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The Complex-Number Mortality Model (CNMM) based on 
orthonormal expansion of membership functions 

Andrzej Szymański1, Agnieszka Rossa2 

ABSTRACT 

The paper deals with a new fuzzy version of the Lee-Carter (LC) mortality model, in which 
mortality rates as well as parameters of the LC model are treated as triangular fuzzy numbers. 
As a starting point, the fuzzy Koissi-Shapiro (KS) approach is recalled. Based on this 
approach, a new fuzzy mortality model – CNMM – is formulated using orthonormal 
expansions of the inverse exponential membership functions of the model components. The 
paper includes numerical findings based on a case study with the use of the new mortality 
model compared to the results obtained with the standard LC model. 

Key words: exponential membership functions, Legendre’s polynomials, mortality 
modelling, orthonormal system. 

1. Introduction  

In the last four decades several approaches were proposed to model human 
mortality and to project future mortality evolution. Among the extrapolative methods, 
a model proposed by Lee and Carter (1992) is one of the most popular approaches, 
although other mortality models have been also developed, e.g. Heligman and Pollard 
(1980), Horiuchi and Coale (1990), Milevsky and Promislow (2001), Currie et al. 
(2004), Bongaarts (2005), Cairns et al. (2006).  

The Lee-Carter model (LC) has been extensively used for many real populations 
and extended in various directions (see, e.g. Renshaw et al. (1996), Tuljapurkar et al. 
(2000), Booth et al. (2002), (2006), Brouhns et al. (2002), Renshaw and Haberman 
(2003), De Jong and Tickle (2006), Koissi and Shapiro (2006), Pitacco et al. (2009), 
Haberman and Renshaw (2012), Danesi et al. (2015)).   

The Lee-Carter method (1992) can be treated as a special case of the principal 
component analysis with a single component (Bozik and Bell (1987)). The focus of this 
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approach is on central age-specific death rates 𝑚  for a range of ages 𝑥 0,1,2, … , 𝑋 
and calendar years 𝑡 1,2, … , 𝑇, organized in a two way table with rows referring to 
one-year age groups and columns referring to one-year period intervals.  

The LC method consists of a model of age-specific log-central death rates 𝑦
ln 𝑚  with time and age components  

𝑦 𝑎 𝑏 𝑘 𝜀 ,       𝑥 0,1,2, … 𝑋,   𝑡 1,2, … , 𝑇,  (1) 

and a model of random walk with a drift to forecast time components 𝑘  for 𝑡 𝑇 

𝑘 𝑑  𝑘 𝜁 ,   (2) 

where 𝑎  in (1) is a set of age-related effects describing the age profile of mortality, 
𝑘  is a set of the time-related effects representing the general trend of mortality, 𝑏  

is a set of age-related effects describing patterns of deviations from the age profile in 
response to change of the general trend, 𝑑 in (2) is a constant (a drift), whereas 𝜀 , 𝜁  
in (1) and (2), respectively, are random residuals.  

Parameters 𝑏  show which death rates decline rapidly and which slowly over time 
in response to change of 𝑘 . For some values of x,  𝑏  may be positive while negative for 
other values, indicating that log-central death rates 𝑦 ln 𝑚  are increasing at some 
ages while decreasing at other ages.  

For the full identification of (1), the following two constraints are imposed 

∑ 𝑏 1, ∑ 𝑘 0.        (3)  

Lee and Carter used the SVD method (Singular Value Decomposition) to estimate 
𝑎 , 𝑏 , 𝑘  and assumed that error terms 𝜀  are normally distributed with a small 
constant variance. This is rather a strong assumption, which is often violated especially 
in the case of the imprecise input data. Moreover, prediction errors do not account for 
the estimation errors of the age-specific parameters 𝑎 , 𝑏 , except of incorporating 
uncertainty from the forecast of the time component 𝑘 .  

It is well-known that various kinds of errors can occur in reporting death statistics. 
This could be e.g. incorrect year, area or age. Moreover, the midyear population data 
used to calculate period age-specific mortality rates 𝑚  are also the subject of errors. 
The midyear population size is the population at July 1 and is assumed to be the point 
at which half of the deaths during the year have occurred. Such estimates can be actually 
underestimated or overestimated and this affects the resulting death rates. Therefore, 
exact age-specific mortality rates are seldom known, hence incorporating the data 
uncertainty into the model structure seems to be a realistic and expected idea. 

The new trends in fuzzy analysis are based on the algebraic approach to fuzzy numbers 
(e.g. Ishikawa (1997), Kosiński et al. (2003), Rossa et al. (2017), Szymański and Rossa (2014), 
(2017)). The essential idea in such an approach is representing the membership function of 
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a fuzzy number as an element of the square-integrable function space. We will use this idea 
to propose a new fuzzy mortality model in the spirit of the Koissi-Shapiro approach.  

The log-central mortality rates as well as parameters of the underlying Koissi-Shapiro 
model are symmetric triangular fuzzy numbers, i.e. numbers with symmetric triangular 
membership functions. We believe that exponential functions could fit the data better. 
Therefore, our model is based on exponential membership functions of the model 
components instead of triangular ones. 

The paper is organized as follows. Section 2 recalls the data fuzzification method 
(Subsection 2.1) and the fuzzy mortality model (Subsection 2.2) as proposed by Koissi and 
Shapiro. The new complex-number fuzzy mortality model is formulated in Section 3. The 
concept is presented in six subsections: theoretical backgrounds (Subsection 3.1), 
formulation of the new mortality model CNMM (Subsection 3.2), estimation of the model 
parameters (Subsection 3.3), description of the modified fuzzification method (Subsection 
3.4), description of the forecasting method (Subsection 3.5) and a case study (Subsection 
3.6). Concluding remarks are contained in Section 4. Formal details about orthonormal 
expansions by means of the Legendre polynomials are included in the Appendix. 

2. The Koissi-Shapiro model  

2.1. Fuzzification of the input data 

In the Koissi-Shapiro model (2006), log-central death rates 𝑦 ln 𝑚  are 
transformed into symmetric triangular fuzzy numbers 

  𝑌 𝑦 , 𝑒 ,   (4) 

where 𝑦 , 𝑒  are centres and spreads of  fuzzy numbers 𝑌 , respectively. 
The addition ⊕ and multiplication ⊗ of symmetric triangular numbers 𝐴

𝑎, 𝑠  and 𝐵 𝑏, 𝑠  defined in the norm 𝑇  are expressed as  
 𝐴 ⊕ 𝐵 𝑎 𝑏, max 𝑠 , 𝑠 ,   (5) 
      𝐴 ⊗ 𝐵 𝑎𝑏, max 𝑠 |𝑏|, 𝑠 |𝑎| ,   (6) 

and the multiplication of 𝐴 𝑎, 𝑠  by a scalar 𝑏 ∈ ℝ reduces to 
 𝐴 ⊗ 𝑏 𝑎𝑏, 𝑠 |𝑏| .    (7) 

Parameters 𝑒  in (4) are also called fuzziness parameters. To determine their 
values, Koissi and Shapiro postulated using a fuzzy regression model. They assumed 
existing symmetric triangular fuzzy numbers 𝑐 , 𝑠  and 𝑐 , 𝑠  satisfying for 
each age group 𝑥 the following equalities 

 𝑦 , 𝑒 𝑐 , 𝑠 ⊕ 𝑐 , 𝑠 ⊗ 𝑡,        𝑡 1,2, … , 𝑇.   (8) 

This postulate leads to the equalities (9)–(10) of the form 
 𝑦 𝑐 𝑐 ∙ 𝑡,        𝑡 1,2, … , 𝑇.   (9) 
        𝑒 max 𝑠 , 𝑠 ∙ 𝑡 ,        𝑡 1,2, … , 𝑇.    (10) 
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To find coefficients in (9) the ordinary least-squares regression is used, i.e. 𝑐  and 
𝑐  are found from formulas 

 𝑐
⋅ ⋅

,    (11) 

 𝑐 𝑦 𝑐 ∙ 𝑡,    (12) 
where 𝑧̅ means averaging over 𝑧 ’s. 

 
To find parameters 𝑠 , 𝑠 ,‘’the minimum fuzziness criterion’’ is proposed by 

minimizing spreads of  𝑌 𝑦 , 𝑒  and requiring each log-central death rate 𝑦  to 
fall within the estimated death rates  𝑦  at a level ℎ ∈ 0,1 . Since 𝑒  are, by 
assumption, non-negative numbers and the smallest value they can take is 0, it is 
necessary to determine such values of 𝑠 , 𝑠 , that at a given 𝑥 they minimize the sum 

 𝑇 ⋅ 𝑠 𝑠 ⋅ ∑ 𝑡, (13) 

subject to the constraints  

 𝑐 𝑐 ∙ 𝑡 1 ℎ 𝑠 𝑠 𝑡 ln 𝑚 ,   𝑡 1,2, … , 𝑇,     (14) 

 𝑐 𝑐 ∙ 𝑡 1 ℎ 𝑠 𝑠 𝑡 ln 𝑚 ,   𝑡 1,2, … , 𝑇, (15) 

where 𝑠 , 𝑠 0, 𝑢 ∈ 0,1  and ℎ ∈ 0,1  is a predetermined value representing the 
degree of fit of the estimated model to the data. As lower h provides a better fit, we can 
use ℎ 0. After finding the parameters 𝑠 , 𝑠  for each x, the fuzziness parameters 𝑒  
can be determined using formula (10). 

2.2. The Koissi-Shapiro model 

Let us recall the fuzzy mortality model as proposed by Koissi and Shapiro (2006). 
The structure of their model is analogous to the Lee-Carter one (1992) and takes the 
form 

 𝑌 𝐴 ⊕ 𝐵 ⊗ 𝐾 , (16) 

with the difference that 𝑌 𝑦 , 𝑒  for 𝑥 0,1, … , 𝑋, 𝑡 1,2, … , 𝑇 are fuzzified 
log-central death rates expressed as triangular numbers with centres 𝑦  and spreads 
𝑒 . 

 
Model parameters are assumed to be symmetric triangular numbers 𝐴

𝑎 , 𝑠 ,  𝐵 𝑏 , 𝑠 , 𝐾 𝑘 , 𝑠  with unknown centres 𝑎 , 𝑏 , 𝑘 ∈ ℝ and 
spreads 𝑠 , 𝑠 , 𝑠 0, respectively.  

To find parameters 𝑎 , 𝑏 , 𝑘 , 𝑠 , 𝑠 , 𝑠 , Koissi and Shapiro postulated 
minimizing the Diamond distance 𝐷  (Diamond (1988)) between the left and right-
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hand sides of (16). This leads to the criterion function defined for each separate 𝑥 and 
𝑡 as 

𝐷 𝑌 , 𝐴 ⊕ 𝐵 ⊗ 𝐾 𝑎 𝑏 𝑘 𝑦 𝑎 𝑏 𝑘

max 𝑠 , |𝑏 |𝑠 , |𝑘 |𝑠 𝑦 𝑒 𝑎 𝑏 𝑘

max 𝑠 , |𝑏 |𝑠 , |𝑘 |𝑠 𝑦 𝑒 .   
  (17) 

Unfortunately, the criterion function contains a max-type operator 
max 𝑠 , |𝑏 |𝑠 , |𝑘 |𝑠 , which does not allow using standard derivative based 
solution algorithms for minimization of (17). 

3. The Complex-Number Mortality Model CNMM 

3.1.   Theoretical backgrounds 

The new trends in fuzzy analysis are based on the algebraic approach to fuzzy 
numbers (see, e.g. Ishikawa (1997), Kosiński et al. (2003), Rossa et al. (2017), Szymański 
and Rossa (2014), (2017)). The essential idea in such an approach is representing the 
membership function of a fuzzy number as an element of the square-integrable 
function space.  

Let us consider the membership function of the exponential form 

 𝜇 𝑧

exp ,       𝑧 𝑐,

exp ,       𝑧 𝑐,

 (18) 

where 𝑐 ∈ ℝ, 𝜏, 𝜈 0  are some scalar parameters. 

Note that (18) can be decomposed into two parts – strictly increasing and strictly 
decreasing functions  𝑧  and  𝑧 , say, of the form 

  𝑧 exp ,      𝑧 𝑐, (19) 

 Φ 𝑧 exp ,      𝑧 𝑐. (20) 

Then there exist inverse functions 

  𝑢 𝑐 𝜓 𝑢 ,    𝑢 ∈ 0,1 , (21) 

 Φ 𝑢 𝑐 𝜑 𝑢 ,    𝑢 ∈ 0,1 , (22) 

where 𝜓 𝑢  and 𝜑 𝑢  are expressed as  

 𝜓 𝑢 𝜏 ln 𝑢 ,     𝜑 𝑢 𝜈 ln 𝑢 ,     𝑢 ∈ 0,1 . (23) 
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Denoting 𝑓 𝑢 Ψ 𝑢  and 𝑔 𝑢 Φ 𝑢  for 𝑢 ∈ 0,1 , we can write  

𝑓 𝑢 𝑐 𝜓 𝑢 𝑐 𝜏 ln 𝑢 ,   𝑔 𝑢 𝑐 𝜑 𝑢 𝑐 𝜈 ln 𝑢 , (24) 

Functions 𝑓, 𝑔  are square-integrable, so the ordered pair 𝑓, 𝑔  belongs to the 
Cartesian product 𝐿 0,1  𝐿 0,1 . The scalar product in the space 𝐿 0,1  is given 
by the formula 

 〈𝑓, 𝑔〉 𝑓 𝑢 𝑔 𝑢 𝑑𝑢.  (25) 

Example 1. Figure 1(a) depicts functions  𝑧  and  𝑧  as defined in (19) and (20), 
while Figure 1(b) shows their inverse counterparts (21) and (22), respectively.  

 

 
(a) (b) 

Figure 1. Exponential functions  𝑧 ,  𝑧  and the inverse functions  𝑢 ,  𝑢  for 𝑐 0.0, 
𝜏 0.08, 𝜈 0.09. 

Source: Developed by the authors. 

 
It is commonly known that a set of vectors {𝑃 } in 𝐿 0,1  is called an orthonormal 

set if equalities 〈𝑃 , 𝑃 〉 0 for 𝑗 𝑘 and 〈𝑃 , 𝑃 〉 1 are true.  
For any orthonormal set 𝑃  and 𝑓, 𝑔 ∈ 𝐿 0,1  the following relations hold  

 𝑓 ∑ 〈𝑃 , 𝑓〉𝑃 ,       𝑔 ∑ 〈𝑃 , 𝑔〉𝑃 . (26) 

Denoting 𝛼 〈𝑃 , 𝑓〉 and 𝛽 〈𝑃 , 𝑔〉, expressions (26) can also be written as  

 𝑓 𝑢 ∑ 𝛼 𝑃 𝑢 ,     𝑔 𝑢 ∑ 𝛽 𝑃 𝑢 . (27) 

Let 𝐴  be a pair of functions 𝑓 , 𝑔 , where 𝑓 , 𝑔  for 𝑁 ∈ ℕ are some 
orthonormal expansions of inverse exponential functions 24 , i.e. 

 𝑓 𝑢 ∑ 𝛼 𝑃 𝑢 ,         𝑔 𝑢 ∑ 𝛽 𝑃 𝑢 , (28) 
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where 𝑃  is a set of the Legendre polynomials and 𝛼 , 𝛽  are some coefficients of the 
orthonormal expansion (see Appendix for more details). 

Example 2. Let us consider functions 𝑓 𝑢 , 𝑔 𝑢  as depicted in Figure 1(b). Their 
approximations for 𝑁 3 are plotted in Figure 2. 

 
Figure 2.  Functions 𝑓 𝑢 𝑐 𝜏 ln 𝑢 ,   𝑔 𝑢 𝑐 𝜈 ln 𝑢  (solid lines) and their 

approximations 𝑓 𝑢 ∑ 𝛼 𝑃 ,  𝑔 𝑢 ∑ 𝛽 𝑃  (dashed lines). 

Source: developed by the authors 

Further, we will treat the pairs of functions 𝑓, 𝑔  or 𝑓 , 𝑔  given in (24), 
(28), respectively, in terms of the complex analysis. They will be called complex-valued 
fuzzy numbers. 

Let the addition, the subtraction and the multiplication of two complex-valued 
fuzzy numbers 𝐴 𝑓 , 𝑔 , 𝐵 𝑓 , 𝑔  be defined as  

   A ⊕ 𝐵 𝑓 𝑓 , 𝑔 𝑔 ,  (29) 
 𝐴 ⊖ 𝐵 𝑓 𝑓 , 𝑔 𝑔 ,  (30) 
       𝐴 ⨀ 𝐵 𝑓 𝑓 𝑔 𝑔 , 𝑓 𝑔 𝑔 𝑓 ,  (31) 

while the multiplication of  𝐴 𝑓 , 𝑔  by a scalar 𝑑 ∈ ℝ as 

 𝑑 ⊙ 𝐴 𝑑 ∙ 𝑓 , 𝑑 ∙ 𝑔 . (32) 

3.2.   The CNMM model formulation 

We propose the Complex-Number Mortality Model (CNMM) of the form 

 𝑌 𝐴 ⊕ 𝐾 , (33) 

where 𝑥 0,1, … , 𝑋, 𝑡 1,2, … , 𝑇 are age and time indices, respectively,  𝑌
𝑓 ,  𝑔  are complex-valued fuzzy numbers representing fuzzified log-central 

mortality rates, and 𝐴 𝑓 ,  𝑔 , 𝐾 𝑓 , 𝑔   are some complex-
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valued fuzzy numbers with functions 𝑓 ,  𝑔 , 𝑓 , 𝑔  and 𝑓 ,  𝑔  being 
orthonormal expansions (28) of the following functions  

 𝑓 𝑢 𝑎 𝜏 ln 𝑢  ,   𝑔 𝑢 𝑎 𝜈 ln 𝑢 ,   (34) 

   𝑓 𝑢 𝑏 𝑘 𝜏 𝜔 ln 𝑢 ,   𝑔 𝑢 𝑏 𝑘 𝜈 𝜛 ln 𝑢 ,  (35) 

   𝑓 𝑢 𝑦 𝑒 ln 𝑢  ,   𝑔 𝑢 𝑦 𝜐 ln 𝑢 ,   (36) 

Coefficients 𝑎 , 𝑏 , 𝑘 , 𝜏 , 𝜈  𝜏 , 𝜈 , 𝜔 , 𝜛  in (34)–(36) constitute a set of 
unknown parameters,  𝑦 ln 𝑚  are log-central death rates, and 𝑒 , 𝜐  represent 
fuzziness of log-central mortality rates evaluated at the fuzzification stage (see 
Subsection 3.4). 

Let us express the model in terms of complex analysis using an algebraic 
representation, i.e. 

 𝑌 𝑓 𝑖 ∙ 𝑔 ,     𝐴 𝑓 𝑖 ∙ 𝑔 ,      𝐾 𝑓 𝑖 ∙ 𝑔 , (37) 

where 𝑖 √ 1 is an imaginary unit. 

Then, taking into account (28) we can write  

 𝐴 ∑ 𝛼 𝑃 𝑖 ∑ 𝛽 𝑃 ∑ 𝛼 𝑖 𝛽 𝑃 , (38) 

 𝐾 ∑ 𝜂 𝑃 𝑖 ∑ 𝜆 𝑃 ∑ 𝜂 𝑖 𝜆 𝑃 . (39) 

Thus, the right-hand side of (33) can be expressed as  

 𝐴 ⊕ 𝐾 ∑ 𝛼 𝜂 𝑖 𝛽 𝜆 𝑃 . (40) 

By analogy, the left-hand side of (33) can be written in the form  

 𝑌 ∑ 𝜖 𝑃 𝑖 ∑ 𝜃 𝑃 ∑ 𝜖 𝑖 𝜃 𝑃 . (41) 

Coefficients 𝛼 , 𝜂 , 𝛽 , 𝜆  and 𝜖 , 𝜃  in expansions (40), (41), respectively, 
correspond to parameters 𝑎 , 𝑏 , 𝑘 , 𝜏 , 𝜈  𝜏 , 𝜈 , 𝜔 , 𝜛  via relations (42), (43).  

For 𝑗 0 we have 
 𝛼 𝑎  𝜏 𝑐 , 𝛽 𝑎 𝜈 𝑐 ,  
 𝜂 𝑏 𝑘 𝜏 𝜔 𝑐 , 𝜆 𝑏 𝑘 𝜈 𝜛 𝑐 , (42) 
 𝜖 𝑦  𝑒 𝑐 , 𝜃 𝑦 𝜐 𝑐 ,  

and for 𝑗 1,2, … , 𝑁 there is 
 𝛼  𝜏 𝑐 ,  𝛽 𝜈 𝑐 ,   
 𝜂  𝜏 𝜔 𝑐 , 𝜆 𝜈 𝜛 𝑐 ,                      (43) 

 𝜖  𝑒 𝑐 , 𝜃 𝜐 𝑐 ,  
where 𝑐  are some known constants (see Appendix for more details).  
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For 𝑗 0,1,2,3 we get 𝑐 √ , 𝑐 √3𝜋
√

,  𝑐 √5𝜋  
√ √

,  𝑐 √7𝜋
√ √ √

. 

3.3.   Estimation of the model parameters 

To estimate parameters of the CNMM model we apply the metric in the Hilbert 
space 𝐿 0,1  between the left and right-hand sides of (33), i.e. between 𝑌  and 
𝐴 ⊕ 𝐾 . The estimation problem requires minimizing functional 𝐹  in the 
Hilbert space 𝐿 0,1  of the form  

 𝐹 ∑ ∑ 𝑌 ⊖ 𝐴 ⊕ 𝐾 .  (44) 

Thus, 𝑌 ⊖ 𝐴 ⊕ 𝐾  can be expressed as  

𝑌 ⊖ 𝐴 ⊕ 𝐾  

∑ 𝜖 𝛼 𝜂 𝑖 𝜃 𝛽 𝜆 𝑃 . (45) 

After some rearrangements, we get 

𝐹 ∑ ∑ 𝑌 ⊖ 𝐴 ⊕ 𝐾 ∑ ∑ ∑ 𝜖 𝛼 

𝜂 𝑖 𝜃 𝛽 𝜆 𝑃 .  (46) 

Using Pythagorean theorem for the Hilbert space of complex functions, i.e.  

 ∑ 𝛼 𝑃 ∑ 𝛼 ,  (47) 

the criterion function 𝐹  takes the form 

𝐹 ∑ ∑ ∑ 𝜖 𝛼 𝜂 𝑖 𝜃 𝛽 𝜆

∑ ∑ ∑ 𝜖 𝛼 𝜂 𝜃 𝛽 𝜆 .       (48) 

On the basis of relations (42) and (43), we have also  
𝐹 ∑ ∑ 𝑦 𝑎 𝑏 𝑘  𝑐 𝑒  𝜏  𝜏 𝜔

∑ ∑ 𝑦 𝑎 𝑏 𝑘 𝑐 𝜐 𝜈 𝜈 𝜛

𝐷 ∑ ∑ 𝑒 𝜏 𝜏 𝜔 𝜐 𝜈 𝜈 𝜛 ,    

(49) 
where 𝐷 ∑ 𝑐 . 
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The criterion function 𝐹  can also be written as 

𝐹 ∑ ∑ 2 𝑦 𝑎 𝑏 𝑘 𝐶 𝑒  𝜏 𝜏 𝜔

𝐶 𝜐  𝜈 𝜈 𝜛 2𝑐 𝑦 𝑎 𝑏 𝑘 𝑒  𝜏 𝜏 𝜔

2𝑐 𝑦 𝑎 𝑏 𝑘 𝜐  𝜈 𝜈 𝜛 ,  
(50) 

where 𝐶 𝑐 𝐷 . 

To satisfy identifiability of the model, we impose constraints analogous to (3) as 
well as some additional constraints, i.e. 

   ∑ 𝑘 0,    ∑ 𝑏 1, 

   ∑ 𝜏 1, ∑ 𝜈 1, (51) 

   ∑ 𝜔 𝐶, ∑ 𝜛 𝐷,  

where 𝐶, 𝐷 0 are some fixed constants. 

Moreover, we impose also boundary constraints of the form 
∑ 𝑦 ∑ 𝑎 𝑏 𝑘 ,     ∑ 𝑦 ∑ 𝑎 𝑏 𝑘 ,      (52) 

∑ 𝑒  ∑ 𝜏  𝜏 𝜔 ,     ∑ 𝑒  ∑ 𝜏  𝜏 𝜔 , (53) 

∑ 𝜐 ∑ 𝜈 𝜈 𝜛 ,     ∑ 𝜐 ∑ 𝜈 𝜈 𝜛  . (54) 

It follows from requirements (51)(54) that the following equalities hold 

𝑎 ∑ 𝑦 , (55) 

𝑘 ∑ 𝑦 𝑎 ,  (56) 

𝜏 ∑ 𝑒 𝜏 ,   𝜈 ∑ 𝜐 𝜈 . (57) 

𝜔 ∑ 𝑒 𝜏 ,       𝜛 ∑ 𝜐 𝜈 . (58) 

Partial derivatives of  𝐹  with respect to the remaining parameters 𝑏  and 
𝜏 , 𝜈  are of the form 

∑ 𝑘 4 𝑦 𝑎 𝑏 𝑘 2𝑐 𝑒  𝜏 𝜏 𝜔

            𝜐  𝜈 𝜈 𝜛 ,    (59) 

2 ∑ 𝜔 𝐶 𝑒  𝜏 𝜏 𝜔 𝑐 𝑦 𝑎 𝑏 𝑘 ,  (60) 

2 ∑ 𝜛 𝐶 𝜐  𝜈 𝜈 𝜛 𝑐 𝑦 𝑎 𝑏 𝑘 .  (61) 
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Setting (59)(61) equal to zero we receive 

 𝑏
∑

∑
, (62) 

 𝜏
∑ ∑

∑
, (63) 

 𝜈
∑ ∑

∑
.  (64) 

The exact solution can be found  using  an iterative procedure. After choosing a set 
of starting values for unknown parameters, expressions  (57), (58) and (62)(64) can be 
computed sequentially using the most recent set of estimates. 

It is worth noting that coefficients 𝑘 , 𝑏 , 𝜏 , 𝜈 , 𝜔 , 𝜛  satisfy conditions (51). 
Indeed, we have 

∑ 𝑘 ∑ ∑ 𝑦 𝑎 ∑ ∑ 𝑦 ∑ ∑ ∑ 𝑦

∑ ∑ 𝑦 ∑ ∑ 𝑦 0 ,  (65) 
and similarly, there is 

∑ 𝜏
∑

∑ 𝐶 ∑ 𝜔 𝑒 𝜏 𝑐 ∑ 𝜔 𝑦

𝑎 𝑏 𝑘
∑

𝐶 ∑ 𝜔 ∑ 𝑒 𝜏

𝑐 ∑ 𝜔 ∑ 𝑦 𝑎 𝑐 ∑ 𝑏 ∑ 𝜔 𝑘 .   
(66) 

From (51), (56), (58) we have  ∑ 𝑏 1, ∑ 𝑦 𝑎  𝑘 , ∑ 𝑒
𝜏  𝜔 . Thus, we can write 

∑ 𝜏
∑

𝐶 ∑ 𝜔 𝑐 ∑ 𝜔 𝑘 𝑐 ∑ 𝜔 𝑘 1.  (67) 

We also have 

 ∑ 𝜔 ∑ ∑ 𝑒 𝜏 ∑ ∑ 𝑒 𝜏 ∑ ∑ 𝑒

𝑇 ∑ 𝜏 ∑ ∑ 𝑒 ∑ ∑ 𝑒 𝐶 ∑ 𝜏 𝐶 ∙ 1 𝐶.       (68) 

Similar derivations refer to ∑ 𝜈  and ∑ 𝜛 . Hence, there following equalities 
hold 

    ∑ 𝜏 ∑ 𝜈 1    and    ∑ 𝜔 𝐶,    ∑ 𝜛 𝐷.  (69) 

There is also 

∑ 𝑏 ∑
∑

∑

∑
2 ∑ 𝑘 ∑ 𝑦 𝑎 𝑐 ∑ 𝑘 ∑ 𝑒 𝜏

𝑐 ∑ 𝑘 ∑ 𝜐 𝜈 𝑐 ∑ 𝑘 𝜔 ∑ 𝜏 𝜛 ∑ 𝜈 .  
(70) 
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Using relations (56), (58) and (51) we obtain 

 ∑ 𝑏
∑ ∑ ∑

∑
1. (71) 

The special case. Let us assume that 𝑒 𝜐  for 𝑥 0,2, … , 𝑋, 𝑡 1,2 … , 𝑇, 
then the criterion function (50) reduces to 

 𝐹 2 ∑ ∑ 𝑦 𝑎 𝑏 𝑘 𝐶 𝑒  𝜏 𝜏 𝜔        (72) 
and formulas (62) and (63) defining parameters  𝑏  and 𝜏  simplify to the following 
ones 

𝑏
∑

∑
. (73) 

 

𝜏
∑

∑
, (74) 

where ∑ 𝑏 1, ∑ 𝜏 1.  

It follows from these derivations that the main parameters 𝑎 , 𝑏 , 𝑘  have similar 
interpretation as in the standard Lee-Carter model (see Section 1). The age-related 
effects 𝑎  describe the age profile of mortality, time-related effects 𝑘  describe the 
overall trend of mortality, and 𝑏  represent the mean change of log-central mortality 
rate 𝑦  in response to change of  the time component 𝑘 . However, the CNMM model 
also has additional parameters 𝜏 , 𝜏 , 𝜔  and 𝜈 , 𝜈 , 𝜛  treated as fuzziness of the 
model parameters. They will be used to determine the fuzziness boundaries of mortality 
forecasts. 

3.4. Data fuzzification  

There are several methods proposed to fuzzify the data. One of them  is an approach 
proposed by Koissi and Shapiro (2006) discussed in Subsection 2.1. 

What we propose here is to consider a modified version of the Koissi-Shapiro 
fuzzification method. Let the fuzziness parameters 𝑒  and 𝜐  satisfy the following 
respective equations for each fixed x 

 𝑒  𝑠 𝑠 𝑡,   𝜐 𝑟 𝑟 𝑡,         𝑡 1,2, … , 𝑇, (75) 

where 𝑠 , 𝑠 , 𝑟 , 𝑟  are found by solving the following optimization problem  

 minimize  ∑ 𝑒 𝜐  𝑇 ⋅ 𝑠 𝑟 𝑠 𝑟 ∑ 𝑡,  (76) 

subject to the constraints  

 𝑎 𝑏 ∙ 𝑘 𝑠 𝑠 𝑡 ln 𝑚 ,   𝑡 1,2, … , 𝑇, (77) 

 𝑎 𝑏 ∙ 𝑘 𝑟 𝑟 𝑡 ln 𝑚 ,   𝑡 1,2, … , 𝑇, (78) 
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where 𝑎 , 𝑘 , 𝑏  are defined in (55), (56) and (73), and 𝑠 , 𝑠 0 as well as 𝑟 , 𝑟
0 are the smallest values satisfying inequalities (77) and (78), respectively. Once, the 
coefficients 𝑠 , 𝑠 , 𝑟 , 𝑟  are found, the fuzziness parameters 𝑒  and 𝜐  can be 
determined from equations (75). 

3.5.  Mortality prediction 

To forecast log-central mortality rates, time component 𝑘  can be viewed, 
analogously to the Lee-Carter approach, as a stochastic process. The estimated or 
forecasted values 𝑦  of log-central death rates 𝑦  will be derived for from the 
following formula  

 𝑦 𝑎 𝑏 𝑘 ,  (79) 
where 𝑎 , 𝑏  are time invariant, and 𝑘  is a time dependent component. For 𝑡 𝑇, the 
time component will be forecasted via a time series model of the form 

 𝑘 𝛿  𝑘 𝜁 ,  (80) 
with 𝛿 and 𝜁 ’s denoting, respectively, a drift and independent and identically 
distributed Gaussian random terms. 

Similar approach applies to parameters 𝑒 , 𝜐  expressing fuzziness of log-central 
death rates. The estimated or forecasted values �̂� , 𝜐  will be derived from the 
following formulas 

 �̂� 𝜏 𝜏 𝜔 ,         𝜐 𝜈 𝜈 𝜛 ,        (81) 
where 𝜏 , 𝜏 , 𝜈 , 𝜈  are time invariant, while 𝜔 , 𝜛  are time dependent model 
parameters. Thus, for 𝑡 𝑇, both 𝜔  and 𝜛  will be forecasted using the following time 
series models 

 𝜔 𝜇 𝜔 𝜍 ,      𝜛 𝛾 𝜛 𝜉 ,  (82) 
with 𝜇, 𝛾 denoting some drifts and 𝜍 , 𝜉  denoting independent and identically 
distributed Gaussian random terms. 

The ML estimates  𝛿, �̂�, 𝛾 of parameters 𝛿, 𝜇, 𝛾 are as follows 

 𝛿 ,         �̂� ,     𝛾  .   (83) 

 

3.6.   The case study 

To illustrate theoretical discussions presented in this section, the estimates of 
𝑎 , 𝑏 , 𝑘   and 𝜏 , 𝜏 , 𝜔 , 𝜈 , 𝜈 , 𝜛   were estimated using the real mortality data. 
Next, the ex-post forecasts from the model (33) were derived and the prediction 
accuracy with results yielded by the Lee-Carter model compared. 
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The analysis was based on the central death rates in Poland from the years 1965–
2019. For computational reasons, age-specific death rates multiplied by 1000 were used. 
The necessary data were sourced from the Human Mortality Database 
(www.mortality.org), separately for males and females. The 2014–2019 death rates 
served the purpose of evaluating predicted rates and were not used in the estimation. 
Estimates of the parameters were obtained using scaled central death rates for males 
and females recorded in the years 1965–2013. To ensure the clarity of data presentation, 
estimates of  𝑎 , 𝑏 , 𝑘 ’s vs. 𝑥 or 𝑡 are plotted in the separate Figures 3–5. 

 
 

 
Figure 3.  Estimates of parameters 𝑎 , 𝑥 0,1,2, … , 𝑋 (Poland, males and females) 

Source: Developed by the authors. 
 
 
Curves illustrated in Figure 3 show the average profiles of mortality for males and 

females over the age range 0,100 . Both curves exhibit a typical “bath tube” shapes 
with high values around the infant ages, followed by minimal rates at the childhood 
ages, higher accidental mortality at young adulthood ages and increasing mortality at 
adulthood and old ages with nearly constant rate of increase. The “accident hump” at 
adolescence stands for higher mortality rates due to accidental deaths caused by 
augmented risk-taking behaviour as well as increased suicide rates. Note that the more 
demonstrable hump refers to the subpopulation of males. 

The arrangement of curves in Figure 4 shows that log-central mortality rates for 
males in young and old age groups are more sensitive to temporal changes in mortality 
than analogous rates for females. The reverse relationship applies to other age groups. 
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Figure 4.  Estimates of parameters 𝑏 ,   𝑥 0,1,2, … , 𝑋 (Poland, males and females) 

Source: Developed by the authors. 

 
Figure 5. Estimates of parameters 𝑘 , 𝑡 1,2, … , 𝑇 (Poland, males and females) and forecasts up to 

2019 
Source: Developed by the authors. 

Figure 5 illustrates the trend of mortality both for males and females and forecasts 
up to 2019. It can be seen that curves are generally decreasing, with the decline being 
faster for women. However, the trend in mortality before 1991 shows a slight flattening, 
apart from certain fluctuations, which can be explained by the health crisis of the 1970s 
and 1980s in Poland. 

Figures 6 11 exhibit both the real and estimated mortality rates for selected age 
groups. Estimates of log-central death rates 𝑦  were obtained for males and females by 
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using formula (79). In this case, as before, the estimation period was 19652013 and the 
period of ex-post forecasts spanned the years 2014 2019. Forecasts of 𝑘  after 2013 
were determined from the model (80). Similar models (81), (82) were used to estimate 
and forecast fuzziness parameters 𝑒 , 𝜐  necessary to determine fuzziness boundaries 
for mortality forecasts up to 2019.  

 
Figure 6.  The real and predicted log-central death rates obtained with the LC and CNMM models 

together with the fuzziness areas (Poland, males aged 0 years) 
Source: Developed by the authors.  

 
Figure 7.  The real and predicted log-central death rates obtained with the LC and CNMM models 

together with the fuzziness boundaries (Poland, females aged 0 years) 

Source: Developed by the authors. 
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Figure 8.  The real and predicted log-central death rates obtained with the LC and CNMM models 
together with the fuzziness boundaries (Poland, males at the age of 30 years) 

Source: Developed by the authors. 

 
 

 

Figure 9. The real and predicted log-central death rates obtained with the LC and CNMM models 
together with the fuzziness boundaries (Poland, females at the age of 30 years) 

Source: Developed by the authors. 
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Figure 10. The real and predicted log-central death rates obtained with the LC and CNMM models  
  together with the fuzziness boundaries (Poland, males at the age of 60 years) 

Source: Developed by the authors. 

 

 

 

Figure 11. The real and predicted log-central death rates obtained with the LC and CNMM models  
  together with the fuzziness boundaries (Poland, females at the age of 60 years) 

Source: Developed by the authors. 
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The CNMM model as well as the LC model were then compared using ex-post mean 
squared prediction error (𝑀𝑆𝐸) based on the differences between real and estimated 
log-central mortality rates, i.e. 

 𝑀𝑆𝐸 ∑ 𝑦 𝑦 ,    𝑡 𝑇, (84) 

where 𝑦  are estimated log-central death rates obtained from the CNMM or LC model. 

Table 1. Prediction accuracy of the LC model vs. the CNMM model  in terms of the ex-post MSE 
errors  

Year 
Males Females 

LC CNMM LC CNMM 

POLAND 

2014 0.166 0.112 0.118 0.116 

2015 0.152 0.107 0.111 0.105 

2016 0.167 0.116 0.140 0.131 

2017 0.174 0.124 0.126 0.125 

2018 0.158 0.117 0.150 0.158 

2019 0.171 0.129 0.134 0.142 

NORWAY 

2014 0.265 0.243 0.305 0.302 

2015 0.297 0.273 0.272 0.234 

2016 0.294 0.270 0.255 0.248 

2017 0.302 0.269 0.340 0.328 

2018 0.308 0.283 0.316 0.310 

CHECHIA 

2014 0.227 0.220 0.230 0.227 

2015 0.281 0.276 0.247 0.238 

2016 0.253 0.247 0.235 0.222 

2017 0.245 0.242 0.265 0.251 

Source: Developed by the authors. 

Table 1 summarizes the results of comparisons between the LC and CNMM models 
in terms of their prediction accuracy for Poland and for two selected European 
countries. MSE errors were assessed for those years for which the real mortality rates 
were available. 

On the basis of the results obtained, it can be noticed that the CNMM model 
utilizing complex-valued fuzzy numbers provides comparable or smaller ex-post 
forecast errors, in terms of the MSE measure, than the LC model. 
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4. Concluding remarks 

In the paper an algebraic approach to mortality modelling was introduced. For the 
formal purposes, the concept of complex-valued fuzzy numbers was also discussed.  

The popularity of the widely used Lee-Carter mortality model lies in its simplicity 
and ease of interpretation. However, due to the uncertainty and imprecision of 
empirical age-specific mortality rates, it seems justified to use a fuzzy mortality model 
instead. In our approach, the log-central death rates were viewed as complex-valued 
fuzzy numbers derived for each age-time cell. The parameters of fuzzified log-central 
death rates were found in the data fuzzification stage, which was the first step of the 
model estimation. Next, fuzzy log-central death rates were transformed into complex-
valued fuzzy numbers and modelled using the complex analysis. 

What makes the CNMM model superior to the standard LC model is that the 
proposed approach allows for determination of fuzziness boundaries for the mortality 
trajectories. For the standard LC model, the confidence intervals for log-central 
mortality rates can also be derived, but they reflect the error term in the random walk 
model, ignoring the estimation errors of other parameters, so the confidence intervals 
can only be derived for the prediction window. 
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APPENDIX 

A.1. The orthogonal expansion  
Two vectors 𝜑, 𝜓 ∈ 𝐿 0,1  are called orthogonal 𝜑 ⊥ 𝜓  if 〈𝜑, 𝜓〉 0 and 

parallel if one is multiple of the other. If φ and ψ are orthogonal 𝜑 ⊥ 𝜓 , then the 
Pythagorean theorem is satisfied 

∥ 𝜑 𝜓 ∥ ∥ 𝜑 ∥ ∥ 𝜓 ∥ . 

A vector φ is called a unit vector if ∥ 𝜑 ∥ 1.  
Suppose φ is a unit vector. Then, the projection of ψ in the direction of φ is given 

by 

𝜓∥ 𝜑, 𝜓 𝜑 
and 𝜓 , defined as 

𝜓 𝜓 𝜑, 𝜓 𝜑, 

is orthogonal to φ. 

It is commonly known that a set of vectors {𝑃 } in 𝐿 0,1   is called an orthonormal set 
if 〈𝑃 , 𝑃 〉 0 for 𝑗 𝑘 and 〈𝑃 , 𝑃 〉 1. 

A.2. The Legendre polynomials as the basis of the orthonormal expansion 
Let us consider the set of orthonormal Legendre polynomials. The first four 

polynomials take the form  
𝑃 𝑢 1, 

𝑃 𝑢 √3 2𝑢 1 , 

𝑃
√5
2

3 2𝑢 1 1 , 

𝑃
√7
2

5 2𝑢 1 3 2𝑢 1 , 
and recursively 

𝑃 𝑢
2𝑛 1 2𝑛 3

𝑛 1
2𝑢 1 𝑃 𝑢

𝑛
𝑛 1

2𝑛 3
2𝑛 1

𝑃 𝑢 . 

By putting 𝑗 𝑛 1 we have for 𝑛 2, 3, … 

𝑃 𝑢
2𝑗 1 2𝑗 1

𝑗
2𝑢 1 𝑃 𝑢

𝑗 1
𝑗

2𝑗 1
2𝑗 3

𝑃 𝑢 . 

We will use the recursive formula to  find the  Legendre polynomials 𝑃 , 𝑃  
orthonormal on the interval 0, 1 . We get 

𝑃 √ 35 2𝑢 1 30 2𝑢 1 3 , 
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𝑃 √ 63 2𝑢 1 70 2𝑢 1 15 2𝑢 1 . 

For 𝑗 3 there is 𝑃 √ 5 2𝑢 1 3 2𝑢 1 .   
Let us calculate the scalar products 〈𝑃 , 𝑃 〉, 〈𝑃 , 𝑃 〉, 〈𝑃 , 𝑃 〉.  

For 𝑃 𝑢 1, 𝑃 √ 5 2𝑢 1 3 2𝑢 1  there is 

〈𝑃 , 𝑃 〉  √ 5 2𝑢 1 𝑑𝑢 3 2𝑢 1 𝑑𝑢 0.  
 

For 𝑃 𝑢 √3 2𝑢 1 ,  𝑃 √ 5 2𝑢 1 3 2𝑢 1  we have 
 

〈𝑃 , 𝑃 〉  
√21

2
5 2𝑢 1 3 2𝑢 1 𝑑𝑢 0. 

 

For 𝑃 √ 3 2𝑢 1 1 , 𝑃 √ 5 2𝑢 1 3 2𝑢 1  we get 
 

〈𝑃 , 𝑃 〉
√35

4
15 2𝑢 1 𝑑𝑢 14 2𝑢 1 𝑑𝑢 3 2𝑢 1 𝑑𝑢 0. 

Hence, it follows that 𝑃 ⊥ 𝑃 ,   𝑃 ⊥ 𝑃 ,    𝑃 ⊥ 𝑃 . 
Now, let us verify the normality of the element 𝑃 ∈ 𝐿 0,1 , i.e. we will verify the 

equality ∥ 𝑃 ∥ 1. Note that 𝑃  is equal to 

𝑃
7
4

5 2𝑢 1 3 2𝑢 1

7
4

25 2𝑢 1 30 2𝑢 1 9 2𝑢 1 . 

The squared norm of the element 𝑃 ∈ 𝐿 0,1  is as follows 

∥ 𝑃 ∥
7
4

25 2𝑢 1 𝑑𝑢 30 2𝑢 1 𝑑𝑢 9 2𝑢 1 𝑑𝑢

7
4

25
7

30
5

9
3

1. 

Thus, 𝑃 ∈ 𝐿 0,1  belongs to the orthonormal system 𝑃 . 

A.3. Orthonormal expansions of inverse triangular functions 

Let us assume that 𝑓, 𝑔 take the following forms 

𝑓 𝑢 𝑎 𝑠 1 𝑢 ,     𝑔 𝑢 𝑎 𝑠 1 𝑢 ,     𝑢 ∈ 0,1 , 

and let 𝑃  be an orthonormal set of Legendre polynomials in 𝐿 0,1 .  
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First, we will find coefficients 𝛼 , 𝛽  for 𝑗 0, 1. We have 

𝛼 〈𝑃 , 𝑓〉 𝑓 𝑢 𝑑𝑢 𝑎 𝑠 1 𝑢 𝑑𝑢 𝑎
𝑠
2

, 

𝛽 〈𝑃 , 𝑔〉 𝑓 𝑢 𝑑𝑢 𝑎 𝑠 1 𝑢 𝑑𝑢 𝑎
𝑠
2

, 

𝛼 〈𝑃 , 𝑓〉 √3 2𝑢 1 𝑎 1 𝑢 𝑠 𝑑𝑢
𝑠

2√3
 , 

 𝛽 〈𝑃 , 𝑔〉 √3 2𝑢 1 𝑎 1 𝑢 𝑠 𝑑𝑢
𝑠

2√3
 . 

Thus, we obtain 

𝑓 𝑢 𝑓 𝑢 𝛼 𝑃 𝑎
𝑠
2

𝑠 𝑢
1
2

𝑎 𝑠 1 𝑢 , 

𝑔 𝑢 𝑔 𝑢 𝛽 𝑃 𝑎
𝑠
2

𝑠 𝑢
1
2

𝑎 𝑠 1 𝑢 . 

A.4. Orthonormal expansions of inverse exponential functions 
Suppose that 𝑓, 𝑔 are expressed as 

𝑓 𝑢 𝑐 𝜏 ln 𝑢 ,    𝑔 𝑢 𝑐 𝜈 ln 𝑢 ,   𝑢 ∈ 0,1 .    (A.1) 
First, we will find coefficients 𝛼 , 𝛽  for 𝑗 0,1,2,3. We have 

𝛼 〈𝑃 , 𝑓〉 〈𝑃 , 𝑐 𝜓〉  〈𝑃 , 𝑐〉 〈𝑃 , 𝜓〉, 

𝛽 〈𝑃 , 𝑔〉 〈𝑃 , 𝑐 𝜑〉 〈𝑃 , 𝑐〉 〈𝑃 , 𝜑〉. 
For scalar products 〈𝑃 , 𝜓〉 and 〈𝑃 , 𝜑〉  we need to calculate the integral 

𝑢 ln 𝑢 𝑑𝑢.  After some basic calculations we obtain 

𝑢 ln 𝑢 𝑑𝑢
√𝜋

2 𝑗 1
. 

For 𝑗 0, we get 𝑃 𝑢 1 and 

〈𝑃 , 𝑐〉 〈1, 𝑐〉 𝑐𝑑𝑢 𝑐. 

Thus, 

𝛼  〈𝑃 , 𝑓〉   〈1, 𝑐〉  〈1, 𝑓〉  𝑐 𝜓 𝑢 𝑑𝑢, 

𝛽 〈𝑃 , 𝑔〉   〈1, 𝑐〉  〈1, 𝑔〉  𝑐 𝜑 𝑢 𝑑𝑢. 
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Hence, there is 

𝛼 𝑐 𝜏 ln 𝑢 𝑑𝑢,  

 𝛽 𝑐 𝜈 ln 𝑢 𝑑𝑢. 

For 𝑗 0, we have ln 𝑢 𝑑𝑢 √, and 𝛼 ,  𝛽  can be reduced to 

𝛼 𝑓 𝑢 𝑑𝑢 𝑐 𝜏 √,  (A.2) 

𝛽 𝑔 𝑢 𝑑𝑢 𝑐 𝜈 √.  (A.3) 
 
Using the recursive formula, we can obtain next orthonormal expansion for  𝑗

1,2,3, …. 
 
Let us take 𝑗 1, then  𝑃 𝑢 √3 2𝑢 1  and 
 

〈𝑃 , 𝑐〉  √3𝑐 2𝑢 1 𝑑𝑢 √3 𝑐 𝑐 0. 
We have also 

〈𝑃 , 𝜓〉  𝜏 𝑃 ln 𝑢 𝑑𝑢 𝜏 √3 2𝑢 1 ln 𝑢 𝑑𝑢 

𝜏 √
√

1 , 

〈𝑃 , 𝜑〉    𝜈 𝑃 ln 𝑢 𝑑𝑢   𝜈 √3 2𝑢 1 ln 𝑢 𝑑𝑢 

   𝜈 √
√

1 . 
Thus, we receive 

 𝛼 〈𝑃 , 𝑓〉   𝜏 √
√

1 , (A.4) 

𝛽 〈𝑃 , 𝑔〉   𝜈 √
√

1 . (A.5) 

For 𝑗 2, there is 𝑃 √ 3 2𝑢 1 1  and 

𝛼 〈𝑃 , 𝑓〉  〈𝑃 , 𝑐〉 〈𝑃 , 𝜓〉 ,    𝛽 〈𝑃 , 𝑔〉  〈𝑃 , 𝑐〉 〈𝑃 , 𝜑〉, 
where 

〈𝑃 , 𝑐〉  𝑐
√5
2

3 2𝑢 1 1 𝑑𝑢 2𝑐√5 3𝑐√5
3𝑐√5

2
𝑐√5

2
0 

〈𝑃 , 𝜓〉  𝜏 𝑃 ln 𝑢 𝑑𝑢 𝜏√5𝜋
1

√3

3

2√2

1
2

, 

〈𝑃 , 𝜑〉  𝜐 𝑃 ln 𝑢 𝑑𝑢  𝜐√5𝜋
1

√3

3

2√2

1
2

. 
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Hence,  

𝛼 〈𝑃 , 𝑓〉   𝜏√5𝜋
1

√3

3

2√2

1
2

, 

𝛽 〈𝑃 , 𝑔〉   𝜐√5𝜋  
1

√3

3

2√2

1
2

. 

Let us find coefficients 𝛼  and 𝛽 , i.e. 
𝛼 〈𝑃 , 𝑓〉  〈𝑃 , 𝑐〉 〈𝑃 , 𝜓〉, 

𝛽 〈𝑃 , 𝑔〉  〈𝑃 , 𝑐〉 〈𝑃 , 𝜑〉. 
We have 𝑃 √ 5 2𝑢 1 3 2𝑢 1  and 

〈𝑃 , 𝑐〉  𝑐
√7
2

5 2𝑢 1 3 2𝑢 1 𝑑𝑢
𝑐√7

2
10 20 12 2 0, 

〈𝑃 , 𝜓〉  𝜏 𝑃 ln 𝑢 𝑑𝑢 𝜏√7𝜋
5

√3

15

4√2

3

4√2

3
4

. 

〈𝑃 , 𝜑〉  𝜐 𝑃 ln 𝑢 𝑑𝑢 𝜐√7𝜋
5

√3

15

4√2

3

4√2

3
4

 

Hence,  
𝛼 〈𝑃 , 𝑓〉  𝜏√7𝜋

√ √ √
, (A.6) 

𝛽 〈𝑃 , 𝑔〉   𝜐√7𝜋
√ √ √

. (A.7) 
 

Thus, orthonormal expansions of 𝑓 𝑢  and 𝑔 𝑢  defined in (A.1) are as follows 

𝑓 𝑢 ≅ 𝑓 𝑢 𝛼 𝑃 ,     𝑔 𝑢 ≅ 𝑔 𝑢 𝛽 𝑃 , 

where 

𝛼 𝑃 𝑢 𝑐 𝜏
√
2

,            𝛽 𝑃 𝑢 𝑐 𝜈
√
2

, 

   𝛼 𝑃 𝑢 𝜏 √

√
1 2𝑢 1 ,      𝛽 𝑃 𝑢 𝜈 √

√
1 2𝑢 1 , 

𝛼 𝑃 𝑢 𝜏
5√𝜋

2
1

√3

3

2√2

1
2

3 2𝑢 1 1 , 

𝛽 𝑃 𝑢 𝜈
5√𝜋

2
1

√3

3

2√2

1
2

3 2𝑢 1 1 , 

𝛼 𝑃 𝑢 𝜏
7√𝜋

2
5

√3

15

4√2

3

4√2

3
4

5 2𝑢 1 3 2𝑢 1 , 

𝛽 𝑃 𝑢 𝜈
7√𝜋

2
5

√3

15

4√2

3

4√2

3
4

5 2𝑢 1 3 2𝑢 1 . 


