 1.5 c target and sustainable development goals

without negative emission technologies. Nature energy, 3(6):515–527, 2018.

[13] Joe Lane, Chris Greig, and Andrew Garnett. Uncertain storage prospects create a conun-

drum for carbon capture and storage ambitions. Nature Climate Change, 11(11):925–936,

2021.

20



[14] Massimo Tavoni and Robert Socolow. Modeling meets science and technology: an intro-

duction to a special issue on negative emissions. Climatic Change, 118(1):1–14, 2013.

[15] Sabine Fuss, Josep G Canadell, Glen P Peters, Massimo Tavoni, Robbie M Andrew, Philippe

Ciais, Robert B Jackson, Chris D Jones, Florian Kraxner, Nebosja Nakicenovic, et al.

Betting on negative emissions. Nature climate change, 4(10):850–853, 2014.

[16] Naomi E Vaughan and Clair Gough. Expert assessment concludes negative emissions sce-

narios may not deliver. Environmental research letters, 11(9):095003, 2016.

[17] Giovanni Dosi. Sources, procedures, and microeconomic effects of innovation. Journal of

economic literature, pages 1120–1171, 1988.

[18] Giovanni Dosi and Richard R Nelson. Technical change and industrial dynamics as evolu-

tionary processes. Handbook of the Economics of Innovation, 1:51–127, 2010.

[19] Benedict Probst, Simon Touboul, Matthieu Glachant, and Antoine Dechezleprêtre. Global

trends in the invention and diffusion of climate change mitigation technologies. Nature

Energy, 6(11), 2021.

[20] Jay Fuhrman, Haewon McJeon, Pralit Patel, Scott C Doney, William M Shobe, and An-

dres F Clarens. Food–energy–water implications of negative emissions technologies in a+

1.5 c future. Nature Climate Change, 10(10):920–927, 2020.

[21] Jonas Meckling and Eric Biber. A policy roadmap for negative emissions using direct air

capture. Nature Communications, 12(1):2051, 2021.

[22] Jan C Minx, William F Lamb, Max W Callaghan, Lutz Bornmann, and Sabine Fuss. Fast

growing research on negative emissions. Environmental Research Letters, 12(3):035007,

2017.

[23] Jan C Minx, William F Lamb, Max W Callaghan, Sabine Fuss, Jérôme Hilaire, Felix

Creutzig, Thorben Amann, Tim Beringer, Wagner de Oliveira Garcia, Jens Hartmann,

et al. Negative emissionspart 1: Research landscape and synthesis. Environmental Research

Letters, 13(6):063001, 2018.

[24] Sabine Fuss, William F Lamb, Max W Callaghan, Jérôme Hilaire, Felix Creutzig, Thor-

ben Amann, Tim Beringer, Wagner de Oliveira Garcia, Jens Hartmann, Tarun Khanna,

et al. Negative emissionspart 2: Costs, potentials and side effects. Environmental Research

Letters, 13(6):063002, 2018.

21



[25] Gregory F Nemet, Max W Callaghan, Felix Creutzig, Sabine Fuss, Jens Hartmann, Jérôme

Hilaire, William F Lamb, Jan C Minx, Sophia Rogers, and Pete Smith. Negative emission-

spart 3: Innovation and upscaling. Environmental Research Letters, 13(6):063003, 2018.

[26] Pete Smith, Steven J Davis, Felix Creutzig, Sabine Fuss, Jan Minx, Benoit Gabrielle,

Etsushi Kato, Robert B Jackson, Annette Cowie, Elmar Kriegler, et al. Biophysical and

economic limits to negative co 2 emissions. Nature climate change, 6(1):42–50, 2016.

[27] Pete Smith. Soil carbon sequestration and biochar as negative emission technologies. Global

change biology, 22(3):1315–1324, 2016.

[28] O Rueda, JM Mogollón, A Tukker, and L Scherer. Negative-emissions technology portfolios

to meet the 1.5ř c target. Global Environmental Change, 67:102238, 2021.

[29] Sabine Fuss, Chris D Jones, Florian Kraxner, Glen Philip Peters, Pete Smith, Massimo

Tavoni, Detlef Peter van Vuuren, Josep G Canadell, Robert B Jackson, J Milne, et al.

Research priorities for negative emissions. Environmental Research Letters, 11(11):115007,

2016.

[30] Adam B Jaffe, Manuel Trajtenberg, and Rebecca Henderson. Geographic localization of

knowledge spillovers as evidenced by patent citations. the Quarterly journal of Economics,

108(3):577–598, 1993.

[31] Antoine Dechezleprêtre, Ralf Martin, and Myra Mohnen. Knowledge spillovers from clean

and dirty technologies: A patent citation analysis. Grantham Research Institute on Climate

Change and the Environment, 2013.

[32] Adam B Jaffe and Gaétan De Rassenfosse. Patent citation data in social science research:

Overview and best practices. Research handbook on the economics of intellectual property

law, 2019.

[33] Mohammad Ahmadpoor and Benjamin F Jones. The dual frontier: Patented inventions

and prior scientific advance. Science, 357(6351):583–587, 2017.

[34] Yian Yin, Yuxiao Dong, Kuansan Wang, Dashun Wang, and Benjamin Jones. Science as

a public good: Public use and funding of science. Technical report, National Bureau of

Economic Research, 2021.

[35] Yian Yin, Jian Gao, Benjamin F Jones, and Dashun Wang. Coevolution of policy and

science during the pandemic. Science, 371(6525):128–130, 2021.

22



[36] Elena Verdolini and Marzio Galeotti. At home and abroad: An empirical analysis of in-

novation and diffusion in energy technologies. Journal of Environmental Economics and

Management, 61(2):119–134, March 2011.

[37] David Popp. Economic analysis of scientific publications and implications for energy re-

search and development. Nature Energy, 1(4):1–8, March 2016. Number: 4 Publisher:

Nature Publishing Group.

[38] Aaron Strong, Sallie Chisholm, Charles Miller, and John Cullen. Ocean fertilization: time

to move on. Nature, 461(7262):347–348, 2009.

[39] Christine Bertram, Martin Quaas, Thorsten BH Reusch, Athanasios T Vafeidis, Claudia

Wolff, and Wilfried Rickels. The blue carbon wealth of nations. Nature Climate Change,

11(8):704–709, 2021.

[40] Giovanni Dosi. Technological paradigms and technological trajectories: a suggested inter-

pretation of the determinants and directions of technical change. Research policy, 11(3):147–

162, 1982.

[41] Lee Fleming. Recombinant uncertainty in technological search. Management science,

47(1):117–132, 2001.

[42] Ting Xiao, Mona Makhija, and Samina Karim. A knowledge recombination perspec-

tive of innovation: Review and new research directions. Journal of Management, page

01492063211055982, 2021.

[43] Lucas Joppa, Amy Luers, Elizabeth Willmott, S. Julio Friedmann, Steven P. Hamburg, and

Rafael Broze. Microsofts million-tonne co2-removal purchase lessons for net zero. Nature,

597(7878):629–632, 2021.

[44] Santo Fortunato, Carl T Bergstrom, Katy Börner, James A Evans, Dirk Helbing, Staša

Milojević, Alexander M Petersen, Filippo Radicchi, Roberta Sinatra, Brian Uzzi, et al.

Science of science. Science, 359(6379):eaao0185, 2018.

[45] Adam B Jaffe, Manuel Trajtenberg, and Michael S Fogarty. Knowledge spillovers and patent

citations: Evidence from a survey of inventors. American Economic Review, 90(2):215–218,

2000.

[46] Gerald A Carlino, Satyajit Chatterjee, and Robert M Hunt. Urban density and the rate of

invention. Journal of Urban Economics, 61(3):389–419, 2007.

23



[47] Christian Catalini. Microgeography and the direction of inventive activity. Management

Science, 64(9):4348–4364, 2018.

[48] Pierre-Alexandre Balland, Cristian Jara-Figueroa, Sergio G Petralia, Mathieu Steijn,

David L Rigby, and César A Hidalgo. Complex economic activities concentrate in large

cities. Nature human behaviour, 4(3):248–254, 2020.

[49] Jonas Meckling and Bentley B Allan. The evolution of ideas in global climate policy. Nature

Climate Change, 10(5):434–438, 2020.

[50] Ryan Hanna, Ahmed Abdulla, Yangyang Xu, and David G Victor. Emergency deployment

of direct air capture as a response to the climate crisis. Nature communications, 12(1):1–13,

2021.

[51] Daniel P Gross and Bhaven N Sampat. The economics of crisis innovation policy: A

historical perspective. In AEA Papers and Proceedings, volume 111, pages 346–50, 2021.

[52] Daniel P Gross and Bhaven N Sampat. Crisis innovation policy from world war ii to covid-

19. Technical report, National Bureau of Economic Research, 2021.

[53] Michael Kremer, Jonathan Levin, and Christopher M Snyder. Advance market commit-

ments: insights from theory and experience. In AEA Papers and Proceedings, volume 110,

pages 269–73, 2020.

[54] Mariana Mazzucato. Entrepreneurial State: Debunking Public Vs. Private Sector Myths.

Anthem Press, 2013.

[55] How researchers can help fight climate change in 2022 and beyond. Nature, 601(7891),

January 2022.

[56] Matt Marx and Aaron Fuegi. Reliance on science: Worldwide front-page patent citations

to scientific articles. Strategic Management Journal, 41(9):1572–1594, 2020.

[57] Michael L Grieneisen and Minghua Zhang. The current status of climate change research.

Nature Climate Change, 1(2):72–73, 2011.

[58] Bela Balassa. Trade liberalisation and "revealed" comparative advantage 1. The manchester

school, 33(2):99–123, 1965.

[59] Giorgio Tripodi, Francesca Chiaromonte, and Fabrizio Lillo. Knowledge and social related-

ness shape research portfolio diversification. Scientific reports, 10(1):1–12, 2020.

24



[60] César A Hidalgo. Economic complexity theory and applications. Nature Reviews Physics,

3(2):92–113, 2021.

[61] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of

the tenth ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 168–177, 2004.

25



Supplementary Information

S1 Data

This work relies on three primary sources of data: Web of Science, Reliance on Science, and

Altmetric. The identification of all NETs research articles follows a standard search strategy

used in the literature [22, 23]. Using WoS, we retrieve 3301 articles for the time window 1998-

2017. We consider eight different NETs, using keywords and patterns in titles and abstracts.

The articles that match NETs keywords but do not include such words or patterns in titles

or abstracts are listed in a residual category (i.e., General). The query NETs WoS in this

section and Table S1 includes all the details and a brief summary description. Some articles

might belong to more than one category. Accordingly, we count such articles in each potential

category. For details, see the matrix of overlap in Figure S1. Working on quantifying knowledge

spillovers, we are interested in keeping track of citation flows (in several dimensions). Therefore,

we only include articles that received at least one academic citation for the analysis and for

which the DOI was retrievable. Around 62% of the original WoS sample is also included in

Altmetric (see Table S2 for a quick comparison, taking into account also the relative share of

articles cited by patents or policy documents).

Query NETs WoS

(TS = (biochar* AND ((carbon OR CO2) NEAR/3 (sequest* OR storage OR stock OR accu-

mulat* OR capture))) OR TS = (ocean NEAR/5 iron NEAR/5 (fertili*ation OR enrichment)

NOT natural NOT ice* NOT glaci*) OR TS = ((soil NEAR/3 (carbon OR CO2) NEAR/3

(sequest* OR storage)) AND ("climate change" OR "global warm*") AND (manag* OR prac-

tice* OR restoration OR land-use)) OR TS = ((afforestation OR reforestation) AND ((carbon

OR CO2) NEAR/3 (sequest* OR storage))) OR (TS = (("ocean liming") AND (removal OR

storage) AND (CO2 OR carbon*)) OR TS = ((geoengineer*) AND (silicate OR olivine OR

albite OR CACO3)) OR TS = ((silicate OR olivine OR albite OR CACO) AND (mitigat*

NEAR/3 ("climate change" OR "global warming"))) OR TS = (("ocean alkalini*") AND (re-

mov* OR storage OR mitigat* OR sequest*) AND (CO2 OR carbon*)) OR TS = (((enhance*

OR artificial*) NEAR/2 weathering ) AND ((carbon OR CO2 OR "climate change" OR "global

warming") NEAR/3 (remov* OR sequest* OR storage OR sink OR mitigat* OR reduc*))))

NOT TS = (glaci* OR ice* OR ordovic* OR Aptian OR Cenozo* OR Paleo* OR Mezoso*) OR

(TS = (((capture OR extraction OR absorbtion) NEAR/3 (air OR atmosph*)) AND (ambient

OR "atmosph* pressure*") AND (CO2 OR carbon)) OR TS = (((captur* OR extract) NEAR/3
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(direct* OR "carbon dioxide") NEAR/3 (air OR atmosph*)) AND (CO2 OR carbon)) OR TS

= ((*sorbent OR amine) AND capture AND (carbon OR CO2) AND ("ambient air")) OR TS =

((captur* NEAR/3 CO2 NEAR/3 (air OR atmosph*)) AND solar)) NOT TS = (phenolic OR

PCB* OR particulate OR NOx OR isotope OR "heat pump" OR polycyclic OR *bacteria* OR

lignin OR sink OR pollution OR photosynth* OR biofuel* OR sugar) OR TS = (BECCS OR

((biomass OR bioenerg*) AND ("CCS" OR "Carbon capture and Storage" OR "Carbon dioxide

capture and Storage" OR "CO2 capture and storage")) NOT "co-fir*" NOT "co-generat*" NOT

cogeneration NOT coal) OR TS = ((seagrass OR mangrove* OR macroalgae OR "blue carbon")

AND ((carbon OR CO2) NEAR/3 (sequest* OR accumulat* OR storage OR capture)) AND (

deforest* OR afforest* OR conserv* OR restor* OR manag* )) OR (TS = ((CDR AND ( CO2

OR carbon* )) OR "negative carbon dioxide emission*" OR "negative CO2 emission*" OR "neg-

ative GHG emission*" OR "negative greenhouse gas emission*" OR "carbon-negative emission*"

OR ("negative emission*" NEAR/10 carbon) OR ("negative emission*" NEAR/10 CO2)) OR

TS = ( geoengineering AND ((carbon OR CO2) NEAR/3 (sequest* OR accumulat* OR stor-

age OR capture))) OR TS = (("geoengineering" OR "climate engineering") AND CDR)) NOT

TS = (N2O OR nitrogen OR NOX)) NOT TS = ("bioactive equivalent combinatorial compo-

nents" OR "bandwidth-efficient-channel-coding-scheme" OR "bronchial epithelial cell cultures"

OR "california current system" OR comet OR mars OR exoplanet* OR "competition cham-

bers" OR gastric OR (mercury NEAR/3 capture) OR (image NEAR/3 capture) OR "canary

current system" OR "heavy metal" OR eicosanoid OR "companion cells" OR "calcium carbonate

sand" OR "copper chaperone" OR "commercial cane sugar" OR "Cindoxin reductase" OR "cou-

pled dissolution reprecipitation" OR "carbon dioxide reforming" OR rats OR "complementarity

determining regions" OR deoxycytidine)
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Table S1: Data description

NET Code Description N %

Afforestation/Reforestantion AR Forest management and restoration programs increase the CO2 captured from the atmosphere and stored in living biomass. 677 (603) 21 (21)
Bio-energy with Cabon Capture and Storage BECCS Biomass is grown and used to power as a source of thermal energy. The CO2 produced is captured and stored in geological reservoirs. 247 (206) 7 (7)
Biochar Biochar The pyrolysis of biomass produce charcoal (i.e., biochar). It can be used as soil additive, with positive effect in terms of carbon capture and stored in soil. 555 (478) 17 (17)
Blue Carbon BC Blue carbon refers to carbon captured by the world’s ocean and coastal ecosystems, such as sea grasses, mangroves, or salt marshes. 121 (96) 4 (3)
Direct Air Capture DAC CO2 is absorbed directly from the atmosphere through chemicals and stored. 245 (214) 7 (8)
Enhanced Weathering EW Minerals that can absorb CO2 are grinded and spread in lands or oceans. 71 (63) 2 (2)
Ocean Fertilization OF Nutrients (such as iron) can stimulate the growth of phytoplankton. Consequently, the absorbed CO2 is naturally sequestered in the ocean. 113 (102) 3 (4)
Soil Carbon Sequestration SCS More efficient agricultural practices enhance soils carbon absorption potential. 410 (354) 12 (12)
General General NETs scientific articles with no specific keywords in titles or abstract. 1059 (906)

Total (with citation info WoS) The total only includes unique articles (they might belong to more than one category). 3301 (2850)
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Figure S1: NETs overlap in articles. Each entry of the matrix shows the number of articles
including more than one NET category. Along the diagonal the total sum for every NET.

.
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Table S2: Share of NETs articles linked to technology and
policy – Altmetric vs. (WoS–RoS)

NET N % with policy citation % with patent citation

General 556 (906) 39 3 (3)
AR 354 (603) 43 0.2 (1)
BECCS 135 (206) 49 5 (3)
Biochar 293 (478) 20 8 (9)
BC 78 (96) 44 0 (0)
DAC 143 (214) 32 27 (23)
EW 54 (63) 44 11 (9)
OF 78 (102) 42 3 (8)
SCS 247 (354) 47 0.8 (2)

The total number of articles retrieved via Altmetric is 2040. The number
of articles for which we have both WoS and Altmentic data, coupled with
citations data and DOI information in both dataset is 1800. Articles might
belong to more than one NET category as shown in S1. The information
collected through Reliance in Science (RoS) allow us to compare the cover-
age in terms of patent citations for a larger sub-sample.

S2 Matching

Our empirical analysis relies on quantitative comparisons. Therefore, we rely on a matching

strategy to avoid reaching misleading interpretations based on potentially biased estimates.

The first step of our matching scheme is to construct a control group by collecting – through

WoS – up to 10 articles (with replacement) published in the same year and the same journal.

Consequently, we obtain up to 10 twin articles for each NETs paper of interest. As far as the

regression analyses are concerned, we further enhance our matching strategy. In practice, we

generate 30 one-to-one matched sub-samples (without replacement) to control our estimates’

stability. Figure S2 depicts the steps of our matching scheme. Furthermore, we use the same

strategy to construct a second set of control groups specifically linked to the climate-related

literature. We retrieve climate-specific articles following the Query climate control WoS

(listed below and already validated in the literature [57]). Finally, Figure S3 shows a treemap

of the most popular venues that publish NETs articles. We list venues that appear at least 10

times in our sample.
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Query climate control WoS

SO=(Climate Alert OR Climate Dynamics OR Climate Policy OR Climatic Change OR Global

and Planetary Change OR Global Change Biology OR International Journal of Greenhouse Gas

Control OR Mitigation and Adaptation Strategies for Global Change) OR TS=(((CO2 OR "car-

bon dioxide" OR methane OR CH4 OR "carbon cycle" OR "carbon cycles" OR "carbon cycling"

OR "carbon budget*" OR "carbon flux*" OR "carbon mitigation") AND (climat*)) OR (("car-

bon cycle" OR "carbon cycles" OR "carbon cycling" OR "carbon budget*" OR "carbon flux*"

OR "carbon mitigation") AND (atmospher*))) OR TS=("carbon emission*" OR "sequestration

of carbon" OR "sequester* carbon" OR "sequestration of CO2" OR "sequester* CO2" OR "car-

bon tax*" OR "CO2 abatement" OR "CO2 capture" OR "CO2 storage" OR "CO2 sequester*"

OR "CO2 sequestration" OR "CO2 sink*" OR "anthropogenic carbon" OR "captur* of carbon

dioxide" OR "captur* of CO2" OR "climat* variability" OR "climat* dynamic*" OR "chang*

in climat*" OR "climat* proxies" OR "climat* proxy" OR "climat* sensitivity" OR "climat*

shift*" OR "coupled ocean-climat*" OR "early climat*" OR "future climat*" OR "past climat*"

OR "shift* climat*" OR "shift in climat*") OR TS=("atmospheric carbon dioxide" OR "atmo-

spheric CH4" OR "atmospheric CO2" OR "atmospheric methane" OR "atmospheric N2O" OR

"atmospheric nitrous oxide" OR "carbon dioxide emission*" OR "carbon sink*" OR "CH4 emis-

sion*" OR "climat* policies" OR "climat* policy" OR "CO2 emission*" OR dendroclimatolog*

OR ("emission* of carbon dioxide" NOT nanotube*) OR "emission* of CH4" OR "emission*

of CO2" OR "emission* of methane" OR "emission* of N2O" OR "emission* of nitrous oxide"

OR "historical climat*" OR IPCC OR "methane emission*" OR "N2O emission*" OR "nitrous

oxide emission*") OR TS=("climat* change*" OR "global warming" OR "greenhouse effect" OR

"greenhouse gas*" OR "Kyoto Protocol" OR "warming climat*" OR "cap and trade" OR "carbon

capture" OR "carbon footprint*" OR "carbon neutral" OR "carbon offset" OR "carbon seques-

tration" OR "carbon storage" OR "carbon trad*" OR "changing climat*" OR "climat* warming")

30



Figure S2: Matching scheme. A schematic representation of the matching procedure used
in the empirical analysis. The right end side refer to the construction of the baseline control
group; while the left end side refers to the climate control.
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Figure S3: Top NETs Venues. Treemap listing the most representative venues for NETs
articles. The map include academic journals that published at least 10 paper related to NETs.
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S3 Policy sentiment analysis

Citations coming from policy documents are collected through Altmetric (see section 4.1. While

academic and patent citations have historically been used to keep track of knowledge flows

[44, 32], there is little evidence that policy citations capture positive mentions for scientific

results.

To partly tackle this issue, we explore the sentiment of a subset of policy documents that cite

our focal articles. First, we select 208 (English) documents and then analyze their entire text

using NLP methods. Although working on the entire text is subject to potential measurement

errors, the overall sentiment ratio of each document gives us a first indication of the orientation.

We define the sentiment ratio by simply counting the number of positive words over the total

number of words (see Figure S4).

To derive our measure, we use a dictionary-based approach, that is, a list of general-purpose

lexicons collected for text analysis studies and freely available through the R package tidytext

[61].
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Figure S4: Sentiment of policy documents. Violin plots showing the sentiment ratio of
policy documents citing scientific articles related to NETs.
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S4 Knowledge flows

As mentioned in section 3, we collect all backward and forward citations (through WoS) for

all the NETs articles in our sample. The purpose is to identify the knowledge base and the

potential direction of scientific spillovers. The flow diagrams depicted in Figure S5 highlight the

differences between nature-based and technology-based negative emissions options. We consider

the 10 largest sub-fields to clarify the scientific linkages concerning different NETs better. The

10 most important fields account for more than 75% of the total citations. Figure S6 shows the

exact distribution for all our NETs options. To summarize the main trends: forestry, ecology,

and soil science dominate in the nature-based NETs, while advances in chemistry and chemical

engineering shape DAC and BECCS developments. EW and Biochar can be placed between

these two groups, sharing some nature-based knowledge components and technical features.

Not surprisingly, OF and BC disproportionally link to oceanography and marine biology.

Figure S5: Knowledge flows. Top 10 WoS subjects that affect (backward citations) and are
affected (forward citations) by NETs research. (AR) Afforestation and Reforestation. (BECCS)
Bio-energy with Carbon Capture ans Storage. (Biochar) Biochar. (BC) Blue Carbon. (DAC) Direct
Air Capture. (EW) Enhanced Weathering. (OF) Ocean Fertilization. (SCS) Soil Carbon Sequestration.
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Figure S6: Pareto plot. Cumulative percentage of the total number of forward and backward
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vertical reference line indicates the 10 largest scientific sub-fields.
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S5 Radar - climate control

A B C

D E F

G H I

Figure S7: NETs multidimensional impact – Climate control (A–I) Radar charts for
each NET, showing multidimensional spillovers (climate control group fixed at 1). (A) General. (B)
Afforestation and reforestation – AR. (C) Bio–energy with Carbon Capture and Storage – BECCS. (D)
Biochar. (E) Blue Carbon – BC. (F) Direct Air Capture – DAC. (G) Enhanced weathering – EW. (H)
Ocean fertilization – OF. (I) Ocean fertilization – OF.
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S6 Regressions - Robustness

We perform a long series of robustness checks to validate our results. First, as mentioned in

section 4.2, we estimate our baseline models 30 times, with varying control groups. The boxes

depicted in Figure 4 show the average point estimate β∗
k and the average confidence intervals

⟨C.I.⟩ across the 30 runs of our statistical model (see Table S3 for more details). Second, we

run the analysis using different control groups, focusing, for instance, on the climate change

literature (Section S2 covers details on the construction of the climate control). Figure S4 and

Table S4 summarize the result of our analysis with the climate control groups as reference.

In addition, we repeat our analysis using a linear model instead of GLMs. Formally, we used

the following specification:

log(Sikt) = α+
∑
k

βkNETik +
∑
t

γtTit + ϵ (5)

where Sikt is the number of forward citations in the science, technology, or policy dimension,

NETik refers to the corresponding NET and Tit represent a year dummy, as in Section 2.3.

Results are summarized in Figure S9 and Table S5 with the baseline control, and in Figure S15

and Table S6 with the climate control.

To further evaluate the consistency of our results and control for potential differences in

coverage between WoS and Altmetric, we repeat the analysis, comparing the quantitative trends

highlighted so far in terms of scientific and technological spillovers. Following the empirical

strategy of Section 2.3, we first use WoS – instead of Altmetric – to quantify scientific spillovers,

namely: citations and scope (i.e., # of different fields that cite a given article). Figure S11,S12

and Table S7, S12 summarize the results concerning both the baseline and the climate control

groups. Then, we also use RoS to keep track of the science-technology links. We repeat the

analysis using logistic regressions as in Section 2.3. Figure S13 and Table S9 confirm the overall

distance of NETs from the technological frontier, and the relative advantage of DAC. We also

perform an additional robustness check by estimating the models of Section 2.3 including two

potentially relevant control variables: a field (or combinations of fields) indicator extracted via

Altmetric and whether the article is open access. A categorical field variable (Fif ) allows us to

control for disciplinary differences in citation patterns within and beyond science. A dummy

that captures whether articles are open access (OAi) controls for the possibility of broader/more

accessible diffusion of knowledge.

More formally, we employ the following specification:
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Table S3: Coefficients and C.I. Figure 4

Science Technology Policy

NET expβ ⟨C.I.⟩ expβ ⟨C.I.⟩ expβ ⟨C.I.⟩

General 1.68 [1.53,1.86] 0.70 [0.45,1.1] 2.85 [2.26,3.58]
AR 1.25 [1.11,1.41] 0.04 [0.01,0.18] 2.66 [2.03,3.47]
BECCS 1.88 [1.58,2.27] 1.29 [0.6,2.66] 5.65 [3.8,8.41]
Biochar 2.61 [2.3,2.97] 2.29 [1.48,3.53] 1.31 [0.93,1.82]
BC 1.88 [1.5,2.39] 7 4.36 [2.62,7.18]
DAC 1.86 [1.57,2.23] 7.48 [5,11.34] 2.06 [1.36,3.09]
EW 1.39 [1.05,1.88] 2.47 [1.03,5.63] 4.70 [2.49,8.87]
OF 0.92 [0.72,1.21] 0.39 [0.09,1.32] 2.31 [1.32,4.01]
SCS 1.63 [1.43,1.88] 0.14 [0.03,0.44] 3.75 [2.76,5.1]
Year dummies 3 3 3

Matched samples 30 30 30
# of obs. 3392 3392 3392

g(E(Sikt| . . . )) = α+
∑
k

βkNETik +
∑
t

γtTit +
∑
f

δfFif + µOAi (6)

Figure S14,S15 and Table S10,S11 include all details. Some coefficients shirk vis-a-vis our

baseline model of section 2.3, as the field control is sufficiently strong to clean out the disciplinary

heterogeneity that distinguishes, for instance, engineering-based articles from marine biology or

generally less cited sub-fields.

Lastly, we finally check the robustness of our results by running individual regressions for

some NETs with NET-specific control groups. In detail, Figure S16 show the estimates for AR,

BECCS, DAC, and SCS. The outcomes confirm that only DAC has a significant association with

technological developments. Overall, the many specifications we have explored corroborate our

main results, with coefficients’ values ranging across specific specifications and control groups.

37



A B C

Figure S8: NETs spillovers to science, technology and policy (climate). Coefficients of
the regression models of Eq. (3). Results are obtained by fitting 30 negative binomial regressions (A)
and 30 logistic regressions (B–C) on one-to-one matched samples with year dummies. (A) Estimated
coefficients (exponentiated) for each NET on the number of scientific citations. (B) Estimated coefficients
(exponentiated) for each NET on the probability of being cited by a patent (BC estimates set to zero
since there is no patent documents citing BC papers). (C) Estimated coefficients (exponentiated) for
each NET on the probability of being cited by a policy document.
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Table S4: Coefficients and C.I. Figure S8

Science Technology Policy

NET expβ ⟨C.I.⟩ expβ ⟨C.I.⟩ expβ ⟨C.I.⟩

General 1.40 [1.28,1.55] 0.99 [0.57,1.64] 1.93 [1.56,2.38]
AR 0.96 [0.85,1.08] 0.06 [0,0.3] 1.75 [1.36,2.25]
BECCS 1.55 [1.3,1.86] 1.43 [0.52,3.34] 3.74 [2.58,5.42]
Biochar 2.18 [1.93,2.47] 3.26 [1.97,5.23] 0.88 [0.64,1.19]
BC 1.78 [1.42,2.26] 7 3.19 [1.98,5.13]
DAC 1.82 [1.53,2.18] 12.34 [7.61,19.68] 1.47 [0.98,2.16]
EW 1.19 [0.92,1.57] 4.02 [1.5,9.3] 2.50 [1.41,4.39]
OF 0.70 [0.55,0.9] 1.03 [0.26,2.92] 1.34 [0.79,2.25]
SCS 1.37 [1.2,1.58] 0.20 [0.04,0.66] 2.49 [1.87,3.31]
Year dummies 3 3 3

Matched samples 30 30 30
# of obs. 3716 3716 3716
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Figure S9: NETs spillovers to science, technology and policy - OLS
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Table S5: Coefficients and C.I. Figure S9

Science Technology Policy

NET β ⟨C.I.⟩ β ⟨C.I.⟩ β ⟨C.I.⟩

General 0.39 [0.29,0.49] -0.02 [-0.05,0.01] 0.28 [0.22,0.33]
AR 0.12 [0,0.24] -0.08 [-0.12,-0.05] 0.24 [0.18,0.31]
BECCS 0.54 [0.35,0.72] 0.01 [-0.05,0.06] 0.42 [0.32,0.52]
Biochar 0.92 [0.79,1.05] 0.06 [0.02,0.1] 0.05 [-0.02,0.12]
BC 0.62 [0.39,0.86] -0.04 [-0.11,0.03] 0.34 [0.21,0.47]
DAC 0.63 [0.46,0.81] 0.29 [0.24,0.35] 0.21 [0.11,0.3]
EW 0.42 [0.13,0.72] 0.07 [-0.02,0.16] 0.33 [0.17,0.49]
OF -0.07 [-0.33,0.19] -0.07 [-0.15,0.01] 0.17 [0.03,0.31]
SCS 0.37 [0.24,0.51] -0.06 [-0.1,-0.02] 0.34 [0.26,0.42]
Year dummies 3 3 3

Matched samples 30 30 30
# of obs. 3392 3392 3392
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Figure S10: NETs spillovers to science, technology and policy - OLS (climate)
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Table S6: Coefficients and C.I. Figure S10

Science Technology Policy

NET β ⟨C.I.⟩ β ⟨C.I.⟩ β ⟨C.I.⟩

General 0.21 [0.12,0.31] 0.00 [-0.02,0.03] 0.21 [0.15,0.26]
AR -0.06 [-0.18,0.06] -0.05 [-0.08,-0.02] 0.15 [0.08,0.22]
BECCS 0.38 [0.2,0.56] 0.02 [-0.03,0.06] 0.34 [0.23,0.44]
Biochar 0.79 [0.67,0.92] 0.08 [0.05,0.12] -0.04 [-0.11,0.04]
BC 0.58 [0.35,0.81] -0.02 [-0.08,0.04] 0.33 [0.2,0.47]
DAC 0.53 [0.35,0.7] 0.34 [0.29,0.38] 0.15 [0.05,0.26]
EW 0.31 [0.04,0.58] 0.09 [0.02,0.16] 0.21 [0.05,0.37]
OF -0.28 [-0.53,-0.03] -0.02 [-0.08,0.05] 0.05 [-0.1,0.19]
SCS 0.22 [0.08,0.35] -0.03 [-0.06,0] 0.28 [0.21,0.36]
Year dummies 3 3 3

Matched samples 30 30 30
# of obs. 3716 3716 3716
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Figure S11: NETs spillovers to science - WoS citations
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Table S7: Coefficients and C.I. Figure S11

Citations Scope

term expβ ⟨C.I.⟩ expβ ⟨C.I.⟩

General 1.55 [1.4,1.71] 1.32 [1.25,1.4]
AR 1.22 [1.09,1.38] 1.13 [1.06,1.22]
BECCS 1.75 [1.46,2.11] 1.39 [1.25,1.55]
Biochar 2.37 [2.1,2.69] 1.75 [1.63,1.89]
BC 1.36 [1.09,1.73] 1.37 [1.19,1.58]
DAC 2.12 [1.79,2.53] 1.56 [1.41,1.72]
EW 1.26 [0.95,1.71] 1.30 [1.09,1.55]
OF 0.99 [0.78,1.29] 1.08 [0.94,1.25]
SCS 1.40 [1.22,1.61] 1.23 [1.14,1.34]
Year dummies 3 3

Matched samples 30 30
# of obs. 3392 3392
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Figure S12: NETs spillovers to science - WoS sample (climate) control
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Table S8: Coefficients and C.I. Figure S12

Citations Scope

term expβ ⟨C.I.⟩ expβ ⟨C.I.⟩

General 1.31 [1.2,1.45] 1.18 [1.12,1.25]
AR 0.96 [0.86,1.08] 1.01 [0.94,1.07]
BECCS 1.46 [1.23,1.74] 1.27 [1.15,1.41]
Biochar 2.01 [1.78,2.27] 1.59 [1.48,1.71]
BC 1.29 [1.04,1.63] 1.30 [1.14,1.49]
DAC 1.99 [1.69,2.38] 1.46 [1.32,1.61]
EW 1.12 [0.87,1.48] 1.22 [1.04,1.43]
OF 0.76 [0.6,0.97] 0.95 [0.83,1.08]
SCS 1.19 [1.04,1.36] 1.12 [1.04,1.21]
Year dummies 3 3

Matched samples 30 30
# of obs. 3716 3716
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Figure S13: NETs spillovers to science & technology - WoS/RoS sample
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Table S9: Coefficients and C.I. Figure S13

Science Technology

term expβ ⟨C.I.⟩ expβ ⟨C.I.⟩

General 1.53 [1.41,1.65] 0.99 [0.65,1.5]
AR 1.16 [1.06,1.27] 0.27 [0.11,0.55]
BECCS 1.55 [1.34,1.81] 1.05 [0.43,2.18]
Biochar 2.54 [2.3,2.82] 3.74 [2.52,5.49]
BC 1.68 [1.37,2.09] 7

DAC 2.08 [1.8,2.41] 8.96 [6.12,13.27]
EW 1.43 [1.1,1.89] 3.05 [1.14,7.05]
OF 1.32 [1.08,1.64] 2.19 [1.05,4.47]
SCS 1.47 [1.31,1.65] 0.68 [0.31,1.32]
Year dummies 3 3

Matched samples 30 30
# of obs. 5822 5822
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Figure S14: NETs spillovers to science, technology and policy - Additional controls
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Figure S15: NETs spillovers to science, technology and policy - Additional controls
(climate)
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Table S10: Coefficients and C.I. Figure S14

Science Technology Policy

NET expβ ⟨C.I.⟩ expβ ⟨C.I.⟩ expβ ⟨C.I.⟩

General 1.73 [1.57,1.91] 0.90 [0.51,1.61] 2.78 [2.18,3.55]
AR 1.28 [1.14,1.44] 0.08 [0.01,0.6] 2.42 [1.82,3.22]
BECCS 1.94 [1.62,2.34] 0.90 [0.35,2.32] 5.41 [3.5,8.35]
Biochar 2.40 [2.11,2.74] 2.13 [1.19,3.79] 1.30 [0.91,1.86]
BC 1.83 [1.45,2.3] 7 4.19 [2.46,7.13]
DAC 1.73 [1.44,2.07] 3.24 [1.88,5.59] 3.51 [2.19,5.63]
EW 1.40 [1.04,1.87] 2.35 [0.78,7.1] 5.02 [2.55,9.89]
OF 0.94 [0.72,1.24] 1.60 [0.3,8.42] 1.74 [0.91,3.32]
SCS 1.64 [1.43,1.88] 0.24 [0.06,1.06] 3.35 [2.41,4.65]
Year dummies 3 3 3

Controls 3 3 3

Matched samples 30 30 30
# of obs. 3378 3378 3378

Table S11: Coefficients and C.I. Figure S15

Science Technology Policy

NET expβ ⟨C.I.⟩ expβ ⟨C.I.⟩ expβ ⟨C.I.⟩

General 1.40 [1.27,1.55] 1.22 [0.67,2.23] 1.99 [1.58,2.51]
AR 1.01 [0.89,1.13] 0.10 [0.01,0.81] 1.79 [1.36,2.34]
BECCS 1.62 [1.36,1.94] 0.78 [0.28,2.14] 3.66 [2.44,5.5]
Biochar 2.04 [1.8,2.32] 2.50 [1.4,4.47] 0.95 [0.68,1.33]
BC 1.72 [1.36,2.16] 7 3.18 [1.91,5.31]
DAC 1.54 [1.29,1.85] 3.97 [2.3,6.86] 2.33 [1.48,3.66]
EW 1.15 [0.88,1.51] 3.29 [1.19,9.11] 2.77 [1.5,5.1]
OF 0.67 [0.51,0.88] 2.50 [0.6,10.36] 1.04 [0.55,1.95]
SCS 1.37 [1.2,1.57] 0.29 [0.07,1.28] 2.41 [1.76,3.3]
Year dummies 3 3 3

Controls 3 3 3

Matched samples 30 30 30
# of obs. 3518 3518 3518

45



Science Technology Policy
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Figure S16: NETs spillovers to science, technology and policy - Separate matching
control (AR) Afforestation and Reforestation. (BECCS) Bio-energy with Carbon Capture
ans Storage. (DAC) Direct Air Capture. (SCS) Soil Carbon Sequestration.
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S7 Geography
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Figure S17: Geographical distribution of NETs research. Geographical distribution
of negative emissions articles at city-level by category (% values). The total map depicts the
aggregate unweighted density of cities where NETs research is performed. Geo-localized data
are described in section 4.3.
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Figure S18: Most central cities. The most central cities for each NET-specific collaboration
network. Centrality is measured by computing nodes’ strength in the collaboration network
based on affiliation data (see section 4.3).
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Figure S19: Correlation between RSA and total number of articles. Scatter plots for
a subset of countries (i.e., countries with at least 10 articles in NETs) for each NET category.
The RSA horizontal reference line fixed at 1 indicates relative advantage.
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