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An application of persistent homology and the graph
theory to linguistics: The case of Tifinagh and Phoenician

scripts
Hajar Bouazzaoui1, Mohamed Abdou Elomary2, My Ismail Mamouni3

ABSTRACT
As the origin of the Tifinagh script remains uncertain, this work aims at exploring its proba-
ble relatedness with the Phoenician script. Using tools from within topological data analysis
and graph theory, the similarity between the two scripts is studied. The clustering of their
letter shapes is performed based on the pairwise distances between their topological signa-
tures. The ideas presented in this work can be extended to study the similarity between any
two writing systems and as such can serve as the first step for linguists to determine the
possibly related scripts before conducting further analysis.
Key words: topological data analysis, persistent homology, graph theory, writing systems,
Abjad scripts, Alphabet scripts, Tifinagh script, Phoenician script.

1. Introduction

Living beings - humans and animals alike, have a need for systems of communication to
ensure their survival. Humans, by their ingenuity, have developed writing systems as a con-
ventional visual mode to represent their oral communication. While writing and talking are
both tools for transmitting messages, writing has the advantage of being a reliable form of
data storage that obeys the usual coding and decoding rules, which imply a shared under-
standing by the author and the reader of the sets of characters composing the used writing
system.

Tifinagh, which is the writing system of interest in this paper, is the script adopted
for Tamazight or Berber languages more broadly. Berber has been originally spoken in
territories ranging from the Atlantic coast to Egypt before the arabisation of North Africa.
Millions of Tifinagh inscriptions of various styles and eras tattoo the rocks of North Africa
and the Sahara. A long process of cultural and identity changes begun with the emergence
of Islam in the seventh century, concurrently, the linguistic map of Tifinagh (see Figure
1) retracted over the centuries until its present form, broken into islands distant from each
other.
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Figure 1: Current Tifinagh speaking map in Africa.

So far, there is no conclusive theory about the origin of the Tifinagh script. The majority of
scholars support one these three theories (Blanco 2014):

• South-Semitic origin (Arabian and Latin scripts);

• North-Semitic origin (Phoenician and/or Punic);

• Independent invention with Phoenician influence.

Our aim in the present work is to verify whether the Tifinagh and the Phoenician scripts
are indeed related.

From a linguistic point of view, the study of script evolution is not independent from
historical, geographic and cultural factors. One cannot then demonstrate the relationship be-
tween scripts based solely on the study of individual graphemes (Briquel-Chatonnet 1997).
However, analyzing and comparing letter shapes remains an important constituent of that
study.

In order to demonstrate linguistic relatedness and to reconstruct a hypothetical common
ancestral system of languages, linguists rely, among others, on the comparative method
as a technique to study language development and perform comparisons on these languages
(McMahon, A. and McMahon, R. 2011). However, the languages to compare are not chosen
at random, and an initial stage of deciding whether some languages are related is required.

The present work, which studies the relatedness of the Phoenician and Tifinagh scripts,
rely on methods that could be extended to study the relatedness of any two other scripts,
and as such, serve as a first step to the comparative method, at least to the extent where only
letter shapes are considered.

We believe that this is the first work that investigates the visual relationship between
scripts using topological data analysis (TDA). A previous work (Sadouk et al. 2020) estab-
lished a possible relationship between Phoenician and Tifinagh scripts using deep learning.
The authors trained a classifier on a dataset of Phoenician letters and used a transfer learning
system based on these shapes to improve the performance of Tifinagh handwritten character
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recognition thereby inferring a possible relationship between the two scripts. Still, as with
all deep learning systems, large samples of data were required. TDA, on the other hand, can
provide robust results with only small samples of data.

To verify the relatedness of the two scripts, we adopt a topological data analysis ap-
proach based on persistent homology and graph theory. We represent each letter of the
writing systems we are studying as a graph. Our aim is to study the similarity between the
graphs corresponding to Phoenician letters and those corresponding to Tifinagh letters. In
the literature, many graph similarity measures were studied among which we cite maximum
common subgraph (Fernández and Valiente 2001), the number of mismatching edges (Zhu
et al. 2012) and graph edit distance (GED) (Gouda and Hassan 2016). GED has been the
most adopted one. It is the least expensive sequence of edit operations that can transform
a graph G1 to a graph G2. In practice, however, finding the minimal edit distance is an
NP-hard problem and has the drawback of having an exponential computational complexity
in terms of the number of graph edit vertices.

In this work, topological information of interest in each of these graphs is summarized
in persitence diagrams. Computing the Bottleneck distance between these topological sig-
natures will serve as a mean to verify similarity between letter graphs and thus between
Tifinagh and Phoenician scripts.

The paper is organized as follows: in Section 2, we give a brief introduction of math-
ematical concepts we will be using throughout this paper; we put special emphasis on per-
sistent homology. In Section 3, we describe the method we used to perform our analysis
before closing with a discussion of results and future research directions.

2. Materials and background

Homology formalizes the way topological spaces are distinguished by examining their
holes. One of the most common approaches to homology is simplicial homology. It is based
on associating abelian groups or modules to simplicial complexes built on top of topological
spaces. One of its major advantages is that it lends itsef to relatively easy computations.

We first define what simplices are. A simplex or a p-simplex is the generalization of a
triangle in p-dimension.

Definition 1 (p-simplex)
Let e0,e1, ...,ep be affinely independent points in Rn. The associated convex hull, denoted
σ p = [e0,e1, ...,ep], is called a p-simplex. That is the polyhedron:

σ p =
{

∑
p
i=0 tiei, ti ≥ 0,∑p

i=0 ti = 1
}

Figure 2: A 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle
and a 3-simplex a tetrahedron (Zhu 2013)
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When σ and α are two simplices such that α ⊂ σ , we call α a face of σ and σ a co-face of
α .

Definition 2 (Simplicial complex)
A simplicial complex K is a finite collection of simplices satisfying the following conditions:

1. For any σ ∈ K with a face α , we have α ∈ K;

2. If σ1,σ2 ∈ K then σ1∩σ2 = or σ1∩σ2 ∈ K.

The dimension of K is the maximal dimension of its simplices.

Figure 3: Left: a simplicial complex. Right: not a simplicial complex (Zhu 2013)

Definition 3 (p-chain)
A p-chain is a formal finite sum ∑i niσ

p
i , where σ

p
i are oriented p-simplices of a simplicial-

complex K and ni ∈ Z.

The set Cp(K) of all p-chains of K is a Z-module. The following Z-linear map :

∂p : Cp(K)→Cp−1(K) (1)

is called a boundary map, it is defined at the level of the generators as follows:

∂p(σ) :=
p

∑
i=0

(−1)i[e0,e1, ..., êi, ...,ep] (2)

where σ = [e0,e1, · · · ,ep] is an oriented p−simplex and êi means that ei is omitted. Thus,
the boundary of a tetrahedron is the alternative sum of its four triangles, the boundary of a
triangle is the alternative sum of its three edges and the boundary of a line segment is the
difference of its two endpoints. A direct computation shows that

∂p ◦∂p+1 = 0. (3)

In other words
Im∂p+1 ⊂ ker∂p. (4)

This yields the following exact sequence, called a chain complex of K :

0 =Cn+1(K)
i
↪→Cn(K)

∂n−→ Cn−1(K)
∂n−1−→ ·· · ∂1−→C0(K)

∂0−→C−1(K) = 0 (5)

where ↪→ denotes the inclusion map. The figure below illustrates the evolution of this chain
complex.
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Figure 4: Chain, cycle and boundary groups and their mappings under boundary opera-
tors. ( Horak, Maletić and Rajković 2009)

Elements of Zp := ker∂p are called p-cycles, those of Bp := Im∂p+1 are called p-boundaries.
In particular, any p-boundary is a cycle, but the inverse does not always hold. The obstruc-
tion for a cycle to be a boundary is encoded in the quotient

Hp(K) :=
Zp

Bp
. (6)

called the p-th homology group of K. Its rank, defined as

βp(K) := dimZ Hp(K), (7)

is called the p-th Betti number of K and it encodes the number of p−dimensional holes in
the simplicial complex K. In particular, β0 denotes the number of connected components
of K. For more details, we refer the reader to these standard references (Hatcher 2002) and
(Spannier 1966).

2.1. Persistent homology

Persistent homology, one of the main tools in topological data analysis, proved its use-
fulness in many real world applications among which shape analysis, medical imaging and
network sensing are only a few examples. In many of these applications, data is given as a
point cloud. Persistent homology keeps track of homology classes as a nested sequence of
simplicial complexes is built on top of the data. The “lifetime” of a homology class is an
indication of the relevance or irrelevance of homological information.
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Figure 5: A noisy point cloud data

Let P be a cloud of points embedded in Rn. One may associate a filtration to P , that is a
finite increasing sequence of sub-complexes

P = K0 ⊂ K1 ⊂ ·· · ⊂ Kn. (8)

For every i≤ j, the inclusion map Ki ↪→ K j induces the homology homomorphism

f i, j
p : Hp(Ki)−→ Hp(K j) (9)

at each dimension p. This yields the homology sequence

Hp(K0)−→ Hp(K1) · · · −→ Hp(Kn). (10)

As we go from Ki−1 to Ki, we gain new homology classes and lose others as they become
trivial or merge with each other. Persistent homology groups are defined as follows.

Definition 4 The p-th persistent homology groups, denoted H i, j
p , are defined to be the im-

ages H i, j
p := Im f i, j

p . Their ranks β
i, j
p := rank(H i, j

p ), are the corresponding p-th persistent
Betti numbers.

We note that
H i, j

p = Zp(Ki)/(Bp(K j)∩Zp(Ki)). (11)

A class γ is born at time t = i if γ /∈ H i−1,i
p . It dies at time t = j, when it becomes trivial or

when it merges with an older class as we go from K j−1 to K j, that is, f i, j−1
p (γ) /∈ H i−1, j−1

p

but f i, j
p (γ) ∈ H i−1, j

p . The figure below illustrates this scenario.
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Figure 6: Example of a homology class with birth time t = i, and death time t = j. (Edels-
brunner and Harer 2010)

We can encode this evolution in a persistence barcode, which is a set of intervals whose
first endpoint indicates the birth-time of the homology class, while the second one indicates
its death-time. Short line segments correspond to noise, while persistent line segments
imply relevant homological information.

Figure 7: Example of a point cloud and its associated Vietoris-Rips complex and barcode
(Ghrist 2008)

Barcodes can be computed efficiently by using a matrix reduction algorithm. Surpris-
ingly, we can get all this information with a single reduction. We order the time appearance
t(σi) of a simplex σi as follows: t(σi)< t(σ j) whenever σi is a face of σ j. Then we set the
boundary matrix, ∂ , which stores all that information, that is the binary matrix,

∂ [i, j] :=
{

1 if σi is a face of σ j of co-dimension one ;
0 otherwise.

Let low( j) be the row index of the lowest non-null coefficient (when it exists) in the
column j. A matrix is called reduced if low( j) ̸= low(k) whenever j ̸= k. In other words,
no two columns have lows in the same level. One way to get a reduced matrix R from the



148 Bouazzaoui H., Elomary M. A., Mamouni M.: An application of persistent ...

boundary matrix ∂ is to add columns from left to right. (see Algorithm 1).

Algorithm 1 : Smith Reduction Algorithm

Input: Boundary matrix
Output: Reduced boundary matrix
for j = 1 to n do

while ∃ j′ < j with low( j′) = low( j) do
add column j′ to column j

end while
end for

Theorem 1 (Pairing theorem, see (Edelsbrunner and Harer 2010))
Let R be the reduced matrix obtained from the boundary matrix. There is a persistence
pairing (i, j) of a homology class whenever i = low( j).

The filtrations built on top of data can also be described topologically using persistence
diagrams. These are multisets of R2 that encode information about homology groups. A
homology class that appears at time i and disappears at time j is represented by the point of
coordinates (i, j). The multiplicity of that point represents the number of features with the
same birth and death times. The persistence of each class is the real value j− i.

Figure 8: Example of a persistence diagram (Nanda 2017)

In order to compare topological signatures present in the resulting persistence diagrams,
we compute their Bottleneck distance.

Definition 5 Bottleneck distance
Given two persistence diagrams D and E, their Bottleneck distance (w∞) is defined by:
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w∞(D,E) := inf
η

sup
x∈D
∥x−η(x)∥∞

where η ranges over bijections between D and E.

For further details on persistent homology, we refer the reader to these standard refer-
ences (Edelsbrunner and Harer 2010) and (Ghrist 2008).

2.2. Zigzag Persistent homology

A more general approach to persistent homology is zigzag persistent homology, which
we will use in this paper, in this section, we introduce some of its key principles. In this
setting, both forward and backward maps are permitted between topological spaces. Let
X1↔X2↔ ··· ↔Xn be a sequence of topological spaces. The maps between these spaces
induce maps between chain complexes C(X1)↔ C(X2)↔ ··· ↔ C(Xn). The homology
sequence Hp(X1)↔ Hp(X2)↔ ·· · ↔ Hp(Xn) obtained by applying the homology functor
Hp forms a zigzag module.

A finite-dimensional zigzag module can be decomposed as a direct sum of interval mod-
ules

⊕
I[b,d], where I[b,d] is the homology class existing in the spaces from H(Xb) to H(Xd).

The information needed to compute this decomposition is encoded in one filtration; the right
filtration (Gunnar, De Silva and Morozov 2009).

Definition 6 ((Milosavljević, Morozov and Skraba (2011)) The right-filtration of a space
H(Xi) is the collection of its subspaces Rn = (R0,R1, . . . ,Rn) such that Ri ⊆ R j whenever
i≤ j. The filtration is defined as follows.
If n = 1, then R0 = (0,H(X1)).

If H(Xi)
f−→ H(Xi+1), then Rn+1 = ( f (R0), f (R1), . . . , f (Rn),H(Xi+1)).

If H(Xi)
g←− H(Xi+1), then Rn+1 = (0,g−1(R0),g−1(R1), . . . ,g−1(Rn)).

For more details on zigzag persistent homology, we refer the interested reader to (Carls-
son and De Silva 2010).

3. Method and results

Some scripts undergo a process of transformation over a long period of time, while others
are a result of deliberate mixing of traits adopted from multiple other scripts. In this work,
we assume that the Tifinagh and Phoenician scripts are related if, by introducing a sequence
of minimal random transformations on the Phoenician letters, we obtain clusters of similar
letters each containing letters from both scripts. We denote the set of Phoenician letters by P
and that of Tifinagh letters by T. To account for the dynamics of the script letters in P, each
of these letters is represented as a dynamic graph by allowing operations such as adding or
removing vertices and edges. A dynamic graph is a graph G = {G1,G2, . . . ,Gn} on which
a sequence of updates is performed, Gi being the modified graph at time i. In this study,
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((a)) Tifinagh letters ((b)) Phoenician letters

Figure 9: Tifinagh and Phoenician letters

we only allow graph transformations within 1 Graph Edit Distance (GED) from the original
ones.

Zigzag persistent homology, which is a generalization of persistent homology, is more
adapted for studying dynamical graphs. It allows for both inserting and deleting edges and
vertices which correspond respectively to adding and removing simplices from the con-
structed simplicial complex.

A clustering is finally performed based on the pairwise bottleneck distances between
topological signatures in order to detect similar letters in the two sets P and T.

We summarize our approach in the following steps:

1. Represent each letter in P as a time-varying graph G = {G0,G1, . . . ,Gn}, Gi being the
letter graph at step i.

2. Associate a metric space representation to each graph G and build a dynamical sim-
plicial complex.

3. Compute the zigzag persistent homology of G.

4. Make a clustering of P and T graphs on the basis of the pairwise bottleneck distances
between their topological signatures in order to detect similarity between letters.

3.1. Dynamic graphs

The dynamic graphs are constructed as follows:

• The letter is represented by a finite undirected graph. The vertex set V is the set of
the intersection points present in that letter.

• A vertex function fv that maps the state of the vertex v at time t to its state at time
t +1.

• An edge function fe that maps the state of the edge e at time t to its state at time t +1.
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The undirected graph is represented by an adjacency matrix M . The dynamics corre-
spond to adding and removing nodes and edges and updating the matrix accordingly. For
an edge addition (resp. deletion) event between vertices vi and v j, the function fe assigns 1
(resp. 0) to Mi, j and M j,i. The function fv on the other hand, adds a new row and column to
the matrix M whenever a new edge is added and deletes the row and column corresponding
to a vertex when it is removed.

3.2. Metric space representation

To each graph Gi, we associate a metric space representation. A metric on Gi is obtained
by computing a matrix of shortest path distances between nodes using the Floyd Warshall al-
gorithm (Floyd 1962) which we implemented using the Networkx library (Hagberg, Swart,
and S Chult 2008). The Floyd Warshall algorithm is a dynamic programming algorithm,
which works in the following fashion: let dk

i j be the shortest path from i to j with interme-
diate vertices chosen among {1,2, . . . ,k}. Then, for k > 1, dk

i j = min(dk−1
i j ,dk−1

ik +dk−1
k j ).

We then build the Vietoris Rips complexes of the graphs on top of these metric spaces
using Dionysus library (Morozov 2012). Given a distance matrix, we compute a sorted
filtration filled with the 1-skeleton of the clique complex built on the points at distance at
most six from each other, six being the maximum scale at which the Vietoris-Rips complex
is computed.

3.3. Computing Zigzag Persistent Homology

In practice, given a time-varying graph G = {G0,G1, . . . ,Gn}, we start by constructing
a simplicial complex of G0, the graph instance at time t = 0. This simplicial complex is
dynamically modified; as we add new vertices/edges or remove them, simplices are added
or removed. At time t = 0, a simplicial complex K0 is created. At time t > 0, Kt is the
simplicial complex associated with the updated graph at time t. In the case of an addition
event, a k−simplex is added to Kt if it was not present in Kt−1, while the simplices that
were at time t−1 and did not appear at time t are removed from the complex in the case of
a deletion event. We then compute zigzag persistence of this dynamic simplicial complex
using Dionysus (Morozov 2012).
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Figure 10: Sample Phoenician Letters Graphs

Figure 11: Their Persistence Diagrams

Figure 12: Their Barcodes

Figure 13: Sample Phoenician Letters
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Figure 14: Sample Tifinagh Letters Graphs

Figure 15: Their Persistence Diagrams

Figure 16: Their Barcodes

Figure 17: Sample Tifinagh Letters

3.4. Clustering

In order to verify the aforementioned claim, i.e. Tifinagh being related to Phoenician,
we measure similarity between the time-varying graphs representing the P letters and those
representing the T letters. After computing the persistence diagrams associated with the
simplicial complexes built on top of each graph, we compute the pairwise bottleneck dis-
tance between persistence diagrams. We obtain a distance matrix on the basis of which we
perform hierarchical clustering, more specifically in this case an agglomerative clustering.
Agglomerative clustering starts by considering each singleton as a cluster. The clusters are
then inductively combined until some stop criterion is satisfied. In this work, the update at
each step is performed using a complete linkage which measures inter-cluster dissimilarity
based on the maximum distances between all data points.

3.5. Results

We notice that, except for a few distinct points, each cluster in the right figure contains
both Phoenician and Tifinagh letters suggesting similarity between the two.

Pn denotes Phoenician letters while Tn denotes the Tifinagh letters. The agglomerative
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((a)) Dendrogram ((b)) Clustering results

Figure 18: Dendrogram and Clustering Results

clustering with a complete linkage we used separates data into seven clusters, each contain-
ing both Tifinagh and Phoenician letters suggesting similarity between the two. A cluster
also contains letters from the same script. This is due to the homogeneity present within
each script; letters of the same script tend to have a common pattern that distinguishes them
from other scripts. Hierarchical clustering produces a graphical representation between data
points in the form of a hierarchical tree (Figure (A)) that we used for finding the optimal
number of clusters.

The results we obtained only suggest a possible visual relationship between the graphemes
of the script. This relationship can be due to Tifinagh being derived from Phoenician or
Tifiniagh being created under the influence of Phoenician. The nature of that relationship
might be a question for a future work.

4. Conclusion

In this work, we demonstrated how TDA and persistent homology in particular can be
used to verify the relatedness between two writing systems. Even though we restricted our
analysis to the study of similarity between the Phoenician and Tifiniagh scripts, the method
we used can be extended to compare any two writing systems. A future work might explore
the nature of this relatedness, i.e. whether one script is derived from the other or one was
built under the other’s influence.
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Milosavljević, N., Morozov, D., Skraba, P., (2011). Zigzag persistent homology in matrix
multiplication time. Proceedings Of The Twenty-seventh Annual Symposium On Com-
putational Geometry (SoCG ’11). Association For Computing Machinery, New York,
NY, USA, pp. 216–225.

Carlsson, G., De Silva, V., (2010). Zigzag persistence. Found Comput Math 10, pp. 367–
405.



156 Bouazzaoui H., Elomary M. A., Mamouni M.: An application of persistent ...

Floyd, R., (1962). Algorithm 97: Shortest Path. Communications Of The ACM, 5, p.345.

Hagberg, A., Swart, P., S Chult, D., (2008). Exploring network structure, dynamics, and
function using NetworkX. Proceedings Of The 7th Python In Science Conference
(SciPy2008), Gäel Varoquaux, Travis Vaught, And Jarrod Millman (Eds), Pasadena,
CA USA, 5, pp. 11–15.

Morozov, D., (2012). Dionysus. http://www.mrzv.org/software/dionysus/

Coulmas, F., (2008). Typology of Writing Systems. Band 2, pp. 1380–1387. Available at:
https://doi.org/10.1515/9783110147445.2.9.1380

Gelb, I., (1963). A Study of Writing, Chicago University Press, 2nd edition.

Hill, A., (1967). The typology of writing systems. Papers In Linguistics, pp. 92–99.

Horak, D., Maletić, S., Rajković, M., (2009). Persistent homology of complex networks. J.
Stat. Mech. Theory And Experiment, pp. 30–34.

Pulgram, E., (1976). The typologies of writing-systems, Mont Follick Series.

Pichler, W., (2007). The origin of the Libyco-Berber script. Actes Du Colloque Interna-
tional, Le Libyco-berbére Ou Le Tifinagh: De L’authenticité À L’usage Pratique, pp.
187–200.

Sampson, G., (1985).Writing Systems: A Linguistic Introduction, Hutchinson & Co. Ltd,
London.

Slaouti Taklit, M. (2004). L’alphabet Latin serait-il d’origine berbére?, Harmattan, Paris.

Unger, J., DeFrancis, J. (1995). Logographic and Semasiographic Writing Systems: A
Critique of Sampson’s Classification. Scripts And Literacy. Neuropsychology And
Cognition, 7, pp. 44–58.

Nanda, V., (2017). Perseus: The Persistent Homology Software. Available at: http:
//people.maths.ox.ac.uk/nanda/perseus/

Zhu, X., (2013). Persistent homology: An introduction and a new text representation for
natural language processing. Proceedings Of The Twenty-Third International Joint
Conference On Artificial Intelligence.


