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Abstract 

We develop a model of misinformation wherein users’ decisions to verify and share news of unknown 

truthfulness interact with producers’ choices to generate fake content as two sides of a market that balance 

to deliver an equilibrium prevalence and pass-through of fake news. We leverage the tractability of the 

model to examine the efficacy of various policies intended to combat misinformation that are in place 

currently, stressing how these may nontrivially interact with users’ incentives: news verification is a 

costly activity. Our analysis emphasizes the importance of examining users’ and producers’ decisions 

jointly, as well as of evaluating how policies interact with one another. It also provides sensitivity 

measures that are key for policy evaluation. 
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1 Introduction

The spread of misinformation online has gained substantial prominence in society. For in-

stance, only in the 2016 U.S. presidential election, Allcott and Gentzkow (2017) estimate that

760 million interactions with fake news occurred on the web, while Guess et al. (2020b) show

that online platforms were a key gateway for landing on untrustworthy websites. The tangi-

ble impact that fake news can have is then sizable, potentially affecting elections, markets,

and disease spread,1 with the World Economic Forum labeling this issue as a major global

risk (Howell, 2013). The pace at which internet access, social media usage, and technologies

evolve also indicates that this problem is unlikely to disappear.2

The response by key actors in the news world—most notably, social media platforms—

can be synthesized based on three tenets. First, professional, independent fact-checking is

required, which has resulted in the advent of a network of third-party fact-checkers who verify

the accuracy of content.3 Second, the incentives of fake news producers must be weakened;

for instance, any news confirmed to be false is given less relevance and repeated offenders

are removed from platforms,4 while websites can be rated on their trustworthiness in an

attempt to influence their advertising revenues.5 Third, users must be empowered to assess

the veracity of each news item to ultimately choose how to act upon it. For example, on some

platforms, flagged content is now accompanied by fact-checkers’ reports or related material

that provides context so users can determine the accuracy of the material for themselves.6

In this paper, we introduce a flexible model of misinformation that can be used as a

framework for addressing a variety of questions regarding the fake news problem, and also

to shed light on potential policy interventions. In light of the aforementioned tenets, for

instance, how impactful is the appearance of fact-checking that lowers the verification costs

borne by users? How are key variables such as the prevalence and diffusion of fake news

altered by policies that attempt to disrupt their production? How effective are algorithmic

1Rapoza (2017) documents a temporary decrease of $130 billion in stock value after a false tweet about
an explosion injuring Barack Obama in 2013. More recently, DiResta and Garcia-Camargo (2020) examine
how a video promoting falsehoods surrounding the COVID-19 pandemic went viral.

2As of January 2020, 4.54 billion people were estimated to be using the internet, with 3.8 bil-
lion active social media users, representing 7% and 9% yearly increases, respectively. As discussed in
World Economic Forum (2020), a major long-term concern is the use of artificial intelligence for misinforma-
tion purposes in the form of “deepfake” videos, which substantially increases verification costs for laypeople.

3Some platforms partner with fact-checking organizations that adhere to the International Fact-checking
Code of Principles (https://www.ifcncodeofprinciples.poynter.org).

4See, for instance, Meta Business Help Center (2022).
5See the Global Disinformation Index, https://disinformationindex.org/.
6This policy need not only reflect technological limitations such as an algorithm’s inability to check all

the content on a platform but also a vision of the role of social media in society. Lyons (2017) argues that
this contextual approach lowers sharing behavior more than does merely using labels to flag news as false.
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filters that detect fake content before it reaches the platform’s users? At the center of our

analysis is how users’ incentives to verify information respond to the policy in place.

Model and equilibrium. In our model, a platform is a venue on which users encounter

news that can be true or false. Upon contact with a news item/article, a user can first choose

to learn its veracity at a cost and then decide whether to share it. Importantly, users expe-

rience gains from sharing true news but suffer losses from sharing fake content—verification

then entails evaluating the payment of a cost with certainty versus a loss of sharing fake con-

tent with some chance. The latter chance is given by the endogenous news proportion that

is false among the total entering the platform, or fake news prevalence. As prevalence rises,

fewer users share news articles without verifying them; hence, a decreasing locus emerges,

linking prevalence levels to the mass of users engaged in unverified sharing behavior.

Because verification reveals the truthfulness of each news item, and users dislike sharing

fake content, fake news can be shared only if they reach users performing unverified sharing.

As the proportion of these users increases, the pass-through of misinformation increases,

thereby incentivizing the production of fake content. Thus, an increasing supply of fake

news ensues. Coupled with the aforementioned decreasing locus capturing unverified sharing

behavior, an equilibrium in this market corresponds to a level of fake news prevalence and

a pass-through rate of fake content that occurs when these two curves intersect. Equipped

with this tractable characterization, we turn to examining how current interventions affect

outcomes in this induced market for news.

Overview of the results. (1.) Unverified sharing behavior can be insensitive to reduc-

tions in verification costs. For fake news producers, a decreasing unverified sharing locus

constitutes a “demand for misinformation” emanating from the platform. Further, lowering

verification costs can potentially lower unverified sharing. It is then natural to ask if a reduc-

tion in verification costs acts as a “demand shifter,” always ensuring a drop in prevalence.

In Section 4 we show that, for any decrease in verification costs, there are always regions

of prevalence at which unverified sharing behavior is insensitive to such changes. Further,

those regions need not be only of low prevalence in which users’ incentives to verify can be

expected to be low: changing how the users’ benefits and losses vary across the population

can alter the location of such regions. Hence, depending on the status of fake news prevalence,

equilibrium outcomes need not change after reductions in verification costs.

(2.) Supply interventions can increase the diffusion of fake news. Various policies cur-

rently intended to combat misinformation attempt to disrupt its production by making fake

news creation less attractive. Clearly, the most optimistic case is when the supply of fake

news shifts left/upwards at all possible levels, which we explore in Section 5.
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Not surprisingly, fake news prevalence decreases. However, the pass-through of fake con-

tent increases because users’ verification incentives weaken in the process. The diffusion rate

of fake news—prevalence times pass-through—captures the proportion of fake content that

is shared; hence, it acts as a measure of the diffusion of fake content. We provide condi-

tions under which the unverified sharing locus is sufficiently elastic so more misinformation

is transmitted after the intervention. Importantly, we also provide conditions under which

a reduction in verification costs results in a more elastic unverified sharing locus.

These adverse effects can be more extreme in the context of network externalities, un-

derstood as individual choices depending on the aggregate choices of others. In Section 8,

we show how the unverified sharing locus can become a correspondence; thus, a supply re-

duction can lead not only to more diffusion but also to greater prevalence. Moreover, such a

policy can refine the set of equilibria to a single outcome that is worse than the original one.

(3.) The traditional exercise of market power has impediments, but simple segmentation

strategies can be profitable. In Section 6, we consider the case of a single news producer

that inherits the cost structure of the “competitive” case. Traditional market power would

then consist of reducing “trade’—in our case, fake news prevalence—to obtain a larger per-

unit revenue—pass-through in our model. However, the monopolist does not control users’

sharing decisions directly, and fake news prevalence is in general not observed by users.

This informational limitation implies that the only sequentially rational outcome is the

competitive equilibrium already found, and uniform policies are rendered ineffective.

That said, a mild enrichment of the monopolists’ toolbox can improve profits. Specifically,

if the monopolist can (i) segment the market trivially, i.e., target sub-populations that only

differ from the original one in terms of size, and (ii) supply truthful content too, then

the monopolist can implement prevalence-pass-through pairs on the concave closure of the

unverified sharing locus. This technique can be particularly profitable when decreasing

verification costs creates convexities in the aforementioned locus, partially counteracting the

decreases in prevalence and diffusion that would otherwise take place.

(4.) Detection algorithms that remove news for users can backfire. Finally, in Section 7

we evaluate the efficacy of internal filters that assess news articles before they reach users and

that remove content if deemed fake. We focus on an algorithm that makes type-II errors, i.e.,

failing to recognize false news, as the social costs of type-I errors are more straightforward.

In this context, we show that introducing a filter can increase the prevalence and diffusion

of misinformation over a large range of filter qualities. Indeed, by affecting the inference

made by users when receiving news, such filters can induce more unverified sharing, and this

equilibrium effect can outweigh the positive direct effect that a filter can have on reducing

the production of fake news via limiting its pass-through, all else equal.
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Applied relevance. From an institutional viewpoint, our model rests on three assump-

tions. First, the production of fake content increases with sharing rates. Indeed, whether

ideologically or profit-driven, clicks are the main source of profitability for untrustworthy

websites in the online market for fake news (e.g. Allcott and Gentzkow, 2017 and Tucker

et al., 2018). However, with more sharing, more users can be reached, and the likelihood of

more clicks increases. Even more so, the mere emergence of social media platforms represents

an increase in sharing ability on par with an increase in the severity of the fake news problem.

Second, we chose a set up in which users find it beneficial to share truthful content and

dislike sharing misinformation. From a modeling perspective, this assumption intentionally

reduces the chances that misinformation will be transmitted. But it is consistent with

evidence on users finding it important to share only accurate news (Pennycook et al., 2021),

and worrying about their reputations when fake news is shared (Altay et al., 2022).

Third, users bear costs to verify the information they encounter. Indeed, while the growth

in fact-checking outlets worldwide7 represents lower search costs for users, it does not neces-

sarily eliminates verification costs: to make an informed decision, users must review reports

whether searching independently at specialized sites,8 or accessing them as part of contextual

information readily provided for free on platforms.

Our assumptions intend to stress that successful interventions require a joint examination

of users’ and producers’ decisions, putting at the center users’ verification incentives. Further,

our analysis uncovers a variety of sensitivity measures that are useful for evaluating policies,

just as in conventional markets. From this perspective:

(a) The way in which benefits and losses vary across populations of interest determines

the prevalence levels in which verification incentives are (not) sensitive to verification

costs—such relationships are key for assessing the efficacy of fact-checking initiatives.

(b) Policies that decrease unverified sharing should also evaluate their impact on the sen-

sitivity of unverified sharing to changes in prevalence, as a reduction in misinformation

may be accompanied by an increase in its diffusion.

(c) Segmentation strategies that seem “simplistic” a priori need not imply a lack of so-

phistication or negligible harm.

(d) Substitution effects between users’ verification incentives and the use of internal filters

can be sizable. Likewise, strategic complementarities arising from network externalities

can make increases in prevalence consistent with less verification.

7Stencel and Luther (2020) shows that the number of fact-checking sites has grown from 44 in 2014 to
almost 300 by the middle of 2020.

8See, for instance, https://snopes.com or https://politifact.com.
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Related literature. Due to our policy-oriented spirit, this work is naturally related to

papers that have studied, either empirically or experimentally, the implementation of policies

intended to mitigate the fake news problem. Regarding fact-checking, Henry et al. (2022)

document in experiments that users who are more prone to sharing news articles are also

more prone to verifying them. In our setting, this finding suggests a positive relationship

between benefits and losses across types, which we sometimes use as a leading example.

Regarding verification mechanisms that are not user based, Pennycook et al. (2020) show,

also through experiments, that labeling only a subset of false news articles leads users to

believe that untagged articles are more accurate, which positively influences the sharing of

the latter; a similar phenomenon arises in our model when users are aware of the presence

of news filters. Finally, regarding policies aimed at limiting the sharing of misinformation,

Ershov and Morales (2021) empirically examine the impact of an increase in the cost of

sharing on a popular platform on the transmission of news from highly trustworthy outlets

relative to news from less trustworthy counterparts. In contrast, we examine how supply

interventions that would reduce sharing behavior, all else equal, can in fact lead to more

sharing and diffusion of fake news due to a weakening of users’ verification incentives.

Our paper also complements a growing body of theoretical papers examining various

aspects of the fake news problem. Papanastasiou (2020) shows that news virality can result

from a traditional rational cascade logic that is also facilitated by a costly signal acquisition.

Bowen et al. (2021) show that selective sharing and selection neglect could result in belief

polarization when agents learn from what others share, while Cheng and Hsiaw (2022) con-

sider a signaling model in which uncertainty about a sender being benevolent or malevolent

could lead to users’ beliefs about an unknown state disagreeing in the long term. Finally,

Acemoglu et al. (2022) develop a model in which users have heterogeneous priors about

an unknown state, and find that homophily introduces a trade-off between virality and the

emergence of eco chambers.

To conclude, our model of costly verification also contributes to the literature exploit-

ing the tractability of matching models in settings in which individuals choose to protect

themselves from harm with endogenous intensity: Quercioli and Smith (2015) examines the

economics of counterfeiting, while Vásquez (2022) develops an equilibrium theory of crime

and vigilance. In such a matching context, our segmentation analysis employing the con-

cave closure of the unverified sharing function connects with the techniques in Kamenica

and Gentzkow (2011) for Bayesian persuasion problems, albeit with an endogenous “prior”

that is now determined via an optimal production decision; see Bergemann et al. (2015) and

Haghpanah and Siegel (2022) for general treatments of market segmentation in traditional

product markets.
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2 Model

We develop a model of a platform on which a large number of users encounter fake content

that originates from a large number of fake news producers.

News viewers A unit mass of infinitesimal risk neutral users have access to an online

platform on which they encounter “uncertified” news articles, i.e., news articles for which

truthfulness cannot be determined upon first contact (e.g., by reading the headline, the

originating website, or even the whole article). These encounters are random from the

perspective of all platform participants.9 Upon encountering a news item, each user can

decide to determine its veracity by paying a fixed cost t ≥ 0; for instance, search costs when

consulting specialized websites for fact checks, the time costs associated with reviewing

related articles presented as part of “contextual information,” or even attention costs.

After the verification decision is made, users can decide to share the news item. Not

sharing yields a payoff of zero. The payoff of sharing nonetheless depends on the veracity of

the news item, and it varies across users. Specifically, we assume that users are heterogeneous

according to a one-dimensional characteristic v—or type—taking values in [0, v̄], such that

sharing truthful news yields a benefit b(v), while sharing fake news entails a loss ℓ(v). The

functions b(·) and ℓ(·) are continuous, and also strictly positive almost everywhere (a.e.). The

underlying characteristic v is distributed according to an atomless cumulative distribution

function (CDF) G(·), with support [0, v̄] and density g(·) which is differentiable.

As an interpretation, if v is a measure of user popularity (e.g., number of followers), and

reputation matters for users, we can expect b and ℓ to be increasing over [0, v̄]. Our analysis

is, however, general in that we only impose the conditions previously stated. That said,

because users dislike passing on fake news (i.e., ℓ > 0 a.e.) and the verification technology

is perfect, fake articles can be shared only when they are not verified.

Fake news producers We assume that a fixed mass of uncertified news enters the plat-

form, which we set at a level equal to 1. Among this mass, a proportion π ∈ [0, 1] is false.

We refer to π as the fake news prevalence. This news type originates from a pool of potential

fake news producers, each facing the choice of producing a fake news article upon paying an

opportunity cost c ∈ [0, 1], or not producing at all. Cost c varies across producers according

to an atomless CDF F (·) with support [0, 1] and a differentiable density f(·).
9This assumption is not intended to reflect that the encounters are truly accidental but that the news

outlets’ have limited reach when targeting individuals. In practice, this situation arises because platforms’
services offer an imperfect degree of granularity at the user level, and because algorithms mediate matches
using information not possessed by news producers. Targeting is then imperfect within populations of
interest.
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Fake news producers receive a payoff of 1 when a news item is shared, and 0 otherwise.

Thus, the expected revenue for any producer is given simply by the probability with which a

fake news item is ultimately shared. We refer to this probability as the pass-through of fake

news, and we denote it by σ ∈ [0, 1]. Since in this baseline model only users verify news, and

fake news can be shared only when users choose not to verify, the fake news pass-through

coincides with the mass of users who engage in unverified sharing (given their conjecture of

fake news prevalence).

Equilibrium concept The model is “competitive” in that all platform participants are

assumed to take the variables (π, σ) as given.

Definition 1 (Equilibrium). An equilibrium consists of a prevalence π∗ and a pass-through

rate σ∗ such that: (i) given prevalence π∗, sharing and verification choices are optimal for

all users, and (ii) given σ∗, potential fake news producers’ choices are optimal.

The model can be seen as the steady state of a platform with a rapidly evolving news

influx. Specifically, each period can be divided into two stages. First, a new cohort of news

articles enters the platform, each encountering a user. Second, if the user clicks share, this

news item becomes visible to a subset of individuals, yielding revenues to the untrustworthy

website. In the next period, a new cohort of news articles enters the platform and is favored

by the platform’s algorithm by being placed more prominently in the users’ news feed. As a

result, the subsequent sharing rate of the old cohort is limited or simply eliminated, thereby

making the initial rate the most relevant for payoffs.

3 Unverified Sharing and Equilibrium Prevalence

Sharing misinformation Our first task is to find the user set that chooses to skip verifi-

cation and share the news articles for each prevalence level π and verification cost t. This set

must be a subset of the users who find it optimal to share when verification is unavailable,

or prohibitively costly for everyone (e.g., t = +∞). Indeed, by revealed preferences, for any

user who does not share in this case, sharing without verifying remains dominated when the

possibility of verification is added.

Suppose that verification is unavailable. Fixing prevalence π, type v will decide to share

provided

(1− π)b(v)− πℓ(v) ≥ 0,

where we have assumed that ties are broken in favor of sharing. That is, sharing will occur for
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those types that exhibit a high propensity to share b(v)/ℓ(v), as subsumed in the condition

b(v)/ℓ(v)

1 + b(v)/ℓ(v)
≥ π. (1)

If the platform introduces a costly verification technology, types v satisfying (1) will trade

off paying the verification cost t and saving the loss ℓ from sharing fake news versus engaging

in unverified sharing. Critically, since costly verification is naturally paid irrespective of the

verification outcome, unverified sharing dominates verified sharing whenever

(1− π)b(v)− πℓ(v) ≥ (1− π)b(v)− t,

or when their propensity to skip verification, t/ℓ(v), is sufficiently high:

t/ℓ(v) ≥ π. (2)

Altogether, given prevalence π and verification cost t, the set of users V(π; t) who share

unverified news articles are those whose type v satisfies inequalities (1) and (2), namely:

V(π; t) ≡ {v ∈ [0, v̄] : φ(v; t) ≥ π} , where φ(v; t) ≡ min

{
b(v)/ℓ(v)

1 + b(v)/ℓ(v)
,
t

ℓ(v)

}
. (3)

We can now state a central study object: the sharing rate of unverified news, which maps

prevalence levels to the mass of users sharing unverified content:

Σ(π; t) ≡
∫
V(π;t)

dG(v). (4)

By definition of (3), the correspondence π 7→ V(π; t) is weakly decreasing in the sense

of set inclusion. Thus, the sharing rate π 7→ Σ(π; t) is non-increasing, reflecting that as

fake news become more prevalent, fewer users share news articles without verifying them. In

addition, if the production of fake news ceases, all users share news articles without verifying

(i.e., V(0; t) = [0, v̄]) as sharing ceases to have a downside, i.e., Σ(0; t) = 1. Moreover, the set

of users who share news has measure zero if only fake news articles circulate because ℓ > 0

a.e. Thus, Σ(1; t) = 0 with Σ possibly vanishing strictly before 1 in some specifications.

Remark 1. Distinguishing between the “pass-through of fake news” (σ) and the “sharing

rate of unverified news” (Σ) is appropriate not only because of their dimensionality (scalar

vs. functional) but also because both notions may differ in more general specifications, such

as when we study the use of internal filters in Section 7.
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We focus on the case in which Σ is continuous. While this choice is largely for convenience—

i.e., it avoids qualifying our results to ensure that an equilibrium exists—it is also natural.

Specifically, it rules out the possibility of marginal reductions in perceived prevalence π

prompting a large number of users to become active in unverified sharing at arbitrary levels

of prevalence. The next result outlines conditions that ensure continuity of Σ.

Lemma 1. If φ(·; t) is differentiable a.e. with |φ′(·; t)| > 0 a.e, then Σ is continuous.

That is, provided φ(·; t) does not fluctuate too wildly or exhibit flat regions, small changes

in the environment do not have large effects in the aggregate. Otherwise, φ can take any

form, allowing for kinks that can appear naturally due to the presence of a minimum. We

assume the continuity of Σ in the rest of this paper.

Producing Fake News. We now turn to the supply of fake news entering the platform.

Given a pass-through of fake news σ, a fake news producer with cost c chooses to produce if

and only if σ ≥ c. Thus, the supply of fake news, i.e., the function that maps pass-through

rates σ to prevalence levels, is given simply by

Π(σ) ≡ F (σ). (5)

Due to the properties of the distribution F (·), the supply Π(·) is continuous, satisfies Π(0) = 0

and Π(1) = 1, and is non-decreasing. In other words, more fake content is generated when

the pass-through rate increases, as the platform becomes more attractive for producers.

Remark 2. Normalizing the mass of news articles to 1 (thereby implying that the supply of

truthful content shrinks as more fake news articles enter the market) is without loss of gener-

ality. Indeed, any production side that yields inflows of fake content that positively respond

to pass-throughs would deliver. Also, as in Remark 1, distinguishing between “prevalence”

and “supply” is justified because neither notion coincides in other specifications (e.g., when

the total mass of news articles exceeds 1).

Altogether, the existence and uniqueness of an equilibrium is always guaranteed.

Proposition 1. There exists a unique equilibrium (π∗, σ∗).

As in traditional competitive analyses, the opposing forces behind the supply of fake

news and the unverified sharing locus ensure the existence of a unique pair (π∗, σ∗) that

balances this “market for misinformation.” Economically, the model rests ultimately on two

natural assumptions: unverified sharing behavior decreases as fake news articles become more

abundant, and the supply of fake news articles increases along with the pass-through rate.
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wherein the sharing of unverified news Σ(π; t) is insensitive to the change in verification cost

t. Furthermore, the locations of these regions may vary across specifications.

In the remainder of the section, we use the case of increasing sharing losses ℓ(·) as

the leading example to (i) show how to construct Σ(π; t) for each given t, and (ii) formally

establish the existence of such regions that lack sensitivity. Then, we explain how our results

and insights can be generalized without major conceptual changes.

Increasing losses ℓ(·). With losses that increase with user types, those who are more

prone to share—higher types, by Assumption 1—will also be more prone to verify because

t/ℓ(·) is decreasing.
To compute Σ(π; t), we must determine the set V(π; t) of user types that share without

verifying. Recall that this set is determined by the π-superlevel set of φ defined in (3), i.e.,

those types v for whom

φ(v; t) = min

{
b(v)/ℓ(v)

1 + b(v)/ℓ(v)
,
t

ℓ(v)

}
≥ π.

With an increasing propensity to verify (first argument) and a decreasing propensity to skip

verification (second argument), φ is quasiconcave. Naturally, if t is sufficiently large, there

is no verification for any π. We collect and formalize these observations in Lemma 2.

Lemma 2. φ is continuous and quasiconcave. Further, if t ≥ b(v̄)
1+b(v̄)/ℓ(v̄)

, φ is increasing;

hence, there is no verification for any π ∈ [0, 1]. Otherwise, φ is eventually decreasing.

Verification is said to be feasible if t < b(v̄)
1+b(v̄)/ℓ(v̄)

, as it is only in that region that lowering

verification costs can have an effect on outcomes. We focus on this case in what follows.

Let us now explain how Σ in Figure 1 is obtained. Consider Figure 2. In the left panel,

the propensity-to-share function b(v)/ℓ(v)
1+b(v)/ℓ(v)

corresponds to the solid increasing function start-

ing at the origin; the decreasing dashed-dotted curve is the propensity-to-skip-verification

function, t/ℓ(v), when verification is feasible (e.g. t < b(v̄)
1+b(v̄)/ℓ(v̄)

; lower curve) or infeasi-

ble (upper curve). Two observations are instructive. First, since the propensity-to-share

function is below 0.5, no sharing behavior—verified or unverified—can occur for prevalence

π ≥ 0.5. This explains why Σ, in dotted red in the right panel of Figure 2, constructed

when verification is infeasible, vanishes from π = 0.5 onward. Second, t/ℓ begins crossing

the propensity to share from above at v = v̄, i.e., where the latter function is maximized.

Thus, Σ becomes sensitive to verification costs only for high prevalence levels π. This phe-

nomenon is depicted in the right panel of Figure 2, where unverified sharing (i) ceases for

any π ∈ [0.4, 0.5], and (ii) decreases but remains positive when π ∈ [0.25, 0.4].
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more, both regions connect and a subset of the original one exhibits more verification.12

Having understood how the propensity functions shape users’ incentives to verify, we next

examine policies other than reductions in verification costs, and how they may interact with

the latter. To avoid confounding effects, therefore, it is convenient to fix a specification for

the family of unverified sharing functions parametrized by t, {Σ(·; t) : t ≥ 0}. For consistency
with our leading example in this section, we consider the case of increasing losses ℓ hereafter.

5 Supply Interventions and Fake News Diffusion

Among the variety of responses to combat fake news, platforms have attempted to reduce

its production. This section uncovers when and why this practice can have the downside of

increasing the diffusion of fake news.

Diffusion of fake news. As a starting point, note that Π(σ) = F (σ) is effectively a

traditional supply function. Thus, interventions that limit the supply of fake news can be

modeled as standard supply shifts that capture a weakening in producer’s incentives. From

this perspective, banning repeat offenders can be seen as a cost for producing fake news

articles f ∈ (0, 1) that is orthogonal to that of content generation (e.g., change of identity

and website appearance to pass screening tests), resulting in a new supply

Πf (σ) = F (σ − f).

Alternatively, curtailing fake news producers’ ability to attract advertisers results in an

overall lower return after sharing occurs (e.g., because fewer advertisers place ads on un-

trustworthy websites), which can be captured via a scalar α ∈ (0, 1) such that

Πα(σ) = F (ασ).

As in standard competitive analyses, the prevalence of fake news decreases after a left

shift of the supply curve. However, by moving upward along the “demand curve,” the pass-

through rate increases: with a lower prevalence of fake news, fewer users are willing to verify.

Figure 6 depicts this phenomenon.

12The insensitivity of Σ(π; t) to t for sufficiently low prevalence rates π is a generic property in the model
because ℓ is finite, so t/ℓ > 0 for all t ≥ 0. Thus, for sufficiently low values of π, namely, t/ℓ(·) > π, no user
type has incentives to engage in news verification.
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and, by Proposition 2, ΣV (π) = 1 − G(v1(π)) and ΣN(π) = G(v0(π)) whenever Σ(π) > 0.

The subsequent result leverages these relationships.

Proposition 4. Consider an equilibrium (π∗, σ∗) and suppose that one of the following con-

ditions holds:

(a) The propensity to share b(v)/ℓ(v) is concave, the density g(v) is increasing, and the

pass-through of fake news obeys σ∗ ≤ ΣN(π
∗);

(b) The function 1/ℓ(·) is concave, the density g(v) is decreasing, and the pass-through of

fake news obeys σ∗ ≤ ΣV (π
∗).14

Then, the unverified sharing function Σ is elastic, i.e. |Eπ(Σ)| > 1; thus, a supply intervention

(leftward shift of supply Π) will lead to a greater diffusion of fake news ∆∗.

Finding conditions that ensure an elastic response of Σ to changes in π is challenging.

This is because Σ depends in general on thresholds v0 and v1 via Σ(π) = G(v1(π))−G(v0(π))
in general, and these thresholds depend on primitives in complicated ways. We bypass this

obstacle by exploiting the fact that, whenever Σ(π; t) > 0, the identity

|Eπ(Σ)| =
(
ΣN

Σ

)
Eπ(ΣN) +

(
ΣV

Σ

)
Eπ(ΣV ) (7)

can be used to provide a lower bound for Eπ(Σ).
For example, consider condition (a). Using (7), we can show that a 1% increase in

prevalence π decreases unverified sharing Σ by at least Eπ(ΣN)%, provided the equilibrium

pass-through σ∗ is no greater than ΣN(π
∗). Moreover, the conditions on primitives imply

that ΣN(·) is an elastic convex function, thereby ensuring an elastic response of Σ(·) in

equilibrium. Specifically, when the propensity to share b/ℓ is concave in v, then the first

type willing to share, v0(π) in (6), increases at decreasing rates in π. Thus, an increase in

prevalence π increases the mass of users who do not share news, ΣN , more when prevalence

is high than when it is low, provided the density g is increasing.15 Part (b) follows a similar

logic that instead uses ΣV (·).
14If the equilibrium prevalence is in a region in which no active verification occurs, i.e., ΣV (π

∗) = 0, only
condition (a) applies as (b) is never satisfied.

15For an illustration, consider b(v) = v2, ℓ(v) = v, and a uniform density g(v) = 1/v̄, which corresponds to
Figure 1’s parametrization and satisfies the conditions given in Proposition 4-(a). For mid-range prevalence
levels, v0(π) = π/(1 − π) and v1(π) = t/π, and so it can be checked that Σ(π) ≤ ΣN (π) if and only if
4π ≥ −t +

√
t2 + 8t ∈ [0, 1]. The right-hand side of this inequality decreases with t. Moreover, for t = 0.1

the right-hand side equals 0.2; hence, Σ is elastic for all π ∈ (0.2, 0.5). Thus, as depicted in Figure 6, if
equilibrium has active verification, i.e., π∗ ∈ (0.2, 0.5), then σ∗ ≤ ΣN (π∗). Hence, by Proposition 4-(a), a
leftward supply shift leads to a greater diffusion of fake news even if the content creation is effectively reduced.
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Two observations about Proposition 4 are instructive. First, while the conditions on the

primitives b, ℓ and g hold pointwise, and hence are strong, they have the advantage of being

easy to check. Critically, they can be transformed to local conditions if mild extra regularity

on b/ℓ is imposed (see Propositions A.1-A.2 in the Appendix).

Second, the conditions σ∗ ≤ ΣN(π
∗) and σ∗ ≤ ΣV (π

∗) are endogenous, in a reflection of

both sides of the market non-trivially adjusting to potential interventions, and hence encod-

ing the importance of examining users’ and producers’ decisions jointly. Equally important,

these conditions have the advantage that they rely on observable variables that can be ob-

tained from the data; further, observe that they become weaker as sharing news articles

without verifying them becomes less common.

The latter observation brings us to the next topic: examining how verification costs t

impact the elasticity of unverified sharing, |Eπ(Σ)|. Intuitively, although reducing verification

costs can lower the pass-through of fake news (Proposition 3), it can also make the unverified

sharing function Σ more elastic. We next provide conditions for this to happen.

Proposition 5. Suppose that hazard rate g(v)/(1−G(v)) is decreasing and that ℓ′(v)/ℓ(v)

is increasing. Then, unverified sharing elasticity |Eπ(Σ)| rises as verification cost t falls.

To understand Proposition 5, consider the elasticity identity (7). An increase in verifi-

cation cost t has no impact on the v0(π) (see (6)), and so no impact on ΣN = G(v0(π)).

However, t (weakly) lowers the amount of both unverified and verified sharing, Σ(·) and

ΣV . Thus, increasing t lowers the unverified sharing elasticity Eπ(Σ) whenever it lowers the
elasticity measure Eπ(ΣV ). The conditions on primitives guarantee this result.16

Together, Propositions 4 and 5 can inform whether joint policies can reinforce each other

negatively. Specifically, by making unverified sharing behavior more sensitive to reductions in

prevalence, fact-checking can result in supply interventions acting as a catalyst for increasing

the diffusion of fake news in a network.17

16Consider the last user type who shares without verifying—v1(π; t) defined in (6)—which increases with
lower prevalence π or higher verification cost t. If sharing losses ℓ(·) increase relatively more for high types
(i.e., (ℓ′/ℓ)′ ≥ 0), then an increase in prevalence decreases v1 less when verification cost t is high (i.e.,
∂2v1(π; t)/(∂π∂t) ≥ 0). Thus, elasticity Eπ(ΣV ) decreases as t increases if, additionally, distribution G has
a decreasing hazard rate, since ΣV (π; t) = 1−G(v1(π; t)).

17Notice that if 1/ℓ(v) is concave and g(v)/(1 − G(v)) is decreasing, then the conditions given in both
Propositions 4-(b) and Proposition 5 hold. Likewise, the conditions given in Proposition 5 do not exclude
the conditions given in the weaker form of Proposition 4-(a) in the Appendix (Proposition A.1).
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6 Market Power

In this section, we explore the extent to which market outcomes are affected by the possibility

of concentration on the production side.18 There are two takeaways in this section. First, due

to inherent informational asymmetries, traditional “uniform pricing” under market power

need not operate as smoothly as with traditional goods. Second, segmentation strategies

that appear unsophisticated can in fact be profitable for fake news producers.

Uniform policies. A monopolistic fake news producer must decide the mass π ∈ [0, 1] of

fake news to be produced. For consistency with our previous “competitive” analysis, the

monopolist’s cost structure is given by distribution F : the monopolist is either of a single

producer who experiences marginal cost F−1(π) at level π or it corresponds to a “parent”

company who owns a large number of smaller producers with costs distributed according

to F—in this case, only those producers with c ≤ F−1(π) would be active.

If the pass-through of fake news takes value σ when a mass π of news has been produced,

the monopolist’s profits are then given by

σ · π −
∫ π

0

Π−1(π′)dπ′, (8)

where our notation Π(·) = F (·) represents the supply of fake news.19 As usual, profits are

given by the area between σ and the supply locus over [0, π]. (The appearance of an inverse

function Π−1 is due to our convention π = Π(σ).)

In traditional market power with uniform pricing, we would use the fact that σ = Σ(π)

to optimize (8) and find an optimum; call it πM . Since Σ is downward sloping, πM < π∗, as

usual. Implicitly in this logic, however, is that the monopolist can move along Σ which, in

traditional markets, is trivially guaranteed by the observability of the price. The situation

is more subtle in our context: neither σ nor π are directly observable by users.

This informational asymmetry effectively makes the situation one of simultaneous moves.

A simple inspection of (8) shows that the equilibrium of Section 3 is unchanged: (σ∗, π∗) is the

only tuple consistent with sequentially rational behavior by the monopolist taking σ as given,

and assuming that users have correct beliefs. Policies that foster platform transparency,

18From an institutional standpoint, there are at least three reasons that justify such an examination.
First, supply interventions (previous section) pressure the industry to shrink over time. Second, the costs of
producing digital fake content are largely fixed, and they increase as technologies become more sophisticated
(e.g., “deep fakes”). Finally, it has been documented recently the existence of parent companies that own
several untrustworthy websites (Sydell, 2016).

19In the parent company interpretation, total costs obey
∫ F−1(π)

0
cF (dc), but the change of variables c(π′) =

Π−1(π′) yields
∫ F−1(π)

0
cf(c)dc =

∫ 0

π
Π−1(π′)[f(Π−1(π′))/f(F−1(π′))]dπ =

∫ π

0
Π−1(π′)dπ′, as desired.
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(ii) fine-tuning the segment sizes.

Specifically, suppose that the sizes of segments A and B are ω and 1 − ω, respectively.

Further, suppose that λπ fake news articles are sent to segment A, and (1− λ)π fake news

articles to B. All else equal, (1− π)ω and (1− π)(1− ω) truthful news articles would reach

segment A and B, respectively. However, choosing segment sizes is only partially successful:

segment A requires having sufficiently low prevalence compared to the original market (i.e.,

πA < π), which is not possible by resorting to fake content exclusively. If additional τ

truthful news articles are supplied to segment A, margins τ and ω could be chosen so

πA =
λπ

λπ + (1− π)ω + τ
and πB =

(1− λ)π

(1− λ)π + (1− π)(1− ω)

hold. That is, the monopolist can always induce high prevalence in a submarket by shrinking

its size relative to a fixed supply of fake content. However, as a byproduct of the process, the

size of the other submarket becomes fixed; the monopolist can then reduce the prevalence

in this latter submarket by making truthful content more abundant there.21

Proposition 6. Suppose the monopolist can target identical subpopulations and supply them

with additional truthful news. Then, any point on the concave closure of unverified sharing

function Σ can be implemented.

The next question we ask is what is the best production level that can be implemented,

call it π∗∗. To this end, notice that under this type of segmentation, the revenue exclusively

associated with the production of π fake news satisfies λπΣ(πA)+ (1−λπ)Σ(πB) = Σco(π)π.

Given the informational asymmetries discussed in relation to uniform policies, the segments

must correctly anticipate the monopolist strategy and, in particular, the total production

π∗∗ to be implemented in equilibrium. Thus, the monopolist’s per unit revenue, Σco(π∗), is

also fixed in her objective. If the monopolist cares only about the benefits and costs from

fake news production, she will choose π to maximize

Σco(π∗∗)π −
∫ π

0

Π−1(π′)dπ′. (9)

Sequential rationality and correct beliefs then yield an equilibrium characterization of Σco(π∗∗) =

Π−1(π∗∗), i.e., to a version of the competitive equilibrium condition now involving the con-

cave closure of the unverified sharing function Σ (point C in Figure 7). This equilibrium

entails more creation, diffusion, and sharing of fake news articles.

21Alternatively, as λ becomes fixed in the first state in the implementation exercise, one degree of freedom
remains, namely, ω,to target two endogenous variables, πA and πB . Furthermore, with additional τ truthful
news articles being supplied, the fake news prevalence in the whole platform becomes π/(1 + τ).
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Proposition 7. The segmentation that implements π∗∗ leads to more creation, diffusion,

and sharing of fake news articles compared to the competitive case. Further, if the producer

cares only about fake content, this segmentation is optimal among the ones studied.

We conclude with three observations. First, the types of segmentations behind this

strategy are rather basic, as they condition only on size.22 Additionally, given the inherent

free-riding problem to which public information is subject, the cost of producing truthful

content by an unverified news provider is fairly low. A payoff criterion based exclusively on

false information is then a good approximation when either truthful content diffuses slowly

compared to fake news,23 or when the outlet is malicious in that it cares only about the

spread of fake content.

Second, this type of segmentation is not equivalent to randomizing between two preva-

lence levels applied to the whole population: π∗∗ must be produced with probability 1 so the

cost of the last unit of fake news produced is exactly Π−1(π∗∗). Similarly, the optimization

over π in (9) considers deviations from total production π∗∗ but not from ways of “splitting”

π∗∗. That is, this implementation requires the monopolist to overcome the temptation to

send its production to the segment with the highest sharing rate.24

Finally, our analysis in Section 4 shows that lowering verification costs for users ma-

terializes in the unverified sharing locus decreasing only in subregions of prevalence. In

particular, convexities in Σ can be created or exacerbated—as seen in Figure 3. However,

it is exactly in those regions that the described segmentation strategies become profitable.

From this perspective, our analysis identifies simple forms of segmentation as profitable to

fake news producers. This is an important observation in light of the sometimes high degree

of granularity that certain platforms’ targeting services offer in practice: very basic forms of

segmentation need not be associated with negligible harm.

7 Internal Filters

We now enrich the model to allow for detection algorithms. A key concern regarding such

platform filters has been their potential use for removing content before it reaches users, a

practice that some studies document can be perceived by individuals as a form of censorship

22And they can be easily implemented, as population sizes are easy to control when targeting online in
platforms; for instance, by setting different monetary budgets in (similar) locations of interest.

23Vosoughi et al. (2018) found that fake news spread faster, deeper and broader than true news.
24This situation is analogous to the standard commitment assumption widely used in the persua-

sion/information design literature (e.g., Kamenica and Gentzkow, 2011).
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(e.g., Lazer et al., 2018). In contrast, we offer an economic rationale for the cautious use of

such algorithms based on users’ verification incentives.

We consider the case in which an algorithm screens news articles imperfectly as they

enter the platform, and before they reach consumers. Clearly, eliminating truthful news

articles carries social costs. Thus, we focus on the more interesting case in which truthful

news articles always survive, but fake news articles are detected with probability ϕ ∈ [0, 1].

Because of the public announcements that platforms have made on this topic, we assume that

changes in ϕ, which measures the filter quality, are observable to both users and producers.

Also, we focus on the effects of introducing such filters, captured by increasing ϕ from zero.

Our analysis from Section 3 admits a direct adaptation to this case. To this end, suppose

that a mass π of news enters the platform. By Bayes’ rule, the posterior chance that a user

identifies a news item as false upon encountering it is given by

ψ(π;ϕ) ≡ (1− ϕ)π

1− ϕπ
,

which is the right measure of fake news prevalence in this context. This variable decreases

as ϕ increases and as π decreases.

The methods from Section 3 then admit minimal modifications. Specifically, the set of

users who share unverified news is now V(ψ(π, ϕ); t) (see (3)), while the unverified sharing

locus becomes Σ(ψ(π;ϕ)))=
∫
V(ψ(π,ϕ);t) dG(v). However, from the producers’ perspective, the

relevant variable is the pass-through of fake news, which also incorporates the filter’s effect:

(1− ϕ)Σ(ψ(π;ϕ))). (10)

Each potential fake news producer then takes as given the (candidate) equilibrium pass-

through rate, σ ∈ [0, 1], which leads to a supply curve Π(σ) = F (σ) as in (5). Also, as in

Section 3, the unique equilibrium (π∗, σ∗) is given by the intersection of the pass-through of

fake news and the supply curve, i.e., Π((1−ϕ)Σ(ψ(π∗;ϕ))) = π∗ and σ∗ = (1−ϕ)Σ(ψ(π∗;ϕ))).

Equipped with this reformulation, we establish the conditions under which increasing the

filter precision could lead to more creation and diffusion of fake news.

Proposition 8. Suppose that b(v)/ℓ(v) is concave and the density g(v) is increasing. If

σ∗ ≤ ΣN(π
∗) when ϕ = 0, then, as ϕ increases, both the equilibrium prevalence, π∗, and the

rate of diffusion, ∆∗, initially increase and then, eventually decrease. The pass-through σ∗

increases with ϕ.

The presence of a filter implies that encountering content is “good news” from the per-

spective of any user, i.e., the user is now more optimistic about the veracity of the news
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8 Network Externalities

The value of a platform stems partly from how many other individuals use it. Further, social

media platforms are natural venues where individual behavior can be influenced by others.

Large number of users, publicly available information, and possibilities of imitating others all

render network externalities a likely factor shaping the gains and losses that users experience

by sharing news on social media platforms.

This section shows how elements of “social influence” can lead to nontrivial effects on the

sharing of unverified news. To this end, we follow the approach of Becker (1991) by allowing

individual choices to depend on aggregate variables. Specifically, we now consider the case

of losses given by

ℓ̃(v, σ) :=
ℓ(v)

n(σ)
,

where σ corresponds to the mass of users sharing unverified news, while n is a differentiable

function satisfying n′ > 0 and n(0) = 1. That is, as a larger mass of users shares without

verifying, the loss that each type v suffers from sharing fake content decreases (e.g., because

it is easier to blame the situation on others). Other examples can be studied too.

To isolate how a relaxation of verification incentives affects the sharing of unverified news,

we simply assume the benefits of sharing truthful news articles b(·) scale in the same manner;

in this way, the propensity to share remains unchanged.25 Specifically, recalling Section 3,

the mass of users who share without verifying obeys Σ̃(π;σ) ≡ G(v1(π;σ))−G(v0(π)), where

v0(π) = inf

{
v ∈ [0, v̄] :

b(v)/ℓ(v)

1 + b(v)/ℓ(v)
≥ π

}
and v1(π;σ) = inf

{
v ∈ [0, v̄] :

tn(σ)

ℓ(v)
≤ π

}
.

Our normalization then implies that all the changes occur via the margin v1(π;σ), which

adjusts because of its explicit dependence on σ.

In equilibrium, users’ beliefs about the pass-through of fake news, σ, must be correct, so

the sharing rate of unverified news, Σ(π), must solve the fixed point Σ̃(π;σ) = σ for each π,

just as the aggregate quantity demanded must satisfy a fixed-point in traditional models of

network externalities. The top panels of Figure 9 illustrate a typical situation: the left panel

plots the fixed points for a given value of π, while the right panel, the resulting Σ, which

now becomes a correspondence.26

25One possibility is that, as users expect unverified sharing behavior to become more frequent, they
anticipate other users eventually leaving the platform. With fewer users, the value of sharing truthful
content is likely to decrease. In this interpretation, dividing b by n acts as a penalty associated with those
long-term losses.

26Our correspondence is indeed a nonmonotonic function as in Becker (1991), but in the reversed coordinate
system: we look for fixed points on the vertical axes while he does so on the horizontal one. A similar
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9 Concluding Remarks

This paper develops a model of fake news creation and diffusion intended to examine the

efficacy of real-world policies deployed to combat misinformation, while stressing how these

may interact with users’ incentives to verify news. A distinctive aspect of our approach

is that it is operationalized in a framework featuring forces akin to those of supply and

demand. From this perspective, our work emphasizes the importance of sensitivity analyses

for assessing policy interventions, and highlights key nuances relative to traditional markets.

Next, we briefly discuss some of our assumptions and future work.

First, the static nature of the model is clearly a simplification. While news transmission

is a dynamic process, the proportion of individuals who share without verifying remains

key from the perspective of producers. Moreover, since producers can target users with

some degree of granularity, it is reasonable to expect that the discounted benefits of fake

news diffusing through a network are particularly sensitive to that “initial” proportion of

individuals, in which case the model captures a key variable shaping the supply of fake news.

Second, while users’ preferences (b, ℓ) are general, they depict a simplified version of a

more general world in which heterogeneity (b, ℓ) is two dimensional. Two observations are

instructive in this regard. First, as stated in the introduction, a positive relationship between

propensities to share and verify has been documented experimentally: in our setting, this

relationship can be modeled with losses ℓ and benefits b increasing across types, with benefits

increasing at a faster rate. Second, our analysis exploits, for the most part, the interplay

between and a continuous supply and a continuous unverified sharing rate of news. Clearly,

the latter would hold with bi-dimensional user heterogeneity (b, ℓ), absent any atoms.

Third, we assume that the user is fully rational, ignoring behavioral/cognitive aspects

that could play an important role in this market. That said, a sizable fraction of the efforts

by platforms, fact-checking organizations, and journalist associations have been devoted to

educational programs aimed at fostering user literacy in evaluating fake news.27 The rational

or “sophisticated” benchmark, therefore, need not be considered too distant.28

Finally, our policy analyses have been guided by their practical importance, but others

are available. Example include making news transmission more costly (e.g., via additional

clicks) or using algorithms that need not remove news articles but can instead route them to

different individuals based on past behaviors, or on signals about news that the algorithms

select. These and other topics are left for future research.

27See Lyons (2018), Guess et al. (2020a), and the News Integrative Initiative at https://www.journalism.
cuny.edu/centers/tow-knight-center-entrepreneurial-journalism/news-integrity-initiative/.

28A similar trend towards educating consumers has emerged in response to privacy considerations. See
Bonatti and Cisternas (2020) for an application to price discrimination.
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A Omitted Proofs

A.1 Proofs of Section §3

A.1.1 Proof of Lemma 1

Let λ denote the Lebesgue measure, and take an arbitrary continuous function φ : R → R.

Lemma A.1. If φ(·; t) is differentiable a.e. with |φ′(·; t)| > 0 a.e, then λ(φ−1({π})) = 0 for

any π ∈ R.

Proof: Assume that λ({v ∈ R : φ′(v) = 0 ∨ φ′(v) does not exist}) = 0, and consider

φ−1({π}) for π ∈ [0, 1]. It is well-known that the set of isolated points of the previous set,

ISO(φ−1({π})), is countable under the usual topology in R, and hence of Lebesgue measure

equal to zero. Consider now a point v∗ that it is not isolated and where the derivative

exists. Then, since set φ−1({π}) is closed, there exists and approximating sequence (vn)n

with φ(vn) = π for all n, and so φ′(v∗) = 0. Consequently, the set

(
φ−1({π}) \ ISO(φ−1({π}))

)
∩ {v ∈ R : φ′(v) exists}

has Lebesgue measure zero, and hence so does φ−1({π}). □

Proof of Lemma 1: Consider the Lebesgue-Stieltjes measure B 7→ µ(B) ≡
∫
B
dG for

all Borel sets B ⊆ [0, v̄]. We’ll show that Σ(·) is left continuous. Take π ∈ [0, 1] and an

increasing sequence (πn)n with πn ↑ π as n→ ∞. Since πn < π, it follows that V(π) ⊆ V(πn).
Thus,

Σ(πn)− Σ(π) =

∫
V(πn)

dG−
∫
V(π)

dG =

∫
V(πn)\V(π)

dG = µ(An),

where An ≡ V(πn) \ V(π) = {v : φ(v) ≥ πn and φ(v) < π}. Clearly, An is measurable, since

φ : [0, v̄] → [0, 1] defined in (3) is continuous as it is the minimum of two continuous functions.

Next, notice that An+1 ⊆ An for all n = 1, 2 . . ., namely, (An)n is a decreasing set sequence

with limn→∞An = {v : φ ≥ π} ∩ {v : φ(v) < π} = ∅. Thus, by continuity of the measure µ,

limn→∞ µ(An) = µ(limn→∞An) = µ(∅) = 0. Consequently, limn→∞ Σ(πn) = Σ(π).

We now show that Σ(·) is, in addition, right-continuous. Consider π ∈ [0, 1] and a

decreasing sequence (πn)n with πn ↓ π as n→ ∞. Since V(πn) ⊆ V(π), as πn > π, it follows

that

Σ(π)− Σ(πn) =

∫
V(π)

dG−
∫
V(πn)

dG =

∫
V(π)\V(πn)

dG = µ(Bn),

where Bn ≡ V(π) \ V(πn) = {v : φ(v) ≥ π and φ(v) < πn}. Moreover, Bn ⊆ Bn+1 for all n,

i.e., (Bn)n is an increasing sequence with limn→∞Bn = {v : φ(v) = π} = {v : φ ≥ π} ∩ {v :
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φ(v) ≤ π}. Thus, limn→∞ µ(Bn) = µ(limn→∞Bn) = µ(φ−1{π}). But, since µ is absolutelty

continuous with respect to the Lebesgue measure (λ), and λ(φ−1{π}) = 0 by Lemma A.1,

it follows that µ(φ−1{π}) = 0, and so limn→∞ Σ(πn) = Σ(π). □

A.1.2 Proof of Proposition 1

Consider the composite function Σ ◦ Π : [0, 1] → [0, 1]. We’ll show that Σ(Π(·)) has a

unique fixed point. First, it is clear that Σ(Π(·)) is continuous, since it is the composition

of two continuous functions. Second, when σ = 0 we have Π(0) = 0 and so Σ(Π(0)) = 1.

Conversely, when σ = 1, we have Π(1) = 1. We now argue that Σ(1) = 0. Indeed, notice

that φ(v) ≤ b(v)/ℓ(v)
1+b(v)/ℓ(v)

< 1 a.e., since b(v)/ℓ(v) is finite a.e. Thus, V(1) = {v : φ(v) = 1} has

Lebesgue measure zero, and so Σ(1) =
∫
V(1) dG = 0. Altogether, by the Intermediate Value

Theorem, there exists σ∗ ∈ (0, 1) with Σ(Π(σ∗)) = σ∗.

Finally, we show that σ∗ is unique. Suppose not. Then, without loss of generality, there

exists another fixed point σ̃ < σ∗. Since Π(·) is increasing, it follows that Π(σ̃) ≤ Π(σ∗).

Thus, Σ(Π(σ̃)) ≥ Σ(Π(σ∗)), since Σ(·) is decreasing. But then, σ̃ ≥ σ∗, since each is a fixed

point, which is a contradiction. This completes the proof. □

A.2 Proofs of Section §4

A.2.1 Proof of Lemma 2

First, the continuity of φ follows directly from being the minimum of continuous functions.

Second, φ is quasi-concave since the upper level set of the minimum of monotone functions

is convex by being the intersection of convex sets. Finally, we turn to examine the shape of

φ. Notice that V(π; t) is unaffected by t when φ(v) = b(v)/ℓ(v)
1+b(v)/ℓ(v)

for all v ∈ [0, v̄]. This is the

case when b(v)/ℓ(v)
1+b(v)/ℓ(v)

≤ t/ℓ(v) for all v ∈ [0, v̄], or t ≥ b(v̄)
1+b(v̄)/ℓ(v̄)

=: t̂. Otherwise, φ eventually

decreases. Indeed, for t < t̂ we have t/ℓ(v̄) < t̂/ℓ(v̄) = b(v̄)/ℓ(v̄)
1+b(v̄)/ℓ(v̄)

, and thus φ is decreasing

and equal to φ(v) = t/ℓ(v) for v close to v̄. □

A.2.2 Proof of Proposition 2

Proof (a): Let v̂ ≡ argmaxv φ(v). By Lemma 2, v̂ is unique as φ is either monotone or

hump-shaped. Since b(v)/ℓ(v)
1+b(v)/ℓ(v)

< 1 ∀v, we have π̄ ≡ φ(v̂) < 1 and V(π) = ∅ for π > π̄.

Now, consider π ≤ π̄. Then, we have that b(v)/ℓ(v)
1+b(v)/ℓ(v)

≥ π iff v ∈ [v0(π), v̄], where v0(·) is
defined in (6). Next, we separate into two cases. If π ≤ t/ℓ(v̄) ≡ π then t/ℓ(v) ≥ π for all

v ∈ [0, v̄]; therefore, V(π) = [v0(π), v̄] ∩ [0, v̄] = [v0(π), v̄]. Now if π ≥ t/ℓ(v̄) then t/ℓ(v) ≥ π

iff v ∈ [0, v1(π)], where v1(·) is defined in (6), and so V(π) = [v0(π), v1(π)] ∋ v̂. □
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Proof (b): Consider t′ < t′′ < t̂. Then, by Proposition 2-(a), we have V(π; t′) = [v0(π), v̄]

for π ≤ t′/ℓ(v̄), and also V(π; t′′) = [v0(π), v̄] for π ≤ t′′/ℓ(v̄). Since t′ < t′′ it follows that

V(π; t′) = V(π; t′′) = [v0(π), v̄] for all π ≤ t′/ℓ(v̄) < t′′/ℓ(v̄). □

A.2.3 Proof of Proposition 3

First, following the proof of Proposition 2, for each cost t, define the level of prevalence

π(t) ≡ t/ℓ(v̄). Notice that this threshold π rises as verification cost t rises. Moreover, for

t = 0 and t = t̂ we have π(0) = 0 and π(t̂) < 1, given the expression for t̂ in the proof of

Lemma 2. Now, consider π̄(t) from the proof of Proposition 2. Since π̄(t) = maxv∈[0,v̄] φ(v; t)

and φ(·; t) rises in t, it follows that π̄(t) weakly rises in t. In fact, π(t) = π̄(t) = φ(v̄) when

t = t̂, and thus the unverified sharing rate must obey Σ(π(t̂)) = 0, given Proposition 2.

Next, let πo denote the equilibrium prevalence when the possibility of verification is not

available (or, alternatively, when t ≥ t̂), and let σo denote the associated equilibrium sharing

rate. Clearly, πo, σo > 0. We then define our verification cost of interest as

t′ ≡ inf{t ≤ t̂ | π(t) = πo}.

By continuity, this infimum is attained, and is strictly less than t̂, since σo > 0.

Finally, let σS(π) ≡ F−1(π) denote the inverse supply function which, critically, is unaf-

fected by changes in t. For t < t′, therefore, we have that πo > π(t), and so by Proposition 2

we deduce that Σ(πo) = max{
∫ v1(πo)

v0(πo)
dG, 0} <

∫ v̄
v0(πo)

dG = σo, namely, a positive mass of

users will now find it optimal to share and verify news. Consequently, Σ(πo) < σS(π
o), and

thus the excess of supply is cleared with a lower prevalence rate, and so a lower unverified

sharing rate. The diffusion rate falls as there is less production and sharing of unverified

news.

For t > t′, however, πo < π(t) and hence Σ(π; t) = Σ(π; t′) over [0, π(t)]. Thus, the

equilibrium continues to be (πo, σo). This concludes the proof. □

A.3 Proofs of Section §5

A.3.1 Proof of Proposition 4

First, we show that the conclusion is implied by condition (a).

Step 1: v0(π) is convex for π ≤ π̄0. Let p(v) ≡ b(v)/ℓ(v) with p(0) = limv↓0 b(v)/ℓ(v).

By (6), it follows that v0(π) ∈ (0, v̄) is determined by p(v0(π)) ≡ π/(1 − π). Also, since

p : [0, v̄] → [p(0), p(v̄)] is strictly increasing and concave, its inverse p−1 : [p(0), p(v̄)] → [0, v̄]

is strictly increasing and convex. Thus, for π0 and π̄0 respectively solving p(0) = π0/(1−π0)
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and p(v̄) = π̄0/(1 − π̄0), we have v0(π) = p−1
(

π
1−π

)
for π ∈ [π0, π̄0]. For π < π0, we have

v0(π) = 0 by (6). Since the map π 7→ π/(1 − π) is increasing and convex, it follows that

v0(π) is increasing and convex for π ≤ π̄0.

Step 2: If σ∗ ≤ ΣN(π
∗) then |Eπ(Σ)| ≥ Eπ(ΣN). Let σ∗

V = ΣV (π
∗) and σ∗

N = ΣN(π
∗).

Since Σ(π) = 1− (ΣV (π) + ΣN(π)) for all π ≤ π̄ (Proposition 2), it follows that for π = π∗:

|Eπ(Σ)| = Eπ(ΣV )(σ
∗
V /σ

∗) + Eπ(ΣN)(σ
∗
N/σ

∗) ≥ Eπ(ΣN).

The inequality holds because both ΣV (·) and ΣN(·) are increasing in π, since the thresholds

v0(·) and v1(·) are, respectively, increasing and decreasing in π; also, σ∗ ≤ σ∗
N .

Step 3: Eπ(ΣN) ≥ 1. First, notice that ΣN(π) = G(v0(π)) is convex for π ≤ π̄0, since g(v)

is increasing in v, and v0(π) is increasing and convex. Also, ΣN(0) = 0 because v0(0) = 0,

and so ΣN(π) rises from the origin at increasing rates. Thus, ΣN must have an increasing

secant: (ΣN(π)/π)
′ ≥ 0. But then, Eπ(ΣN) ≥ 1. Altogether, |Eπ(Σ)| ≥ Eπ(ΣN) ≥ 1. □

Following similar logic, we now show that condition (b) also implies the desired result.

Step 1: If 1/ℓ(v) is concave then v1(π) is concave. By (6), v1(π) ∈ (0, v̄) is charac-

terized by ℓ̃(v1(π)) ≡ π/t, where ℓ̃(v) ≡ 1/ℓ(v) is monotone decreasing. Let π1 and π̄1 solve

ℓ̃(0) = π̄1/t and ℓ̃(v̄) ≡ π1/t, respectively. Then, for π ∈ [π1, π̄1], we have v1(π) = ℓ̃−1(π/t).

Note that for π < π1, v1(π) = v̄, given (6). Thus, for π ≤ π̄1, v1(π) is decreasing and

concave, since ℓ̃−1 is the inverse of a monotone decreasing concave function.

Step 2: If σ∗ ≤ ΣV (π
∗) then |Eπ(Σ)| ≥ Eπ(ΣV ). Let σ∗

V = ΣV (π
∗) and σ∗

N = ΣN(π
∗).

Since Σ(π) = 1− (ΣV (π) + ΣN(π)) for all π ≥ π̄, it follows that for π = π∗ ∈ (0, π̄):

|Eπ(Σ)| = Eπ(ΣV )(σ
∗
V /σ

∗) + Eπ(ΣN)(σ
∗
N/σ) ≥ Eπ(ΣV ),

where the inequality follows by the same reasons given in Step 2 above, but using σ∗ ≤ σ∗
V .

Step 3: Eπ(ΣV ) ≥ 1. First, notice that ΣV is convex. Indeed, since G(v) is concave, 1−G(v)
is convex. Thus, ΣV (π) = 1−G(v1(π)) is increasing and convex, since it is the composition

of a decreasing concave function v1(π), and a decreasing convex function 1−G(v). Moreover,

ΣV (0) = 0 for all π ≤ π1, since v1(π) = v̄. Altogether, ΣV (π) weakly rises from the origin at

increasing rates, and thus ΣV is superadditive and its secant must rise: (ΣV /π)
′ ≥ 0. But

then, ΣV must be elastic, i.e., Eπ(ΣV ) ≥ 1. All told, |Eπ(Σ)| ≥ Eπ(ΣV ) ≥ 1. □

Proposition A.1. Assume that b(·)/ℓ(·) is of class C2, and consider an equilibrium (π∗, σ∗).

Suppose that for v∗ = v0(π
∗) we have (b(v∗)/ℓ(v∗))′′ ≤ 0 and v∗g(v∗)/G(v∗) ≥ 1. Then, if the

passthrough σ∗ ≤ ΣN(π
∗) then the unverified sharing function is elastic, i.e., |Eπ(Σ)| ≥ 1.
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Proof: First, as shown in the proof of Claim A.1, the elasticity of ΣN(π) = G(v0(π)) obeys

Eπ(ΣN) =
g(v0)

G(v0)

(
b′

b
− ℓ′

ℓ

)−1
1

1− π
.

Now, evaluate this expression at π = π∗. Next, by assumption, g(v∗)/G(v∗) ≥ 1/v∗. Also,

(b(v∗)/ℓ(v∗))′′ ≤ 0, and thus b/ℓ is concave in a neighborhood about v∗, since b, ℓ are of

class C2. This implies that b/ℓ is subadditive about v∗, and thus it has a decreasing secant

[b(v∗)/(ℓ(v∗)v∗)]′ ≤ 0, namely, v∗(b′(v∗)/b(v∗) − ℓ′(v∗)/ℓ(v∗)) ≤ 1. Altogether, using the

expression above for Eπ(ΣN), we conclude that Eπ(ΣN) ≥ 1/(1− π∗) > 1.

Finally, as shown in the proof of Proposition 4, if the equilibrium pass through of fake

news obeys σ∗ ≤ ΣN(π
∗), then identity (7) implies |Eπ(Σ) ≥ |Eπ(ΣN) > 1. □

Proposition A.2. Consider an equilibrium (π∗, σ∗). Suppose that for v∗ = v1(π
∗) we have

g(v∗)

1−G(v∗)
≥ ℓ′(v∗)

ℓ(v∗)
.

Then, if σ∗ ≤ ΣV (π
∗), the unverified sharing function is elastic in equilibrium: |Eπ(Σ)| ≥ 1.

Proof: First, assume the equilibrium entails active verification (otherwise the result is vac-

uously true). Then, ΣV (π) = 1 − G(v1(π)), by Proposition 2, with v1(π) uniquely solving

πℓ(v) = t. Next, we compute Eπ(ΣV ) and evaluate it at π = π∗:

Eπ(ΣN) =
−π∗g(v∗)v′1(π

∗)

1−G(v∗)
=

g(v∗)

1−G(v∗)
× ℓ(v∗)

ℓ′(v∗)
,

where we have used that πv′1(π) = −ℓ(v1)/ℓ′(v1). Thus, Eπ(ΣN) ≥ 1 provided the condition

specified in the proposition holds. Finally, as in the proof of Proposition 4, if the passthrough

of fake news obeys σ∗ ≤ ΣV (π
∗), then identity (7) implies |Eπ(Σ) ≥ |Eπ(ΣV ) ≥ 1. □

A.3.2 Proof of Proposition 5

We will show that each term in expression (7) is decreasing in t. First, notice that ΣN(π) =

G(v0(π)) is not affected by t, and so an increase in t reduces ratio ΣN/Σ, since it raises the

amount of unverified sharing. Similarly, the ratio (ΣV /Σ) falls as t rises, since t raises Σ but

it lowers ΣV . It remains to verify that Eπ(ΣV ) falls in t. To this end, we’ll first show that v1

is supermodular in (π, t). Indeed, differentiate πℓ(v1(π)) = t in π to get:

∂v1
∂π

=
−1

πℓ′(v1)/ℓ(v1)
< 0.
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Next, differentiate the above expression in t to obtain:

∂2v1
∂t∂π

=

[
πℓ′(v1)

ℓ(v1)

]2
× ∂

∂v

[
πℓ′(v)

ℓ(v)

] ∣∣∣∣∣
v=v1

× ∂v1
∂t

≥ 0,

where the inequality holds because ∂v1/∂t > 0, and also (ℓ′(v)/ℓ(v))′ ≥ 0.

Finally, we show that Eπ(ΣV ) falls in t. Differentiate Eπ(ΣV ) = −πv′1g(v1)

1−G(v1)
in t to get:

∂Eπ(ΣV )

∂t
= − ∂

∂v

(
g(v)

1−G(v)

) ∣∣∣∣∣
v=v1

× ∂v1
∂t

× ∂v1
∂π

− g(v1)

1−G(v1)
× ∂2v1
∂t∂π

.

The above expression is negative since [g(v)/(1−G(v))]′ ≤ 0, ∂v1/∂t > 0 > ∂v1/∂π, and v1

is supermodular in (π, t). □

A.4 Proofs of Section §6

A.4.1 Proof of Proposition 6

Take π ∈ (0, 1) and suppose that Σ(π) < Σco(π). By Carathéodory’s Theorem, there exists

λ ∈ (0, 1) and prevalence πA, πB ∈ [0, 1] such that λπA + (1 − λ)πB = π and Σco(π) =

λΣ(πA) + (1 − λ)Σ(πB). Without loss of generality, assume πA < πB. The monopolist can

induce πA and πB by choosing segment sizes ω and 1 − ω for A and B, respectively; and

also, by sending an extra amount τ of truthful news to segment A, with τ ≥ 0. Following

the logic explained in the main text, the prevalence in A and B obey

πA =
λπ

λπ + (1− π)ω + τ
and πB =

(1− λ)π

(1− λ)π + (1− π)(1− ω)
.

Since the variables (λ, πA, πB, π) are already fixed by the concavification, it follows that the

pair (ω, τ) adjusts to induce the desired prevalence (πA, πB), given (λ, π).

Finally, any prevalence π for which Σ(π) = Σco(π) can be trivially implemented by setting

segment sizes ω = λ and τ = 0 so that πA = πB = π. □

A.4.2 Proof of Proposition 7

Suppose Σco(π∗) > Σ(π∗) (otherwise, the result is trivially true). Then, Π(Σco(π∗)) >

Π(Σ(π∗)) = π∗. This implies that the monopolistic equilibrium π∗∗ must be strictly greater

than π∗, since Π(Σco(·)) is strictly decreasing. Consequently, σ∗∗ = Σco(π∗∗) > Σ(π∗) = σ∗.

Since the monopolistic equilibrium induces strictly more creation and sharing, the diffusion
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rate must rise, i.e., ∆∗∗ > ∆∗. Finally, as discussed in the main text, since the monopolist

profits are given by the area between σ and the supply curve, the segmentation above is

optimal among the ones considered. □

A.5 Proofs of Section §7

A.5.1 Proof of Proposition 8

To prove Proposition 8, we use the following claim:

Claim A.1. Suppose that the propensity to share function b(v)/ℓ(v) is concave, and the

density g(v) increasing. If, in equilibrium, σ∗ ≤ ΣN(π
∗), then Eπ(Σ) ≥ 1/(1− π∗).

Proof: First, recall that ΣN(π) ≡ G(v0(π)), where v0(π) obeys (6). Next, as in the proof of

Proposition 4-(a), we can use identity (7) to show that, in equilibrium, |Eπ(Σ)| ≥ Eπ(ΣN),

provided σ∗ ≤ ΣN(π
∗). Since σ∗ ∈ (0, 1), v0(π) in (6) must be interior, and thus differentiable

in π, given Assumption 2 and the Implicit Function theorem. Consequently, Eπ(ΣN) =

πg(v0(π))v
′
0(π)/G(v0(π)), where v0(π) is determined by b(v0)/ℓ(v0) = π/(1 − π), given (6).

Log-differentiate this last expression in π, and then solve for v′0(π) to get:

v′0(π) =
1

π(1− π)

(
b′

b
− ℓ′

ℓ

)−1

> 0,

which is positive since b/ℓ is strictly increasing in v, by Assumption 1. Therefore,

Eπ(ΣN) =
g(v0)

G(v0)

(
b′

b
− ℓ′

ℓ

)−1
1

1− π
.

Now, notice that G(v) is strictly increasing and convex, with G(0) = 0. Thus, G(·) has an
increasing secant [G(v)/v]′ ≥ 0, or vg(v)/G(v) ≥ 1. Similarly, b(v)/ℓ(v) is strictly increasing

and concave; hence, b(v)/ℓ(v) must have a decreasing secant [b(v)/ℓ(v)v]′ ≤ 0, namely,

v(b′/b− ℓ′/ℓ) ≤ 1. Putting these observations together, Eπ(ΣN) ≥ 1/(1− π). □

Proof of Proposition 8: Let π∗(ϕ) denote the equilibrium prevalence given a filter of

quality ϕ. As argued in the main text of §7, this value is the unique solution to the equation

(1− ϕ)Σ(ψ(π∗(ϕ);ϕ))︸ ︷︷ ︸
Σe(ψ(π∗(ϕ),ϕ))≡

= Π−1(π∗(ϕ)),

where Π−1 is the the upward sloping inverse supply function. Totally differentiating the 
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above equality with respect to ϕ, we get:

−Σ + (1− ϕ)Σ′
[
∂ψ

∂π
[π∗]′(ϕ) +

∂ψ

∂ϕ

]
= [Π−1]′[π∗]′(ϕ).

Solving for [π∗]′(ϕ) yields:

[π∗]′(ϕ) =
−Σ + (1− ϕ)Σ′ ∂ψ

∂ϕ

[Π−1]′ − (1− ϕ)Σ′ ∂ψ
∂π

Since [Π−1]′ > 0 > Σ′ and ∂ψ/∂π > 0, it follows that the sign of [π∗]′ is fully determined by

the sign of the numerator of the above expression:

χ(ϕ) ≡ −Σ(ψ(π∗(ϕ);ϕ)) + (1− ϕ)Σ′(ψ(π∗(ϕ);ϕ))
∂ψ

∂ϕ
(ψ(π∗(ϕ), ϕ)).

Taking the limit of the above expression as ϕ→ 0,

χ(0) = −Σ(π∗(0))− Σ′(π∗(0))π∗(0)(1− π∗(0)),

where we have used that ψ(π, 0) = π and ∂ψ
∂ϕ
(π, 0) = −π(1 − π). By Claim A.1, it follows

that χ(0) > 0, since |Eπ(Σ)| ≥ 1/(1−π∗(0)). This implies that a small increase in the filter’s

quality leads to an increase in the equilibrium prevalence π∗(ϕ). Because a change in the

filter has no direct effect on the supply function Π(σe), the new equilibrium is the result

of an upward movement along the supply curve, and hence the new equilibrium displays a

higher effective sharing σe∗ and, thus, a higher diffusion of fake news, ∆∗(ϕ) ≡ π∗(ϕ)σe∗(ϕ).

Intuitively, the small increase in ϕ shifts the effective sharing (1 − ϕ)Σ(·) up in the (π, σe)-

space around the point studied. Conversely, as the filter becomes perfect, i.e., ϕ → 1, Σe

shifts left towards the origin, with (π∗(ϕ), σe,∗(ϕ)) → (0, 0) and ∆∗(ϕ) = σe∗(ϕ)π∗(ϕ) → 0.

Finally, we show that equilibrium sharing σ∗ is monotone increasing. To see this, consider

the (π, σ)-space. There, an increase in filter ϕ lowers the posterior ψ(π, ϕ) and so it raises

the unverified sharing Σ(ψ(π, ϕ)) for every π. At the same time, an increase in ϕ lowers

supply Π((1− ϕ)σ) at every σ. Thus, the sharing rate σ∗ unambiguously rises. □
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