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SEMINAR FÜR WIRTSCHAFTS- UND SOZIALSTATISTIK
UNIVERSITÄT ZU KÖLN
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Abstract

As monopolies gave their way to competitive wholesale electricity mar-
kets, volumetric risk came into play. Electricity supplier can buy weather
derivatives to protect from volumetric risk due to unexpected weather con-
ditions. However, contracts can only be negotiated for weather variables
measured at few selected locations. To hedge their specific risk, electricity
supplier have to correlate their risk with the risk at tradeable locations.
In this paper, we concentrate on temperature derivatives. More precisely,
we examine if and how bivariate GARCH models with dynamic conditional
correlations can help in modelling correlation between two distinct tem-
perature time series. The knowledge of correlation dynamics between the
temperature time series enables an electricity supplier to correlate his risk
with the risk of a traded city and to construct a sensible hedge. It turns out
that the application of bivariate DCC GARCH models to three German
temperature time series provides encouraging results.

2



1 Introduction

Many sectors of the economy such as energy, agriculture, retail and tourism are
exposed to weather risk. The earnings of producers of ice cream and energy
companies, for example, are very much depending on the weather conditions,
they are faced with. To cope with the volumetric risk due to uncertain weather
conditions, weather derivatives have become a common instrument. These
instruments allow electricity suppliers to protect their earnings from warm
winters or ice cream producers from cold summers. Especially in the USA, the
market for weather derivatives, as well over- the- counter as exchange-based, is
fast growing.
As of September 1999, the Chicago Mercantile Exchange, also referred to as
CME, began listing futures and options on temperature indices of ten cities across
the USA. Today, indices for eighteen U.S. cities are available. Besides, contracts
on indices for nine European and two Japanese cities can be struck. These
cities have been chosen based on population, the variability in their seasonal
temperatures and the activities in over- the- counter markets. The total number
of contracts traded was 4165 in 2002 and 14234 in 2003. Through September
2005, there were 630 000 weather contracts traded with a notional value of 22
billion dollars.
Weather derivative instruments include weather swaps, options, option collars and
short straddles, to mention a few among them. The payoffs of these instruments
may be linked to various underlying meteorological variables such as average
temperature, minimum temperature, maximum temperature, heating degree days
and cooling degree days, as well as wind speed, rainfall and sunshine.
Here, we concentrate on temperature derivatives, since about 90 % of the traded
derivatives are based on temperature. To be more specific, we focus on contracts
written on heating degree day (HDD) and cooling degree day indices (CDD),
respectively. HDD indices can be used to protect from a bland winter, whereas
CDD indices are designed to hedge against a cold summer.
A degree day measures how much a day’s average deviates from 65◦ F ( or 18.33◦

C ) a level of outdoor temperature considered to be utmost comfortable by the
utility industry. The idea behind this choice is that, for each degree below 65◦

F, more energy is needed for heating. By contrast, for each degree above 65◦ F,
more energy is needed to power air conditioners. Most contracts are written on
the accumulation of HDDs or CDDs over a calendar month or a season so that
one contract can hedge against revenue fluctuations over the concerned period.
Moreover, so-called energy degree day indices (EDD) are additionally offered by
the CME. These contracts allow for more flexibility. For example, a different level
than 65◦ F can be specified.
More precisely, we denote the daily HDD = max[0, 65◦ F −
daily average temperature], whereas for the daily CDD, we denote, CDD
= max[0, daily average temperature − 65◦ F]. Note that daily average tempera-
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ture is computed as the average of the maximum and minimum temperatures
on a certain day. Further basic elements of contracts with HDDs or CDDs
as underlyings are the accumulation period and the station which records
temperatures used to construct the underlying variable. Finally, the so-called tick
size has to be determined. The tick size indicates the amount of money attached
to each HDD or CDD, respectively.
How does trading develop outside the USA ? At the Eurex in Germany, the
Deutsche Börse Group had offered heating degree days (HDD) and cooling degree
days (CDD) indices since December 2000 for thirty European cities. Among
these cities were the German cities Berlin, Essen, Frankfurt and Hamburg.
In the meantime, the Eurex has withdrawn from this market due to the lack
of standardized contracts and liquidity. Moreover, reliable and comprehensive
weather data is not as easily available as in the USA. Additionally, the relevance
of air conditioning in the summertime is not as pronounced as in the USA.
Consequently, the demand for CDDs is much lower than in the USA. Attempts
to establish an exchange-based trading of weather derivatives have failed in other
European countries either. Therefore in Europe, trading of weather derivatives
mainly takes place over the counter.
When we talk about valuation of temperature derivatives, we have to bear in
mind that temperature as underlying has some salient characteristics. Since it is a
meteorological variable rather than a traded asset, the conventional risk-neutral,
arbitrage-free valuation methodology does not apply. By contrast, theoretically
adequate valuation can only be based on an equilibrium model which takes into
account the stochastic dynamics of the underlying as well as the risk aversion of
the investors.
Another open question is whether the HDDs, CDDs should be directly modelled
for each contract. Cao and Wei (2000) argue that direct modelling of the HDDs,
CDDs has certain shortcomings. Instead, modelling the daily temperature enables
us to handle temperature contracts of any maturity and for any season. Moreover,
estimation of model parameters has to be carried out only once. By contrast,
direct modelling of HDDs and CDDs requires a separate estimation procedure
for each contract taking into account the season and the maturity of the contract
due to the nature of temperature behavior. As a result, modelling temperature
rather than the HDDs and CDDs seems more adequate.
Literature on weather derivatives is rather scanty. In the following paragraphs,
we report some important contributions, at least in our opinion, on temperature
derivatives.
To start with, Dischel (1998) and Brody et al. (2002), propose to simulate
future behavior of temperature as a continuous time or discrete time stochastic
process which takes into account the salient features of temperature such as mean
reversion and seasonality. These processes can be then fitted to data and used to
value any contingent claim by taking expectation of the discounted future payoff.
Davis (2001) puts forward to value temperature derivatives based on HDDs
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and CDDs in an equilibrium framework. Besides the stochastic dynamics of
temperature, the author takes into account optimal consumption and investment
rules when he derives explicit pricing formulas for the valuation of swap rates
and option values. Torro et al. (2003) model air temperature behavior in Spain
combining techniques for the modelling of short-term interest rates with a gener-
alized autoregressive conditional heteroscedastic (GARCH) time series approach.
They suggest to create a population-weighted index of daily temperatures from
four different measuring stations to compute HDDs or CDDs. Furthermore,
Cao and Wei (2004) propose an equilibrium framework linking the temperature
uncertainty and the economy’s aggregate output therein. They suggest a serially
correlated bivariate-process for the temperature and the aggregate output.
Finally, their framework allows to address the market price of weather risk. They
apply their framework to temperature from five CME-traded cities in the USA.
Campbell and Diebold (2005) take a simple but systematic time series approach
to modelling and forecasting daily average temperature in 10 U.S. cities. They
find strong evidence that point and density forecasts from their approach prove
useful for participants in the weather derivatives market.
In addition, Taylor and Buizza (2004) and Taylor and Buizza (2005) compare
temperature density forecasts from time series models with atmospheric models
in terms of short-run predictions one up to ten days ahead. They find evidence
that so-called weather ensemble density forecasts of daily midday temperature
data recorded at five locations in the UK outperform forecasts provided by time
series models. Weather ensemble forecasts consist of multiple future scenarios for
a weather variable generated from atmospheric models. In a second step, Taylor
and Buizza (2005) assess forecasts of the conditional mean and quantiles of the
density of the payoff of a 10 day-ahead put option provided by univariate time
series models, on one hand, and from atmospheric models, on the other hand.
Again, the obtained results suggest to use weather ensemble forecasts.
In this article, we intend to particularly address aspects of multivariate anal-
ysis and cross-city hedging as put forward by Campbell and Diebold (2005).
Trading of temperature derivatives requires to fix the station which records
the temperature data that is used to compute the payoff of the derivative. At
the CME, contracts are struck on data from few selected measuring stations to
ensure liquidity. Campbell and Diebold (2005) argue that hedging of weather risk
in remote locations is only possible if the risk of the remote location is highly
correlated with the risk of a location for which a liquid market exists. Since HDDs
and CDDs are computed at a daily basis, a multivariate model which captures
daily correlation dynamics between locations may provide a very rich picture of
reality and be therefore a very useful tool for risk management. In previous work
of Torro et al (2003), Cao and Wei (2004) and Campbell and Diebold (2005)
on univariate modelling, the authors have revealed that temperature displays
rich dynamics such as yearly seasonality as well in the conditional mean as in
the conditional variance. Consequently, it is probably naive to assume that the
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conditional correlation between two locations is the same in winter as in summer.
We may rather expect the opposite to be true.
At the CME, temperature derivatives based on data from nine European cities,
among them Berlin and Essen, can be traded. Henceforth, if EnBW an important
electricity supplier in the south-west of Germany plans to hedge his volume
risk in the area of Stuttgart at the CME, for example, he must be aware of
the correlation dynamics of daily average temperature at Stuttgart and the
traded cities. Consequently, the correlation dynamics between the series from
Stuttgart-Echterdingen and Berlin may be of special interest for EnBW. However,
the modelling of correlation dynamics between temperature time series has not
been paid much attention to, so far. Maybe this is one possible reason why many
investors prefer to negotiate customized contracts over the counter on data from
the region of their interest rather than to engage in standardized contracts on
data from traded cities.
Following and extending the previous work of Torro et al (2003) and Campbell
and Diebold (2005) on univariate GARCH models, we choose a bivariate GARCH
framework. In more detail, our focus in this paper is twofold. On one hand, we
want to assess the ability of bivariate GARCH models with dynamic conditional
correlations in modelling time-varying correlation dynamics between temperature
time series. On the other hand, we aim to apply the elaborated methodology
to help an investor to correlate his own exposure with tradeable cities. As
we mentioned before, knowledge of these correlation dynamics is the key to
constructing a sensible hedge.
Previous contributions of Campbell and Diebold (2005), Franses et al.(2001),
Torro et al. (2003), Taylor and Buizza (2004) and Tol (1996) show that gener-
alized autoregressive conditional heteroscedastic (GARCH) models are useful in
modelling and forecasting of univariate temperature time series.
First, we fit a univariate GARCH model in spirit to Franses et al.(2001) and
Campbell and Diebold (2005) to our temperature time series. Moreover in a
second step, we move on to a bivariate GARCH framework to examine the
correlation dynamics between different locations. Recently, several multivariate
GARCH models have been designed to allow for parsimony or to guarantee a
positive definite covariance matrix, or often both. We should keep in mind, that
these models have originally been conceived to model dynamics of financial time
series. Temperature time series display yearly seasonality in the conditional vari-
ance, which is a salient feature compared with financial time series. Consequently,
the incorporation of seasonality dynamics in the existing multivariate GARCH
framework is the main task that we are faced with the modelling of temperature
series.
A thorough analysis of different multivariate GARCH approaches has revealed
that dynamic conditional correlation models, abbreviated DCC, are well suited
for modelling correlations between temperature time series.
DCC models offer a high degree of flexibility in modelling the conditional variance
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and conditional correlation dynamics. A further advantage of DCC models is
the numerical stability, also for higher dimensions, due to a two-step estimation
procedure that can be applied.
The remainder of the article is organized as follows. In Section 2, we present
the temperature data and some descriptive statistics. Furthermore in Section 3,
we discuss the considered univariate time series model and fit it to our given
temperature data. In Section 4, we present and discuss selected bivariate GARCH
models with dynamic conditional correlations. In addition, we fit them to the
temperature data and discuss the results. How the elaborated methodology can
be applied is described in Section 5. Finally, Section 6 concludes the article and
gives hints for further research.

2 Data

The data comprises actually measured daily average temperature ( measured in
C◦ ) from three measuring stations ranging from January 1st 1991 to April 29th

2005.
One of the measuring stations is located at Stuttgart, namely Echterdingen. More-
over, we have decided to take data from Berlin (-Tempelhof) and Hamburg (-
Fuhlsbüttel). The data from Berlin is used to compute European CDDs and HDDs
at the CME. Therefore, this choice is quite natural. Hamburg and Echterdingen,
however, are located in the north and south of Germany. We expect temperature
at other locations to exhibit correlation dynamics in between these two. Daily
average temperature have been computed as the arithmetic mean of daily maxi-
mum and daily minimum temperature series. Finally, according to Campbell and
Diebold (2005) and Taylor and Buizza (2004), we have discarded the 29th Febru-
ary in leap years.
In the original series of Echterdingen, we have found three extremal observations
larger than 43 C◦. In our opinion, these values must be wrong. Therefore, we have
replaced these aberrant observations by the average of temperatures observed one
year before and one year after.
In table 2.1, we present some descriptive statistics for the three daily average
temperature time series, whereas table 2.2 shows the correlations between the dif-
ferent temperature series. The estimated Kurtosis ranges between 2.27 and 2.44
and is far below 3 the value for the normal distribution. This is due to the differ-
ent levels of temperature in winter and summer. By this, the distribution of these
temperature series rather resembles a two-component mixture of normals than a
normal distribution. In order to motivate our modelling approach in Section 4.3,
we analyze the data from Echterdingen. The remaining temperature series ex-
hibit similar time series characteristics. Consequently, we treat them analogously.
Hence, subfigure 2.1a shows the series of the station at Echterdingen, while sub-
figure 2.1b presents the histogram of this series together with the superimposed
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estimated normal density. As aforementioned, the empirical distribution seems
slightly bimodal. The correlations between the temperature time series are posi-
tive and exceed 0.9.
Subfigure 2.1c shows the autocorrelation function which resembles a cosine func-
tion. This shape of the autocorrelation function indicates a strong yearly season-
ality in the data. Finally, subfigure 2.1d suggests that the conditional mean of
the considered time series should be modelled by a low- ordered autoregressive
moving average process (ARMA).

Table 1: Descriptive Statistics on Temperature Series in C◦ from The Three Se-
lected Stations.

S-Echterdingen Berlin Hamburg
Mean 9.58 9.85 9.32

Median 9.70 9.85 9.20
Maximum 27.55 29.55 29.60
Minimum -13.90 -14.5 -15.05
Std. Dev. 7.52 7.87 7.02
Skewness -0.14 -0.09 -0.07
Kurtosis 2.33 2.27 2.44

Jarque-Bera 113.59 122.55 72.88

Table 2: Correlations of Temperature Series in C◦ from The Three Selected Sta-
tions.

S-Echterdingen Berlin Hamburg
S-Echterdingen 1.000

Berlin 0.942 1.000
Hamburg 0.927 0.975 1.000
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Figure 1: Daily average temperature from Echterdingen( 01/01/1991 until
04/29/2005 (a), Histogram for Echterdingen (b), Autocorrelation function ( ACF
) for Echterdingen (c), Partial autocorrelation function ( PACF )for Echterdingen
(d).
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3 Univariate Modelling

Our modelling approach of the average daily temperature time series is substan-
tially inspired by the work of Franses et al.(2001) and Campbell and Diebold
(2005). As opposed to Campbell and Diebold (2005), we prefer an autoregressive
moving average process ARMA(1,1) for the two temperature series except for
Hamburg. In the case of Hamburg, we opt for an ARMA(2,1). In addition, we
specify the yearly seasonality with a Fourier series. Our approach for the two
locations, except for Hamburg, is summarized in equation (3.1). The specification
for Hamburg is presented in equation (3.2).

Tt = λc,1 cos(2π
dt

365
) + λs,1 sin(2π

dt

365
) + ρ1µm + (1− ρ1)Tt−1 + εt + θεt−1, (3.1)

Tt = λc,1 cos(2π
dt

365
)+λs,1 sin(2π

dt

365
)+(ρ1−ρ2)µm+(1−ρ1)Tt−1+ρ2Tt−2+εt+θεt−1,

(3.2)
where εt ∼ N (0, σ2). Figure 3.1 presents some results on equation (3.1) for data
from Echterdingen. Subfigures 3.1a and 3.1b show that the residuals do not ex-
hibit any notable pattern of autocorrelation. However, the subfigures 3.1c and
3.1d suggest that the squared residuals are sligthly autocorrelated. Furthermore,
subfigure 3.1e shows that the residuals are leptokurtic. Hence, the results put
forward to model the conditional variance. Since the introduction of the (gener-
alized) autoregressive conditional heteroscedasticity model (G)ARCH by Engle
(1982) and Bollerslev (1986), a plethora of GARCH models has been proposed
to take into account volatility clustering and the asymmetric effect of news on
volatility.
For our purposes, we have chosen the approach of Franses et al. (2001) and link
the potential asymmetry to a daily repeating step function dt. The advantage of
this model is that potential asymmetry is directly linked to its seasonal source.
Following Campbell and Diebold (2005), we divide the conditional variance ht

into a seasonal and a GARCH part denoted σ2
t .

ht = Seasonalt + σ2
t (3.3)

Seasonalt =

Q∑
q=1

(
λc,q+1 cos(2πq

dt

365
) + λs,q+1 sin(2πq

dt

365
)

)
(3.4)

In equation (3.4), we set Q = 2 for all three stations. while the seasonal part of
the conditional variance follows from equation (3.5) below.

σ2
t = ω + α

(
εt−1 − γ1 − γ2dt − γ3d

2
t

)2
+ βσ2

t−1 (3.5)
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3.1 Results on Model Fit
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The parameter estimates of equations (3.1-3.5) fitted to each of the three time
series are collected in table 3.1. Besides the parameter estimates, we also report
Kurtosis, Skewness and the value of the Ljung-Box statistics for the standardized
residuals ut and the squared standardized residuals u2

t . The standardized residuals
pass the test only at a level between 1% and 2% for Echterdingen and Berlin.
We renounced to add an additional AR(2) term due to the lack of significance.
The squared standardized residuals do not exhibit any notable autocorrelation.
The coefficients of determination R2 indicate a very good in-sample fit. However,
the standardized residuals are still skewed and to a smaller extent leptokurtic.
The deviation from normality indicates that a more sophisticated distribution
which allows to take into account the skewness of standardized residuals should
be investigated in further research. Finally, figure 3.2 shows the estimated con-
ditional variance series generated from the estimated model for the temperature
time series of Echterdingen.
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Table 3: Summary In-sample Fit: Equations (3.1-3.5).

Results
Echterdingen Berlin Hamburg

λs,1
−2.6569
(0.1882)

−2.7211
(0.1972)

−2.7071
(0.1878)

λc,1
−8.8657
(0.2033)

−9.4561
(0.2124)

−8.1187
(0.2007)

µ 9.7903
(0.1424)

10.0809
(0.1478)

9.5875
(0.1403)

ρ1
0.2649

(0.0115)
0.2502

(0.0113)
0.4817

(0.1146)

ρ2 - - 0.1888
(0.0932)

θ 0.2233
(0.0168)

0.2133
(0.0164)

0.3659
(0.1111)

ω 1.1120
(0.3375)

0.8829
(0.2691)

1.2091
(0.2228)

α 0.0370
(0.0110)

0.0342
(0.0106)

0.0682
(0.0133)

γ1
2.9282

(1.1958)
2.0431∗
(1.2375)

3.6364
(0.8753)

γ2
−0.0753
(0.0201)

−0.0762
(0.0234)

−0.0751
(0.0139)

γ3
2·10−4

(5.4·10−5)
2·10−4

(6.4·10−5)
2·10−4

(3.8·10−5)

β 0.6665
(0.0796)

0.7083
(0.0649)

0.5994
(0.0580)

λs,2
0.3804

(0.1665)
0.4893

(0.1931)
0.5166

(0.1158)

λc,2
1.9234

(0.3679)
1.6577

(0.5304)
0.9674

(0.2817)

λs,3
−0.2037∗
(0.1337)

−0.3073
(0.1766)

−0.2640∗
(0.1403)

λc,3
0.1863∗
(0.1661)

0.1319∗
(0.1766)

−0.1751∗
(0.1803)

Skewness 0.0546 0.1755 0.2538
Kurtosis 3.2585 3.1384 3.1134

Jarque-Bera 17.1549 31.0090 58.9014
LL -11372.32 -11384.98 -11325.05
R2 0.9685 0.9706 0.9660

adj. R2 0.9684 0.9705 0.9658
LB Q(7) for ut 16.184 13.941 12.710
LB Q(7) for u2

t 2.1367 1.3347 2.8629

Note that ∗ means not significant at the 5 % level.
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4 Bivariate Modelling

Research on multivariate GARCH models is very active due to their relevance for
many financial applications such as asset pricing, portfolio selection, hedging and
risk management. Quite alike the development in univariate GARCH modelling,
we can observe several different more or less sophisticated approaches to mul-
tivariate GARCH models. For a comprehensive survey on multivariate GARCH
models, we refer to Bauwens et al. (2006).
We continue with our approach from univariate modelling and assume the condi-
tional covariance matrix Ht to consist of a seasonal part and a GARCH(1,1) part
denoted Σt.

Ht = Seasonalt + Σt with Σt =

(
σ2

11,t σ12,t

σ21,t σ2
22,t

)
. (4.1)

The seasonal term of hii,t , with i ∈ {1, 2}, is specified as in the univariate case
with Q = 2,

Seasonalii,t =

Q∑
q=1

(
λii,c,q+1 cos(2πq

dt

365
) + λii,s,q+1 sin(2πq

dt

365
)

)
. (4.2)

Here, we work in the framework of so-called dynamic conditional correlation mod-
els. Dynamic conditional correlation models have certain advantages. They allow
to include seasonality in the conditional variance specification without running
risk of numerical problems which is neither guaranteed by any version of VEC
models proposed by Bollerslev et al. (1988) nor by any version of BEKK models
advocated by Baba et al.(1991), respectively. Secondly, the specification of the
conditional variance is not confined to be a standard GARCH(1,1) according to
Bollerslev (1986). Therefore, we can take into account the asymmetry displayed by
the temperature series due to the different impact of temperature higher than ex-
pected and lower than expected on the conditional variance. Orthogonal GARCH
models, see van der Weide (2002), are also flexible with the specification of the
conditional variance. However, orthogonal GARCH models are a special case of
BEKK models. Consequently, these models do not possess distinct parameters,
which exclusively govern the correlation dynamics. We opt for utmost flexibility
in modelling. This is especially true with respect to correlation dynamics, the
main subject of our study. Dynamic conditional correlation models warrant an
utmost flexible modelling compared with the remaining approaches such as VEC
and BEKK models.

4.1 The DCC Model Class

Dynamic conditional correlation models allow to separately specify the individ-
ual conditional variances, on one hand, and the conditional correlation matrix or
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another measure of dependence between the individual series, like a copula of the
conditional joint density, on the other hand.
First attempts to design dynamic conditional correlation models have been under-
taken by Engle (2002), Tse and Tsui (2002), Christodoulakis and Satchell (2002).
The dynamic conditional correlation model class nests the popular constant cor-
relation coefficient model introduced by Bollerslev (1990). The main advantage of
DCC models over VEC or BEKK models is parsimony in parametrization which
alleviates estimation and allows to overcome the curse of dimensionality for higher
than the bivariate case. A disadvantage is that theoretical results on stationarity,
ergodicity and moments cannot be easily derived as for VEC and henceforth also
BEKK models.
The center piece of this model class is the fact that Ht can be decomposed as
follows,

Ht = DtRtDt , (4.3)

where Dt is the diagonal matrix of time-varying standard deviations from uni-
variate GARCH models with

√
hii,t on the ith diagonal and Rt is the (possibly)

time-varying correlation matrix. This class of models was originally designed to
allow for two-step estimation of the typically high dimensional matrix Ht in the
context of portfolio optimization, where very many assets are involved.
In the first step univariate volatility models are fitted for each of the assets or
temperature series and estimates of hii,t are obtained. In the second step, param-
eters of the conditional correlation are estimated given the estimated parameters
and conditional variances from the first step.
Unfortunately, model parameters are not simultaneously estimated by means of
quasi maximum likelihood and therefore inefficient. However, Engle and Shep-
pard (2001) show that consistency and asymptotic normality of the parameter
estimates of the two-step DCC estimator closely follow the results for GMM.
For the bivariate DCC model, Ht can be expressed as,

Ht =

(√
h11,t 0

0
√

h22,t

)(
1 r12,t

r21,t 1

) (√
h11,t 0

0
√

h22,t

)
. (4.4)

Since correlations lie between -1 and 1, these models must include a rescaling
procedure. The models of Engle (2002), Tse and Tsui (2002) are very similar.
Therefore, we work only with the model of Engle (2002) for some reasons. This
model is easier to handle in terms of specification and forecasting. In addition,
Capiello et al. (2003) present an asymmetric extension to the model put forward
by Engle (2002). Asymmetry in correlation dynamics between temperature time
series may potentially be a very important feature.
More precisely, the evolution of the correlation in the model of Engle (2002) is
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given by,

Qt =

(
q11,t q12,t

q21,t q22,t

)
(4.5)

Q∗
t =

(√
q11,t 0
0

√
q22,t

)
(4.6)

Rt = (Q∗
t )
−1Qt(Q

∗
t )
−1 (4.7)

Qt = (1− φ− ψ)Q̄ + φut−1ut−1
′
+ ψQt−1 , (4.8)

where φ and ψ are scalars, whereas Q̄ = E[utu
′
t] is the unconditional correlation

matrix of the ui,t =
εi,t√
hii,t

. Obviously, the matrix (Q∗
t )
−1 is used for rescaling.

As aforementioned, Capiello et al. (2003) propose an asymmetric extension to the
model of Engle (2002). The evolution of Qt is now supposed to be,

Qt =
(
Q̄− Φ

′
Q̄Φ−Ψ

′
Q̄Ψ−Υ

′
E[ηtη

′
t]Υ

)
+Φ

′
ut−1u

′
t−1Φ+Ψ

′
Qt−1Ψ+Υ

′
ηt−1η

′
t−1Υ .

(4.9)
Here, we denote ηi,t = min(ui,t,0). Additionally, we substitute the expecta-

tions Q̄ = E[utu
′
t] and E[ηtη

′
t] with their sample analogues

1

T

∑T
t=1 utu

′
t and

1

T

∑T
t=1 ηtη

′
t, respectively.

Here, we only consider the bivariate scalar asymmetric model version, where φ,
ψ and υ are scalars. In our opinion, this is no shortcoming, since our data does
not support a more elaborate parametrization. The interesting specification is
expressed in equation (4.10),

Qt =
(
Q̄− φQ̄− ψQ̄− υE[ηtη

′
t]
)

+ φut−1u
′
t−1 + ψQt−1 + υηt−1η

′
t−1 . (4.10)

Dynamic conditional correlation models are still the subject of very active on-
going research. Here, we only present and exploit very fundamental models and
methodology.
To name some of the recent contributions in this field, Hafner and Franses (2006)
suggest semi-parametric modelling of conditional correlations. Pelletier (2006)
puts forward to extend the dynamic conditional correlation framework to regime
switching dynamic conditional correlation models. Teräsvirta (2005) considers a
smooth transition conditional correlation model that allows the conditional corre-
lations to vary between two extremes. Other authors pursue the modelling of the
dependence between financial time series rather than the correlation, see Patton
(2000), and Jondeau and Rockinger (2001). The investigation of the more sophis-
ticated approaches and model extensions is left as a challenging task for further
research.
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4.2 Flexible Dynamic Correlations models

Due to the rescaling procedure which ensures that conditional correlations lie be-
tween -1 and 1, it is not possible to include a Fourier series to capture potential
yearly seasonality in the conditional correlation series in the framework of Engle
(2002). This is also true for the framework of Tse and Tsui (2002).
Christodoulakis and Satchell (2002) put forward a potential remedy which war-
rants full flexibility in modelling conditional correlation dynamics. The authors
use the Fisher transformation of the correlation coefficient to ensure that −1 ≤
r12,t ≤ 1. More precisely, Christodoulakis and Satchell (2002) suggest

r12,t =
exp(2r∗12,t)− 1

exp(2r∗12,t) + 1
. (4.11)

Moreover, Baur (2006) proposes a transformation which is described in equation
(4.12),

r12,t =
r∗12,t−1√

1 + (r∗12,t−1)
2
, . (4.12)

Finally, we compute the covariance h12,t according to equations (4.13) and (4.14).
We determine the correlation r12,t using one of the transformations presented in
equations (4.11) and (4.12).

r∗12,t = ω12 + φu1,t−1u2,t−1 + ψr∗12,t−1 + υη1,t−1η2,t−1

+λ∗c,1 cos(2π
dt

365
) + λ∗s,1 sin(2π

dt

365
) (4.13)

h12,t = r12,t

√
h11,th22,t (4.14)

4.3 Two- Step Estimation Procedure

The DCC models as well as the FDC models are estimated by means of the
two step estimation procedure suggested in Engle (2002) and quasi maximum
likelihood, respectively. Here, we outline the two- step procedure referring to the
original contribution in Engle (2002). The results of the univariate study put
forward that assuming εt|Ft−1 ∼ N (0, Ht), where Ft−1 is the information set at
time t−1, is a possible choice. The logarithmic likelihood L(ϕ, θ) for this estimator
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can be expressed as,

L(ϕ, θ) = −1

2

T∑
t=1

(
n log(2π) + log |Ht|+ εt

′
H−1

t εt

)

L(ϕ, θ) = −1

2

T∑
t=1

(
n log(2π) + log |DtRtDt|+ εt

′
D−1

t R−1
t D−1

t εt

)
(4.15)

L(ϕ, θ) = −1

2

T∑
t=1

(
n log(2π) + 2 log |Dt|+ log |Rt|+ ut

′
R−1

t ut

)

The parameters in Dt are denoted ϕ, whereas the additional parameters in Rt

are denoted θ. Furthermore n is the number of assets or in our case temperature
series. Henceforth, in our study n equals 2 (n = 2). To implement the two- step
estimation strategy, Engle (2002) suggests to replace Rt by the identity matrix
to obtain a consistent estimator in the first step of the estimation procedure. In
such a case, the univariate quasi logarithmic likelihood function QL1(ϕ) becomes

QL1(ϕ) = −1

2

T∑
t=1

(
n log(2π) +

n∑
i=1

(
log(hii,t) +

ε2
i,t

hii,t

))
. (4.16)

The first step provides estimates ϕ̂. In the second step of the estimation procedure,
we estimate the remaining parameters θ conditioned on the estimates from the
first step. Since parameters ϕ are determined, the relevant part for estimation in
the second step is the quasi logarithmic likelihood denoted QL2(θ|ϕ̂).

QL2(θ|ϕ̂) = −1

2

T∑
t=1

(
log |Rt|+ ut

′
R−1

t ut

)
(4.17)

In the bivariate case, LC(θ) can be quite simply written as,

QL2(θ|ϕ̂) = −1

2

T∑
t=1

(
log(1− r2

12,t) +
(u2

1,t + u2
2,t − 2r12,tu1,tu2,t)

(1− r2
12,t)

)
. (4.18)

To compare this two- step likelihood with the logarithmic likelihood of other
models, we can compute its value as follows,

L(ϕ, θ) = QL1(ϕ) + QL2(θ|ϕ̂) +
1

2

T∑
t=1

ut
′
ut . (4.19)

4.4 Results on Model fit

We estimate the logarithmic likelihood given in equation (4.20). For simplicity,
standardized residuals are assumed to be normally distributed,

log L(θ, ϕ) = −T

2
log(2π)− 1

2
log(|Ht|)− 1

2
εt
′
Htεt . (4.20)
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Temperature derivatives based on temperature from Berlin are traded at the CME.
Therefore, we have designed two pairs, Echterdingen-Berlin and Hamburg-Berlin,
for the empirical study. We estimate all four models with the two- step method
put forward by Engle (2002) and described in subsection 3.3. Additionally, we
take the estimates of the two- step procedure as starting values and carry out a
simultaneous quasi maximum likelihood estimation of the likelihood in equation
(4.20). Estimates of parameters which enter the correlation equations are collected
in tables 4.1 to 4.4. Here, the remaining parameters are of minor interest, there-
fore we do not explicitly address them, but they can be obtained upon request.
However for the two- step method, the remaining parameters are given in table
3.1. In addition, figure 4.1 shows the estimated conditional correlations for the
pairs Echterdingen-Berlin and Hamburg-Berlin provided by the five considered
versions of dynamic conditional correlation models.
The estimates of the quasi maximum likelihood estimation provide higher values
of the logarithmic likelihood throughout all models compared with the two- step
method. The in-sample results of the four DCC models do not indicate, that any
model version clearly performs best.
For the pair Echterdingen-Berlin, the symmetric DCC model provides the high-
est in-sample fit. Conditional correlations between the temperature series from
Echterdingen and Berlin only display weak yearly seasonality. Consequently, the
inclusion of seasonality in the flexible dynamic conditional correlation models is
of minor importance. By contrast, conditional correlations between Hamburg and
Berlin seem to display a very pronounced yearly seasonality. As a result, the flex-
ible dynamic correlation models outperform the dynamic conditional correlation
models for the pair Hamburg-Berlin in terms of fit. In our study, we see no ev-
idence that an asymmetric component as suggested by Capiello et al. (2003) is
necessary to model conditional correlation dynamics.
Furthermore, the flexible dynamic correlation models provide very similar results.
The parameter estimates of ψ are very small throughout all four dynamic condi-
tional correlation models. For the two flexible dynamic correlation models, the pa-
rameter estimates of φ are large and significant for the pair Echterdingen-Berlin.
By contrast, they are nonsignificant for the pair Hamburg-Berlin. For the pair
Hamburg-Berlin, it seems, that it is only the yearly seasonality that really counts
throughout the flexible dynamic correlations models.
In practice, an energy supplier may often wish to isolate his volumetric risk to
more than one location. In such a case, the analysis can become trivariate and
even higher dimensional which disqualifies the flexible dynamic correlation models
because they only work in the bivariate case, whereas DCC models in spirit to
Engle (2002) are designed for high dimensional multivariate GARCH, too.
In the bivariate case, conditional correlations can strongly differ across the differ-
ent model versions. This seems to be particularly true if conditional correlations
display strong seasonality patterns as in the case of Hamburg and Berlin.
In such a case, one may wish to base model selection not only on in-sample fit.
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In addition, the density of bivariate temperature time series generated by the
different DCC model versions could be estimated by means of a Monte Carlo
simulation. These estimated densities could be then compared to the empirical
density of the actually measured temperature data.
Diebold, Hahn and Tay (1999)advocate a more sophisticated approach which en-
tails to evaluate multivariate density forecasts using an integral transform dating
back to Rosenblatt (1952).

Table 4: Summary In-Sample Fit : DCC Models by Engle (2002) and Capiello et
al. (2003), ( Two- step estimation ).

Symmetric DCC Asymmetric DCC
Echterdingen-Berlin Hamburg- Berlin Echterdingen-Berlin Hamburg- Berlin

φ 0.084
(0.013)

0.091
(0.010)

0.083
(0.014)

0.085
(0.011)

ψ 0.421
(0.110)

0.398
(0.092)

0.408
(0.110)

0.321
(0.094)

υ - - 0.011∗
(0.024)

0.041∗
(0.021)

LL -22189.25 -21078.05 -22189.15 -21076.53
SC 8.5410 8.1190 8.5426 8.1201

Note that ∗ means not significant at the 5 % level.

Table 5: Summary In-Sample Fit: DCC Models by Engle (2002) and Capiello et
al. (2003), ( QML ).

Symmetric DCC Asymmetric DCC
Echterdingen-Berlin Hamburg- Berlin Echterdingen-Berlin Hamburg- Berlin

φ 0.068
(0.013)

0.059
(0.018)

0.068
(0.014)

0.063
(0.011)

ψ 0.473
(0.120)

0.652
(0.078)

0.473
(0.120)

0.674
(0.071)

υ - - −0.002∗
(0.026)

−0.021∗
(0.014)

LL -22122.79 -20836.03 -22122.85 -20835.81
SC 8.5189 8.0280 8.5205 8.0296

Note that ∗ means not significant at the 5 % level.
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Table 6: Summary In-Sample Fit : Satchell and Christodoulakis (2002), equa-
tion(4.4.11).

Two-step estimation QML
Echterdingen-Berlin Hamburg- Berlin Echterdingen-Berlin Hamburg- Berlin

ω12
0.140

(0.048)
0.950

(0.191)
0.152

(0.061)
1.334

(0.349)

φ 0.042
(0.009)

0.019
(0.007)

0.033
(0.009)

0.010∗
(0.008)

ψ 0.662
(0.108)

−0.196∗
(0.228)

0.675
(0.122)

−0.411∗
(0.358)

υ −0.007∗
(0.019)

0.070
(0.022)

0.004∗
(0.019)

0.040∗
(0.023)

λ∗s,1
0.013∗
(0.007)

0.024∗
(0.018)

0.013∗
(0.008)

0.054∗
(0.030)

λ∗c,1
0.009∗
(0.006)

0.175
(0.040)

0.009∗
(0.007)

0.214
(0.062)

LL -22202.82 -21074.28 -22131.05 -20827.10
SC 8.5528 8.1241 8.5286 8.0311

Note that ∗ means not significant at the 5 % level.

Table 7: Summary In-Sample Fit : Baur (2006), equation(4.4.12).

Two-step estimation QML
Echterdingen-Berlin Hamburg-Berlin Echterdingen-Berlin Hamburg- Berlin

ω12
0.155

(0.052)
1.040

(0.211)
0.158

(0.063)
1.479

(0.420)

φ 0.049
(0.011)

0.029
(0.010)

0.039
(0.011)

0.017∗
(0.012)

ψ 0.636
(0.111)

−0.177∗
(0.223)

0.674
(0.120)

−0.349∗
(0.368)

υ −0.004∗
(0.022)

0.095
(0.030)

0.003∗
(0.021)

0.062
(0.036)

λ∗s,1
0.010∗
(0.007)

0.034∗
(0.025)

0.010∗
(0.008)

0.077∗
(0.044)

λ∗c,1
−0.004∗
(0.022)

0.230
(0.053)

0.003∗
(0.021)

0.299
(0.093)

LL -22202.50 -21074.72 -22130.92 -20827.83
SC 8.5526 8.1243 8.5285 8.0315

Note that ∗ means not significant at the 5 % level.
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Figure 4: Conditional correlations estimated by QML: DCC and Asymmetric
DCC Echterdingen-Berlin (a),FDC Echterdingen-Berlin (b), DCC and Asymmet-
ric DCC Hamburg-Berlin (c), FDC Hamburg-Berlin (d).
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5 Cross-City Hedging

In this section, we want to discuss how the presented methodology can be used. We
do this from the angle of an electricity supplier who wants to hedge his volume
risk at non-traded locations such as Echterdingen or Hamburg constructing a
hedge based on HDDs or CDDs computed and accumulated on the temperature
measured in Berlin. Recall, HDDs and CDDs are computed as follows,

HDD(t1, t2) =

t2∑
t=t1

max(18.33◦ − Y1,t, 0) , (5.1)

CDD(t1, t2) =

t2∑
t=t1

max(Y1,t − 18.33◦, 0) , (5.2)

where t1 denotes the beginning while t2 marks the end of the accumulation period
and Y1,t is the daily average temperature measured at the traded station in Berlin.
Let Y2,t be the non-traded location which, in our case, is Echterdingen or Hamburg.
For the sake of simplicity and according to our preceding assumptions, we assume
that Y1,t and Y2,t are conditional bivariate normal distributed according to,
(

Y1,t

Y2,t

)
=

(
E[Y1,t|Ft−1]
E[Y2,t|Ft−1]

)
+

(
ε1,t

ε2,t

)
with

(
ε1,t

ε2,t

)
∼ N

((
0
0

)
,

(
h11,t h12,t

h21,t h22,t

))
.

(5.3)
The assumption of bivariate normality is to some extent heroic but not completely
unrealistic given our univariate studies. Furthermore, it offers the advantage that
the distribution of {Y1,t|Y2,t = y2,t} is a univariate normal distribution,

{Y1,t|Y2,t = y2,t} ∼ N

(
E[Y1,t|Ft−1] + r12,t

√
h11,t√
h22,t

(y2,t − E[Y2,t|Ft−1]), h11,t(1− r2
12,t)

)
.

(5.4)
The relation in equation (5.4) enables the electricity supplier to construct forecast
intervals for Y1,t if he can predict how Y2,t evolves at t. In Section 3, we have seen
that the electricity supplier can model Y2,t fairly well by means of a time series
model.
For example, she may expect the temperature to be 6.1◦ on a certain day t. Using
the bivariate GARCH model, she immediately obtains that with probability α,
temperature Y1,t will lie in the interval I1,t,α = [Y1,t,low; Y1,t,high]. Henceforth, she
can estimate the relation between temperature realizations y2,t at the non-traded
locations and HDDs or CDDs based on temperature in Berlin on a daily scale.
More precisely, let us consider a conditional HDD based on Y1,t and conditioned
on Y2,t = y2,t. Moreover, let Z∗

t = 18.33◦−{Y1,t|Y2,t = y2,t}. In addition, we denote,

Zt =

{
0 if Z∗

t ≤ 0 ,

Z∗
t if Z∗

t > 0 .
(5.5)
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Obviously, Zt corresponds to the value of a daily HDD(t1, t1). Moreover, we obtain

Prob(Zt = 0) = Prob({Y1,t|Y2,t = y2,t} ≥ 18.33◦) (5.6)

= 1− ΦNorm(18.33◦) .

Prob(0 ≤ Zt ≤ zt) = Prob(18.33◦ − zt ≤ {Y1,t|Y2,t = y2,t} ≤ 18.33◦) (5.7)

= ΦNorm(18.33◦)− ΦNorm(18.33◦ − zt) .

Note that ΦNorm(x) is the value at quantile x of the cumulative conditional nor-
mal distribution given in equation (5.4).
Hence, equations (5.6) and (5.7) directly provide probabilities for the daily
HDD(t1, t1) given a temperature realization y2,t at a non-traded location.
In addition, the tick size, which is the amount attached to each HDD or CDD, has
to be fixed for each contract. The electricity supplier may know that temperature
at Echterdingen is on average 4.1◦ in winter. Moreover, she may also know that
every additional degree above this average temperature is accompanied by a loss
of 5000 Euro on average.
Unfortunately, she has to compute a tick size with respect to the temperature dy-
namics in Berlin. Tick sizes are determined by a least square regression of load on
temperature to examine how temperature on average affects demand for electric-
ity. As a result, we obtain a relation between load and temperature which enables
us to fix a tick size. The tick size for load at Echterdingen and temperature in
Berlin can be determined, analogously.
Although to the best of our knowledge constant tick sizes are typical of tem-
perature contracts, we think that a time-varying tick size may be more realistic.
Demand and therefore load exhibit different patterns of seasonality such as inter-
daily, weekly and yearly seasonality. As a result, unexpected temperature values
can have a very different impact on electricity demand depending on the hour
or the type of day, for example. Time-varying tick sizes, however, allow more
accurate hedging and can be very easily included in the bivariate GARCH frame-
work. Additionally, daily load information could be brought into play to determine
time-varying tick sizes.

6 Summary

Volumetric risk has become a crucial issue in competitive electricity markets.
Especially in the USA, energy companies seek to hedge their volumetric risk.
Weather derivatives are attractive instruments which allow to protect from volu-
metric risk due to unforeseen weather conditions.
In this article, we focus on temperature derivatives since over 90 % of weather
contracts are struck on heating degree days or cooling degree days that are trans-
formations of daily average temperature. Exchange-based trading mainly takes
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place at the Chicago Mercantile Exchange, abbreviated CME. To ensure liquid-
ity, contracts at the CME can only be negotiated on temperature from few selected
cities. Consequently, market participants who wish to hedge their volumetric risk
at non-traded locations cannot buy tailor- made contracts. Hence, they have to
correlate their risk with the risk at tradeable cities. Therefore , the correlation
between temperature time series from traded locations with temperature from
non-traded locations is of special interest.
After a thorough analysis, we have found dynamic conditional correlation mod-
els, DCC, to be most appealing among the plethora of competing multivariate
GARCH models for our purposes.
Our main challenge is to integrate seasonality into bivariate GARCH models.
DCC models allow for an utmost flexibility in modelling the conditional variance
and conditional correlation dynamics, respectively. In addition, the flexible dy-
namic correlation models even allow to model yearly seasonality of conditional
correlations. Finally, we discuss how our presented methodology may be used by
an investor to construct a hedge for a non-traded location.
We think that further research with correlation dynamics should concentrate on
the DCC model class, with a special focus on seasonality. The univariate study has
revealed that a simple ARMA-GARCH cannot completely capture temperature
dynamics. Therefore, in further research the ability of more sophisticated models
which explicitly allow to model skewness should be investigated.
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