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Abstract: 

Although it is well known that Markov process theory, frequently applied in the 
literature on income convergence, imposes some very restrictive assumptions 
upon the data generating process, these assumptions have generally been taken 
for granted so far. The present paper proposes, resp. recalls chi-square tests of 
the Markov property, of spatial independence, and of homogeneity across time 
and space to assess the reliability of estimated Markov transition matrices. As an 
illustration we show that the evolution of the income distribution across the 48 
coterminous U.S. states from 1929 to 2000 clearly has not followed a Markov 
process.  
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1. Introduction 

Since the late 1980s the issue of convergence or divergence of per-capita income 
and productivity has received considerable public attention, and has been 
addressed in a multiplicity of scientific papers. Depending on the underlying 
concept of convergence (unconditional or conditional β-convergence, σ-
convergence, stochastic convergence), the statistical method employed 
(descriptive statistics, econometric approaches for cross-section, time-series, or 
panel data, Markov chain, or stochastic kernel estimations), and the geographic 
scope of analysis (countries, regions in single or groups of countries), the 
conclusions vary widely, ranging from rapid convergence to club convergence, 
and divergence. De la Fuente (1997), Durlauf and Quah (1999), and Temple 
(1999) have provided excellent reviews of the vast literature.  

Most empirical approaches are based on hypotheses about the processes of 
interest rather than just describing them in a positive analysis. Often, some sort 
of a law (a ‘law of convergence’, a ’law of motion’) is postulated to be valid 
even beyond the respective time period under consideration. The supposed rele-
vance for future developments certainly has contributed to the popularity of 
respective approaches in the scientific as well as in the public sphere, as com-
pared to simple descriptive statistics like the coefficient of variation. A politician, 
e.g., worrying about whether poor regions within his country, or poor countries 
in the world, may actually run the risk of being caught in a poverty trap will be 
strongly interested in a prediction for the future rather than just a description of 
the past. 

In standard convergence regressions, as proposed by Barro and Sala-i-Martin 
(1991), and Mankiw et al. (1992), neoclassical growth theory is used to derive the 
hypothesis that income levels tend to converge. Having identified empirically a 
tendency towards (β-) convergence in the past, the underlying theoretical model 
suggests that convergence will continue until all regions will have the same per-
capita income level (unconditional β-convergence) or, at least, an income level 
representing their specific behavioral and technical conditions (conditional β-
convergence).  

In Markov-chain approaches, as proposed by Quah (1993a; 1993b), the ‘law of 
motion’ driving the evolution of the income distribution is usually assumed to be 
memoryless and time-invariant. Having estimated probabilities of moving up or 
down the income hierarchy during a transition period of given length a stationary 
income distribution is calculated which characterizes the distribution the whole 
system tends to converge to over time. Although several authors (such as Quah 
himself, or Rey 2001b) emphasize that the stationary distribution represents 
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merely a thought experiment it is often necessary to clarify the direction of the 
evolution since the estimated transition probability matrix by itself is not really 
informative about the evolution of the income distribution.1 

The power of convergence regressions with respect to both describing com-
parative income growth processes in the period of analysis, and assessing the 
validity of neoclassical growth theory has been discussed extensively in the 
literature. Quah (1993a), and Durlauf and Quah (1999), e.g., have seriously 
challenged these approaches for several reasons. One reason is that the regres-
sion parameter of interest is biased towards convergence due to Galton’s fallacy. 
Another reason is that convergence regressions cannot discriminate between 
neoclassical growth theory and alternative theoretical approaches, some of which 
having completely different implications. As a consequence, it may be useful to 
refrain from identifying the ‘law of convergence’, and from making inferences 
about the future on that basis. Just describing what happened in the past by 
switching to the concept of σ-convergence may be more appropriate. The 
evolution of the standard deviation, or of the coefficient of variation, is a 
reliable, unbiased indicator of convergence during the period of interest 
(Friedman 1992), provided the income distribution under consideration is 
normal, which can be tested for.  

The power of the Markov chain approach, by contrast, has not yet been 
debated seriously.2 The underlying statistical assumptions, namely the Markov 
property and time-invariance have just been taken for granted in empirical 
investigations so far. This is all the more surprising as the assumptions are quite 
restrictive, and as appropriate statistical tests are available in principle. The 
present paper will recall and illustrate a few test statistics that allow for assessing 
the reliability of the estimates and, in particular, of the stationary income 
distribution. Section 2 briefly sketches the Markov chain approach, and discusses 
relevant tests of the Markov property, of spatial independence, and of 
homogeneity of the estimated transition probabilities across space and time. 
Section 3 illustrates the tests by analyzing the evolution of the income distri-
bution across the 48 coterminous U.S. states from 1929 to 2000. Section 4 
concludes.  

                                                             
1 See, e.g., Quah (1996a); (1996b); Neven and Gouyette (1995); Fingleton (1997); (1999); 

Bode (1998a); (1998b); Magrini (1999); Rey (2001b); Bulli (2001). 
2 Exceptions are Magrini (1999) and Bulli (2001). 
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2. The Markov chain approach 

1. General approach 

A (finite, first-order, discrete) Markov chain is a stochastic process such that the 
probability pij of a random variable X being in a state j at any point of time t+1 
depends only on the state i it has been in at t, but not on states at previous points 
of time (see, e.g., Kemeny and Snell 1976: 24 ff.): 

 P{X(t+1)=j | X(0)=i0, ..., X(t-1)=it-1, X(t)=i} 

 = P{X(t+1)=j|X(t)=i}  (1) 

 = pij. 

If the process is constant over time the Markov chain is completely determined 
by the Markov transition matrix 

 



















=Π

NNNN

N

N

ppp

ppp
ppp

L
MOMM

L
L

21

22221

11211

, ijp ≥0, ∑
=

N

j
ijp

1

=1, (2) 

which summarizes all N² transition probabilities pij (i, j = 1, …, N), and an initial 
distribution h0 = (h10 h20 … hN0), Σjhj0=1, describing the starting probabilities of 
the various states.  

For illustration, let X be regional relative per-capita income, defined as yrt = Yrt 

/[(1/R)ΣrYrt] for region r and period t (r = 1, …, R; t = 0, …, T).3 Divide the 
whole range of relative per-capita income into N disjunctive relative income 
classes (states). Then, a Markov transition probability is defined as the prob-
ability pij that a region is a member of income class j at t+1, provided it was in 
class i at t. The second row of the transition matrix (2), e.g., reports the prob-
abilities that a member of the second-lowest income class (i=2) will descend into 
the lowest income class during one transition period (p21), stay in the same class 
(p22), change into the next higher income class (p23), move upward two classes 
(p24), and so on. Once having moved to another income class a region will 
behave according to the probability distribution relevant for that class. The initial 
probability vector h0, finally, describes the regional income distribution at the 
beginning of the first transition period, starting at t=0. 

                                                             
3 The normalization by the national average is to control for global trends and shocks. 
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Since the whole process is usually assumed to be time-invariant in the literature 
on income convergence the transition matrix can be used to describe the 
evolution of the income distribution over any finite or infinite time horizon. The 
regional income distribution after m transition periods (from t to any t+m) can be 
calculated by simply multiplying the transition matrix m times by itself, using the 
income distribution at time t as a starting point, i.e. ht+m=htΠm. Moreover, if the 
Markov chain is regular the distribution converges towards a stationary4 income 
distribution h* which is independent of the initial income distribution h 
( *h?h =

∞→

m

m
lim ). Comparing the initial income distribution (h0) to the stationary 

distribution (h*) is informative as to whether a system of regions converges or 
diverges in per-capita income. Higher frequencies in median-income classes of 
the stationary than the initial distribution indicate convergence, and higher 
frequencies in the lowest and highest classes indicate divergence.  

The transition matrix can be estimated by a Maximum Likelihood (ML) 
approach. Assume that there is only one transition period, with the initial distri-
bution h=ni /n being given, and let nij denote the empirically observed absolute 
number of transitions from i to j. Then, maximizing 

 ∑
=

=
N

ji
ijij pnL

1,

lnln  s.t. Σj pij = 1, pij ≥ 0 (3) 

with respect to pij gives  

 ∑=
j ijijij nnp /ˆ   (4) 

as the asymptotically unbiased and normally distributed Maximum Likelihood 
estimator of pij (see, e.g., Anderson and Goodman 1957: 92; Basawa and Prakasa 
Rao 1980: 54 f.).5 The standard deviation of the estimators can be estimated as 
(Bode 1998b) 

 ( ) 2/1
ˆ /)ˆ1(ˆˆ iijijp npp

ij
−=σ .  (5) 

Obviously, the reliability of estimated transition probabilities depends on two 
aspects: First, the data-generating process must be Markovian, i.e. meet the 
assumptions of Markov chain theory (Markov property, time-invariance). 
Otherwise, the estimators ijp̂  are not allowed to be interpreted as Markov 

transition probabilities, and cannot be used to derive a stationary distribution. 
                                                             
4 In the literature, ‘ergodic’, or ‘limiting’ are used as synonyms for ‘stationary’. 
5 This assumes that the initial distribution h does not contain any information about the 

Markov process and, thus, the transition probabilities pij. 
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And second, the estimates have to be based on a sufficiently large number of 
observations. Otherwise, the uncertainty of estimation is too high to allow for 
reliable inferences. 

In what follows we will concentrate on some of those assumptions of Markov 
process theory which are statistically testable. We will not deal with problems of 
inappropriate discretization of the income distribution which are discussed in 
Magrini (1999) and Bulli (2001).6 

In practice, the estimation of Markov chains is subject to the trade-off between 
increasing the number of observations to obtain reliable estimates, and increasing 
the probability of violating the Markov property. Given that data availability is 
limited in the geographic as well as in the time dimension it would, in principle, 
be preferable to estimate the probabilities from a data set pooled across time and 
space, using as many transition periods and regions as possible. With regard to 
the Markov property, however, the regions should not be too small. The smaller 
the regions, the higher the intensity of interaction, and thus the correlation of 
income levels, between neighboring regions tends to be. On the other hand, 
extending the geographical coverage of the sample increases the danger of 
lumping together regions whose development patterns are heterogeneous. Single 
regions, or certain groups of regions (like the southern states of the U.S.) may 
follow development paths that are different from the paths of other regions. 

Likewise, the longer the time period under consideration, the higher the risk of 
structural breaks, i.e. regime changes which seriously affect the evolution of the 
income distribution.7 As a consequence, the evolution prior to the shock may not 
be informative for the subsequent evolution of the income distribution; the 
stationary income distribution (h*) estimated from a transition matrix for the 
entire sample may be misleading.  

                                                             
6 Magrini (1999) and Bulli (2001) have argued that the usual ad-hoc discretization of the 

underlying continuous income distribution will probably remove the Markov property of the 
process. The crucial property of a Markov process, namely that future developments during 
any transition period t to t+1 do not depend on anything else but the own starting value at t, 
will be violated. As a result, the estimated probabilities cannot be interpreted as Markov 
transition probabilities, and the stationary distribution will be misleading. 

7 As Fingleton (1997) notes, the Markov chain approach is well suited to capture an uneven 
stream of small shocks that affect economies from time to time. Large, one-off shocks, 
however, are not consistent with time-invariance of transition probabilities. 
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2. Some test statistics 

The late 1950s and early 1960s witnessed a growing interest in the concept of 
Markov chains. A considerable number of journal articles and books dealing 
with test statistics for Markov chains were published (e.g. Anderson and 
Goodman 1957; Goodman 1958; Billingsley 1961a; 1961b; see also Basawa and 
Prakasa Rao 1980). Most prominently, chi-square, and Likelihood-Ratio tests 
were discussed. Both compare transition probabilities estimated simultaneously 
from the entire sample to those estimated from sub-samples obtained by dividing 
the entire sample into at least two mutually independent groups of observations. 
The criteria according to which the sub-samples are defined depend on the 
hypothesis to be tested against. Taken literally, the tests just compare multinomial 
distributions (rows of transition matrices) rather than Markov processes. A test 
of, e.g., whether two sub-samples (r = 1, 2) follow the same Markov process 
does not take into account whether or not the initial distributions (h0r) are likely 
to emerge from that Markov process.  

The present paper will focus on the chi-square test; the LR test statistic is 
asymptotically equivalent. For details on the LR tests, see Anderson and 
Goodman 1957: 106 ff.; Kullback et al. 1962. 

1. Tests for the entire transition matrix 

There are several properties of a Markov process that can be tested for in the 
context of a data set pooled across several periods of time and several regions.  

First, homogeneity over time (time-stationarity) can be checked by dividing the 
entire sample into T periods, and testing whether or not the transition matrices 
estimated from each of the T sub-samples differ significantly from the matrix 
estimated from the entire sample. More specifically, it tests H0: ∀t: pij(t)=pij 
(t = 1, …, T) against the alternative of transition probabilities differing between 
periods: Ha: ∃t: pij(t)≠ pij. The chi-square statistic reads8 

 
( )

∑∑ ∑
= = ∈
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T
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8 It is assumed that in each row (i) of the transition matrix for the entire sample there are at 

least two non-zero transition probabilities, and that the number of observations is positive 
for each of the T sub-samples. 
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where ijp̂  denotes the probability of transition from the i-th to the j-th class esti-
mated from the entire sample (pooled across all T periods), and )(ˆ tpij  the corre-
sponding transition probability estimated from the t-th sub-sample. Since the 

)(ˆ tpij  are assumed to be mutually independent across sub-samples under the H0, 
the N² parameters can be estimated similar to (4) as )(ˆ tpij  = nij(t)/ni(t). ni(t) 
denotes the absolute number of observations initially falling into the i-th class 
within the t-th sub-sample. Only those transition probabilities are taken into 
account which are positive in the entire sample, i.e. Bi = {j: ijp̂ >0}; transitions 
for which no observations are available in the entire sample are excluded. Note 
that ni(t) may be zero: rows (i) for which no observations are available within a 
sub-sample do not contribute to the test statistic.  

Q(T) has an asymptotic chi-square distribution with degrees of freedom equal to 
the number of summands in Q(T), except those where ni(t)=0, minus the number 
of estimated transition probabilities ijp̂ , both corrected for the number of 

restrictions (Σjpij(t)=1 and Σjpij=1). Consequently, the degrees of freedom can be 
calculated as Σiai(bi-1)-(bi-1) where bi (bi = |Bi|)9 is the number of positive 
entries in the i-th row of the matrix for the entire sample, and ai is the number of 
sub-samples (t) in which observations for the i-th row are available (ai = |Ai|; 
Ai = {t: ni(t)>0}).  

Second, homogeneity in the spatial dimension, implying H0: ∀r: pij(r)=pij 
(r = 1, …, R) can be tested against the Ha of transition probabilities varying 
across regions, i.e. Ha: ∃r: pij(r)≠ pij, by  
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where ci = |Ci|; Ci = {r: ni(r)>0}. 

Third, the Markov property can be addressed directly by testing whether the 
process under consideration is memoryless, i.e. whether or not the transition 
probabilities are independent of the state k (k = 1, …, N) a region was in at time 
t-1.  

Fourth, and methodically quite similar, it can be tested whether the transition 
probabilities are independent across space, i.e., whether or not the transition 
probabilities are independent of the state s (s = 1, ..., S) a region’s neighboring 
regions were in at time t.  

                                                             
9 bi = |Bi| means: bi is the number of elements in set Bi. 
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The test principles for both the test of the Markov property, and that of spatial 
independence are similar to those sketched in eq. (6) and (7) above. For tests of 
spatial independence sub-samples are defined as in the concept of spatial Markov 
chains proposed by Rey (2001b). Given the definition of states i which divide the 
sample into N classes according to the regions’ own income levels at t, Rey has 
suggested to define an additional set of states s for (average) relative income in 
neighboring regions at t, as illustrated in Figure 1. All regions with poor 
neighbors, e.g., constitute one sub-sample (s=1); those with medium-income 
neighbors a second, and those with rich neighbors a third one.  

In the same way, the Markov property can be tested for by defining as addi-
tional states income classes the regions were in at time t-1: Regions that were 
poor at t-1 are allocated to the first sub-sample (k=1), those with median income 
to the second, and so forth.  

Under the H0 of time, resp. spatial independence, implying, ∀k: pij|k=pij, resp. 
∀s: pij|s=pij, the transition matrices for all N, or S sub-samples can be estimated 
jointly because they are expected to be identical irrespective of the initial 
distribution of regions among the different sub-samples; the estimators are 
relative frequencies, similar to (4). The appropriate chi-square test statistic for 
time-independence is similar to (6) (just replace t and T by k and N), the test 
statistic for spatial independence is similar to (7) (replace r and R by s and S).  

 

 
Figure 1 — Concept of spatial Markov chains by Rey (2001b) 

income class  
neighbors (s) 

initial distribution transition matrices 

s=1 (poor neighbors) 
h1|1 (poor regions) 

⋅⋅⋅ 
hN|1 (rich regions) 

p11|1 ⋅⋅⋅ p1N|1 
 ⋅⋅⋅ 
pN1|1 ⋅⋅⋅ pNN|1 

⋅⋅⋅ ⋅⋅⋅  ⋅⋅⋅ 

s=S (rich neighbors) 
h1|S (poor regions) 

⋅⋅⋅ 
hN|S (rich regions) 

p11|S ⋅⋅⋅ p1N|S 
 ⋅⋅⋅ 
pN1|S ⋅⋅⋅ pNN|S 
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2. Tests for single states 

The chi-square test statistics discussed above are quite flexible in that they can 
also be used to test whether or not a single state (i) in the overall sample (i-th 
row of the transition matrix for the entire sample) violates the underlying 
assumptions. Since the transition probabilities are assumed to be asymptotically 
independent across states under the H0, define all observations in the i-th state to 
constitute an independent sample of its own, and perform the tests just intro-
duced for this sample only. Homogeneity over time of the i-th state, implying 
H0: ∀t: pj|i(t)=pj|i (t = 1, …, T), can be tested against non-stationarity 
(Ha: ∃t: pj|i(t)≠ pj|i) by (Anderson and Goodman 1957: 98) 
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∈ ∈
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ijij
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where Di = {t: ni(t)>0}, di = |Di|, and, as above, bi = |Bi|,  Bi = {j: ijp̂ >0}.  

Similarly, a test of spatial homogeneity of a single state i, i.e., H0: ∀r: pj|i(r)=pj|i 
(r = 1, …, R) against Ha: ∃r: pj|i(r)≠ pj|i, is 
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In (9), Ei = {r: ni(r)>0}, and ei = |Ei|. 

Note that (8) is similar to (6), and (9) is similar to (7), the only difference being 
that (8) and (9) compare only single rows in the transition matrices for all sub-
samples to the corresponding row in the matrix for the entire sample, while (6) 
and (7) compare whole matrices. Consequently, the statistics Q from (6) and (7) 
can be derived from (8) and (9) simply by summing up the Qi across all states, 
i.e., ∑=

i
T

i
T QQ )()( , and ∑=

i
R

i
R QQ )()( . 

(8) and (9) can also be applied to test for the Markov property, and for spatial 
independence; again, just a few indices have to be replaced. (8) can be used to 
test, e.g., the hypothesis that all regions that were poor at the beginning of the 
transition period under consideration (t to t+1) behave similarly irrespective of 
their income level in the past (at t-1). And (9) can be used to test, e.g., the 
hypothesis that all poor regions behave similarly irrespective of the income level 
of their neighbors at t.  
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3. Tests for single sub-samples 

In some cases one might be interested in performing even more detailed tests 
comparing single sub-samples to the entire sample. For example, one might want 
to know whether or not a specific period differs significantly from the pattern 
estimated for the entire time span, or whether or not a specific region has 
evolved in line with the overall pattern. Such tests can be performed by using the 
chi-square test statistics (6) and (7) for a comparison of just two sub-samples 
(T=2, or R=2), namely the sub-sample of interest (t, or r) and the pool of the 
remaining observations in the entire sample. Since all sub-samples are assumed 
to be independent of each other, and to have the same distribution under H0, any 
sub-sample may be isolated from the entire set of observations in this way.  

Likewise, it can be tested whether or not a single state (i) within a single sub-
sample (the t-th or r-th) differs significantly from the corresponding state esti-
mated from the entire sample. This just requires defining all observations within 
the i-th state to constitute an independent sample of its own, split up this sample 
into two sub-samples (e.g., t and the rest), and compare both of them using (8) 
or (9). 

4. Tests for a specified transition matrix 

Finally, one may test whether or not the estimated transition matrix is equal to 
an exogenously given transition matrix, i.e., whether or not 0

ijij pp =  holds for all 

i,j = 1, …, N. The appropriate test statistic, known as χ² test of goodness of fit 
(Cochran 1952; Anderson and Goodman 1957: 96 f.), reads  

 
( )
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N

i Fj ij

ijij
i

i
p

pp
nQ

1
0

20

*  ∼ asy χ²(∑ −N

i if )1( ). (10) 

Fi = {j: 0
ijp >0} and fi = |Fi|, i.e., the test is done only for those transition 

probabilities that are positive under the H0.  

For all the tests discussed above to be sufficiently exact, the definition of sub-
samples in the time resp. the spatial dimension must be such that the numbers of 
observations from which the transition probabilities are estimated are sufficiently 
high to allow for reliable estimates (Cochran 1952). If the entire sample is quite 
small relative to the number of classes i, it does not leave too much room for 
defining additional sub-samples. Likewise, one cannot expect reliable results 
from testing whether or not a single row within a single sub-sample differs from 
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the rest if there are only a few observations (ni(t)) available for estimating the 
transition probabilities in this row. 

3. Convergence among U.S. states 1929-2000 

To illustrate the above-mentioned tests we use a data set of relative per-capita 
income pooled across the 48 coterminous U.S. states and 71 annual transition 
periods from 1929-1930 to 1999-2000.10  

We arbitrarily divide the entire sample (3 408 observations) into five income 
classes with equal frequencies (quintiles) in order to ensure the number of ob-
servations per class to be sufficiently high to obtain reasonable estimates.11 Table 
1 gives the estimated (5x5) transition probability matrix and the stationary 
distribution obtained for the entire sample. Since the stationary income 
distribution shows somewhat higher probabilities in income classes around the 
median and lower probabilities in the extreme income classes than the initial 
distribution the estimates may be interpreted as reflecting convergence, if, 
indeed, the process under consideration is Markovian. 

 

 
Table 1 — Estimated transition matrix for 48 U.S. states 1929-2000, annual 

transitions 

income upper  initial distribution transition probabilities (t to t+1) 
class bound absolute relative 1 2 3 4 5 

1 0.82951 681 0.2 0.915 0.078 0.006 0.001 0 
2 0.94741 682 0.2 0.065 0.828 0.103 0.003 0.001 
3 1.03740 682 0.2 0.004 0.095 0.798 0.100 0.003 
4 1.15897 682 0.2 0 0.010 0.100 0.837 0.053 
5 ∞ 681 0.2 0 0 0 0.068 0.932 

stationary distribution 0.172 0.212 0.219 0.215 0.182 

Source: BEA, Regional Accounts Data; own estimation. 

                                                             
10 Relative per-capita income is calculated as per-capita State Personal Income at current 

prices, divided by the unweighted average across all 48 coterminous U.S. states. The data is 
from the Bureau of Economic Analysis, Regional Accounts Data, released September 24, 
2001 (http://www.bea.doc.gov/bea/regional/spi/). 

11 Note that the bounds of classes are fixed across the entire time-span under consideration.  
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1. Tests of homogeneity in time 

To test for time-homogeneity we divide the 71 transition periods into 14 intervals 
(periods) of five annual transitions each. That is, we estimate 14 different 
transition probability matrices (T=14), each based on (5*48=) 240 observa-
tions,12 in order to compare them simultaneously to the matrix for the entire time 
span (see Table 1). Using the test statistic (6) above13 we obtain Q=365.3, which 
clearly rejects the H0 of time-homogeneity (prob<0.01, 195 degrees of freedom). 
That is, the transition probabilities for the 48 U.S. states differ significantly over 
time; pooling over the entire time span of 71 transition periods is not appropriate.  

There may, however, be one or more epochs in which the transition probabili-
ties can be assumed to be constant. If there is no a priori information on the 
temporal location of major structural breaks that may have affected the evolution 
of the income distribution significantly, it may be useful to separately compare 
each of our 14 periods to the matrix for the whole time span using the test 
statistic (6) for T=2, as discussed in Section 2.2.3. First, we define the first period 
(1929-35) as one sub-sample, the remaining 13 periods (1935-2000) as a second 
one, and compare both to the entire sample. Afterwards, the second period 
(1935-40) is separated from the rest (1929-35, 1940-2000), and so on. The 
probability (prob-) values for the resulting 14 chi-square test statistics are plotted 
against the respective first years of the 14 periods in Figure 2. They show that 
significant deviations from the transition matrix for the entire sample concentrate 
on the years before 1950, and on the late 1990s. 

To check whether at least 1950-1995 can be assumed to form a homogeneous 
sample we re-estimate the whole transition matrix for the reduced sample (Table 
2), and test again for homogeneity over time. The resulting test statistic obtained 
from (6) is Q=112.0 which, at 96 degrees of freedom, does not indicate 
statistically significant differences between the transition matrices for the entire 
sample and the 9 periods of 5 years’ length (prob=0.126). Consequently, the 
sample of 48 U.S. states may be pooled over the 45 annual transitions from 1950 
to 1995, but not over a longer time span since structural breaks obviously 
occurred in the aftermath of World War II, and in the second half of the 1990s. 
While the former is well-documented in the literature14 the latter should be taken 

                                                             
12 The first period comprises 6 transition periods (1929-35) and 288 observations. 
13 The LR test is not applicable because some of the transition probabilities are zero in the 

temporal matrices but positive in the overall transition matrix.  
14 See, e.g., Carlino and Mills (1993), and Loewy and Papell (1996), who have identified 

structural breaks in the 1940s using unit-root tests.  
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with greater care since per-capita income figures for the 1990s are still based on 
interim estimates. 

 
 

Figure 2 – Prob-values of chi-square tests of homogeneity over time – 48 U.S. 
states 1929-2000, annual transitions, divided into periods of 5-
years 
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Source: BEA, Regional Accounts Data; own estimation. 

 

 
Table 2 — Estimated transition matrix for 48 U.S. states 1950-1995, annual 

transitions 

income upper initial distribution transition probabilities (t to t+1) 
class bound absolute relative 1 2 3 4 5 

1 0.85552 432 0.2 0.907 0.088 0.005 0 0 
2 0.95438 432 0.2 0.074 0.838 0.088 0 0 
3 1.03740 432 0.2 0.002 0.081 0.824 0.090 0.002 
4 1.13509 432 0.2 0 0.005 0.100 0.859 0.037 
5 ∞ 432 0.2 0 0 0 0.058 0.942 

Source: BEA, Regional Accounts Data; own estimation. 
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2. Tests of spatial homogeneity 

Tests of homogeneity in the spatial dimension based on the test statistic (7) can 
be illustrated by comparing transition matrices for different regions to that for the 
entire sample. While the H0: ∀r: pij(r)=pij is straightforward the Ha requires an 
exact specification of the potential spatial structure of heterogeneity. Several 
plausible sources come into mind: Each U.S. state may follow its own Markov 
process independent of other states. Or several states may constitute homogene-
ous spatial clusters, e.g., because they share common locational advantages and 
disadvantages, but different clusters may follow different Markov processes. 

Since 45 observations per U.S. state (annual transitions 1950-1995) are not 
sufficient to estimate up to 25 transition probabilities reliably, we will concentrate 
on testing against an alternative of the second type, assuming the 8 BEA 
regions15 to be independent sub-samples. The transition matrices estimated for 
the entire sample (same as in Table 2), and for each of the 8 BEA regions, as well 
as the statistics of the tests discussed in Sections 2.2.1. to 2.2.3 are reported in 
Table 3. 

First, we compare all 8 BEA region-specific transition matrices to that for the 
entire sample. The respective chi-square statistic calculated according to (7) gives 
Q=338 which indicates that there are significant differences between the BEA 
regions (prob<0.01, 73 degrees of freedom).  

Second, using eq. (9) in Section 2.2.2 we test for spatial homogeneity of single 
rows within the matrix for the entire sample, asking whether or not a single 
income class behaves similarly across BEA regions. The results can be found in 
the north-eastern corner of Table 3 (labeled “test of homogeneity” for the “entire 
sample”): The test hypothesis that BEA regions behave similarly within an 
income class (H0: ∀r: pj|i(r)= pj|i) is clearly rejected for all five classes with very 
low error probabilities (prob<0.01).  

Third, we compare the transition matrix for each BEA region to that of the 
entire sample by pooling the respective other 7 BEA regions into a second sub-
sample, as has been described in the first paragraph of Section 2.2.3. The test 
statistics which are similar to (7), assuming R=2, are given in the rows labeled 
“whole matrix” at the bottom of each BEA region-specific section in Table 3. 
Only in the Great Lakes, and the Far West region the per-capita income distri-
bution does evolve, by and large, in line with the entire sample; the error prob 
 
                                                             
15 For a detailed definition see the Bureau of Economic Analysis at http://www.bea.doc.gov/ 

bea/regional/docs/regions.htm. 
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Table 3 — Tests of spatial homogeneity across BEA regions, 48 U.S. states 
1950-1995, annual transitions 

income No of transition probabilities test of homogeneity 
class obs 1 2 3 4 5 d.o.f. Qi, Q prob 

entire sample 
1 432 0.907 0.088 0.005 0 0 8 111.84 0.00 
2 432 0.074 0.838 0.088 0 0 10 44.79 0.00 
3 432 0.002 0.081 0.824 0.090 0.002 28 57.52 0.00 
4 432 0 0.005 0.100 0.859 0.037 21 54.85 0.00 
5 432 0 0 0 0.058 0.942 6 68.94 0.00 

whole matrix 73 337.95 0.00 
New England 

1 9 0.556 0.444 0 0 0 2 14.58 0.00 
2 73 0.027 0.918 0.055 0 0 2 4.35 0.11 
3 44 0 0.068 0.841 0.091 0 4 0.34 0.99 
4 59 0 0 0.051 0.915 0.034 3 2.22 0.53 
5 85 0 0 0 0.024 0.976 1 2.29 0.13 

whole matrix 12 23.77 0.02 
Mideast 

1 0 0 0 0 0 0 – – – 
2 0 0 0 0 0 0 – – – 
3 2 0 0 0 1 0 4 20.25 0.00 
4 53 0 0 0.038 0.887 0.075 3 5.06 0.17 
5 170 0 0 0 0.029 0.971 1 4.16 0.04 

whole matrix 8 29.47 0.00 
Great Lakes 

1 0 0 0 0 0 0 – – – 
2 6 0 0.667 0.333 0 0 2 4.83 0.09 
3 60 0 0.033 0.867 0.100 0 4 2.50 0.64 
4 99 0 0 0.091 0.859 0.051 3 1.32 0.72 
5 60 0 0 0 0.100 0.900 1 2.27 0.13 

whole matrix 10 10.92 0.36 
Plains 

1 28 0.464 0.464 0.071 0 0 2 83.54 0.00 
2 59 0.254 0.644 0.102 0 0 2 33.16 0.00 
3 165 0.006 0.042 0.848 0.097 0.006 4 8.47 0.08 
4 62 0 0.032 0.258 0.710 0 3 34.77 0.00 
5 1 0 0 0 1.000 0 1 16.32 0.00 

whole matrix 12 176.25 0.00 

to be continued 
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Table 3 continued 

income No of transition probabilities test of homogeneity 
class obs 1 2 3 4 5 d.o.f. Qi, Q prob 

Southeast 
1 345 0.965 0.035 0 0 0 2 69.32 0.00 
2 120 0.042 0.900 0.058 0 0 2 4.78 0.09 
3 43 0 0.047 0.860 0.093 0 4 1.00 0.91 
4 31 0 0 0.097 0.871 0.032 3 0.18 0.98 
5 1 0 0 0 1.000 0 1 16.32 0.00 

whole matrix 12 34.76 0.01 
Southwest 

1 27 0.815 0.185 0 0 0 2 3.50 0.17 
2 96 0.042 0.875 0.083 0 0 2 1.98 0.37 
3 54 0 0.167 0.796 0.037 0 4 7.87 0.10 
4 3 0 0 0.667 0.333 0 3 10.86 0.01 
5 0 0 0 0 0 0 – – – 

whole matrix 11 24.21 0.01 
Rocky Mountains 

1 23 0.826 0.174 0 0 0 2 2.33 0.31 
2 78 0.077 0.782 0.141 0 0 2 3.41 0.18 
3 46 0 0.261 0.674 0.065 0 4 22.56 0.00 
4 62 0 0 0.081 0.855 0.065 3 2.07 0.56 
5 16 0 0 0 0.375 0.625 1 30.65 0.00 

whole matrix 12 61.02 0.00 
Far West 

1 0 0 0 0 0 0 – – – 
2 0 0 0 0 0 0 – – – 
3 18 0 0 0.889 0.111 0 4 1.79 0.77 
4 63 0 0 0.048 0.952 0 3 5.82 0.12 
5 99 0 0 0 0.040 0.960 1 0.72 0.40 

whole matrix 8 8.34 0.40 

Source: BEA, Regional Accounts Data; own estimation. 

 

 

abilities being 0.36 (Great Lakes) and 0.4 (Far West), respectively. For the other 
BEA regions, by contrast, the error probabilities are below 0.05, indicating that 
these regions are not well represented by the figures estimated for the U.S. as a 
whole.  
And finally, we compare single income classes for single BEA regions to the 
corresponding income class estimated for the U.S. as a whole by proceeding as 
described in the second paragraph of Section 2.2.3. The test statistics reported in 
Table 3 to the right of the BEA region-specific transition matrices draw a fairly 
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mixed picture.16 For example, in the Rocky Mountains region it seems to be the 
regions with median, and with very high income (income classes 3 and 5) that 
behave differently from the U.S. average. For both classes an above-average 
probability of becoming poorer is obtained ( )(ˆ32 Rockyp =0.261, 

)(ˆ54 Rockyp =0.375, compared to 0.081, and 0.058 for the entire sample).  

3. Tests of the Markov property 

As noted earlier the Markov property requires the transition probabilities from t 
to t+1 to depend only on a region’s initial state at t but not on its state at t-1 (or 
any earlier point in time). This property can be tested against some sort of first-
order serial autocorrelation, i.e. against the hypothesis that regions belonging to 
the same income class at t behave differently depending on their state at t-1. We 
define five sub-samples k = 1, ..., 5 for states the regions were in at t-1, such that 
i(t-1) = k(t). E.g., regions that were in the first income class at t-1 are allocated to 
the first sub-sample (k=1), those that were in the second class are put into k=2, 
and so on. For each of these sub-samples we estimate a separate matrix from 
observed transitions from t to t+1 in the usual way. 

The estimated transition matrices for the entire sample (income class at t-1 = 
‘all’) and for the five sub-samples as well as the various test statistics are given in 
Table 4.17 The general test comparing the matrices for all five sub-samples to that 
for the entire sample simultaneously (similar to eq. 6 in Section 2.2.1) produces 
Q=436.2 which, at 30 degrees of freedom, indicates extremely significant 
differences (prob<0.01). Consequently, the evolution of the income distribution 
across U.S. states cannot be assumed to be independent of the past. This is not 
only true for the entire sample but also for each of the five income classes, as the 
test statistics in the north-eastern part of Table 4 indicate. If the H0 of time 
independence was true, the rows of the matrices for the 5 sub samples would be 
equal to the corresponding row of the matrix for the entire sample, and the tests 
would not indicate significant differences. This is clearly  
 

                                                             
16 Of course, several of the test statistics are quite poorly reliable since the numbers of 

underlying observations are low. 
17 Note that the matrix for the entire sample (“income class at t-1 = ‘all’”) differs slightly from 

that in Table 2 because the first transition period (1950-51) is needed for the serial lag.  
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Table 4 — Tests of the Markov property, 48 U.S. states 1951-1995, annual 
transitions 

income class at No of transition probabilities (t to t+1) test of Markov prop 
t-1 t obs 1 2 3 4 5 d.o.f. Qi, Q prob 

all 1 422 0.908 0.088 0.005 0 0 4 235.7 0.00 
all 2 423 0.073 0.839 0.087 0 0 6 24.54 0.00 
all 3 422 0.002 0.078 0.827 0.090 0.002 12 76.04 0.00 
all 4 423 0 0.005 0.097 0.865 0.033 6 64.48 0.00 
all 5 422 0 0 0 0.059 0.941 2 35.40 0.00 

 whole matrix 30 436.2 0.00 

1 1 391 0.928 0.072 0 0 0 2 43.43 0.00 
1 2 37 0.243 0.730 0.027 0 0 2 18.25 0.00 
1 3 2 0 0.500 0.500 0 0 4 5.02 0.29 
1 4 0 0 0 0 0 0 0 – – 
1 5 0 0 0 0 0 0 0 – – 

 whole matrix 8 66.71 0.00 

2 1 30 0.667 0.300 0.033 0 0 2 24.24 0.00 
2 2 350 0.057 0.860 0.083 0 0 2 8.75 0.13 
2 3 38 0 0.289 0.684 0 0.026 4 38.83 0.00 
2 4 0 0 0 0 0 0 0 – – 
2 5 0 0 0 0 0 0 0 – – 

 whole matrix 8 71.82 0.00 

3 1 1 0 0 1.000 0 0 2 210.5 0.00 
3 2 34 0.059 0.735 0.206 0 0 2 6.51 0.05 
3 3 340 0.003 0.059 0.868 0.071 0 4 23.64 0.33 
3 4 38 0 0.053 0.342 0.605 0 3 50.80 0.00 
3 5 1 0 0 0 1.000 0 1 15.92 0.00 

 whole matrix 12 307.4 0.00 

4 1 0 0 0 0 0 0 0 – – 
4 2 2 0 1.000 0 0 0 2 0.38 0.83 
4 3 42 0 0.024 0.643 0.333 0 4 34.56 0.00 
4 4 361 0 0 0.075 0.898 0.028 3 29.22 0.00 
4 5 16 0 0 0 0.313 0.688 1 19.14 0.00 

 whole matrix 10 83.30 0.00 

5 1 0 0 0 0 0 0 0 – – 
5 2 0 0 0 0 0 0 0 – – 
5 3 0 0 0 0 0 0 0 – – 
5 4 24 0 0 0.042 0.792 0.167 3 14.80 0.00 
5 5 405 0 0 0 0.047 0.953 1 27.42 0.00 

 whole matrix 4 42.21 0.00 

Source: BEA, Regional Accounts Data; own estimation. 
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not the case; there is not a single income class for which the previous income 
level is irrelevant. The following four examples may serve as an illustration:18 

– Take, e.g., the first row in the matrix for the second sub-sample (income class 
at t-1=2, and at t=1) representing regions that descended from the second to 
the first income class just the period before (t-1 to t). These regions have a 
considerably higher probability of becoming richer again ( 2|12p̂ =0.300) than 

regions that were poor before ( 1|12p̂ =0.072), and than regions on average 

12p̂ =0.088. 

– Similarly, regions that just scaled up from the lowest to the second-lowest 
class have a considerably higher probability of falling back again than regions 
that have already been in the second class for a longer time; the respective 
probabilities being 1|21p̂ =0.243, 2|21p̂ =0.057, and 21p̂ =0.073. 

– At the upper end of the income hierarchy, very rich regions that were very rich 
before tend to have a higher probability of staying very rich than very rich 
regions that were poorer before, i.e. 5|55p̂ =0.953 > 4|55p̂ =0.688.  

– Finally, consider the third income class in t: The probability of staying in that 
class if a region was in there before ( 3|33p̂ =0.868) is higher than both the 

probabilities of regions that were poorer, or richer before: 2|33p̂ =0.684, and 

4|33p̂ =0.643. 

Obviously, history matters a lot. At least some of the movements between 
classes are temporary; the probabilities estimated from the entire sample are 
rather poor predictors of the real behavior of regions, at least in several cases. 

                                                             
18 The definition of classes for the tests of the Markov property has produced a very obvious 

outlier, namely North Dakota’s transition from 1979 to 1980 and 1981. This is the only 
observation falling in the first class of the third sub-sample (income class at t-1=3). The per-
capita income declined sharply from 1979 to 1980; South Dakota descended from the third 
to the lowest income class. In the next period, income rose again; the state returned to the 
third class. Since leaps of this kind across two class boundaries have been very rare among 
the poorest regions they are penalized strongly by the test statistic. Eliminating this outlying 
observation from the data set does not change the overall conclusions significantly, however. 
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4. Tests of spatial independence 

Although the Markov approach requires stochastically independent observations 
income dynamics in one state may be affected by geographic spillovers from 
respective neighboring states. As Rey and Montouri (1999) and Rey (2001a), 
(2001b) have shown by means of several statistical indicators, spatial dependence 
among neighboring U.S. states is quite strong: There seem to be sort of spillovers 
among neighboring states such that income dynamics in one state is not 
independent of whether its neighbors are – on average – comparatively rich or 
poor. Similar results have been obtained for regions in various other countries 
(e.g. Fingleton and McCombie 1998, Bode 1998b, 2001, 2002) as well as at the 
international level (Keller 2000, Fingleton 2000).  

For empirically illustrating the test of spatial independence proposed in Section 
2 we distinguish 5 spatial Markov chains by (again arbitrarily) dividing the 
sample (48 states, 1950-1995, 2 160 observations) into 5 income classes 
s = 1, …, S for different income levels in neighboring states. An observation is 
allocated to s=1 if the average relative per-capita income at time t in the 
neighboring states falls into the first quintile across all observations, i.e. if the 
region-year under consideration is among the 432 observations (20 per cent of 
the entire sample) for region-years having the poorest neighbors. For each of the 
resulting spatial Markov chains we test the hypothesis that the transition prob-
abilities are equal to the transition matrix in Table 2.  

The results strongly support earlier findings: the whole system is not inde-
pendent across space, the test statistic Q=144 being highly significant (prob 
<0.01; 47 d.o.f.; Table 5). For three out of five income classes of the entire 
sample the income level in a state’s geographic neighborhood is important. The 
tests comparing single rows across all sub-samples (see Section 2.2.2., eq. 9) 
indicate that there are significant differences for states with low, above-median, 
and high income (classes 1, 4, and 5; north-eastern part of Table 5). And there is 
not a single among the five sub-samples for different income levels of neighbors 
that does not show significant differences to the entire sample, as the test statistic 
discussed in Section 2.2.3 indicates (rows labeled “whole matrix”). Obviously, 
e.g., a poor state has a substantially lower probability of becoming richer if its 
neighbors are poor as well ( 1|12p̂ =0.032), compared to the average across all 

states which is estimated to be 12p̂ + 13p̂ =0.093. Similarly, a very rich state has a 
lower probability of becoming poorer if its neighbors are very rich as well 
( 5|54p̂ =0.024, compared to 54p̂ =0.058).  
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Table 5 — Tests of spatial dependence among immediate neighbors, 48 U.S. 
states 1950-1995, annual transitions 

income No of transition probabilities test of homogeneity 
class obs 1 2 3 4 5 d.o.f. Qi, Q prob 

entire sample 
1 432 0.907 0.088 0.005 0 0 8 48.17 0.00 
2 432 0.074 0.838 0.088 0 0 8 13.84 0.09 
3 432 0.002 0.081 0.824 0.090 0.002 16 19.21 0.26 
4 432 0 0.005 0.100 0.859 0.037 12 25.70 0.01 
5 432 0 0 0 0.058 0.942 3 37.09 0.00 

whole matrix 47 144.0 0.00 
poor neighbors (s=1) 

1 253 0.968 0.032 0 0 0 2 27.36 0.00 
2 121 0.033 0.893 0.074 0 0 2 4.77 0.09 
3 43 0 0.140 0.791 0.070 0 4 2.53 0.64 
4 15 0 0 0.133 0.867 0 3 0.83 0.84 
5 0 0 0 0 0 0 0 – – 

whole matrix 11 35.48 0.00 
neighbors with below-median income (s=2) 

1 67 0.731 0.239 0.030 0 0 2 34.12 0.00 
2 103 0.107 0.806 0.087 0 0 2 2.12 0.35 
3 136 0 0.044 0.897 0.059 0 4 7.71 0.10 
4 115 0 0 0.087 0.870 0.043 3 1.17 0.76 
5 11 0 0 0 0.455 0.545 1 32.58 0.00 

whole matrix 12 77.70 0.00 
neighbors with median income (s=3) 

1 75 0.840 0.160 0 0 0 2 6.23 0.04 
2 71 0.141 0.761 0.099 0 0 2 5.83 0.05 
3 102 0.010 0.069 0.794 0.118 0.010 4 7.98 0.09 
4 96 0 0 0.083 0.875 0.042 3 1.01 0.80 
5 88 0 0 0 0.080 0.920 1 0.95 0.33 

whole matrix 12 21.99 0.04 
neighbors with above-median income (s=4) 

1 33 0.970 0.030 0 0 0 2 1.67 0.43 
2 89 0.079 0.831 0.090 0 0 2 0.04 0.98 
3 106 0 0.085 0.792 0.123 0 4 2.48 0.65 
4 81 0 0.025 0.198 0.716 0.062 3 22.29 0.00 
5 123 0 0 0 0.065 0.935 1 0.16 0.69 

whole matrix 12 26.64 0.01 
rich neighbors (s=5) 

1 4 0.750 0.250 0 0 0 2 1.33 0.51 
2 48 0 0.896 0.104 0 0 2 4.38 0.11 
3 45 0 0.156 0.778 0.067 0 4 4.12 0.39 
4 125 0 0 0.056 0.928 0.016 3 7.25 0.06 
5 210 0 0 0 0.024 0.976 1 8.70 0.00 

whole matrix 12 25.77 0.01 

Source: BEA, Regional Accounts Data; own estimation. 
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5. Are these tests purely academic exercises? 

To exemplify the sensitivity of empirical results to violations of the requirements 
of the method we will finally compare the stationary distribution calculated from 
the transition matrix for the entire sample (48 states, 1950-1995) to those from the 
transition matrices for single BEA regions (see Table 3). A similar discussion of 
the effects of spatial dependence on stationary distributions can be found in Rey 
(2001b). Note that the following exercises are purely illustrative. 

A conventional interpretation of the stationary distribution for the U.S. as a 
whole (Table 6, first row), as has been adopted frequently in the literature, would 
conclude that there is some good news for states that are lagging behind, and 
some bad news for the leaders: Apparently, there is convergence among U.S. 
states. Compared to the initial distribution (0.2 in each class) the populations in 
the extreme classes have decreased.19 

With a view to the BEA region-specific limiting distributions, this conclusion 
may be appropriate for the Plains, indeed, although the tendency towards 
concentrating at the median (of all 48 states) appears to be much stronger there.  
 

 
Table 6 — Stationary income distributions calculated from estimated transition 

matrices for 8 BEA regions 1950-1995, annual transitions 

BEA-region income class 

 1 2 3 4 5 

USA 0.186 0.225 0.236 0.210 0.144 

New England 0.011 0.186 0.150 0.267 0.385 
Mideast 0 0 0.010 0.277 0.712 
Great Lakes 0 0.036 0.363 0.399 0.202 
Plains 0.108 0.216 0.496 0.176 0.003 
Southeast 0.255 0.213 0.267 0.257 0.008 
Southwest 0.128 0.571 0.285 0.016 0 
Rocky Mountain 0.177 0.401 0.217 0.175 0.030 
Far West 0 0 0.300 0.700 0 

Source: BEA, Regional Accounts Data; own estimation. 

                                                             
19 Shaded cells in Table 6 indicate peaks of the distributions. 
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For the rest of the BEA regions, however, the general picture seems to be of very 
limited relevance. The figures suggest that New England, Mideast, and Far West 
states as well as those at the Great Lakes have little reason to worry about falling 
back to mediocrity. And the supposedly good news for the south and the Rocky 
Mountain states may be way too optimistic. It seems as if the majority of them 
continue to be comparatively poor. Of course, one has to bear in mind that there 
may have been a structural break in the 1990s, and that in the evolution of the 
income distributions within BEA regions may not be homogeneous, which has 
not been tested for. 

4. Conclusions 

Although Markov process theory offers a couple of desirable features for con-
vergence analysis such as the possibility to determine a stationary income 
distribution, it requires some very restrictive assumptions to be met. Quite 
surprisingly, these assumptions have generally been taken for granted in the 
convergence literature so far. This is all the more surprising, as appropriate tests 
have been available since the late 1950s, and are quite simple to implement. The 
present paper has proposed, resp. recalled a number of tests to assess the prop-
erties of estimated Markov transition matrices.  

In summary, these tests turn out to be useful tools. The chi-square statistic 
discussed in this paper is very flexible in use. It can be used for a wide variety of 
tests, ranging from tests of the Markov property and spatial dependence to 
homogeneity of observed processes over time and space. It can be used to 
compare whole systems of transition matrices as well as single rows in transition 
matrices for single sub-samples. All tests, however, require the number of 
observations to be large enough to allow for reasonably accurate estimates of 
transition probabilities.  

As has been illustrated, the evolution of the income distribution across the 48 
coterminous U.S. states from 1929 to 2000 clearly does not follow a Markov 
process. Rather, income growth has been autoregressive in both time, and space. 
Regional clusters of states apparently have followed different laws of motion (if 
any), and there has been a structural break in the aftermath of World War II, that 
has significantly affected the evolution of the income distribution. Another 
structural break may have occurred in the 1990s. These features should be taken 
into consideration when making inferences about the evolution of the regional 
income distribution in the U.S. 
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