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A Bayesian estimation of the Gini index and the Bonferroni index 
for the Dagum distribution with the application of different priors 

Sangeeta Arora1, Kalpana K. Mahajan2, Vikas Jangra3

ABSTRACT 

Bayesian estimators and highest posterior density credible intervals are obtained for two 
popular inequality measures, viz. the Gini index and the Bonferroni index in the case of the 
Dagum distribution. The study considers informative and non-informative priors, i.e. the 
Mukherjee-Islam prior and the extension of Jeffrey’s prior, respectively, under the 
presumption of the Linear Exponential (LINEX) loss function. A Monte Carlo simulation 
study is carried out in order to obtain the relative efficiency of both the Gini and 
Bonferroni indices while taking into consideration different priors and loss functions. The 
estimated loss proves lower when using the Mukherjee-Islam prior in comparison to the 
extension of Jeffrey’s prior and the LINEX loss function outperforms the squared error loss 
function (SELF) in terms of the estimated loss. Highest posterior density credible intervals 
are also obtained for both these measures. The study used real-life data sets for illustration 
purposes. 

Key words: Inequality measures, Bayes estimator, credible interval, LINEX loss function. 

1. Introduction

The Dagum distribution (also called the inverse Burr distribution; Dagum called
it a generalized Logistic-Burr distribution (Kleiber and Kotz, 2003) is a well-known 
distribution popularly used to model income distribution. Camilo Dagum proposed 
the Dagum distribution in 1970, which is a skewed and heavy tailed distribution and 
is appropriate to model the distribution of financial, income as well as wealth 
distribution. The Dagum distribution was developed as an alternative to the Pareto 
distribution and lognormal distribution and it performs better than other two/three 
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parameters income/wealth distribution models when applied to empirical data 
(Chotikapanich and Griffiths, 2006). One of the special cases of the Dagum 
distribution appeared for the first time in Burr (1942) as the third example (Burr III) 
of solutions of the Burr distribution system. The three parameter Dagum Type I 
distribution evolved from Dagum’s experimentation with a shifted log-logistic 
distribution (Chotikapanich, 2008). 

 
The probability density function of the Dagum distribution is given as  

            𝑓 𝑥; 𝑎, 𝑏,𝑝

⎩
⎨

⎧
,      𝑥 0;   𝑎, 𝑏,𝑝 0,                

 0,                            𝑜𝑡ℎ𝑤𝑒𝑟𝑤𝑖𝑠𝑒.                      

        (1) 

The plot of probability density function of the Dagum distribution for 
various 𝑝 3.5,4.5, 7.8 with 𝑎  2.5,𝑏 1.5 is shown in Figure 1.  

 
Figure 1.  Probability density function of the Dagum distribution 

 
The cumulative distribution function of the Dagum distribution is given by  

                        𝐹 𝑥;𝑎, 𝑏,𝑝 1 ,     𝑥 0;     𝑎, 𝑏,𝑝 0,                    

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                 
       (2) 

where 𝑎 and 𝑝 are shape parameters and 𝑏 is a scale parameter. For 𝑝 1, the Dagum 
distribution is also referred to as log-logistic distribution (Dagum, 1975).  
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Inequality is a vital characteristic of non-negative distribution. It is used to 
analyze data in socio-economic sciences, in the context of income distribution. In the 
context of income inequality, the Gini index (Gini, 1912; Foster et al., 1984) is 
generally defined as  

𝐺 1 2 𝐿 𝑝 𝑑𝑝 ,      0 𝑝 1,                                       (3) 

where 𝐿 𝑝 1/𝜇 𝐹 𝑡 𝑑𝑡 is the equation of the Lorenz curve and 𝜇
𝐹 𝑡 𝑑𝑡 is the mean of the distribution. 

The Bonferroni index is defined as  
𝐵 1 𝐵 𝑝 𝑑𝑝,  0 𝑝 1,                                   (4) 

where 𝐵 𝑝 𝐹 𝑡 𝑑𝑡 is the equation of the Bonferroni curve. 

The curve was introduced by Bonferroni (1930) and has been analysed and 
studied by various authors: see for instance De Vergottini (1940), Tarsitano (1990), 
Giorgi & Crescenzi (2001) and Zenga (2013). 

In the case of the Dagum distribution, the Gini index 𝐺  and the Bonferroni 
index (𝐵) are given by 

𝐺  
 

 
1,        𝑎,𝑝 0,                                        (5) 

where Γ .  is the Gamma function, 
and   𝐵 𝑝 𝜑 𝑝 𝜑 𝑝 ,   𝑎, 𝑝 0,                            (6) 

where 𝜑 𝑥 𝑙𝑛√𝑥  



 , is the Digamma function. 

  Note that both values are independent of the scale-parameter 𝑏. 

A huge literature exists on the estimation of the Gini index and inequality 
measures using classical approach, i.e. parametric and non-parametric (Moothathu, 
1985; Sen, 1988; Dixon, 1987; Bansal et al., 2011). But in the case of Bayesian set up, 
a lot of work still needs attention (Sathar et al., 2009; Bhattacharya and Chaturvedi, 
1999) particularly in the context of income inequality. In the case of Pareto 
distribution Bayesian estimators of the Gini index (Kaur et al., 2015) are obtained 
using different priors under LINEX loss function. Some work regarding Bayesian 
estimation of the shape parameter 𝑝 of the Dagum distribution is available under 
different loss functions using informative and non-informative priors (Naqash et al., 
2017) while Layla et al. (2020) discussed the Bayesian estimation of the survival 
function using Gamma as informative and Jeffrey as non-informative prior, but the 
income inequality field still awaits the attention of researchers. In the present paper, 
Bayesian estimators for two famous inequality indices, viz. the Gini index and the 
Bonferroni index will be obtained for the Dagum distribution along with their 
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credible intervals. These inequality indices are not only used in the economic set up 
but have applications in other fields such as survival analysis, reliability and bio-
statistics. 

When the Bayesian approach is used, the selection of a suitable prior distribution 
plays a major role. Basically, priors can be divided into informative (an informative 
prior depends on elicitation of prior distribution based on pre-existing scientific 
knowledge in the area of investigation), non-informative (a non-informative prior is 
usually improper,  𝑖. 𝑒. it does not have a proper density function but the resulting 
posterior distribution is a proper density function), and conjugate prior (if the 
posterior distribution 𝑝 𝜃|𝑥  is from the same family of probability distributions as 
the prior probability distribution 𝑝 𝜃 ) (Kass and Wasserman, 1996; Berger, 2006). 
In the Bayesian estimation, the benchmark for quality (good) estimator for the 
parameters of interest is the selection of the proper loss function. A squared error loss 
function is the simplest loss function among all the loss functions. It is also known as 
a quadratic loss function, defined as 

𝐿 𝜃 𝜃 𝜃 ,                                           (7) 
where 𝜃 is the estimator of 𝜃. 

The squared error loss function (SELF) is symmetrical and shows equal 
importance to losses due to overestimation and underestimation of equal magnitude. 
One disadvantage of using the squared error loss function is that it penalizes 
overestimation or underestimation. Overestimation of a parameter can lead to more 
severe or less severe consequences than underestimation, or vice versa. In the case of 
income inequality under-estimation is more serious as compared to overestimation 
(Kaur et al., 2015). For this reason, the use of an asymmetrical loss function, which 
can provide greater importance to overestimation or underestimation, can be 
considered for the estimation of the parameters. Many asymmetrical loss functions 
are available in the statistical literature and one such Linear exponential loss function 
(LINEX) has been proposed by Varian (1975) as 

𝐿 𝜃 𝜃 𝑒 𝑏 𝜃 𝜃 1,  𝑏 0.                    (8) 
The posterior expectation of the LINEX loss function is  

𝐸 𝐿 𝜃 𝜃 𝑒 𝐸 𝑒 𝑏 𝜃 𝐸 𝜃 1, 

where  𝐸 .  denotes posterior expectation with respect to the posterior density of 𝜃. 
By a result of Zellner (1986) the Bayes estimator of 𝜃 denoted by 𝜃 under the 

LINEX loss function is the value which minimizes posterior expectation and is given by 
                           𝜃 ln 𝐸 𝑒 ,                                                (9) 

provided the expectation 𝐸 𝑒 ) exists and is finite. 
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The LINEX loss function  is approximately equal to the squared error loss 
function for the small values of  𝑏.  

In this paper, the LINEX loss function is used for obtaining Bayesian estimators 
for two popular inequality indices, i.e. the Gini index and the Bonferroni index in the 
case of the Dagum distribution using Mukherjee-Islam prior (informative prior) and 
the extension of Jeffrey’s prior (non-informative prior). The plan of the paper is as 
follows. In Section 2, prior and posterior distributions are discussed in the case of the 
Dagum distribution. In Section 3, Bayesian estimators are obtained for the Gini index 
and the Bonferroni index for the Dagum distribution under the assumption of the 
LINEX loss function. In Section 4, using simulation, relative efficiency of Bayesian 
estimates is obtained for both the Gini and Bonferroni index taking into consideration 
different priors and two loss functions, LINEX and SELF. In Section 5, the credible 
intervals are defined and highest posterior density credible intervals are carried out 
for both the Gini index and the Bonferroni index. Two real life examples to illustrate 
the method of Bayesian setup are given in Section 6.  

2.  Prior and posterior distribution  

2.1. Case 1: Shape parameter 𝒑 is unkown and 𝒂,𝒃 are known 

Let 𝑋 𝑥 ,𝑥 ,….,𝑥n) be a random sample from the Dagum distribution with 
shape parameters 𝑝 and 𝑎 and scale parameter 𝑏, i.e. 𝑋~𝐷 𝑎, 𝑏,𝑝 , then the 
likelihood function for the Dagum distribution as a function of 𝑝 (keeping 𝑎 and 𝑏 
fixed) is given by  

                                   𝐿 ∏ 𝑥 ∏ 1                             (10) 

𝐿 𝑎, 𝑏,𝑝 ∝ 𝑝
𝑥
𝑏

1
𝑥
𝑏

                    

                                          𝑝 𝑒 ∑ 𝑒
∑   

                                     ⇒   𝐿 𝑝|𝑥 ∝  𝑝 𝑒
∑  

                                         =  𝑝 𝑒  

where                                    𝑇 ∑ ln 1 .                                        (11) 

Posterior distribution under Mukherjee-Islam prior 

Mukherjee Islam (1983) is a well-known probability distribution used by many 
researchers to model a failure distribution for the purpose of reliability and Bayesian 
analysis.  
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Assume that  𝑝 has a Mukherjee-Islam prior with hyper parameters 𝛼,𝜎 0, 
defined by 

𝜋 𝑝 𝛼𝜎 𝑝   ;  𝑝 0,𝛼 0,𝜎 0.                                 (12) 

Then, the posterior distribution of 𝑝 under Mukherjee-Islam prior is given by 

𝜋 𝑝|𝑥  
∗  

∗  
         

𝜋 𝑝|𝑥 ∝  𝑝 𝑒   

                                          ℎ𝑝 𝑒   

where ℎ is the normalized constant given by 

ℎ 𝑝 𝑒 𝑑𝑝  

         = Γ 𝑛 𝛼 /𝑇  .  

Thus, the posterior distribution of 𝑝 is given by      

𝜋 𝑝|𝑥 𝑝 𝑒 ,                             (13) 

which is gamma density with parameters 𝑇 𝑎𝑛𝑑 𝛽 𝑛 𝛼. 

Posterior distribution under extension of Jeffreys’ prior 

Jeffreys’ prior is a particular case of the extension of Jefferys’ prior proposed by 
Kutubi and Ibrahim (2009). The extension of Jeffreys’ prior is defined as 

𝜋 𝑝 ∝ 𝐼 𝑝  ;𝑚 0, 

where 𝐼 𝑝  is the Fisher Information given by 

𝐼 𝑝 𝐸
𝜕 𝑙
𝜕𝑝

𝑛
𝑝

, 

where 𝑙 is the log-likelihood function. For 𝑚  0.5, it reduces to Jeffreys’ prior. Thus, 
the extension of Jeffreys’ prior is given by  

𝜋 𝑝 ∝ ,𝑚 0.                                                 (14) 

The posterior distribution is defined by  
𝜋 𝑝|𝑥 ∝ 𝑝 𝑒 𝐾𝑝 𝑒 , 

where 𝑘 is the normalized constant given by 

𝐾 𝑝 𝑒 𝑑𝑝 .  

Thus, the posterior distribution of 𝑝/𝑥 is given by 

𝜋 𝑝|𝑥 𝑝 𝑒 ,                                              (15) 

which is a gamma density with parameters 𝑇𝑎𝑛𝑑 𝛽 𝑛 2𝑚 1. 
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2.2. Case 2: Shape parameter 𝒂 is unkown and 𝒑,𝒃 are known 

Let 𝑋 𝑥 ,𝑥 ,….,𝑥n) be a random sample from 𝐷 𝑎, 𝑏,𝑝  Dagum distribution. 
Then, the likelihood function of the scale parameter 𝑎 (keeping 𝑝 and 𝑏 fixed) is given 
by   

𝐿 ∏ 𝑥 ∏ 1 .       

Posterior distribution under Mukherjee-Islam prior 

Assume that 𝑎 has a Mukherjee-Islam prior with hyper parameters 𝛼,𝜎 0 
defined by 

𝑔 𝑎 𝛼𝜎 𝑎   ; 𝛼 0,𝜎 0.                                     (16) 

The posterior distribution of 𝑎 is 

𝜋 𝑎|𝑥
∏

∏
                       (17) 

Posterior distribution under extension of Jeffreys’ prior 

The extension of Jeffreys’ prior is given by 

𝑔 𝑎 ∝ ,𝑚 0.                                                (18) 

The posterior distribution of 𝑎 is 

𝜋 𝑎|𝑥
∏

∏
                       (19) 

3. Bayesian estimation under Linear Exponential (LINEX) loss function 
using different priors 

3.1. Case 1: Shape parameter 𝒑 is unkown and 𝒂,𝒃 are known 

Bayesian estimators using Mukherjee-Islam prior 

Using the posterior distribution given in (13) the Bayesian estimator 𝐺  of the 
Gini index 𝐺 using Mukherjee-Islam prior is 

𝐺 log  𝐸 𝑒        

               log 𝑒

 

 𝑝 𝑒 𝑑𝑝  
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              log 𝑒

 

 𝑝 𝑑𝑝  .                                   (20) 

The Bayesian estimator 𝐵  of the Bonferroni index 𝐵 using Mukherjee-Islam 
prior is 

𝐵 log  𝐸 𝑒        

              log 𝑒 𝑝 𝑒 𝑑𝑝    

            log 𝑒 𝑝 𝑑𝑝 .                    (21) 

Bayesian estimators using extension of Jeffreys’ Prior   

Using the posterior distribution given in (15) the Bayesian estimator 𝐺  of the 
Gini index 𝐺 using the extension of Jeffreys’ prior is 

𝐺 log  𝐸 𝑒        

        log 𝑒

 

 𝑝 𝑒 𝑑𝑝    

               log 𝑒

 

 𝑝 𝑑𝑝 .         (22) 

The Bayesian estimator 𝐵  of the Bonferroni index 𝐵 using the extension of 
Jeffreys’ prior is 

𝐵 log  𝐸 𝑒        

                  log 𝑒 𝑝 𝑒 𝑑𝑝   

                  log 𝑒 𝑝 𝑑𝑝 .       (23) 

3.2. Case 2: Shape parameter 𝒂 is unkown and 𝒑,𝒃 are known  

Bayesian estimators using Mukherjee-Islam prior 

Using the posterior distribution given in (17) the Bayes estimator 𝐺  of the Gini 
index 𝐺 using Mukherjee-Islam prior is 

𝐺 log  𝐸 𝑒        

                    log 𝑒

 

 
∏

∏
.    

     (24) 
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The Bayes estimator 𝐵  of the Bonferroni index 𝐵 using Mukherjee-Islam prior is 

𝐵 log  𝐸 𝑒        

                       log 𝑒
∏

∏
.    

      (25) 

Bayesian estimators under extension of Jeffreys’ prior 

The Bayes estimator 𝐺  of the Gini index 𝐺 using the extension of Jeffreys’ prior is 

𝐺 log  𝐸 𝑒        

         log 𝑒

 

 
∏

∏
.            (26) 

The Bayes estimator 𝐵  of the Bonferroni index 𝐵 using the extension of Jeffreys’ 
prior is 
𝐵 log  𝐸 𝑒        

          log 𝑒
∏

∏
          (27) 

Remark  As all these expressions cannot be simplified further, the Bayesian estimators 
have been obtained using simulation techniques in R software. 

4.  Simulation study  

In order to assess the statistical performance of these estimators for the Gini index 
and the Bonferroni index, a simulation study is conducted. The 𝑉𝐺𝐴𝑀 package in R 
software is used to draw the sample from the Dagum distribution and using 
simulation the Bayes estimates and their corresponding losses are computed. 
Theprocess is replicated 10000 times and the average of the results has been presented 
in the tables below (Tables 1-4). The estimated losses are computed for both LINEX 
and the squared error loss function (SELF) using generated random samples from the 
Dagum distribution and by considering three sample sizes, (i) small sample size 𝑛
25, (ii) moderate sample size 𝑛 50, (iii) large sample size 𝑛 100. The estimated 
losses are repeated for Mukherjee-Islam prior and the extension of Jeffreys’ prior 
using different configuration of scale and shape parameters, viz. 𝑏 𝑘𝑛𝑜𝑤𝑛 1.5, 1.3, 
1.2,  𝑎 𝑘𝑛𝑜𝑤𝑛 2.5, 1.75, 1.6, 𝑝 𝑢𝑛𝑘𝑜𝑤𝑛 7.8, 4.5, 3.5 and  𝑏 𝑘𝑛𝑜𝑤𝑛 1.2, 2.2, 
3.2, 𝑝 𝑘𝑛𝑜𝑤𝑛 1.4, 1.7, 1.9, 𝑎 𝑢𝑛𝑘𝑜𝑤𝑛 5.8, 2.5, 1.5. The hyper parameters values 
are 𝛼 = 2.2, 3.5 and 𝑚  1, 1.7 are chosen using MLE values in R software. 
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Table 1.  Bayesian Estimates under LINEX loss function and  Estimated loss (in parenthesis) for 
Gini Index and Bonferroni Index under Mukherjee-Islam prior (when 𝑝 is unknown, 
𝑎 and 𝑏 are known) 

n b a p 
α 2.2 α 3.5 

                      G  B  G  B  
25 1.5 2.5 7.8 0.14119 

(0.03647, 0.03848) 
0.17720 

(0.05690,0.05817)    
0.14053 

(0.03672,0.03825) 
0.17590 

(0.05748,0.05950) 
1.3 1.75 4.5 0.141006 

(0.03654, 0.03789) 
0.25390 

(0.08675,0.08836) 
0.14177 

(0.03626,0.03798) 
0.25368 

(0.08785,0.08837) 
1.2 1.6 3.5 0.14341 

(0.03566, 
0.036148) 

0.27770 
(0.06531,0.06661) 

0.14179 
(0.03625,0.03775) 

0.27523 
(0.06627,0.06819) 

50 1.5 2.5 
 

7.8 0.14139 
(0.03640, 0.03715) 

0.17759 
(0.05686,0.05739) 

0.14063 
(0.03668,0.03799) 

0.17684 
(0.05706,0.05874) 

1.3 1.75 
 

4.5 0.14121 
(0.03647, 0.03718) 

0.25448 
(0.08648,0.08739) 

0.14205 
(0.03616,0.03701) 

0.25394 
(0.08673,0.08735) 

1.2 1.6 
 

3.5 0.14404 
(0.03543, 0.03608) 

0.27925 
(0.06472,0.06597) 

0.14376 
(0.03553,0.03691) 

0.27860 
(0.06497,0.06691) 

100 
 

1.5 2.5 
 

7.8 0.14152 
(0.03638, 0.03699) 

0.17746 
(0.05522,0.05669) 

0.14088 
(0.03660,0.03709) 

0.17722 
(0.05688,0.05797) 

1.3 1.75 
 

4.5 0.14292 
(0.03584,0.03615) 

0.25450 
(0.08531,0.08649) 

0.14235 
(0.03605,0.03700) 

0.25447 
(0.08548,0.08646) 

1.2 1.6 
 

3.5 0.14587 
(0.03481,0.03513) 

0.27879 
(0.06390,0.06459) 

0.14519 
(0.03501,0.03611) 

0.27933 
(0.06369,0.06479) 

Notation used:  Estimated loss (under LINEX, under SELF) 

Table 2.  Bayesian Estimates under LINEX loss function and Estimated loss (in parenthesis) for 
Gini and Bonferroni index under the extension of Jeffreys’ prior (when 𝑝 is unknown, 
𝑎 and 𝑏 are known) 

n b a p 
m 1 m 1.7 

G  B  G  B  
25 1.5 2.5 

 
7.8 0.14072 

(0.036684,0.03801) 
0.17732 

(0.05741,0.05964) 
0.14007 

(0.03689,0.03816) 
0.17682 

(0.05707,0.05936) 
1.3 1.75 4.5 0.21439 

(0.06362,0.06560) 
0.25300 

(0.08727,0.08902) 
0.21493 

(0.06339,0.06549) 
0.25368 

(0.08685,0.08894) 
1.2 1.6 3.5 0.24123 

(0.06760,0.06996) 
0.17982 

(0.20488,0.22827) 
0.23999 

(0.06808,0.06971) 
0.18100 

(0.20398,0.22873) 
50 1.5 2.5 

 
7.8 0.14098 

(0.03655,0.03715) 
0.17735 

(0.05683,0.05806) 
0.14070 

(0.03665,0.03793) 
0.17737 

(0.05682,0.05815) 
1.3 1.75 

 
4.5 0.21519 

(0.06366,0.06499) 
0.25428 

(0.08657,0.08748) 
0.21505 

(0.06335,0.06499) 
0.25449 

(0.08647,0.08764) 
1.2 1.6 

 
3.5 0.24176 

(0.06739,0.06861) 
0.18305 

(0.20241,0.21953) 
0.24153 

(0.06748,0.06879) 
0.18294 

(0.20149,0.22238) 
100 
 

1.5 2.5 
 

7.8 0.14103 
(0.03643,0.03709) 

0.17806 
(0.05583,0.05696) 

0.14088 
(0.03659,0.03704) 

0.17727 
(0.05586,0.05619) 

1.3 1.75 
 

4.5 0.21478 
(0.06346,0.064185) 

0.25431 
(0.08556,0.08602) 

0.21471 
(0.06320,0.06435) 

0.25471 
(0.08546,0.08675) 

1.2 1.6 
 

3.5 0.24193 
(0.06720,0.06818) 

0.18424 
(0.20006,0.21174) 

0.24098 
(0.06700,0.06861) 

0.18328 
(0.20106,0.21352) 

Notation used:  Estimated loss (under LINEX, under SELF) 
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Table 3.  Bayesian Estimates under LINEX loss function and Estimated loss (in parenthesis) for 
Gini Index and Bonferroni Index under Mukherjee-Islam prior (when 𝑎 is unknown, 
𝑝 and 𝑏 are known) 

n b p a 
α 2.2 α 3.5 

G   B  G   B  
 25 

 
1.2 1.4 

 
5.8 0.41101 

(0.00324,0.00349) 
0.37029 

(0.00260,0.00277) 
0.41738 

(0.00325,0.00344) 
0.37936 

(0.00261,0.00285) 
2.2 1.7 

 
2.5 0.48465 

(0.00558,0.00582) 
0.53917 

(0.00362,0.00382) 
0.49700 

(0.00564,0.00595) 
0.53748 

(0.00377,0.00390) 
3.2 1.9 

 
1.5 0.50321 

(0.00665,0.00683) 
0.55357 

(0.00161,0.00187) 
0.50791 

(0.00655,0.00689) 
0.55153 

(0.00167,0.00185) 
50 1.2 1.4 

 
5.8 0.41186 

(0.00324,0.00341) 
0.37684 

(0.00251,0.00268) 
0.41071 

(0.00322,0.00340) 
0.37579 

(0.00261,0.00275) 
2.2 1.7 

 
2.5 0.49196 

(0.00557,0.00579) 
0.53931 

(0.00361,0.00379) 
0.49994 

(0.00556,0.00590) 
0.53254 

(0.00362,0.00382) 
3.2 1.9 

 
1.5 0.50789 

(0.00654,0.00680) 
0.55070 

(0.00160,0.00179) 
0.51258 

(0.00654,0.00681) 
0.55503 

(0.00161,0.00176) 
100 

 
1.2 1.4 

 
5.8 0.41284 

(0.00320,0.00333) 
0.38057 

(0.00244,0.00255) 
0.41004 

(0.00322,0.00331) 
0.38513 

(0.00241,0.00263) 
2.2 1.7 

 
2.5 0.49897 

(0.00555,0.00569) 
0.54934 

(0.00358,0.00362) 
0.49148 

(0.00555,0.00586) 
0.54864 

(0.00350,0.00371) 
3.2 1.9 

 
1.5 0.51124 

(0.00641,0.00679) 
0.56258 

(0.00157,0.00165) 
0.51245 

(0.00644,0.00677) 
0.56856 

(0.00158,0.00160) 

Notation used:  Estimated loss (under LINEX, under SELF) 
 

Table 4.  Bayesian Estimates under LINEX loss function and Estimated loss (in parenthesis) for 
Gini and Bonferroni index under the extension of Jeffreys’ prior (when 𝑎 is unknown, 
𝑝 and 𝑏 are known) 

n b p a m 1 m 1.7 
G   B  G   B  

25 1.2 1.4 
 

5.8 0.38574 
(0.00347,0.00365) 

0.35028 
(0.00275,0.00288) 

0.38974 
(0.00351,0.00369) 

0.35525 
(0.00268,0.00279) 

 2.2 1.7 
 

2.5 0.46251 
(0.00562,0.00581) 

0.50124 
(0.00367,0.00379) 

0.46925 
(0.00573,0.00588) 

0.502173 
(0.00368,0.00379) 

3.2 1.9 
 

1.5 0.48196 
(0.00667,0.00679) 

0.45218 
(0.00179,0.00183) 

0.48202 
(0.00660,0.00671) 

0.45869 
(0.00172,0.00189) 

50 1.2 1.4 
 

5.8 0.38159 
(0.00349,0.00350) 

0.35585 
(0.00267,0.00271) 

0.38874 
(0.00342,0.00359) 

0.35968 
(0.00258,0.00266) 

2.2 1.7 
 

2.5 0.46095 
(0.00560,0.00579) 

0.50143 
(0.00366,0.00370) 

0.46748 
(0.00563,0.00571) 

0.50147 
(0.00367,0.00372) 

3.2 1.9 
 

1.5 0.47259 
(0.00659,0.00661) 

0.45748 
(0.00168,0.00176) 

0.47179 
(0.00659,0.00669) 

0.45321 
(0.00167,0.00170) 

100 
 

1.2 1.4 
 

5.8 0.39561 
(0.00335,0.00341) 

0.35249 
(0.00259,0.00266) 

0.39095 
(0.00335,0.00349) 

0.35648 
(0.00249,0.00251) 

2.2 1.7 
 

2.5 0.47259 
(0.00558,0.00561) 

0.50852 
(0.00359,0.00362) 

0.47125 
(0.00559,0.00569) 

0.50357 
(0.00359,0.00368) 

3.2 1.9 
 

1.5 0.50014 
(0.00649,0.00656) 

0.45354 
(0.00158,0.00163) 

0.50934 
(0.00649,0.00655) 

0.45258 
(0.00158,0.00166) 

Notation used:  Estimated loss (under LINEX, under SELF) 
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Comments: One can observe that 
1) The estimated loss in each case decreases as sample size 𝑛  increases for all the 

configurations of various parameters.  
2) The estimated loss using the LINEX loss function is smaller as compared with the 

squared error loss function (SELF) for both Mukherjee-Islam prior and the 
extension of Jeffrey’s prior. 

3) The estimated loss is also lower using Mukherjee-Islam prior than the extension of 
Jeffrey’s prior. 

5.  Credible interval 

According to Eberly and Casella (2003), the 100 1 γ % equal tail credible 
interval for the exact posterior distribution can be defined as  

𝑃 𝜃 𝐿 𝜋 𝜃/𝑥 𝑑𝜃
γ
2

,                     𝑃 𝜃 𝑈 𝜋 𝜃/𝑥 𝑑𝜃
γ
2

 

where 𝜋 𝜃/𝑥  is the posterior distribution of 𝜃 and 𝐿,𝑈  are the lower and upper 
limits of the credible interval respectively for the specified value of γ level of 
significance. 

Highest Posterior Density (HPD) Credible Intervals  

Chen and Shao (1999) introduced the algorithm to find the HPD credible intervals. 
100 1 γ %  HPD credible interval is the 100 1 γ % credible interval with smallest 
width among all possible 100 1 γ % credible intervals. Once the posterior sample is 
generated for parameter 𝜃  𝑖 1,2, … , 𝑁 𝑁 , then 𝜃 𝜃 ⋯
𝜃 denote the ordered values of θ , θ , … , θ . The 100 1 γ % HPD interval 
for θ is defined by 𝜃 ,𝜃 , where j is chosen such that   

 𝜃 𝜃 min 𝜃 𝜃 , j 1,2, … , N N , 

where 𝑥  denotes to greatest integer less than or equal to 𝑥. 

Table 5.   95% HPD Credible Intervals, width of the interval and Bayesian estimates (in 2nd row) for 
Gini Index under Mukherjee–Islam Prior 

n b a p α 2.2 α 3.5 

    (Credible interval) 
(width) (Bayes Estimate) 

(Credible interval) 
(width) (Bayes Estimate) 

25 1.5 2.5 
 

7.8 (0.08764,1.159667) 
(1.072027) (0.141195) 

(0.098866,1.418709) 
(1.319843)(0.140532) 

1.3 1.75 
 

4.5 (0.034647,1.065941) 
(1.031294) (0.1410067) 

(0.090902,1.285003) 
(1.194101)(0.141778) 

1.2 1.6 
 

3.5 (0.086689,1.750493) 
(1.663804)(0.1434128) 

(0.029834,1.230873) 
(1.201039)(0.141793) 
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Table 5.   95% HPD Credible Intervals, width of the interval and Bayesian estimates (in 2nd row) for 
Gini Index under Mukherjee–Islam Prior  (cont.) 

n b a p α 2.2 α 3.5 

50 1.5 2.5 
 

7.8 (0.04379,1.016813) 
(0.973023)(0.1413926) 

(0.079860,1.239483) 
(1.159623) (0.1406394) 

1.3 1.75 
 

4.5 (0.010254,1.01777) 
(1.007516)(0.1412134) 

(0.006467,1.069109) 
(1.062642)(0.1420578) 

1.2 1.6 
 

3.5 (0.072973,1.210653) 
(1.13768)(0.1440414) 

(0.094263,1.058927) 
(0.964664)(0.1437612) 

100 
 

1.5 2.5 
 

7.8 (0.050407,1.00031) 
(0.949903) (0.1415200) 

(0.046396,1.091680) 
(1.045284) (0.1408886) 

1.3 1.75 
 

4.5 (0.259496,1.00071) 
(0.741214)(0.1429269) 

(0.001569,1.031742) 
(1.030173) (0.1423524) 

(0.047262,1.007538) 
(0.960276) (0.1451941) 

1.2 1.6 
 

3.5 (0.005600,1.000285) 
(0.994685) (0.1458737) 

                        
 
 
 

Table 6.   95% Credible Intervals, width of the interval and Bayesian estimates for Bonferroni Index 
under Mukherjee–Islam Prior 

n b a p α 2.2 α 3.5 
    (Credible interval) 

    (width) (Bayes Estimate) 
(Credible interval) 

(width) (Bayes Estimate) 
25 1.5 2.5 

 
7.8 (0.155791,1.996669) 

(1.840878)(0.1772007) 
(0.118866, 1.907854) 

(1.788988)(0.1759073) 
1.3 1.75 

 
4.5 (0.134647,1.901148) 

(1.766501)(0.2539019) 
(0.110902,1.903905) 

(1.793003)(0.2536816) 
1.2 1.6 

 
3.5 (0.116897,1.537517) 

(1.42062)(0.2777098) 
(0.129834,1.986688) 

(1.856854)(0.2752306) 
50 1.5 2.5 

 
7.8 (0.11965,1.743861) 

(1.624211)(0.1775938) 
(0.109801,1.618079) 

(1.508278)(0.1768471) 
1.3 1.75 

 
4.5 (0.103105,1.349774) 

(1.246669)(0.2544812) 
(0.106467,1.322476) 

(1.216009)(0.2539437) 
1.2 1.6 

 
3.5 (0.102973,1.182072) 

(1.079099)(0.2792508) 
(0.194236,1.460026) 

(1.26579)(0.2786031) 
100 

 
1.5 2.5 

 
7.8 (0.045070,1.109478) 

(1.064408)(0.1774652) 
(0.054969,1.535899) 

(1.48093)(0.1772273) 
1.3 1.75 

 
4.5 (0.059796,1.179001) 

(1.119205)(0.2545054) 
(0.043519,1.017423) 

(0.973904)(0.2544711) 
1.2 1.6 

 
3.5 (0.006575,1.000118) 

(0.993543)(0.2787902) 
(0.004072,1.087538) 

(1.083466)(0.279333) 
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Table 7.   95% HPD Credible Intervals, width of the interval and Bayesian estimates for the Gini 
index under the extension of Jeffreys’ Prior 

𝐧 𝐛 𝐚 𝐩 𝐦 1 𝐦 1.7 
    (Credible interval) 

    (width) (Bayes Estimate) 
(Credible interval) 

(width) (Bayes Estimate) 
25 1.5 2.5 

 
7.8 (0.102227,1.930575) 

(1.828348)(0.1407223) 
(0.17144,1.901145) 

(1.729705)(0.1400771) 
1.3 1.75 

 
4.5 (0.140647,1.674105) 

(1.533458)(0.2143965) 
(0.16113,1.693517) 

(1.532387)(0.2149375) 
1.2 1.6 

 
3.5 (0.166116,1.744702) 

(1.578586)(0.2412356) 
(0.147876,1.842412) 

(1.694536)(0.239996) 
50 1.5 2.5 

 
7.8 (0.113269,1.459546) 

(1.346277)(0.1409815) 
(0.154915,1.654938) 

(1.500023)(0.1407081) 
1.3 1.75 

 
4.5 (0.10900,1.310285) 

(1.201285)(0.2151987) 
(0.174812,1.450959) 

(1.276147)(0.2150537) 
1.2 1.6 

 
3.5 (0.131304,1.105901) 

(0.974597)(0.2417637) 
(0.135988,1.437119) 

(1.301131)(0.2415304) 
100 

 
1.5 2.5 

 
7.8 (0.176421,1.111614) 

(0.935193)(0.1410336) 
(0.13556,1.147504) 

(1.011944)(0.140881) 
1.3 1.75 

 
4.5 (0.157634,1.133661) 

(0.976027)(0.2147873) 
(0.139321,1.037455) 

(0.898134)(0.2147116) 
1.2 1.6 

 
3.5 (0.103214,1.057451) 

(0.954237)(0.2419366) 
(0.035624,1.098726) 

(1.063102)(0.240987) 

Table 8.   95% HPD Credible Intervals, width of the interval and Bayesian estimates for Bonferroni 
Index under the extension of Jeffreys’ Prior 

n b a p m 1 m 1.7 
    (Credible interval) 

(width) (Bayes Estimate) 
(Credible interval) 

(width) (Bayes Estimate) 
25 1.5 2.5 

 
7.8 (0.115489,1.799312) 

(1.683823)(0.1773219) 
(0.109144,1.86549) 

(1.756346)(0.1768241) 
1.3 1.75 

 
4.5 (0.180611,1.841856) 

(1.661245)(0.2530068) 
(0.150197,1.699720) 

(1.549523)(0.2536889) 
1.2 1.6 

 
3.5 (0.13116,1.971017) 

(1.839857)(0.1798252) 
(0.132148,1.360320) 

(1.228172)(0.1810069) 
50 1.5 2.5 

 
7.8 (0.113269,1.272277) 

(1.159008)(0.1773576) 
(0.134027,1.590231) 

(1.456204)(0.1773717) 
1.3 1.75 

 
4.5 (0.150900,1.479691) 

(1.328791)(0.2542884) 
(0.168629,1.265633) 

(1.097004)(0.2544995) 
1.2 1.6 

 
3.5 (0.113309,1.698651) 

(1.585342)(0.1830509) 
(0.145988,1.243351) 

(1.097363)(0.1829449) 
100 

 
1.5 2.5 

 
7.8 (0.169611,1.029145) 

(0.859534)(0.1780651) 
(0.16900,1.080353) 

(0.911353)(0.1772798) 
1.3 1.75 4.5 (0.163091,1.154255) (0.122073,1.105629) 

    (0.991164)(0.2543103) (0.983556)(0.2547158) 
       1.2 1.6 3.5 (0.136478,1.175373) 

(1.038895)(0.1842456) 
(0.118012,1.006210) 

(0.888198)(0.1832878) 
Comment: One can further infer that as sample sizes increases, the width of the credible interval 
decreases for 95% credible intervals for both Mukherjee-Islam prior and the extension of Jeffreys’ 
prior. The width of HPD is smaller in the case of Mukherjee-Islam prior. 
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6.  For illustration, two real data sets are taken up in this section  

Example 1. A real data is considered for the illustration of the proposed study. 
This data (Daren et al. (2014)) set represents the degree of reading power (DRP) 
scores for a sample of 30 third grade students. 

40, 26, 39, 14, 42, 18, 25, 43, 46, 27, 19, 47, 19, 26, 35, 34, 15, 44, 40, 38, 31, 46, 52, 
25, 35, 35, 33, 29, 34, 41. By using easy fit software, it is seen that data fit well to the 
Dagum distribution and 𝑝-value for the Kolmogorov-Smirnov test is 0.87284 at 5% 
level of significance. The value of shape parameters and scale parameter 𝑝
0.14,𝑎 18.5,  𝑏 45.7 are obtained using easy fit software and the Bayes estimates 
are obtained along with HPD credible intervals for the Gini and Bonferroni Index 
using both Mukherjee and the extension of Jeffrey' Priors. The results have been 
presented in the table below (Table 9). 

Table 9:   Bayesian estimates along with 95% HPD Credible Intervals under LINEX loss function 
and Estimated loss under LINEX and SELF (in parenthesis) for Gini index and Bonferroni 
index under Mukherjee-Islam prior and the extension of Jeffrey’s Prior 

Priors  𝐆𝐌𝐋 𝐁𝐌𝐋 

Mukherjee-
Islam prior 

 

α  2.2 0.11480 
(0.04757,0.06558) 

0.06611 
(0.0026,0.00277) 

95% HPD Credible Intervals 
(width) 

(0.07145,1.54261) 
(1.47115) 

 (0.00483,0.01642) 
  (0.01159) 

Extension of 
Jeffrey’s prior 

 

m 1 0.12146 
(0.08620,0.1982) 

0.06919 
(0.07093,0.14253) 

95% HPD Credible Intervals 
(width) 

(0.0531,1.8642) 
(1.8111) 

   (0.0015,0.9631)  
   (0.9616) 

 
 

   
Figure 2. Comparison of Posterior density with Empirical density under Mukherjee-Islam Prior 
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Figure 3.  Comparison of Posterior density with Empirical density under Extension of Jeffreys’s Prior 

From the above findings of graph, we can see the posterior density and empirical 
density under Mukherjee-Islam prior and the extension of Jeffreys’ prior are nearly 
the same. 

Example 2. The data (Sanku et al. (2017)) set consists of 30 observations on 
breaking stress of carbon fibres (in Gba). The data are: 3.7, 2.74, 2.73, 3.11, 3.27, 2.87, 
4.42, 2.41, 3.19, 3.28, 3.09, 1.87, 3.75, 2.43, 2.95, 2.96, 2.3, 2.67, 3.39, 2.81, 4.2, 3.31, 
3.31, 2.85, 3.15, 2.35, 2.55, 2.81, 2.77, 2.17. By using easy fit software, it is seen that 
data fit well to the Dagum distribution and the 𝑝-value for the Kolmogorov-Smirnov 
test is 0.99668 at 5% level of significance. The values of shape parameters and scale 
parameter  𝑝 0.97,𝑎 9.7,  𝑏 2.9 are obtained using easy fit software and the 
Bayes estimates are obtained along with HPD credible intervals for the Gini and 
Bonferroni Index using both Mukherjee and Uniform Prior. The results have been 
presented in the table below (Table 10). 

Table 10.  Bayesian estimates along with 95% HPD Credible Intervals under LINEX loss function 
and Estimated loss under LINEX and SELF (in parenthesis) for Gini index and Bonferroni 
index. 

Priors   𝐆𝐌𝐋 𝐁𝐌𝐋 

Mukherjee-
Islam prior 

 

α  1.2 0.02634 
(0.03926,0.07219) 

0.01152 
(0.0011,0.00161) 

95% HPD Credible Intervals 
(width) 

(0.00926,1.12018) 
(1.11092) 

 (0.00916,0.01849) 
  (0.00933) 

Extension of 
Jeffrey’s prior 

 

m 1 0.18001 
(0.04165,0.21013) 

0.04629 
(0.06282,0.09932) 

95% HPD Credible Intervals 
(width) 

(0.01406,1.50674) 
(1.49268) 

   (0.00132,1.73965)  
   (1.73833) 
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Figure 4. Comparison of Posterior density with Empirical density under Mukherjee-Islam Prior. 
 

 
Figure 5. Comparison of Posterior density with Empirical density under Extension of Jeffrey’s Prior. 

From the above findings of the graph, we can see the posterior density and 
empirical density under Mukherjee-Islam prior and the extension of Jeffrey’s prior are 
nearly the same. 

As seen above, the findings from real life examples are in accordance with those of 
the simulation study. One can see that in the case of the real data set also Mukherjee-
Islam prior results in smaller estimated loss in comparison with the extension of 
Jeffrey’s prior. Even the width of HPD credible interval is smaller in the case of 
Mukherjee prior. The estimated loss is also smaller in the case of LINEX than SELF 
irrespective of the prior being used. The findings from the real life example are in 
accordance with those of the simulation study. 

7. Conclusion 

Bayes estimates of two inequality indices are obtained in the case of the Dagum 
distribution, an important income distribution. As seen from the simulation study 



66                                                                                            S. Arora et al.: A Bayesian estimation of the Gini… 

 

 

it is observed that Mukherjee-Islam prior performs better than the extension of 
Jeffrey’s prior in terms of having smaller estimated loss. It is also observed that the 
LINEX loss function results in smaller loss as compared to SELF for small, medium 
and large sample sizes irrespective of the choice of prior. One can further see that the 
expected loss decreases as the sample size increases. The real data set is also 
in conformity with above results.     
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