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Abstract
The accumulation of experience that occurs with production is likely to impact an
organization’s ability to develop manufacturing process innovations. However, how
different types of manufacturing experience relate to the characteristics of an orga-
nization’s process innovation output is an open question. In this study, we investigate
how a firm’s accumulated related and unrelated manufacturing experiences are associ-
ated with this firm’s ability to innovate its production methods. To characterize firms’
process innovation output, we observe their portfolios of patented manufacturing inven-
tions, which we qualitatively evaluate over time, through a unique collaboration with
expert patent attorneys, along two critical dimensions: novelty and scope. We argue
that related manufacturing experience leads to a better understanding of parts of the
focal product’s technological landscape that will allow the development of inventions
of broader scope. However, it may also contribute to inertia in that it might restrict the
firm’s innovative activity to more familiar regions of the landscape, thereby limiting
inventions’ novelty. Conversely, manufacturing experience with products that are unre-
lated to the focal product is expected to stimulate and support a broader search that
includes more distant regions of the focal product’s technological landscape, which
would lead to more novel manufacturing inventions. Yet, the application of this unre-
lated experience to the production of the focal product is likely to require additional
exploratory effort in a not-well-understood region of the focal product’s landscape,
likely resulting in inventions of limited scope. In line with our hypotheses, we find that
related (unrelated) manufacturing experience is positively (negatively) associated with
inventions’ scope, and negatively (positively) associated with inventions’ novelty. In
addition to supporting the relevance of a multidimensional evaluation of innovations,
our findings provide practical guidance regarding the strategic implications of a firm’s
knowledge management.

K E Y W O R D S
experience, innovation, patents, pharmaceuticals

1 INTRODUCTION

Process innovation, defined as “new elements introduced
into an organization’s production or service operations (e.g.,
input materials, task specifications, work and information
flow mechanisms, and equipment) to produce a product or
render a service” (Damanpour, 2008, p. 698), plays a strategic
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role in the long-term survival of manufacturing organizations
(Pisano, 1997). It can enable improvements in production
yields (Tushman & Nadler, 1986), reductions in production
costs (OECD, 2005), and other productivity enhancements
(Ettlie & Reza, 1992). For mature products, it represents
the dominant form of innovation (Utterback & Abernathy,
1975). Yet, while considerable research effort has been
expended to understand the drivers of product innovation,
process innovation remains largely understudied (Crossan &
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Apaydin, 2010). While past literature (e.g., Leiblein, 2009)
suggests that an organization’s manufacturing experience is
crucial for generating new process-improvement ideas, that
is, process innovations, a more granular understanding of this
relationship is missing (Argote & Miron-Spektor, 2011). In
particular, how different types of manufacturing experience
relate to an organization’s process innovation output remains
an open question (Cohen, 2010), which motivates our
study.

Experience is “what transpires in the organization as it per-
forms its task” (Argote & Miron-Spektor, 2011, p. 1024).
Through manufacturing experience, organizations develop
valuable skills, an improved understanding of the condi-
tions required by the technology and/or equipment (Leiblein,
2009), and gain knowledge, which becomes embedded in var-
ious repositories such as an organization’s members, tasks,
and tools (Argote & Hora, 2017). As a result, the type of
manufacturing experience that an organization accumulates
plays an important role in shaping its ability to devise inno-
vative solutions to its process development needs (Chari et al.,
2007), allowing it to remain competitive. Specifically, when
looking at the output produced through a focal process, a dis-
tinction has often been made between related and unrelated
manufacturing experience (Cohen & Levinthal, 1990; Fong
Boh & Slaughter, 2007).

In manufacturing environments, technical knowledge is
likely to be transferable across the production processes of
related products, thus benefiting innovation (Garcia-Vega,
2006). Indeed, experience with manufacturing related prod-
ucts, that is, related experience, suggests an exposure to a
variety of tasks and technical challenges, which are likely
to be relevant when attempting to solve problems associ-
ated with the focal manufacturing process (Lawrence, 2018).
However, the accumulation of related manufacturing experi-
ence can also, overtime, create inertia and act as a deterrent
to process innovation as the firm becomes trapped in its cur-
rent competencies (Lawrence, 2018; Levitt & March, 1988).
This is because process innovation often entails significant
changes such as the introduction of new manufacturing equip-
ment or the adoption of new production routines, all of
which can drastically impact existing production practices
(Leiblein, 2009).

In contrast, experience with operating manufacturing pro-
cesses that create unrelated products, that is, unrelated
experience, broadens the knowledge base of a firm (Leten
et al., 2007) and enables proficiency across various tech-
nologies (Argote & Miron-Spektor, 2011). As such, it can
give rise to potentially greater innovation than if relying on
related experience alone (Nelson, 1959). Indeed, when firms
diversify into unrelated fields, more learning opportunities
are available through higher cross-fertilization between dif-
ferent technologies (Garcia-Vega, 2006) and through learning
from diverse errors (Egelman et al., 2017). Yet, even though
unrelated experience may protect organizations from becom-
ing locked into a particular set of technologies, it can also put
a strain on a firm’s limited financial and cognitive resources

(Hitt et al., 1997), thereby increasing the opportunity cost of
not pursuing innovation in related fields.

The above discussion suggests that, even when conceptu-
ally differentiating between related and unrelated manufac-
turing experience, their respective relationship with process
innovation remains ambiguous, which calls for greater empir-
ical investigation. In particular, it appears worthwhile to
distinguish between the scope and the novelty of a firm’s
innovative output in order to reconcile the contradicting
conceptual arguments presented above. Using a firm’s port-
folio of manufacturing process patents as the main indicator
of its innovative output (Jain, 2013), we define novelty as
the technological distance between the patented innovations
and prior art1 (Reitzig, 2003) and scope as the number of
substitute process configurations that are simultaneously cov-
ered by the patented innovations (Gilbert & Shapiro, 1990;
Lerner, 1994). On the one hand, our previous depiction of
the relationships between experience and innovative out-
put would indicate that related knowledge, because of its
transferability, has the potential to enhance one aspect of
innovation—its scope—but also carries the risk of lodging
the firm into a competency trap, which would restrict its nov-
elty. On the other hand, because it broadens an organization’s
knowledge base, unrelated experience could enhance a firm’s
ability to identify highly novel solutions for the focal pro-
cess. However, these inventions would also push the firm
outside of its typical operating practices. This unfamiliarity
implies that the identification of substitute process configu-
rations would not only be relatively harder to envision but
would also involve significant exploratory effort. Hence, cog-
nitive and financial constraints could limit the scope of these
inventions.

To study these relationships, we choose as our context the
manufacturing of active pharmaceutical ingredients (APIs)
for drugs that have lost product-patent protection. Product-
patent expiration implies that the originating pharmaceutical
firm faces competition from bio-equivalent versions, that is,
“generics,” which contain the same API. In these relatively
saturated markets, process innovation becomes the main way
by which firms can gain a competitive advantage and secure
a greater market share (Morton, 1999). We examine how
a pharmaceutical firm’s accumulated related and unrelated
experiences in API production are associated with this firm’s
ability to innovate its manufacturing methods, as reflected in
the characteristics of its portfolio of manufacturing process
patents.

To qualitatively characterize firms’ portfolios of patented
manufacturing inventions, we collaborate with expert patent
attorneys. This unique characteristic of our study allows us
to simultaneously evaluate the novelty and scope of these
portfolios. By focusing our study on firms that all belong to
a single industrial sector, that is, the pharmaceutical indus-
try, where the patent mechanism is widely considered as the
preferred mechanism for protecting a firm’s intellectual prop-
erty (Mansfield, 1986), we also reduce the need to control
across firms “for fundamental differences in technological
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opportunity and propensity to patent” (Lieberman, 1987,
p. 258).

Among pharmaceutical products, we focus on APIs for
antineoplastic drugs—the broad family of drugs, which are
used in the treatment of cancer—because these drugs are
significant from both an economic and a political point of
view. Antineoplastics “rank first in terms of global spending
by therapeutic class” and “figure prominently in discussions
over health reform, alternatively symbolizing wasteful spend-
ing and biomedical progress” (Howard et al., 2015, p. 140).
Moreover, compared to other families of drugs, anticancer
drugs are complex, challenging-to-produce, and chemically
diverse drugs that affect a variety of organs, tissues, and
tumors (Chabner & Longo, 2011). As such, to remain inno-
vative, a firm must be capable of developing processes that
successfully integrate a complex technological skill set that
relies on engineering, chemistry, and microbiology (Bennett
& Cole, 2003). Manufacturing experience is expected to play
a crucial role in shaping this organizational skillset.

We find that related and unrelated experiences have con-
trasting relationships with the novelty and scope of a firm’s
innovative output. Specifically, results suggest that related
experience allows inventions of broader scope for the focal
API’s manufacturing process but limits their novelty while
unrelated experience allows for inventions of higher novelty
but narrower scope.

Overall, we make the following significant contributions.
First, we respond to persistent calls in the innovation lit-
erature (e.g., Crossan & Apaydin, 2010) for more research
specifically focused on process innovation, and its deter-
minants. While process innovation differs from product
innovation in terms of its nature, determinants, and potential
impact (Becheikh & Amara, 2006), researchers frequently
fail to distinguish between the two. This overlooks the fact
that the knowledge that is necessary to enable process inno-
vations is of a more complex and tacit nature. Indeed, process
innovations result from hands-on experience and a more inti-
mate understanding of how a process’ components interact
with each other and with the organizational setting in which
the process is executed (Gopalakrishnan & Bierly, 1999).
Moreover, because process innovations can have a cross-
functional impact, their development requires input from
the different functions of an organization whose operation
will be affected by the new technology (Boer & During,
2001). Our work is motivated by these important distinctions
between product and process innovation. By focusing on the
manufacturing of APIs for drugs open to competition from
generics, we obtain an ideal setting for a deeper investigation
of manufacturing experience as a key determinant of process
innovation. Through our analysis, we show that manufactur-
ing experience has the potential to benefit certain attributes of
process innovation while hurting others.

Second, while related and unrelated experiences have
frequently been considered as sources of learning in the oper-
ations management (OM) literature, existing studies have
mostly focused on individuals and teams (e.g., Fong Boh &
Slaughter, 2007; Gino et al., 2010) and frequently in single-

firm service settings. In manufacturing settings, where again
a large number of studies are single-firm or even single-site
studies (e.g., Egelman et al., 2017; Levitt et al., 2013), pro-
duction experience has mostly been considered in relation to
the learning curve (e.g., Sinclair et al., 2000) and has thus
been examined in relation to measures of productivity and not
of process innovativeness. As such the association between
manufacturing experience and manufacturing process inno-
vation is not well understood and existing results from OM
studies that focus on productivity are unlikely to directly
carry over to process innovation, which tends to occur via
nonroutine and nonrepetitive activities (Jain, 2013). The few
studies that have examined the association between man-
ufacturing experience accumulation and process innovation
have found a positive association between learning by doing
and the rate of patenting (Lieberman, 1987), that engineering
changes are driven by the accumulation of process experi-
ence (Adler & Clark, 1991), and that introduction of new
processes into a production facility is disruptive for learning
relative to existing processes (Hatch & Mowery, 1998). Thus,
these studies remain at a high level and do not distinguish
between different types of experience or different qualita-
tive characteristics of process innovativeness. Our multifirm
and multiproduct data set allows us to compare the innova-
tiveness of manufacturing methods used by firms to produce
essentially the same output, that is, a given API. Thus, by con-
sidering a variety of firms, with each having unique related
and unrelated product portfolios relative to a focal prod-
uct, we are able to build and expand on prior literature on
manufacturing process innovativeness.

Third, we also contribute more broadly to the literature
on organizational learning, where it has been observed that
“a more fine-grained analysis of the experience-creativity
link will help reveal underlying mechanisms and boundary
conditions that explain how, when, and why prior experi-
ence affects knowledge creation in organizations” (Argote
& Miron-Spektor, 2011). This analysis is especially needed
in multiproduct environments where different products share
common resources and therefore less is known about how dif-
ferent types of experience affect learning, knowledge transfer,
and the generation of new ideas (Egelman et al., 2017).
With this research, we address this need while also con-
sidering multiple qualitative dimensions of generated (and
patented) ideas. To the best of our knowledge, such an
in-depth examination of the association between manufac-
turing experience and process innovation is unique in the
literature.

Our work also provides important insights for practition-
ers. When a firm’s product portfolio is concentrated on a set
of related products, new manufacturing methods that the firm
invents for these products over time are likely to be charac-
terized by broad scope (i.e., cover a large number of possible
alternative process configurations) but to lack novelty. Con-
versely, a diverse product portfolio might enable the firm to
invent more novel manufacturing methods (i.e., methods that
differ more fundamentally from existing practices) but these
are likely to be of a narrower scope. This suggests that firms’
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product portfolio and specific managerial practices targeted
toward experience and knowledge management could play a
key role in shaping their competitive strategy.

2 LITERATURE REVIEW AND
HYPOTHESIS DEVELOPMENT

Past literature has extensively discussed some of the charac-
teristics that affect a firm’s ability to innovate. For instance,
a firm’s level of R&D spending and the extent of competi-
tion in the markets in which a firm operates have both been
found to be important factors (Cohen, 2010; Matraves, 1999).
Less well understood is the role of the firm’s manufacturing
experience. We begin our review by focusing on available evi-
dence on the link between a firm’s manufacturing experience
and its innovative capabilities. We then introduce the concept
of a “technological landscape” as the organizing framework
for our arguments and use it to offer a more nuanced dis-
cussion of this link by distinguishing between related and
unrelated manufacturing experience and narrowing our focus
on process innovation.

2.1 Manufacturing experience and
innovative output

Through manufacturing experience, firms develop opera-
tional (i.e., know-how) and conceptual (i.e., know-why)
learning (Malerba, 1992), both of which are crucial drivers of
process innovation (Cornelius et al., 2020). This link between
manufacturing experience and process innovation has been
demonstrated in past literature (e.g., Lieberman, 1987), which
has found that learning-by-doing influences the innovative-
ness of a firm’s manufacturing processes and enhances their
productivity. However, this literature has focused on the vol-
ume of patenting activity without examining its qualitative
attributes. It also does not distinguish between the differ-
ent types of accumulated manufacturing experience, which,
in pharmaceuticals, are likely to play an even more pro-
nounced role in a firm’s ability to innovate its processes
because an intimate understanding of how complex sci-
entific principles translate into manufacturing practice is
essential for process innovation to occur (Jain, 2013). For
instance, the development over time of knowledge crucial
for manufacturing process innovation (e.g., knowing which
pharmaceutical excipients would perform best, and worst,
under a particular set of process conditions or under a par-
ticular manufacturing setup) can only be achieved through
manufacturing experience.

More generally, Xie and O’Neill (2013) explain that as
firms accumulate experience manufacturing their products,
they gain technological knowledge and skills, that is, know-
how, which can then be continuously applied to follow-on
research and problem solving, and contribute to the develop-
ment of strong internal R&D capabilities, that is, know-why
(Yeoh & Roth, 1999). These R&D capabilities, in turn, are

crucial for solving future manufacturing problems, uncover-
ing opportunities for long-lasting process improvements, and
so forth, and eventually enabling the development of man-
ufacturing process innovations. This strong interdependence
between R&D and manufacturing in driving process innova-
tion explains why pharmaceutical firms strive to streamline
information flows between the lab and the shop floor
(Cardinal et al., 2001).

To better illustrate how an organization’s accumulated
manufacturing experience might inform its R&D efforts and
influence its innovative output in our setting, consider the
following statement from the production and R&D head of
a leading manufacturer of APIs2: “Whenever production i)
faces a technological or chemical problem (for example, the
manufacturing process is slow due to low temperature), ii)
needs to increase or decrease the volume of production, or iii)
faces a quality issue, it informs R&D about the ‘challenge’
and proposes a solution based on the production depart-
ment’s experience. R&D then proceeds to test the proposal of
the production team in the lab and develops detailed instruc-
tions on how a possible change might be implemented. At
the same time, R&D automatically checks the new solution
for patentability. Production implements the solution at a
commercial scale and provides feedback to R&D about the
achieved results. In our firm, production has no right to make
any change in the manufacturing process without lab testing
and approval from R&D.”

The information flows described in the above statement
are not necessarily limited to a single manufacturing process.
Instead, solutions are often derived from the combination of
knowledge that has been obtained across the firm’s differ-
ent manufacturing processes. For example, as explained by
Chaudhuri (2013), “for problems observed in specific types
of reactions and reagents for certain [pharmaceutical] prod-
ucts, analysis is done to determine which other products
either in the same or different therapeutic category histori-
cally had same or similar processes and any specific solutions
which were implemented for those. This requires collabora-
tion among researchers within R&D who work on products of
different therapeutic categories” so that available knowledge
can be leveraged across products (p. 236).

2.2 The technological landscape of
pharmaceutical manufacturing and the novelty
and scope of innovation

The design of a manufacturing process consists in several
configuration decisions along a set of technological attributes
(Mihm et al., 2015). These technological attributes can be
thought of as the different dimensions of a “technological
landscape,” which can be defined as “the space that inven-
tors must search when attempting to discover useful new
inventions” (Fleming & Sorenson, 2004, p. 912). As such,
new inventions can be considered as recombinations of exist-
ing “technological components,” which themselves can be
thought of as “fundamental bits of knowledge or matter
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that inventors might use to build inventions” (Fleming &
Sorenson, 2004, p. 910).

The concept of a technological landscape has been used
extensively in the operations management and strategy lit-
eratures (e.g., Aharonson & Schilling, 2016; Mihm et al.,
2015) as the organizing framework for examining a firm’s
innovation activities. Any given set of decisions along the
landscape’s different technological attributes corresponds to
a specific point on the landscape and can be referred to
as a “technological configuration.” Manufacturing inventions
of the type included in our sample of patents can be con-
sidered as choices along attributes such as input materials,
solvents, catalysts, production steps and their sequencing,
equipment and their configuration, and/or other operating
conditions such as temperature, light, humidity, and pressure.
Because these inventions typically capture entire decision
ranges along certain attributes, each corresponding patent is
going to protect “not just one point but instead an entire area
in the technology landscape” (Mihm et al., 2015, p. 2669).

Seen from this angle, each API in our study, can be thought
of as having its own technological landscape. A firm’s posi-
tion on the landscape for a focal API is then determined
by the firm’s set of manufacturing choices across the entire
API production process (Kauffman et al., 2000). According
to this conceptualization, manufacturing process innovation,
as reflected in a firm’s portfolio of process patent(s) for a
focal API, becomes a means to occupy a unique, and poten-
tially more valuable, position on that API’s technological
landscape. Consistent with our formal definitions of novelty
and scope provided in Section 1, portfolios of higher nov-
elty would correspond to technological configurations that
are located in a more distant region of the technological
landscape, relative to the state of the art, while portfolios of
broader scope allow the firm to maintain exclusive access to a
broader set of related technological configurations or equiva-
lently, a wider region of the technological landscape (Lugovoi
et al., 2021).

While scope has not received the same amount of attention
as novelty in the literature, it represents an important dimen-
sion of innovation because it captures the degree of difficulty
for competitors to operate similar technological configura-
tions without infringing on any of the patent-holding firm’s
patented manufacturing inventions. In markets that are highly
saturated, such as the pharmaceutical markets for generics,
having inventions of broad scope can be particularly critical
to maintain differentiation from competition, thereby achiev-
ing long-term profitability and survival (Schmidt & Porteus,
2000; Yiannaka & Fulton, 2001).

Because novelty and scope reflect distinct characteristics
of a firm’s innovative output, patent portfolios can be high
in novelty but low in scope or vice versa. To illustrate the
former, consider Mesna, a drug in our sample that is used in
the treatment of chemotherapy-related cystitis (Vidal, 2013).
UCB Pharma developed a new manufacturing process for the
Mesna API, which involves a hydrolysis step followed by an
isolation step and results in an active ingredient of higher
purity profile relative to prior art (Leveque et al., 2011). While

the novelty of the process for the preparation of this API was
high, the resulting patent was of narrow scope, as, accord-
ing to our patent experts, competitors bypassed this invention
in a relatively effortless manner. For example, Fresenius AG,
Sagent Pharmaceuticals Inc., and Altan Pharma Ltd all imple-
mented minor changes to the invention disclosed by UCB
Pharma and achieved production of the API with similar
purity without violating UCB Pharma’s patent (IMSHealth,
2015). Conversely, an example of a low-novelty but broad-
scope patent can be found with Bevacizumab, a drug mainly
used to treat colorectal and lung cancers (Vidal, 2013). F.
Hoffmann–La Roche developed a new method for increas-
ing the yield of antibodies in cell culture, which consists in
substituting specific residues during the manufacturing pro-
cess. The low novelty of the invention is explained by the
existence, in prior art, of many techniques for producing anti-
bodies using a variety of host cells. The high scope is justified
because the invention encompasses a wide range of potential
residues’ substitutions and describes comprehensively both
the residues that could be substituted and the substitutes that
could be used.

2.3 Related and unrelated manufacturing
experience

As described in Section 2.1, a firm’s past manufacturing expe-
rience is a key determinant of its ability to innovate. However,
as noted at the end of that section, different types of experi-
ence could have different effects. In particular, the extent to
which past experience readily applies to the process at stake
appears as an important differentiator.

2.3.1 Related manufacturing experience

As firms accumulate manufacturing experience, they build
core skills that are more likely to be applicable to inno-
vation activities that take place in technological land-
scapes of related—rather than unrelated—products (Cohen
& Levinthal, 1990). This is especially the case in the phar-
maceutical industry given the complexity and specificity of
the underlying science. In this study, we treat as “related” the
APIs that belong to the same subclass of anticancer APIs.
Related APIs have similar molecular structures and, conse-
quently, can be produced through similar production steps
using similar manufacturing technologies (Anderson, 2012).
For example, Doxorubicin and Epirubicin—two APIs present
in our sample—both belong to the same subclass and can be
produced through similar production steps (i.e., halogenation,
hydrolysis, chromatographic purification, and crystallization)
and may even share production equipment. However, their
production will differ in the starting materials, the execution
of each production step (e.g., volume and concentration, type
of solvents), and the operating conditions.

This suggests that the landscapes of related APIs are popu-
lated by configurations that arise from decisions along closely
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related—or even identical—attributes that interact in similar
ways across landscapes. Because specific operating decisions
will still differ across related APIs, accumulation of expe-
rience manufacturing them, that is, related experience, will
contribute to a firm’s deeper understanding of how the asso-
ciated technological attributes interact over wider decision
ranges (Malerba, 1992) and such understanding will apply
and transfer across landscapes. Consequently, related expe-
rience can help the firm better understand the corresponding
regions of the focal API’s technological landscape and enable
it not only to identify new technological configurations that
are valuable for the focal API’s production process (Nerkar
& Roberts, 2004) but also to patent them in ways that are
relatively general, that is, of relatively broad scope. These
will then be the elements of a patent portfolio that protects
a wider area of the focal API’s technological landscape from
competition (Leonard-Barton, 1988).

Nevertheless, these new technological configurations,
identified because of the availability of related know-how
and know-why, will typically be of an incrementally, rather
than of a radically, different nature (Malerba, 1992; Solheim
et al., 2018) and will mostly correspond to regions of the focal
API’s technological landscape that are adjacent to the ones
the firm already operates in. This is a consequence of the fact
that production of related products tends to happen via simi-
lar process configurations within a given firm (Aharonson &
Schilling, 2016), such that transfers of know-how and know-
why across related products are unlikely to result in radically
different process configurations for the focal API.

Moreover, as firms become more experienced in the man-
ufacturing of related products, and therefore more capable at
activities similar to the ones in which they already engage,
accumulation of related experience does not contribute to
the knowledge diversity that is critical to creating some-
thing substantially novel. Indeed, accumulation of related
manufacturing experience can permit the development of
incremental solutions that improve efficiency and productiv-
ity but can also contribute to a firm’s rigidity in dealing with
novel situations and become a source of inertia or “compe-
tency trap” (Levitt & March, 1988; Yeoh & Roth, 1999).
Expertise and routines combined with organizational biases
tend to endorse local rather than global search and the firm
may have difficulties interpreting alternatives, their conse-
quences, and their potential influence on problem solving
when performing more distant searches (Afuah & Tucci,
2012). For example, Knudsen and Levinthal (2007) point
out that screening ability may depend on experience when
stating that “actors may become quite skillful and accurate
in evaluating one class of alternatives, but rather inaccurate
in evaluating a different and for them novel set of alterna-
tives” (p. 52). Moreover, related experience may induce an
organization to become inflexible such that, over time, tech-
nological strategies that once ascertained firm’s superiority
can even turn into impediments—for instance, to preserve
the existing state of affairs, management may try to conceal
difficulties related to the traditional approaches (Katila &
Ahuja, 2002).

It is therefore unlikely that accumulation of related expe-
rience will push a firm’s inventive activities toward more
distant regions of the focal API’s landscape. Instead, such
activities will remain concentrated to the regions of the land-
scape that the firm understands well. This is also reflected in
the organizational learning literature (e.g., Gupta et al., 2007),
which explains that prior experience can constrain creative
thinking as it can lead to drawing on familiar processes and
heuristics when solving a problem. Exploring more distant
regions of the technological landscape would require the con-
sideration of more numerous alternatives and, hence, more
numerous experiments with uncertain results given the large
number of unfamiliar technological configurations (Afuah
& Tucci, 2012). Such exploration, when combined with the
need for an eventual integration to production, requires time,
resources, and effort that the firm may be unwilling or unable
to invest (Katila & Ahuja, 2002). Relatedly, the fear of fail-
ure, together with mental and social fatigue, may function
as additional impediments as inventors become “locked into
established thought patterns” (Fleming, 2001, p. 1025).

This is echoed by the senior vice president of R&D for
an API manufacturer who we interviewed for this study. He
explained to us that the R&D team at his firm is populated
with scientists (typically chemists), each of whom specializes
in a set of related APIs among the firm’s product portfo-
lio. Such specialization is necessary in order to achieve the
needed expertise in understanding the chemistry and other
specificities of associated molecular structures and produc-
tion processes. Inventive activities around a focal API are
guided by the corresponding R&D specialists and the lat-
ter are typically inclined to first search for solutions within
the more easily accessible related knowledge base. Moreover,
such activities are typically carried out under tight time and
budget constraints that arise from the intense competition that
characterizes the generics industry. Thus, accumulation of
related experience will limit the likelihood of searching for
solutions beyond the related know-how and know-why.

The above discussion implies that, as a firm accumu-
lates related manufacturing experience, it will develop a
deeper understanding of parts of the focal API’s technolog-
ical landscape that will permit the development of inventions
of broader scope. However, it will also contribute to iner-
tia that will constrain the firm’s inventive activity to more
familiar regions of the landscape, thereby hurting the inven-
tions’ associated novelty. We thus state the following two
hypotheses:

Hypothesis 1a (H1a): The magnitude of a firm’s related
manufacturing experience is nega-
tively associated with the novelty
of process inventions for a focal
product.

Hypothesis 1b (H1b): The magnitude of a firm’s related
manufacturing experience is pos-
itively associated with the scope
of process inventions for a focal
product.
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2.3.2 Unrelated manufacturing experience

Unrelated products are produced through manufacturing
processes characterized by different production technolo-
gies. In our setting, we define APIs to be unrelated when
they belong to different subclasses of anticancer APIs. As
such, unrelated APIs have different molecular structures,
which necessitate different production approaches with very
limited “functional overlap” (Cornelius et al., 2020). Typ-
ically production processes for unrelated APIs consist of
different steps that are also of highly different nature in
terms of equipment and operating conditions owing to the
differences in the underlying chemistry. As an example, con-
sider two unrelated APIs from our sample: Everolimus and
Doxorubicin. While production of Everolimus—and of other
APIs in the same subclass—is characterized by the use of
an enzymatic process (Guengerich et al., 2004), production
of Doxorubicin—and of other APIs in the same subclass—
relies on semisynthetic molecules, which require radically
different manufacturing technologies (Madduri et al., 1998).
Despite these differences, experience with producing Dox-
orubicin through a one-pot process was key in inspiring and
informing the development of a new, much shortened, pro-
cess for Everolimus that bypassed separate preparation of an
intermediate product.3

This example suggests that the presence of manufactur-
ing experience with unrelated (to the focal) APIs, which
are produced through highly distinct manufacturing pro-
cesses, can lead the firm to conduct a broader search that
includes more distant regions of the focal API’s technological
landscape and identify production methods that might have
otherwise remained unexploited. This is possible because the
presence of unrelated know-how and know-why can inspire
firms to consider combining technological components in
the focal API’s landscape in radically different ways (Flem-
ing & Sorenson, 2004). This is further supported by Sting
et al. (2020), who argue that simultaneous input from mul-
tiple parties with different expertise or knowledge levels in
joint problem solving leads to broader searches and enables
a higher degree of creativity. Moreover, it may “unlock new
component combinations” (Albert & Siggelkow, 2021, p.15).
Thus, the experience that has been accumulated from pro-
ducing unrelated APIs (e.g., developing and using special
equipment designs, executing various production techniques)
can inspire the firm to approach the manufacturing process
of the focal API more creatively and, “by systematically
broadening the search,” lead to the development and patent-
ing of more novel manufacturing inventions that would not
have been possible by only relying on available related
manufacturing experience (Baumann et al., 2019, p. 289).

Yet, because application of this unrelated experience to the
production of the focal API is not as straightforward as the
application of related experience, the resulting invention is
likely to be more limited in scope. Indeed, knowledge gained
from unrelated manufacturing experience is likely to push
the firm outside its typical operating practices along one or
more attributes of the focal API’s production. The closely

interconnected nature of the different attributes of phar-
maceutical production suggests that such deviation would
place the firm in an unfamiliar area of the technological
landscape (Novelli, 2015). Hence, the development of a
solution that is general enough to merit a patent of broad
scope requires additional exploratory effort (e.g., through
experimentation) in a not-well-understood region of the focal
API’s landscape. This is reflected in Sting et al. (2020), who
explain that joint problem solving based on different types
of expertise or knowledge is more time consuming because
of the broader nature of the associated search. Increased
experimentation is needed to achieve more extensive famil-
iarity with feasible alternatives (Leonard-Barton, 1988),
and a deeper engagement with a wider range of associated
production technologies and technological configurations
(Mihm et al., 2015). Similarly, Albert and Siggelkow (2021)
argue that finding large sets of interaction changes that
improve performance does become increasingly difficult.
Hence, the resources necessary to carry out such exploratory
activities are less likely to be invested due to financial and
time constraints. Moreover, cognitive constraints to consider
“all the components and their potential relationships simulta-
neously” (e.g., within R&D) can limit the extent to which the
firm can even recognize broader parallels between unrelated
knowledge and the manufacturing of the focal API (Fleming,
2001, p.1025; Fong Boh & Slaughter, 2007).

The chief scientific officer and head of R&D at a verti-
cally integrated pharmaceutical company that we interviewed
explains that: “When searching to solve a production prob-
lem for a given API, we involve personnel that specializes in
unrelated APIs mostly when we’ve exhausted our options with
the specialists of the focal API. However, by the time a solu-
tion is eventually found we will be either out of time or over
budget. As a result we usually only have the resources to care-
fully verify the narrow working technological solution we’ve
identified and no opportunity to make extensive experiments
to explore possible deviations.”

The above discussion suggests the following two
hypotheses:

Hypothesis 2a (H2a): The magnitude of a firm’s unre-
lated manufacturing experience is
positively associated with the nov-
elty of process inventions for a
focal product.

Hypothesis 2b (H2b): The magnitude of a firm’s unre-
lated manufacturing experience is
negatively associated with the scope
of process inventions for a focal
product.

3 DATA SET AND VARIABLES

3.1 Data set

To test our hypotheses we construct a unique data set using
both primary and secondary data sources. We focus on
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antineoplastic (or anticancer) APIs, that is, APIs identified
as belonging to the class L1 of the European Pharmaceutical
Marketing Research Association’s (EphMRA) drug classifi-
cation system (EphMRA, 2015). Our unit of analysis is the
API–firm–quarter observation. Our initial sample consists of
all 208 antineoplastic APIs that existed between January 2005
and December 2015. Because of a 1-year lag between the
independent experience variables and the dependent innova-
tion variables in our main analyses, the measurement window
for our independent variables extends from January 2005 to
December 2014 while our dependent variables are evaluated
between January 2006 and December 2015.

To measure our dependent variables of novelty and scope
of process innovation, we focus on U.S. manufacturing pro-
cess patents to control for differences among country-level
regulations that govern competition and innovation. The U.S.
market represents 33.7% of global generics’ sales (Source:
Marketline Industry Profile). Of the 208 APIs initially con-
sidered, 148 APIs lost product-patent protection either before
or during our study’s timeframe. Among these 148 APIs, 80
APIs were sold in the United States by at least one firm, out of
which 30 had at least one new process patent issued and sales
by the patent-holder during our timeframe. Thus, the sample
for our dependent variables’ measures (herein referred to as
the “focal” sample) includes 30 APIs (our “focal” APIs) pro-
duced by 24 firms (our “focal” firms). This results in a data
set, which contains 223 API–firm–quarter observations.

To measure our independent variables of related and unre-
lated experience, which are API–firm-level characteristics,
we expand our sample to account for those 24 focal firms’
global production across all APIs included in our initial sam-
ple (i.e., 208 APIs). In particular, we record quarterly API
sales across the United States and three major European
countries,4 namely, France (9.8% of the European generics
market), Spain (6.5% of the European generics market), and
Italy (2.5% of the European generics market). We choose
these specific markets because while the United States is
the largest pharmaceutical market worldwide, France, Italy,
and Spain are all within the top five European pharmaceuti-
cal markets and among the most important markets globally
for the sale of anticancer drugs specifically (Aitken et al.,
2018).5 Among the 208 APIs contained in our initial sam-
ple, 73 APIs—including our focal 30 APIs—are sold in at
least one country by at least one of our 24 focal firms within
our timeframe. We provide a list of these 73 APIs with the 30
focal APIs in bold in Table A.1 of Supporting Information A.

Finally, the measurement of three of the control variables,
that is, market concentration, market growth, and innova-
tion intensity, also requires us to expand our focal sample
in order to assess these API-level characteristics. In particu-
lar, for market concentration and market growth, we consider
all firms that sold any of our focal APIs in the United States
during our study’s timeframe. The resulting sample includes
58 firms, that is, 34 firms in addition to the 24 focal firms.
For innovation intensity, we narrow this 58-firm sample to the
28 firms that owned any patent related to the sold API. We
note that these patents do not necessarily qualify as man-

TA B L E 1 Summary statistics

Variable Mean Std. dev. Min Max

NOV 2.95 0.92 1 4

SCP 3.01 0.83 1 4

RExp 0.96M 1.88M 0 11.73M

UExp 12.31M 23.48M 0 209.80M

HHI 0.70 0.39 0 1

MKTG 0.87 0.37 0 2.67

InnovInt 3.63 2.69 1 11

R&D 1.25B 0.92B 0.01B 3.20B

FExp 25.74M 92.77M 0 519.35M

InitFam 14.45 21.42 0 122

InnovStr 0.50 0.39 0.07 1

Pre-NOV 2.47 1.08 1 4

Pre-SCP 2.85 1.29 1 4

Note: n = 223.

ufacturing process patents, in which case, they were not
considered in building our focal sample.

3.2 Variable definitions and sources

Table 1 provides summary statistics for all variables pre-
sented in this section. Pairwise correlations are reported in
Table 2.

3.2.1 Performance: Firm’s innovative output

We measure pharmaceutical firms’ innovative output for
the APIs in our sample by observing their respective U.S.
patent portfolios. We rely on the Thomson Reuters Newport
database, which is recognized in the pharmaceutical industry
as the reference database for patents and other intellectual-
property information (Grimaldi et al., 2015). Patents are
frequently used in the operations management (e.g., Chan
et al., 2018) and organizational learning (e.g., Jain, 2013)
literatures as a valid indicator of a firm’s innovative output
(Griliches, 1990). For any given API, since the end prod-
uct is essentially identical across firms (Babar, 2019), all
patents contained in our sample introduce innovative man-
ufacturing methods, and are thus referred to as “process
patents” (Lieberman, 1987). As an illustrative example, con-
sider Finasteride—a prostate cancer prevention drug. In Q1 of
2007, Aurbindo Pharma Ltd. developed and patented a manu-
facturing method that avoided the use of expensive and toxic
reagents that required production under extreme reaction
conditions. Additionally, the introduction of novel interme-
diates, which could be easily purified to permit obtaining a
purer API, resulted in an overall higher yield of production
compared to the prior art. This process innovation enabled
Aurbindo to achieve a significant reduction in its manufac-
turing costs for Finasteride and observe an increase of its
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TA B L E 2 Pairwise correlations

NOV SCP RExp UExp HHI MKTG InnovInt R&D FExp InitFam InnovStr Pre-NOV Pre-SCP

NOV 1

SCP 0.15** 1

RExp −0.15** 0.15** 1

UExp 0.16** −0.02 0.40*** 1

HHI 0.11 0.07 0.21** 0.06 1

MKTG −0.02 −0.07 0.25*** 0.12* 0.45*** 1

InnovInt 0.01 −0.01 0.42*** 0.07 0.23*** 0.27*** 1

R&D 0.11* 0.19** 0.32*** 0.10 0.30*** 0.16** 0.28*** 1

FExp 0.10 0.09 0.37*** 0.06 0.40*** 0.43*** 0.34*** 0.35*** 1

InitFam −0.01 −0.05 0.04 0.02 0.04 0.18*** 0.28*** 0.13* 0.40*** 1

InnovStr 0.11* 0.14** 0.33*** −0.25*** 0.27*** 0.04 0.28*** 0.34*** 0.37*** 0.02 1

Pre-NOV 0.15** 0.15** 0.36*** −0.08 0.33*** 0.10 0.41*** 0.31*** 0.42*** 0.01 0.37*** 1

Pre-SCP −0.05 0.20*** 0.39*** −0.02 0.35*** 0.10 0.45*** 0.37*** 0.43*** −0.11* 0.34*** 0.38*** 1

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

U.S. market share from 3% in 2008 to 26% in 2014, thereby
becoming the market leader.

As we describe at the beginning of Section 4, at any
given quarter, we associate the accumulated levels of related
and unrelated experience with innovation output (i.e., newly
issued patents) during the following year (i.e., four quar-
ters). We do so to avoid spurious correlations between our
dependent and independent variables and buttress causality
interpretations. For each portfolio of patents issued during
the four postexperience quarters, we evaluate two distinct
dimensions, namely, novelty and scope, at the API–firm–
quarter level. The variable NOV reflects the technological
distance between the portfolio of newly patented inventions
(that are granted to the focal firm for the focal API during
the four quarters following the focal quarter) and the prior
art (Reitzig, 2003), whereas the variable SCP reflects the
breadth of the newly patented inventions, that is, the diffi-
culty to bypass these inventions without infringing on the
patent-holding firm’s rights (Novelli, 2015).

Specifically, we followed a two-step process to obtain
portfolio-level NOV(ij,q) and SCP(ij,q) measures for API i
and firm j in quarter q. We first asked an expert patent
attorney, who has extensive chemical and biotechnological
backgrounds, to evaluate individual patents’ levels of novelty
and scope by, respectively, responding to the questions “How
would you evaluate the overall novelty of the process patent
with respect to the state of the art at the time of the patent
filing?” and “How broad are the claims of the process patent
with respect to the state of the art at the time of the patent fil-
ing?” In both cases, evaluations were collected on an ordinal
scale ranging from 1 (very low) to 5 (very high). Two addi-
tional experts6 evaluated different subsamples of the total set
of patents. We used their ratings to check interrater reliabil-
ity. Such an approach is common in studies, which rely on
primary data collected through expert evaluations (e.g., Van
Oorschot et al., 2013). We provide a detailed description of

this evaluation process in Supporting Information B, along
with interrater reliability statistics. Overall, our main patent
expert evaluated 80 individual patents that were granted dur-
ing our focal time window (i.e., January 2006 to December
2015) to the 24 focal firms for the 30 focal APIs. These are
technical documents that range in our sample from 9 to 165
pages. We obtain NOV(ij,q) and SCP(ij,q) as the average nov-
elty and scope evaluations of all patents granted for API i to
firm j during quarters q, q − 1, q − 2, and q − 3.

We note that the literature also includes other measures
of novelty, such as classes to which a patent has been
assigned (Fleming, 2001; Strumsky et al., 2012) and back-
ward citations (Schoenmakers & Duysters, 2010; Verhoeven
et al., 2016). Researchers have also measured scope using
the number of technological classes in which a patent is
classified (e.g., Fischer & Leidinger, 2014; Lerner, 1994)
and number of claims included in a patent (e.g., Funk &
Owen-Smith, 2016; Lanjouw & Schankerman, 1997). How-
ever, such approaches have significant drawbacks. For
example, a key problem with using citations to measure
patent novelty is how to account for the timing of different
patent grants and how these relate with a study’s timeline.
One of the most popular approaches, which suggests truncat-
ing using a 5-year time span (e.g. Fischer & Leidinger, 2014;
Huenteler et al., 2016), is hardly applicable to our 10-year
data set. Moreover, the references associated with a patent
are subject to strategic decisions, including possible manip-
ulation (Gerken & Moehrle, 2012), and the citation inflation
problem (Hall et al., 2001). More generally, the problem of
bibliographic information is that it ignores the description
section of patents (Reitzig, 2004). During our interviews,
pharmaceutical industry experts acknowledged that the num-
ber of claims in a patent and the number of classes are far
less important than the wording of the claims that describe
physical limitations (Haeussler et al., 2014). Finally, we note
that these measures refer to individual patents. To the best of
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our knowledge, there is no published work that establishes
how such individual patent measures could be combined at
the multipatent portfolio level (Fischer & Leidinger, 2014).

3.2.2 Predictors: Firms’ manufacturing
experience

Our experience measures are based on quarterly sales data
for the APIs in our sample from the Intercontinental Med-
ical Statistics (IMS) Health’s MIDAS pharmaceutical sales
proprietary database. This database tracks quarterly sales for
almost every pharmaceutical product sold by every pharma-
ceutical firm worldwide and is considered to be the most
reliable source of sales information in the pharmaceutical
industry (Kanavos, 2014). Given that several final dosage
forms may exist for the same API, we measure sales for a
focal API as the total number of kilograms of the focal API
sold by a firm in a quarter (Caves et al., 1991). In our 10-year
study horizon, we observe sales from 24 distinct corporate
groups7—hereafter referred to as “firms.” In Table A.2 of
Supporting Information A we provide a list of the 24 firms
appearing in our sample.

In line with the organizational learning literature (e.g.,
King & Tucci, 2002), we measure a firm’s accumulated man-
ufacturing experience for a focal API in a given quarter using
adjusted cumulative sales. Specifically, let k(ij,q) be the total
sales (in kg) of API i sold by firm j in quarter q. We fol-
low the approach described by Benkard (2000) and define
the experience accumulated by firm j for API i in quarter
q, E(ij,q), as:

E(ij,q) = 𝛿 × E(ij,q−1) + k(ij,q), (1)

where 𝛿 is the experience’s quarterly retention rate, which
allows accounting for organizational forgetting (Benkard,
2000). This implies that more recent production is more
valuable in determining a firm’s current ability to innovate.
Specifically, we set the quarterly experience retention rate to
𝛿 = 0.975, which suggests an annual experience depreciation
rate of 10%.8 This rate for this setting is in line with ear-
lier literature on organizational learning and forgetting (cf.
Argote et al., 1990; Ramdas et al., 2017). Nonetheless, we
test the sensitivity of our results for alternative depreciation
rates in Section 4.4. To initialize our experience measures,
we set E(ij,0) = 0 for all i and j and use the first four quarters
of sales for a given API–firm combination as the calibration
period. This is also in line with typical approaches in past
literature (cf. Fader et al., 2010). We also test the sensitiv-
ity of our results to the duration of the calibration period in
Section 4.4.

To distinguish between related and unrelated experience,
we rely on the EphMRA classification. Within the broad L1
class of anticancer drugs, nine subclasses exist of which eight
are present in our sample (specifically, the L1AB, L1C, L1D,
L1F, L1G, L1H, L1X1, and L1X9 subclasses). In Table A.3
of Supporting Information A, we present how the 73 APIs

that we use to construct our experience measures are grouped
across the nine subclasses of L1 APIs.

Let AR,ij denote the set of APIs in the same subclass as
API i (i.e., related) that are manufactured by firm j, and AU,ij
denote the set of all APIs in subclasses other than the subclass
of API i (i.e., unrelated) that are manufactured by firm j. We
define the accumulated manufacturing experience “related”
to API i for firm j in quarter q as:

RExp(ij,q) =
∑

a∈AR,ij,a≠i

E(aj,q). (2)

Similarly, we define the accumulated manufacturing experi-
ence “unrelated” to API i for firm j in quarter q as:

UExp(ij,q) =
∑

a∈AU,ij

E(aj,q). (3)

3.2.3 Control variables

Market concentration
Past research has found that market concentration, a measure
of a market’s competitiveness, influences firms’ innovation
efforts. For example, Schumpeter (1942) argues that higher
market concentration may increase firms’ innovation efforts
as higher market power might translate into higher profits
that can be invested in R&D, whereas Arrow (1972) asserts
that higher market concentration eliminates or diminishes
competition and may reduce the urgency to innovate. In the
pharmaceutical industry, Matraves (1999) finds a positive
relationship between market concentration and innovation.
In line with previous research (Rego et al., 2013), we mea-
sure market concentration for API i in quarter q using the
following HHI index:

HHI(i,q) =
∑

j

Share2
(ij,q), (4)

where Share(ij,q) is firm j’s share of total U.S. sales for API
i in quarter q, as reported in the IMS Health database. Thus,
a value of 1 for this index would mean a monopoly. In our
sample, HHI(i,q) has a mean of 0.70.

Market growth
Past literature (e.g., Cohen et al., 1987) suggests that a higher
market growth rate implies higher product demand, which
supports firms’ innovative efforts. We measure the growth
of the market for API i during quarter q through MKTG(i,q),
which we construct as follows:

MKTG(i,q) =
Q(i,q)

Q(i,q−1)
, (5)

where Q(i,q) =
∑

j k(ij,q) are the total U.S. sales of API i in
quarter q across firms.
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Innovation intensity
To control for heterogeneous opportunities for innovation
among APIs, we consider the overall level of innovation
intensity for API i in quarter q across all firms. In particu-
lar, we define InnovInt(i,q) as the total number of active U.S.
patents owned by all firms in quarter q for API i. We inter-
pret higher values of InnovInt(i,q) as indicative of the presence
of more extensive innovation activities around the focal API
(Lieberman, 1987).

R&D expenses
The magnitude of a firm’s R&D expenses has been found
to be associated with the quality and quantity of a firm’s
innovation output (Bhaskaran & Ramachandran, 2011). Thus,
we log-transform R&D expenses for firm j in quarter q—as
reported on Standard & Poor’s Compustat—and include the
resulting R&D(j,q) variable as a control in our analyses.

Focal experience
We control for firm’s direct experience with manufacturing
the focal product. Similar to our measures of related and unre-
lated experience, we define the experience “focal” to API i for
firm j in quarter q as:

FExp(ij,q) = E(ij,q). (6)

Initial familiarity
To control for the familiarity that firm j has with API i at
the start of our observation time window (Lawrence, 2018),
we introduce InitFam(i,j), which reflects the number of quar-
ters from the date of the first market authorization that firm
j receives for producing API i until the first quarter of 2005
(i.e., the start of our timeframe). We construct this measure
using the Thomson Reuters Newport database.

Innovation strategy
Corporate strategy could potentially influence both produc-
tion volumes and innovation outcomes (Custódio et al.,
2017). For instance, firms that make a given L1 subclass
a strategic priority, would see increased related production
volumes as well as additional R&D efforts into developing
patents with wide scope in that subclass. Thus, we introduce
InnovStr(ij,q), defined as the share of firm j’s patents that apply
to APIs in the same subclass as API i (i.e., related) at quar-
ter q. A higher ratio of patents in a focal subclass suggests
an innovation strategy for the focal firm that places more
emphasis on the focal subclass. Utilization of a firm’s patent
portfolio composition for inferring a firm’s innovation strat-
egy is common in the literature (e.g., Benner, 2002; Gao et al.,
2018).

Pre-experience novelty and scope
We control for novelty and scope of portfolios of process
patents that were previously granted to the focal firm for the
focal API and remain active during a given quarter. We do so
because past levels of a firm’s inventions’ novelty and scope
may influence their future levels, that is, our dependent vari-

ables NOV and SCP. We denote these controls as Pre-NOV
and Pre-SCP, respectively.

These two control variables, similar to our dependent
variables, also rely on expert patent evaluations and are con-
structed using a two-step process similar to the one we
described in Section 3.2.1 after the evaluation of 173 addi-
tional patents. Given the long timeframe considered, we allow
here for the possibility that patented inventions may progres-
sively lose some of their relative novelty or scope due to
increased competition (Mansfield, 1985). For example, the
scope of a patent relative to the state of the art may drop over
time because imitation may lead competitors to research and
adopt manufacturing practices that are “similar” to the focal
firm’s, that is, closer to the focal firm’s position on the techno-
logical landscape (Aharonson & Schilling, 2016). Similarly,
the novelty of a patent relative to the state of the art may drop
over time as new ideas partially or wholly supersede existing
practices (de Rassenfosse & Jaffe, 2018), understanding of
the technological landscape’s structure improves, and/or the
technological landscape itself is reshaped by technological
progress. For these reasons, we depreciate the patent experts’
initial patent evaluations over time.

Since (to the best of our knowledge) no existing litera-
ture considers how individual patent novelty and scope may
depreciate over time, we rely on the literature on depreci-
ation of R&D expenditures and intellectual property assets
to obtain an appropriate formula—patent novelty and scope
are key determinants of patent value (Novelli, 2015; Reitzig,
2003). The central idea in that stream of literature is that
the value of intangible intellectual property assets (such as
patents) depreciates over time due to the decay of appropri-
able revenues that these assets generate because of imitation
from other firms and technological progress (Khorasani,
2019; Pakes & Schankerman, 1984). Specifically, we fol-
low standard practice in the literature (e.g., Bessen, 2008;
Nordhaus, 1967) and apply the following exponential decay
formula:

PtntEval(p,q) = ExpEval(p,qp) × e−d(q−qp), (7)

where qp is the quarter patent p was granted, PtntEval(p,q) is
the depreciation-adjusted novelty or scope of pre-experience
patent p in quarter q, ExpEval(p,qp) is the raw expert eval-
uation of patent p’s novelty or scope in quarter qp, and d
is the quarterly depreciation rate. Industry-specific estimates
of d vary widely in the literature both within and across
industries (Lanjouw, 1998). Nonetheless, there is a consen-
sus that depreciation rates for the pharmaceutical industry
are among the lowest because of the high imitation costs,
longer product cycles, and a vaster ability to exclude com-
petitors over a more extended period of time (Hall, 2006).
Moreover, pharmaceutical patents’ infringements are eas-
ier to detect and prosecute as the information required for
health agencies’ market authorizations is public and available
upon courts’ orders (Schankerman, 1998; Lanjouw, 1998).
We follow de Rassenfosse and Jaffe (2018), who estimate
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that annual depreciation rates that specifically apply to phar-
maceutical firms range between 0.6% and 1.7%. As such, we
set d = 0.2875%, equivalently, an annual depreciation rate of
1.15% (i.e., the midpoint of the estimated interval).

We obtain the portfolio-level measures of Pre-NOV(ij,q)
and Pre-SCP(ij,q) by averaging the depreciation-adjusted nov-
elty and scope evaluations of the individual pre-experience
patents of firm j for API i that remain active during quarter q.

4 ANALYSES AND RESULTS

4.1 Model specification

To test the association between a firm’s related and unrelated
experience and the qualitative characteristics of its manufac-
turing inventions, we employ an ordinary least squares (OLS)
approach. In addition to the controls discussed earlier, we
control for unobserved invariant characteristics through sub-
class (𝜅s), firm (𝜆j), and year (𝜇q) fixed effects. We choose
to include subclass rather than API fixed effects to bet-
ter preserve the variance in our sample. API fixed effects
would result in a very fine stratification and would carry the
risk of overfitting our models. Regardless, we note that per
our earlier discussion, APIs in a given subclass share sev-
eral common attributes in terms of their molecular structures
and production approaches, which are likely to impact the
associated API-level innovations in similar ways. Moreover,
to account for possible correlation of regression residuals
across APIs and over time, we cluster standard errors at the
API–year level. The variance inflation factors (VIFs) for all
estimated models are below 10, which mitigates any concerns
for collinearity (Hair et al., 1998).

ln(DepVar(ij,q))

= 𝛽0 + 𝛽1 ⋅ ln(FExp(ij,q−t)) + 𝛽2 ⋅ ln(RExp(ij,q−t))

+𝛽3 ⋅ ln(UExp(ij,q−t)) + 𝛽4 ⋅ HHI(i,q) + 𝛽5 ⋅ MKTG(i,q)

+𝛽6 ⋅ InnovInt(i,q) + 𝛽7 ⋅ ln(R&D(j,q)) + 𝛽8 ⋅ InitFam(i,j)

+𝛽9 ⋅ InnovStr(ij,q−t) + 𝛽10 ⋅ ln(Pre-DepVar(ij,q−t))

+𝜆j + 𝜅s + 𝜇q + 𝜖(i,q). (8)

We set DepVar = NOV, Pre-DepVar = Pre-NOV to test H1a
and H2a and DepVar = SCP, Pre-DepVar = Pre-SCP to test
H1b and H2b.

To account for potential simultaneity bias and buttress
causality interpretations, we lag our experience measures by
t = 4 quarters (Rothaermel & Hess, 2007). We choose such a
lag based on prior literature, which suggests that the typical
time that is necessary from the inception of an invention until
its patenting, when it would appear in our data set, is approx-
imately a year (e.g., King & Tucci, 2002). This suggests that
a firm’s experience up to 1 year prior would be most relevant
for the patent portfolio characteristics we observe in the focal

quarter. In Section 4.4 we conduct sensitivity analyses with
alternative lags and find consistent results. We use a log-log
model as this approach is common in the literature on man-
ufacturing experience, learning curves, and innovation (e.g.,
Gray et al., 2011; Novelli, 2015; Schilling et al., 2003) and
helps address the skew in our data.

In Models 1, 2, and 3 of Table 3 (Models 4, 5, and 6) we
present our results for H1a and H2a (H1b and H2b). Specifi-
cally, we build toward our main models, that is, Models 3 and
6, as follows: First, we present Models 1 and 4, which only
include RExp. Next, we present Models 2 and 5, which only
include UExp and then we present Models 3 and 6, which
include both RExp and UExp. We note that coefficients asso-
ciated with our experience variables remain consistent across
models and that Models 3 and 6 are characterized by the
highest R2 in each case.

4.2 Related manufacturing experience

H1a posits that the magnitude of a firm’s related experience
is negatively associated with the novelty of its portfolio of
patented manufacturing inventions for a focal product. The
coefficient for RExp in Model 3 is negative and statistically
significant (−0.022, p < 0.01), which provides support for
H1a. H1b posits that the magnitude of a firm’s related expe-
rience is positively associated with the scope of its portfolio
of patented manufacturing inventions for a focal product and
is supported by our results, that is, the coefficient of related
experience in Model 6 is positive and statistically significant
(0.013, p < 0.05). The results from log-log model estima-
tion allow for a more managerially relevant interpretation of
the effect of related and unrelated experience measures. For
example, Model 3 suggests that for a 1% increase in RExp,
portfolio novelty decreases by 2.2% (p < 0.01).

4.3 Unrelated manufacturing experience

H2a states that the magnitude of a firm’s unrelated experi-
ence is positively associated with the novelty of its portfolio
of patented manufacturing inventions for a focal product.
The coefficient for UExp in Model 3 is positive and statis-
tically significant (0.035, p < 0.01), which provides support
for H2a. H2b posits that the magnitude of a firm’s unre-
lated experience is negatively associated with the scope of
its portfolio of patented manufacturing inventions for a focal
product. This is also supported by our results: The coefficient
for UExp in Model 6 is negative and statistically significant
(−0.021, p < 0.01).

4.4 Robustness checks

We now assess the robustness of the results for Models 3 and
6 (i.e., full models for H1 and H2 hypotheses sets) through
several checks.
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TA B L E 3 H1a, H1b, H2a, and H2b estimation results

Variables
ln(NOV)
(Model 1)

ln(NOV)
(Model 2)

ln(NOV)
(Model 3)

ln(SCP)
(Model 4)

ln(SCP)
(Model 5)

ln(SCP)
(Model 6)

ln(RExp) −0.016** −0.022*** 0.009* 0.013**

(0.007) (0.007) (0.005) (0.006)

ln(UExp) 0.025** 0.035*** −0.015** −0.021***

(0.012) (0.010) (0.006) (0.006)

Intercept 2.192*** 2.792*** 2.657*** 1.797*** 1.458*** 1.515***

(0.564) (0.518) (0.550) (0.430) (0.442) (0.385)

Controls

HHI −0.017 0.012 0.018 −0.069 −0.084 −0.092

(0.097) (0.096) (0.092) (0.110) (0.103) (0.109)

MKTG −0.098 −0.084 −0.129** −0.127 −0.136 −0.106

(0.063) (0.071) (0.065) (0.101) (0.087) (0.099)

InnovInt 0.035* 0.043** 0.046*** −0.060*** −0.065*** −0.065***

(0.020) (0.018) (0.015) (0.014) (0.014) (0.014)

ln(R&D) −0.065 −0.115* −0.107 −0.059 −0.032 −0.034

(0.068) (0.065) (0.073) (0.060) (0.063) (0.054)

ln(FExp) −0.006 −0.013* −0.012* 0.008 0.012* 0.011*

(0.007) (0.007) (0.006) (0.005) (0.006) (0.006)

InitFam 0.007*** 0.007*** 0.006*** 0.004* 0.004 0.004*

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

InnovStr −0.229 −0.194 −0.257** 0.035 −0.001 0.055

(0.154) (0.154) (0.128) (0.147) (0.137) (0.141)

ln(Pre-NOV) −0.109 −0.095 −0.092

(0.088) (0.082) (0.064)

ln(Pre-SCP) 0.157* 0.166** 0.137*

(0.086) (0.079) (0.076)

Observations 223 223 223 223 223 223

R2 0.679 0.681 0.720 0.622 0.624 0.642

Prob > 𝜒2 0.001 0.001 0.001 0.001 0.001 0.001

Note: Robust standard errors in parentheses. All models include year, firm, and subclass fixed effects. Standard errors are clustered at the API-year level.
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

4.4.1 Endogeneity

Unobserved time-varying factors
To more precisely account for unobserved time-varying fac-
tors, we introduce half-year fixed effects in Models 3 and 6
(Reagans et al., 2005)—in our baseline analysis, we included
full-year fixed effects. Overall, our results remain consistent
(cf. Table C.1 in Supporting Information C).

In-house versus outsourced production
Some of the production that we attribute to the firms in
our sample might be outsourced to third-party manufacturers
(Gray et al., 2015). As such, the experience is not gener-
ated in-house, which suggests that, with respect to a firm’s
learning, one unit of outsourced production may not be as
valuable as one unit of in-house production (Sting & Loch,
2016). However, we also note that given the stringent regula-

tions that govern pharmaceutical manufacturing, third-party
manufacturers are in very close collaboration with the out-
sourcing firm regarding process design and execution, how
to handle production issues, and so forth, and typically have
limited freedom in terms of executing changes on their own
(Bruccoleri et al., 2019). As such, any learning opportunity
that arises in the environment of a third-party manufacturer
is likely to also benefit the outsourcing firm. Nevertheless, to
account for the potentially different learning benefits from in-
house versus outsourced production, we discount outsourced
production quantities. Thus, we change Equation (1) as
follows:

E(ij,q) = 𝛿 × E(ij,q−1) + m × k(ij,q), (9)

and update our experience measures as defined in Equations
(2), (3), and (6). Here, m corresponds to the discount coeffi-
cient for outsourced production. We estimate Models 3 and 6
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using m = 0.8, 0.7, and 0.5 when production is outsourced,
while setting m = 1 when production occurs in-house.9 To
distinguish between in-house and outsourced production, we
check whether firm j has an active drug master file for API
i registered with the U.S. FDA (USFDA, 2020) or the Euro-
pean Directorate for the Quality of Medicine and Healthcare
(EDQM, 2020) in quarter q. We assume that production
occurs in-house if this is the case and is outsourced other-
wise (Chaudhuri, 2013). Our main results persist (cf. Table
C.2 in Supporting Information C).

Firm size
The literature suggests that firm size is a key determinant of
innovation output. This is explained by the fact that larger
firms tend to have more R&D spending (Cohen, 2010), which
is supported by the high correlation between firm size and
R&D expenses in our data set (𝜌 = 0.90, p < 0.01). Hence,
including both variables as controls would create collinearity
issues. We thus substitute R&D with SIZE in our analyses.
We obtain SIZE by log-transforming firms’ assets, reported
in the Standard & Poor’s Compustat database. Again, the
main results remain consistent (cf. Table C.3 in Supporting
Information C).

4.4.2 Alternative model specifications

Nonlinear effects of experience
Related and unrelated manufacturing experience could have
some nonmonotonic effects on the novelty and scope of man-
ufacturing process inventions. For example, while too much
related experience might result in a competency trap, some
related experience could be beneficial for novelty. Similarly,
there could be an optimal level of unrelated experience, below
or above which the benefits of having a diverse knowledge
base would either be insufficient or be outweighed by the
costs of diverting an organization’s cognitive and financial
resources. Thus, we include quadratic terms for RExp and
UExp in Models 3 and 6 but do not find any substantial sup-
porting evidence (cf. Table C.4 in Supporting Information C).

Specifically, the squared term for RExp2 is statistically
insignificant (p = 0.19) in Model 3 (i.e., impact on novelty)
and the squared term UExp2 is also statistically insignifi-
cant (p = 0.33) in Model 6 (i.e., impact on scope). Even
though RExp2 in Model 6 and UExp2 in Model 3 are sta-
tistically significant, the associated coefficients are of very
small magnitude and the corresponding inflection points are
well outside the range of 5th to 95th percentile values of both
experience measures.

4.4.3 Sensitivity to choice of model
parameters

Quarterly experience retention rate
We consider alternative values for the quarterly experi-
ence retention rate 𝛿 (cf. Equation (1)). Specifically, we set
𝛿 to 1.000, 0.987, 0.960, and 0.946, which (respectively)

correspond to annual experience depreciation rates of 0%,
5%, 15%, and 20% (our baseline value is 𝛿 = 0.974, which
corresponds to an annual depreciation rate of 10%). Over-
all, results remain consistent (cf. Tables C.5 and C.6 in
Supporting Information C).10

Lag of experience measures
We re-estimate Models 3 and 6 by setting t, the lag applied
to our experience measures, equal to two, six, and eight quar-
ters (our baseline value is t = 4) and by properly adjusting
our dependent variables NOV(ij,q) and SCP(ij,q) to capture all
patents granted between quarters q − t + 1 and q (included).
Results for these alternative lags are consistent with the main
results (cf. Table C.7 in Supporting Information C).

Duration of experience measures’ calibration period
While in our main analysis we rely on the four initial quarters
of our time window to calibrate our experience measures, we
also tested Models 3 and 6 by initializing our experience mea-
sures using two, six, and eight quarters and found that results
continue to hold (cf. Table C.8 in Supporting Information C).

5 DISCUSSION AND CONCLUDING
REMARKS

Our research suggests that related and unrelated manufactur-
ing experience have contrasting relationships with the novelty
and scope of a firm’s process innovative output. Specifically,
we find that, on the one hand, experience with production of
related products is associated with a decrease in the novelty
and an increase in the scope of the manufacturing methods
that a pharmaceutical firm develops and patents for a focal
product. Hence, while the decrease in novelty points toward
a risk of falling into a competency trap, the increase in scope
suggests that the accumulation of related experience enables
firms to better understand the structure of a focal product’s
technological landscape and develop a broad set of applicable
innovative production methods. On the other hand, expe-
rience with manufacturing unrelated products is associated
with an increase in a focal product’s patents’ novelty and a
decrease in its patents’ scope. Thus, our study suggests that
engagement with a diverse set of products and, as a result,
various manufacturing technologies, permits firms to identify
and patent more novel methods that apply to the production
of a focal product. However, it also highlights that the strain
on firms’ cognitive and financial resources that comes with
engaging in the manufacturing of a diverse set of products,
could prevent firms from having a well-secured position on
the focal product’s technological landscape.

Our study contributes to the operations, innovation, and
organizational learning literatures in the following ways.
First, by focusing on products whose patent protection has
expired, we are able to study exclusively manufacturing pro-
cess innovation—an important competitive dimension that
has been understudied relative to product innovation. Sec-
ond, by considering multiple firms and multiple products



NOVELTY AND SCOPE OF PROCESS INNOVATION 3891
Production and Operations Management

produced by these firms, and by distinguishing between pro-
cess innovation novelty and scope—a feature made possible
by our collaboration with expert patent attorneys—we are
able to observe how different types of experience affect dif-
ferent qualitative characteristics of process innovation. As
such, we are able to contribute to the OM literature that
has mostly examined how manufacturing experience accu-
mulation relates to patenting activity. Third, because of our
multiproduct setting, we are also able to answer calls in the
organizational learning literature for a deeper exploration of
the experience–creativity link in multiproduct environments.
Collectively, our research allows us to reconcile several
seemingly contradicting conceptual arguments by showing
that manufacturing experience may benefit one dimension
of process innovation while having a negative impact on
another.

From a practical standpoint, our findings underline how
a firm’s past product decisions—that is, emphasis on a
more diverse versus more concentrated product lineup—
might influence its current innovation trajectory—that is, the
novelty and scope of manufacturing inventions for a focal
product. However, and perhaps more importantly, by high-
lighting this influence, our study also provides insights into
how manufacturing knowledge accumulated through produc-
tion could be proactively managed in alignment with an
organization’s strategic goals.

For the senior vice president of R&D of a generics-focused
manufacturer with whom we communicated in the context
of this project, a key priority is developing and patenting
inventions that are as broad in scope as possible, whereas nov-
elty is secondary in importance. This choice was justified by
this manufacturer’s competitive strategy, which emphasizes
growing its existing position in order to limit competition
rather than venturing into more novel, but also more risky,
endeavors. In the context of API manufacturing, this then
translates into promoting the identification and patenting of a
broad number of different routes of synthesis through which
a given API might be produced, and this even if all of these
routes may not necessarily be implemented in practice. This
would be important from a competitive standpoint because
it would prevent competitors from taking advantage of pro-
duction methods that are proximal to these of the innovating
firm and, presumably, of comparable efficiency. Our analysis
suggests that for firms with such a strategic objective, a key
priority should be to emphasize related-knowledge retention
practices. This could be achieved through formal organiza-
tional mechanisms (Anand et al., 2012) such as a heavy
reliance on standard operating procedures and documentation
of production and R&D activities (Argote & Miron-Spektor,
2011), purposely organizing the workforce to promote team
continuity (Sting et al., 2020) and facilitate transfer of knowl-
edge across related product lines (Cornelius et al., 2020), and
using dedicated production equipment for related products
to minimize forgetting due to changeovers (Egelman et al.,
2017).

Conversely, firms might favor novelty over scope. Inno-
vations of higher novelty typically have a higher long-term

economic value and the potential to more profoundly impact
the competitive environment by disrupting existing compe-
tencies or even eliminating existing players from the market
(Bessen, 2009). Teva pharmaceuticals, a large generics man-
ufacturer with a diverse product portfolio, provides a relevant
example. Teva developed and patented a very novel process
for producing Letrozole, a drug used in the treatment of
breast cancer, that substantially increased yield relative to the
state of the art at the time (Vogel, 1995). While implemen-
tation required Teva to build a new manufacturing facility,
the new process allowed Teva to achieve a level of productiv-
ity that permitted it to double its market share and eliminate
major competitors such as Bristol-Myers Squibb and Hikma
Pharmaceuticals from the U.S. market (IMSHealth, 2015).
Our results imply that when a firm’s strategic priorities
involve developing a portfolio of novel manufacturing inven-
tions, investing on specific training to deal with product
variety (Ramdas et al., 2017) and emphasizing the develop-
ment of transactive memory systems, where members possess
meta-knowledge of who knows and does what (Argote &
Miron-Spektor, 2011) is likely to be invaluable. In line with
this emphasis, informal networks should be encouraged, as
they have been shown to support collaborative problem solv-
ing through the exchange of tacit knowledge (Soda & Zaheer,
2012).

These findings are likely to carry implications for other
science-based, capital-intensive, and high-technology indus-
tries (e.g., semiconductors or chemicals). Indeed, the devel-
opment of innovative manufacturing methods requires not
only pharmaceutical firms, but also other firms in science-
based, high-technology industries, to “couple the worlds of
leading-edge science with the realities of plant operations”
(Pisano, 1997, p. 21). As such, innovating manufacturing
processes in these settings is both technically and organiza-
tionally complex as technical uncertainties associated with
process choice must be dealt simultaneously with scaling
challenges associated with product commercialization. Yet,
for mature product markets such as the ones studied in
this paper, process innovation appears as the main remain-
ing opportunity to increase profits (Utterback & Abernathy,
1975).

As is inevitable with studies of this kind, our work has
some limitations. First, not all patentable inventions are
patented (Griliches, 1990). Nevertheless, the pharmaceuti-
cal industry is characterized by a very high propensity to
patent. Pharmaceutical firms generally prefer patenting rel-
ative to other forms of intellectual property protection (e.g.,
trade secrecy) and this results in more than 80% of patentable
inventions being patented (Mansfield, 1986). This is particu-
larly true for the case of new manufacturing methods, which
is the form of inventions that we study. Infringement of a
corresponding patent may be identified from the “chemical
fingerprint” that a manufacturing process leaves on the final
product (Deconinck et al., 2008) or through on-site inspec-
tions of suspected infringing competitors (Blakeney, 2005).
Moreover, as a pharmaceutical firm must disclose in detail the
characteristics of its manufacturing process when applying to
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public health authorities for a legal license to sell a product
(Cartwright, 2016), such details could potentially be obtained
by competitors through future court orders. Also, protec-
tion via trade secrecy is inherently risky because competition
may succeed in independently discovering a firm’s invention,
reverse engineer it, or hire away from the inventing firm key
personnel with the necessary technical knowledge (Arundel
& Kabla, 1998). Second, our study is focused on the phar-
maceutical industry and more specifically on the production
of anticancer APIs that are no longer patent-protected. Future
studies that test our findings in other settings would be espe-
cially valuable. Third, additional insight into firms’ learning
could be obtained from the analysis of data that provide
visibility into which facilities manufacture which products
(Egelman et al., 2017) or from the analysis of even larger
data sets that could permit considering alternative outcome
measures (e.g., individual patent issuances). Finally, future
research may compare our measures of novelty and scope to
existing measures of these constructs after first adapting them
to the portfolio level.
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E N D N O T E S
1 Prior art includes all publicly available knowledge at the date of the patent

filing (35 U.S. Code, §102).
2 Additional details on this and other private communications with prac-

titioners from the pharmaceutical industry that we have initiated in the
context of this study can be provided upon request.

3 The API manufacturer that communicated to us this example asked us not
to publicly disclose its name.

4 The European generics market accounts for 20.1% of the global generics
market (Source: Marketline Industry Profile).

5 We could not use data from the other two top European countries (i.e., Ger-
many and the United Kingdom) because pharmaceutical firms’ names may
not legally be disclosed for sales in the United Kingdom, and Germany
has a very fragmented market for pharmaceuticals, owing to its federal
structure and complex procurement systems.

6 Details about all three patent experts are available from the authors
upon request.

7 In the Newport database, a corporate group is the parent company to which
the marketer (i.e., the company responsible for sales of a drug product in
a specific market) and the patent holder (i.e., the company that holds the
rights granted by a patent) belong.

8 A quarterly retention rate of 0.975 implies an annual retention rate of
0.9754 = 0.9 or, equivalently, an annual depreciation rate of 0.1.

9 While m could arguably vary at the API–firm level, no data are available
that would enable us to derive such granular measurement.

10 All results, which are discussed but not presented in the paper, are available
in Supporting Information.
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