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Abstract
Using a newly available and multifaceted dataset provided by the German
Federal Statistical Office, this paper is the first to investigate both technical
and cost efficiency of more than 1500 German general hospitals conducting a
stochastic frontier analysis. The empirical results for the years from 2000 to
2003 indicate that private and non-profit hospitals are on average less cost and
technical efficient than publicly owned hospitals. One explanation for this re-
sult may be that German private and non-profit hospitals produce at a longer
average length of stay and, thereby, a higher cost per case than public institu-
tions due to the incentives provided by reimbursement schemes until 2004.
Furthermore, the paper reveals that non-subsidised hospitals are less efficient
than their respective counterparts. Controlling for patients’ characteristics (in
addition to the constructed case-mix weights), it can be shown that a high ratio
of old patients decreases efficiency whereas a high ratio of female patients and
a high surgery rate increase it.
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1 Introduction

Tight public budgets and increasing per capita expenditures due to technologi-
cal change, more chronic diseases, and an ageing population characterise today’s
challenges faced by the German health care system. In 2003, hospital expendi-
tures made up 59.2 billion e, which amounts to 2.7% of the German GDP. Since
per capita expenditures for health care have grown by 50% between 1993 and
2003, debates about reforms and inefficiency of the German health system have
started in the late nineties and have resulted in several health care reforms.

Moreover, over the last ten years an increasing number of public hospitals
have been privatised in Germany. From 1992 to 2003, the share of all public
hospitals has decreased from 45% to 36% whereas the share of all private hos-
pitals has increased from 15% to 25%. The share of non-profit hospitals has
remained relatively constant over the same period of time.1

In Germany, institutions of different ownership types face different tax pay-
ments rules. Additional to the exemption of all hospitals from trade tax, prop-
erty tax, and value added tax on health care related goods, non-profit insti-
tutions are released from corporation tax and pay a reduced value added tax
rate of 7% for all other goods (§§3-5 UStG and §§51-68 AO). Since non-profit
hospitals are by definition not allowed to accumulate profits (except for rein-
vestments), they have more difficulties than private hospitals to take up credit
from the capital market. At the same time, public funding decreases steadily
which forces hospitals to invest independently. Public hospitals face similar fi-
nancial difficulties due to increasing costs and decreasing funding where debts
are still publicly compensated in most cases. Furthermore, the organisational
structures of non-profit and public hospitals may be less flexible than those of
private institutions. Although private hospitals produce at a much longer length
of stay than public and non-profit hospitals, their occupancy ratios are lowest.
The latter may be due to a possible internal policy that in private hospitals
relatively more beds will be provided to guarantee care in any case of demand.

Theoretically, different routes of thought have compared the performance
of public vs. private firms (e.g. Agency and Property Rights Theory, Public
Choice, and organisation theories).2 Following different approaches, they all
conclude that private firms produce more efficiently than public firms (Villa-
longa, 2000) in unregulated markets. However, international studies of hospital
efficiency (Zuckerman et al., 1994; Rosko, 1999, 2001, 2004; Ozcan et al., 1992)
come to the conclusion that private hospitals are less cost efficient than public
hospitals.

This research deals with the questions (1) whether there is inefficiency of
hospitals and (2) if yes, which exogenous3 factors like ownership type or pa-
tient structure influence estimated inefficiency.4 The effects of these and other

1Following the definition of the German Statistical Office, three hospital types occuring
in Germany are distinguished, namely (1) public, (2) non-profit, and (3) private hospitals.
Non-profit hospitals are also private, i.e. non-public, but, in contrast to private hospitals,
they are run by non-profit organisations such as churches or miners’ associations.

2Founders and contributors for each route are listed in Villalonga (2000).
3With exogenous factors we mean in the following all factors which are neither inputs nor

outputs to the production process including both environmental (patient’s age) and organi-
sational (nurse to bed ratio) factors.

4Inefficiency is defined as the observation’s deviation from the estimated or constructed
cost or production frontier. Given exogenous input prices and demand driven outputs, the
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factors on cost and technical inefficiency will be identified conducting cross sec-
tional stochastic frontier analyses exploiting the newly available German hos-
pital statistics for the period from 2000 to 2003.5 In order to compare a large
number of heterogeneous hospitals, we weight the cases treated in each hospital
according to their severity. The weights are constructed exploiting information
about patients’ diagnoses and lengths of stay. To check the robustness of the
signs of the efficiency variables, we estimate their influence on both cost and
technical inefficiency and compare the results over the years. For the same
reason, different specifications of both models with different samples (trimmed,
untrimmed) are estimated.

The rest of the paper is organised as follows. In Section 2, the use of two
different methods to measure efficiency (2.1) is discussed and results of existing
hospital efficiency studies are presented (2.2). Section 3 is divided into three
parts: The estimation strategy is explained in subsection 3.1. The dataset is
described in subsection 3.2 before the problem of adjusting cases for severity
of illness is discussed in subsection 3.3. The results are presented in section 4.
Section 5 concludes.

2 Measuring hospital efficiency: methods and
empirical evidence

2.1 Measuring hospital efficiency

The widely used methods to estimate technical or cost efficiency of individ-
ual firms can be classified into non-parametric and parametric methods. Non-
parametric methods, like Data Envelopment Analysis (DEA) introduced by
Charnes et al. (1978), solve an algorithm that constructs the convex hull of
the observed data points to define the deterministic cost or production frontier
of the hospitals. Parametric methods like Stochastic Frontier Analysis (SFA),
simultaneously introduced by Aigner, Lovell and Schmidt (1977) and Meeusen
and van den Broeck (1977), are based on the idea of estimating a stochas-
tic cost or production frontier, which splits the estimated inefficiency into two
components. The first component controls for random noise whereas the second
component captures the deterministic inefficiency of the hospital. Maximum
Likelihood estimation is used to find a solution to the highly non-linear estima-
tion problem.6

This paper applies the SFA-estimation approach for the following reasons.
First, SFA allows to control for random unobserved heterogeneity among the
firms. The inefficiency effect can be separated from statistical noise. With
DEA, any deviation of an observation from the frontier must be attributed to
inefficiency, which makes the results very sensitive to outliers or measurement

cost frontier maps minimal costs possible. The production frontier maps maximal output
feasible given input use (Farrell 1957).

5Krankenhausstatistik: Grund- Diagnose- und Kostendaten, 2000-2003, Antrag am
Forschungsdatenzentrum der Statistischen Landesämter Nr. 254-2005.

6An introductory overview and a survey over both, Data Envelopment Analysis and
Stochastic Frontier Analysis can be found in Coelli and et al. (2005) and Lovell (1993).
Kumbhakar and Lovell (2000) provide a complete summary of both the theory and techniques
used in stochastic frontier production, cost, and profit analysis. Another detailed review is
provided by Greene (1997).
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error. Especially in an industry which is characterised by a high degree of het-
erogeneity and uncertainty like the hospital sector, it is important to account
for uncontrollable environmental surroundings. Second, by using SFA, the sta-
tistical significance of the variables determining efficiency can be verified using
statistical tests. Third, the firm specific inefficiency is not measured in relation
to the ”best” firm, as it is done in non-parametric approaches. Hence, SFA is
again less sensitive to outliers in the sample. Disadvantages of the SFA approach
consist of the need of distributional assumptions for the two error components
as well as the assumption of independence between the error terms and the re-
gressors and about the production technology. Firms’ efficiency rankings, which
had been estimated using different distributional assumptions, correlate highly
(Kumbhakar and Lovell, 2000). However, Street (2003) suggests not to use
individual efficiency estimates to set annual performance targets for the hospi-
tals. In this study, mean efficiency estimates are compared between different
subgroups where only their relative performance is of interest.

The incorporation of exogenous variables, which are neither inputs nor out-
puts of the production process but influence the performance of the producer,
is crucial for the analysis of hospital efficiency. Examples for this heterogeneity
are the ownership type and geographical and demographical aspects. When
comparing effects of different exogenous factors using DEA, the non-parametric
algorithm is solved separately for each subgroup, which creates potential prob-
lems of both small sample bias and a lack of comparability of the estimated
efficiency scores between the different groups. The use of the SFA approach
developed by Huang and Liu (1994) and generalised for panel data by Battese
and Coelli (1995) enables us to estimate and test the significance of the effects
of these exogenous variables on mean efficiency in one step. Despite these differ-
ences between the two approaches, most authors applying both SFA and DEA
find that the resulting efficiency scores are highly correlated.7

In general, the estimation of cost efficiency using SFA requires information
on input prices, output quantities, and total expenditure on the inputs used. It
is assumed that all hospitals seek to minimise costs, which is especially neces-
sary in the case of an underlying Cobb-Douglas production function (Battese
and Coelli, 2005; Kumbhakar and Lovell, 2000). In the literature it is still
discussed whether this assumption is appropriate to describe the behaviour of
non-profit and public hospitals. Although not seeking to maximise profits, non-
profit hospitals may e.g. seek to minimise costs for social reasons or for higher
wages. When estimating technical efficiency neither any assumption about cost
minimising behaviour are imposed nor is it necessary to know input prices; input
quantities are sufficient. Although technical efficiency models may be criticised
for the need to boil down hospital production to one single output, their lack of
assumptions rationalises the estimation of both efficiency models’ types.

7For a further discussion of advantages and disadvantages of DEA and SFA and for hospitals
studies comparing both methods see Jacobs (2001), Chirikos and Sear (2000), Webster et al.
(1998), Linna and Häkkinen (1997), and Linna (1998).
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2.2 Results of SFA and DEA hospital studies

Empirical evidence on hospital efficiency itself and on the effect of ownership
type on their efficiency is scarce.8 The efficiency of German hospitals has only
been investigated with DEA so far. Helmig and Lapsley (2001) use data from
1991 to 1996 aggregated on the three ownership types (public, non-profit and
private) and measure the highest inefficiency scores for the group of private hos-
pitals. Over all hospitals, efficiency has increased over time. Staat and Ham-
merschmidt (2000) focus on 160 hospitals chosen by their comparability with
respect to the number and type of departments. They find that the efficiency
scores of very similar hospitals differ significantly and that non-profit hospitals
are less efficient than other hospitals with respect to the group means. In a
more recent application, Staat (2006) applies DEA to two different samples of
comparable hospitals in the old federal states of Germany using data from 1994.
He calculates mean efficiency scores of .75 for basic care hospitals (108 obs.) and
of .89 for basic care hospitals with facilities of regional importance (52 obs.).
However, differences between ownership types are not significant. This lack of
precision may be attributed to small subsamples. Werblow and Robra (2006)
calculate high saving potentials in non-medical departments using aggregated
non-medical costs from 2004 differentiated by the three ownership types and 16
federal states (48 observations). Calculated mean efficiency varies much over
ownership types and federal states. On average, however, the group of public
hospitals is least efficient compared to the other two groups. Steinmann et al.
(2003) find that on average in 2002 79% of the Saxonian hospitals are efficient.
They do not analyse the effect of ownership.

SFA was applied on hospitals in international studies, though. Although it
has been used broadly in other countries to measure cost efficiency, it has been
to our knowledge applied only twice before to measure technical efficiency of
hospitals.9

In their seminal study, Zuckerman et al. (1994) analyse the effects of own-
ership type, location and teaching status on cost efficiency of US hospitals by
assuming hospital specific variables to shift the cost frontier. When compar-
ing only highly efficient hospitals, private hospitals turn out to be less efficient
than non-profit or public hospitals. Zuckerman et al. further detect that male,
elderly and surgery rates have a negative effect on the cost frontier.

Using the more recent one-step approach for panel data by Battese and Coelli
(1995), which allows to estimate the impacts of the exogenous variables on firm-
specific inefficiency directly, Rosko (2001, 2004), Folland and Hofler (2001), and
Brown (2003) identify private hospitals to be more inefficient than the other US
hospitals.10 In Switzerland, hospitals do not differ by ownership type (Farsi et
al., 2005).

As a low Herfindahl-Hirschman index (HHI) reflects high competition, effi-
ciency should be inverse related to the HHI. Nevertheless, Rosko (1999, 2001,
2004) and Rosko and Chilingerian (1999) find efficiency to be positively related
with market concentration. Rosko argues that this result is consistent with the

8In his paper about non-parametric and parametric applications measuring efficiency in
health care, Hollingsworth (2003) reviews 188 studies published since 1983, of which 73 mea-
sure hospital efficiency where 16 use SFA.

9Webster et al. (1998), Australia, Folland and Hofler (2001), USA.
10Rosko and Chilingerian (1999) and Rosko (1999) come to the same conclusion using the

two-step approach introduced by Pitt and Lee (1981).
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practice of service-based competition (Rosko, 2001).11

With respect to optimal hospital size, findings of stochastic frontier studies
differ or contradict each other even within one country, depending on chosen
size categories and model design.12

3 Estimation strategy and data

Before describing the dataset, the method of cross sectional stochastic frontier
analysis incorporating exogenous influences is introduced following Kumbhakar
and Lovell (2000).

3.1 Estimation strategy

In this paper, cross sectional stochastic frontier models are estimated for each
of the four years under study.13 To measure cost efficiency for each hospital
i = 1, . . . , N , the K input prices wi = [w1i, . . . , wKi] of inputs xi (three staff
groups and medical requirements) are calculated. A stochastic cost frontier with
a producer specific random part exp(vi) can be written as

Ci ≥ c(yi, wi; β) exp(vi) (1)

where Ci are the observed total adjusted costs of hospital i, yi is the vector of
outputs, and β is the vector of the estimated coefficients. c(yi, wi; β) represents
minimal costs, given outputs yi and input prices wi, and defines the part of the
cost frontier which is deterministic. The appropriate measure of cost efficiency
CEi is

CEi =
c(yi, wi; β) exp(vi)

Ci
≤ 1

which defines cost efficiency as the ratio of minimum cost feasible in an envi-
ronment characterised by hospital specific random shocks exp(vi) to observed
expenditure. For future modelling, we define

CEi =: exp(−ui) (2)

and assume the inefficiency term ui to be truncated at zero to assure that
efficiency CEi ≤ 1.

Since a cost frontier must be linearly homogeneous in input prices, total costs
and the other input prices are normalised by dividing them with one fixed input
price wki.14 Furthermore, as discussed above, it cannot be derived unambigu-
ously from the literature whether there are economies of scale in the hospital

11We possess information about the HHI measured in terms of installed beds per county.
The literature on antitrust in health care markets suggests to use patient flows instead of
geographical aspects to define the relevant market, which is not possible in this study due
to data limitations. Therefore, the HHI is not included into the models since the relation
between our HHI and competition can be highly questioned.

12For US hospitals compare, e.g., Zuckerman et al. (1994) and Ozcan et al. (1992) or for
Switzerland, Steinmann and Zweifel (2003) and Farsi and Filippini (2005).

13When including one lagged variable in the final model, the sample is reduced to three
years.

14Here, the price for nursing staff is chosen to normalise the cost frontier. Estimation results
do not depend on this choice.
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market. Therefore, in both efficiency models we focus on the simple Cobb-
Douglas production function -opposed to the more general translog production
function- as our main functional form.15 Assuming that c(yi, wi; β) takes the
log-linear Cobb-Douglas functional form, equation (1) becomes

ln
Ci

wki
≥ β0 +

∑
n �=k

βn ln
wni

wki
+ βy ln yi + vi

= β0 +
∑
n �=k

βn ln
wni

wki
+ βy ln yi + vi + ui (3)

where vi is the two-sided random-noise component with mode zero and constant
variance and ui is the nonnegative cost inefficiency component of the composed
error εc

i = vi + ui. As in other hospital cost efficiency studies (e.g. Zuckerman
et al., 1994; Linna, 1998; Rosko, 2001; Farsi and Filippini, 2005), the weighted
number of inpatient cases is chosen as one output yi.

In the case of technical efficiency, the log-linear technical stochastic frontier
assuming a Cobb-Douglas production function is defined as

ln yi = β0 +
∑

n

βn lnxni + vi − ui,

i.e. for each hospital i the output yi is maximised given inputs xi = [x1i, . . . , xNi]
and given an environment characterised by random noise vi and non-negative
inefficiency ui. The derivations for the normal truncated normal production
model follow analogously to those for cost efficiency. The log likelihood function
and the point estimators for technical efficiency coincide with those of the cost
model despite from some sign changes due to the fact that in the case of technical
efficiency εt

i = vi − ui whereas in the case of cost efficiency εc
i = vi + ui.

The nonnegative systematic inefficiency component ui is in different studies
assumed to follow different distributions depending on the question of interest.
Leaving studies aside which only analyse estimated efficiency scores, we concen-
trate on those incorporating exogenous variables into the model. Zuckerman et
al. (1994) assume the exogenous variables to shift the cost frontier. In this case
ui follows a half-normal distribution with zero mode and constant variance, i.e.
u ∼ N+(0, σ2).

More recent applications of SFA use either the two-step procedure introduced
by Pitt and Lee (1981) or the one-step approach introduced by Huang and
Liu (1994). The two-step procedure consists of firstly estimating a stochastic
frontier assuming a half normal distribution including only input prices and
production outputs. Secondly, the exogenous variables are regressed on the
expected inefficiency to identify the factors affecting it.16 The problem is that
the distributional assumptions used in either step contradict each other (Coelli
et al., 2005), which leads to biased coefficient estimates (Wang and Schmidt,
2002).17

15Constant returns to scale are also assumed in recent papers by Linna (1998) and Farsi et
al. (2005).

16Because of the non-linearity of the estimated inefficiency, in the second step e.g. Tobit
equations need to be estimated.

17In the first step the inefficiency effects are assumed to be independently and identically
distributed whereas in the second step the firm-specific characteristics are regressed on the
estimated inefficiency.
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Here, following the one-step procedure by Huang and Liu (1994),18 ui is
assumed to be truncated normally distributed and to depend on firm-specific
variables zi = [z1i, . . . , zKi]′, namely ui ∼ N+(ziδ, σ

2
u). That means that ui

is defined by the truncation of the normal distribution at zero with mode z′iδ
varying over the hospitals and constant variance σ2

u. The truncated normal
distribution provides a more flexible representation of the pattern of efficiency
in the data than the half-normal distribution, the latter being a special case of
the truncated distribution with ziδ = 0. In particular, the estimated vector of
coefficients δ incorporates the effects of the exogenous variables on the mode of
individual inefficiency.

To derive the log likelihood function, it is generally necessary to assume
that ui and vi are distributed independently of each other and of the regressors.
The log likelihood function for both normal-truncated models for a sample of
N producers is given by19

lnL =
N∑

i=1

{
− 1/2 ln(2π) − lnσ − ln Φ(µ/σu)

−1
2

(
sεj

i + µ

σ

)2

+ ln Φ

(
µ

λσ
− s

λεj
i

σ

)}
(4)

where s = −1, j = c in the case of cost efficiency and s = 1, j = t in the case
of technical efficiency. Therefore, the parameters of the model to be estimated
are the vectors of coefficients β and δ, the variance of the composed error σ2 =
σ2

u + σ2
v , and the ratio of the standard deviation of the inefficiency component

to the standard deviation of the random component λ = σu/σv.
The estimate of producer specific efficiency is derived either by calculating

the mean or the mode of the conditional density f(ui|εj
i ) = f(ui,ε

j
i )

f(εj
i )

or more cor-

rectly by estimating the expected value of cost efficiency CEi = E[exp(−ui)|εc
i ]

or technical efficiency TEi = E[exp(−ui)|εt
i]. These point estimates are in-

consistent using cross sectional data because the variation associated with the
distribution of (ui|εj

i ) is independent of i (Kumbhakar and Lovell, 2000). The
inconsistency of the efficiency estimators could be overcome by exploiting the
asymptotic properties of the ML-estimator and therefore using a long panel
dataset.20 The parameter estimates from the stochastic frontier estimation,
however, are consistent in any case.

Due to Coelli et al. (1999), having assumed a truncated normal distribution
for the inefficiency term, the estimated efficiency scores mirror gross efficiency
not being fully adjusted for the exogenous influences. Net efficiency values
can be obtained by assuming inefficiency to be half-normally distributed and
including the exogenous variables into the frontier.21

In the following, both technical and cost efficiency are estimated using Stata
8.0. Starting values for the frontier variables are obtained by Ordinary Least

18This one-step approach has been generalised for panel data use by Battese and Coelli
(1995, 1993)

19The derivations for the normal-truncated normal cost model can be received upon request;
for the production model compare e.g. Battese and Coelli (1995, 1993).

20The derivations for panel data estimators follow analogously (Battese and Coelli, 1995).
We do not exploit the panel structure of our data since the definition of the cost variables in
the German Hospital Statistics changes from 2001 to 2002 leaving us only two small subpanels.

21However, this paper focusses on relative efficiency scores instead of on absolute values.
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Squares estimation (OLS), not by a General Method of Moments estimator
as it is implemented. This approach turned out to have better convergence
properties. Furthermore, the starting values of the coefficients of the exogenous
variables are set to zero.

3.2 The dataset

The data used in this study are extracted from the annual hospital statistics,
which is collected and administered by the German Federal Statistical Office.
This rich dataset contains information on costs, endowments and inpatient stays
of all German hospitals.22

Our unbalanced sample consists of around 1556 to 1635 general hospitals
each year. By restricting the analysis to general hospitals, the eight military
hospitals as well as between 350 and 440 specialised clinics like mental institu-
tions or exclusive day- or night hospitals are excluded. Around 200 observations
each year are dropped for which the data is inconsistent, e.g. hospitals with costs
for doctors or nurses of less than 2e (410 obs.) or where costs per nurse are
higher than costs per doctor (265 obs.). Then, to get the final sample, the
dataset is trimmed (dropping another 300 observations in total) by excluding
the highest and lowest one percent of the number of weighted cases (leaving
hospitals with 127 to 50,348 weighted cases), of beds (leaving hospitals with six
to 1,359 beds) and of length of stay (leaving hospitals with 2.5 to 40 days per
patient). The sample is trimmed to show that the results, which hold similarly
when using the untrimmed dataset, are not outlier driven (weighted cases and
beds) and to exclude unreliable data (e.g. mean length of stay of up to 228
days).23

To measure cost efficiency, total adjusted costs (total adj costs) are chosen
as the dependent variable. For a better comparability of the hospitals, total
costs are adjusted by subtracting costs for research and ambulatory care from
total hospital costs. The adjusted costs only capture those costs compatible with
’hospital and nursing charges’ (”pflegesatzfähige Kosten”) which are reimbursed
by the health insurance companies. They range from 0.24 to 238 million e per
year and hospital, where the mean value over the four years under study is 26.5
million e.24

Input prices for the two most important labour variables medical (price doc)
and nursing services (price nurse) and for the rest of the staff (price other staff )
are constructed by dividing the costs incurred per group by the respective num-
ber of full-time equivalent staff employed within that group. Since a homoge-
neous cost function is assumed where the sum of the coefficients is one, we need
to include all employment groups (Farsi and Filippini, 2005). Analogously, the
price for capital (price bed) is calculated by dividing the cost for all medical
requirements (which include e.g. pharmaceutical drugs, medical instruments,
implants, and transplants) by the number of installed beds. The standard as-

22Hospitals are statutory obliged to deliver this information (§17b KHG).
23As it will be discussed later, signs and significance levels only depend to a small degree on

trimming. The results can e.g. also be gained when dropping the lowest and highest 5% of the
two dependent variables weighted cases and total adjusted costs ignoring the huge differences
in length of stay.

24Using the unadjusted total costs (0.24-359 million e, sample mean: 27.8 million e) yields
qualitatively similar results.
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sumption of linear homogeneity in input prices is imposed by normalising the
cost frontier with respect to the price for nursing services (price nurse).

The technical efficiency frontier is constructed analogously to DEA studies
of technical hospital efficiency (Ozcan et al., 1992; Helmig and Lapsley, 2001)
by choosing the number of weighted cases (weighted cases) as the dependent
variable. The method of weighting is explained in detail in the following sub-
section. The inputs used are the absolute number of doctors (docs), nursing
employees (nurses) and the other employees (other staff ) as well as the num-
ber of inpatient days (days).25 Unfortunately, the hospital statistics does not
provide information about depreciation rates or other variables which could be
used as a proxy for the absolute value of the capital stock.

The exogenous variables are common to both models. To control for ob-
servable heterogeneity, the following eight different hospital specific factors are
chosen: ownership type, public subsidy status, ratio of nurses to the number of
beds, a dummy for being located in the East of Germany, the occupancy rate,
and, to capture patients’ characteristics, the ratio of female and elderly patients
as well as the ratio of surgeries relative to all inpatient stays are used. In this
paper, these variables are included in the model to measure their direct effects
on inefficiency using the one-step approach discussed in Section 3.1.26

In particular, regarding hospital ownership, the performance of private (pri-
vate) and non-profit (non-profit) hospitals is compared with the performance
of public hospitals forming the base group. We deduce from the international
empirical literature the hypothesis that private hospitals are on average less
technical and cost efficient than public hospitals. Philipson and Posner (2006)
analyse antitrust issues theoretically and find that the same incentives to re-
strain trade exist in the non-profit sector as in the private (for-profit) sector. In
his overview about non-profit ownership and hospital behaviour, Sloan (2000)
also concludes that there is no clear empirical evidence for a difference between
these two ownership types. Therefore, we postulate that they also turn out to
be less efficient than public hospitals. Duggan (2000) uses a change in financing
US hospitals to reveal that the difference between the three types is driven by
the soft budget constraint of public hospitals. ”The decision-makers in private
not-for-profit hospitals are just as responsive to financial incentives and are no
more altruistic than their counterparts in profit-maximising facilities (Duggan,
2000).”

The third dummy-variable, subsidy status, refers to the question whether
a hospital receives public transfers for service provision. Since 1972, German
hospital financing is dualistic: the health insurance companies pay for operat-
ing costs produced by their insurants while investments are funded by public
subsidies for which hospitals need to apply and which are negotiated yearly.
The subsidies often consist of a fixed payment intended for infrastructural rein-

25Maximising the number of cases when including the number of days as input could be
interpreted as minimising the hospital’s simple length of stay which may be defined as the
sum of days divided by the number of all weighted cases. It does not coincide exactly with
the average length of stay of the hospital reported in table 1, which is measured in terms of
the lengths of stay of single diagnoses.

26Smith and Street (2004) argue that it depends on the question and market under study
whether to include all exogenous variables. They suggest to exclude those factors from the
model which may be influenced by the producers (e.g. subsidy status) and only compare mean
efficiency scores of subgroups (e.g. non- vs. subsidised hospitals) after estimation. However,
statistical testing of the significance of the excluded factors’ influence is then difficult.
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vestments and a variable part paid per bed. One third of the private general
hospitals does (also voluntarily) not receive these subsidies whereas only two
percent of all general non-profit and public hospitals is not publicly subsidised.
The eventually paid rates depend much on the federal state’s financial situation
and on the bargaining strength and effort of the single hospitals.

The dummy-variable (no subs) is replaced by its first lag (no subs−1) arguing
that subsidies, especially investments for the hospital’s infrastructure, do only
have an intermediate effect on inefficiency instead of affecting it in the same
year. Moreover, private hospitals form the majority (76-80%) in the group of
the 91 to 109 non-subsidised hospitals while representing the minority (15%) of
all hospitals in the sample. To capture only the pure effect of the subsidy status,
the lagged dummy-variable is interacted with each of the three ownership types
(e.g. (no subs×private)−1).27 We also estimate the model without this variable
and then compare expected mean efficiency values for each subsidy status.

Analogously to the results by Farsi and Filippini (2005) and to theoretical
considerations about firm efficiency, it is postulated that the higher the nurse
per bed ratio (nurse/bed) the higher the inefficiency. Regarding the regional
dummy (east), hospitals located in the ‘new’ federal states (including Berlin)
have on the one hand profited by the public investments after reunification. On
the other hand, in Germany, higher unemployment rates in the East induce
migration of mainly young and skilled inhabitants from the East to the West.
The only German DEA study comprising regional characteristics notes mixed
results with respect to efficiency values and saving potentials over Eastern and
Western federal states with five Eastern federal states being in the group of
the six most technical efficient and Berlin’s hospitals being the least efficient
in Germany (Werblow and Robra, 2006). Finally, a higher occupancy rate
(occupancy rate) should be mirrored by lower inefficiency.

The patients’ dataset provides us with information about 17 million indi-
vidual patients treated each year (gender, age, length of stay, main diagnosis,
death status) aggregated on hospital specific main diagnoses (ICD-10 Version
2.0 (International Classification of Diseases and Related Health Problems), three
digits) summing up to 830,000 and 923,000 observations each year. In addition
to our case-mix weights, which will be defined in subsection 3.3, and analo-
gously to Zuckerman et al. (1994), the ratio of female patients (female rat),
of more than 75 years old (plus75 rat), and of surgeries per case (surgery rat)
are used as further exogenous variables. Whereas a high ratio of elderly pa-
tients should increase inefficiency values e.g. because of adverse side-effects and
multi-morbidity, a high surgery rate should decrease them because of ‘learning-
by-doing’ effects. A high ratio of female patients could involve higher efficiency
because in gynaecological departments treatments and surgeries are highly stan-
dardised.28

[table 1 about here]

Table 1 reports descriptive statistics of the final sample. The table shows
average numbers over the four years under study for all hospitals in the sample

27If we excluded all non-subsidised hospitals from the sample we would exclude one third
of the private hospitals. Nevertheless, results hold similarly.

28In the original paper by Zuckerman et al. (1994) a high ratio of elderly patients, male
patients and surgeries have a negative effect on the cost frontier.
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as well as for each ownership type separately. The high variances reveal that
the hospitals under study are highly heterogeneous with respect to almost all
variables considered.

In the last part of Table 1, numbers are presented, which are not included in
the model specification but which yield further insights regarding the different
ownership types. On the one hand, costs per bed are lower in almost every
cost category for private and non-profit hospitals compared to public hospitals.
E.g. adjusted total costs per bed are 2.6% (5.5%) lower in private (non-profit)
hospitals than in public institutions. On the other hand, costs per case are 15%
(1%) higher in private (non-profit) institutions than in public hospitals. In our
sample of general hospitals of the period from 2000 to 2003, average length of
stay turns out to be 2.5 days higher in private than in public institutions, which
may be partly attributed to the system of cost reimbursement. While these
differences decline over time, hospitals’ occupancy rates defined as occ rate =
days/(beds · 365) are always highest in the group of public hospitals.

Other interesting facts are that, on the one hand, private hospitals face the
highest ratio of beds hired out to external physicians (”Belegbetten”), which is
supposed to increase occupancy rates and thus efficiency. On the other hand,
only 59% of the private hospitals provide ambulatory care, which would avoid
more expensive inpatient stays, whereas 94% of the public and 89% of non-
profit hospitals offer such a service.29 On average, 2.5% of the patients die in
the hospital.

Although providing detailed information on almost all aspects, the dataset
does neither include quality measures30 nor information about patients’ health
insurance types. Different efficiency studies including quality measures reveal
that quality has little impact on estimated outcomes (Zuckerman et al., 1994;
Vitaliano and Toren, 1996). Sloan et al. (2001) show that US hospitals do not
differ with respect to quality outcomes in terms of survival rates, changes in
functional and cognitive status, and living arrangements. ”So while the use of
a valid measure of quality would be desirable, a priori assumptions about the
impact of the exclusion of quality measures (which are difficult to obtain) cannot
be made” (Rosko, 2001). Thus, we assume that minimal quality requirements
are fulfilled by all hospitals and that they do not differ systematically with
respect to e.g. ownership type. In our study, having higher costs or treating less
cases due to extraordinary high quality will be reflected by higher inefficiency.

In Germany, only around 10% of the population are privately insured. Nev-
ertheless, higher ratios of privately insured patients relative to all patients may
lead to higher costs per case through the provision of more (costly) treatments.
In this paper, privately or public (‘gesetzlich’) insured patients are assumed
to be equally distributed across all ownership types for two reasons. Firstly,
for general hospitals, demand is mainly determined by geographical and demo-
graphical surroundings. Secondly, in the Eastern part of Germany, the ratio of
privately insured inhabitants is far lower than in the West due to differences in
income and employment rates. At the same time, speaking against the hypothe-
sis that public insured patients are underrepresented in private hospitals, a high

29In the cost model, total adjusted costs are adjusted for costs for ambulatory care and
research expenses, while the production model is not adjusted.

30The death ratio is not used as a quality indicator. It is impossible to distinguish between
the influence of the hospital and the patient’s health status, especially since the statistic does
neither provide information about return ratios nor about post-mortality rates.
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ratio of private hospitals (24% compared to 19% (13%) of all public (non-profit)
hospitals) can be observed in Eastern Germany.

3.3 Constructing case-mix weights

Hospitals differ with respect to the severities of illnesses their patients suffer from
due to demographic or geographic surroundings or specialisation. Therefore,
they face different costs and burdens. If, e.g. due to demographic reasons, one
hospital serves more severe and hence more costly cases than another, anything
else equal it would turn out to be less efficient. Theoretically, when estimating a
multiple output cost frontier, each single diagnosis treated could be included as
a different output. This approach is not feasible because of data and estimation
restrictions.

Hence, most authors add a scalar measure of patient mix such as the Medi-
care Case-Mix Index (MCI) for U.S. hospitals (Ozcan et al., 1992; Rosko, 1999,
2001, 2004) to their model.31 Mirroring resource use based on cost information,
there is nevertheless one problems inherent to this index. Medicare patients
do neither cover all emerging diagnoses nor all treatments so that the index
might be biased. However, Rosko and Chilingerian (1999) demonstrate for U.S.
hospitals that the inclusion of an inter-DRG case-mix index reduces inefficiency
measures by 50%.

Similar indices exist in Europe which are used by Linna and Häkkinen (1997)
and Linna (1998) studying Finnish hospitals, and Jacobs (2001) in a study of
UK hospitals.

Different to those studies, in this paper severity-of-illness weights are ex-
tracted by exploiting the information about the average length of stay of each
inpatient diagnosis in Germany, where each stay is counted at least as a one-
day stay. Using the 830,000 to 923,000 observations per year, a mean length
of stay (los) for each year32 for each of the up to 1,730 main diagnoses m =
1, . . . ,M over all 2,290 German hospitals i = 1, . . . , N is calculated: losm =
1
N

∑N
i (daysmi/casesmi).

The mean length of stay over all diagnoses and all hospitals in the full dataset
is losG = 1

M

∑
m losm, which e.g. amounts to 8.9 days in 2003. Finally, the

number of weighted cases of a single hospital i is defined as

weighted casesi =
M∑
m

losm

losG
casesmi =

∑
m

πmcasesmi

with 1
M

∑M
m πm = 1. The weight πm is bigger (smaller) than one if the treat-

ment of diagnosis m takes more (less) time than the overall German average.
These weights serve as an alternative to the usual cost-based case-mix weights

31The MCI is the distribution of a hospital’s Medicare patients across more than 470 diagno-
sis related groups (DRGs) weighted by the relative average charge of treating the typical U.S.
Medicare patient in the DRG. German hospitals are using ICD-10 Version 2.0 (International
Classification of Diseases and Related Health Problems) for Diagnosis-Coding and OPS-301
for Procedure-Coding (OPS are any kind of operations or treatments needed to specify a diag-
nosis). As in other countries combining the up to 50 ICDs and up to 100 OPS of one treated
patient a computer algorithm (so called grouper) determines one corresponding DRG for the
particular case which corresponds to a fixed price.

32For ease of illustration, the time index t is suppressed.
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relying on the idea that length of stay proxies resource use of different diag-
noses well. The advantages of these weights compared to the CMI are that
they are constructed from all annual inpatient diagnoses occurring in Germany,
which overcomes potential selection bias. Furthermore, information require-
ments are easier to fulfil than if a cost-based index would be used. This method
is fully transparent and easily re-calculable. Comparing the variable cases with
weighted cases, in our sample between −7, 065 and 6, 250 cases or between −60%
and 140% of the cases are added due to weighting. The unweighted sum of
weights of each hospital

∑Mi

mi πmi ranges between 0.55 and 2.18.33

4 Results

In this paper a cross sectional normal-truncated normal model of technical ef-
ficiency and of cost efficiency is estimated for each year between 200134 and
2003.35 The underlying assumptions discussed in chapter 3.1 can be summarised
as follows: For both models it is assumed that a Cobb-Douglas production func-
tion represents the technology available to all hospitals and that inefficiency
follows a truncated-normal distribution. Additionally, the cost model exhibits
a homogeneous cost function and cost minimising behaviour by all hospitals.
Estimation results hold with respect to the above stated assumptions and are
reported in Table 2 (technical efficiency) and Table 3 (cost efficiency). The hy-
pothesis of inefficiency ui to be half-normally distributed and to be independent
of the exogenous variables can be rejected for each year under study independent
of whether we include the exogenous variables into the model, i.e. the mode
of the corresponding distribution function varies over the hospitals. Over the
three years, the sign of almost all coefficient estimates coincide with each other
in both models. Although standard errors and the coefficient values may differ
between the years and the models, in general both tables show similar results.

[tables 2 and 3 around here]
The estimated coefficients for the effect of input prices on the cost frontier

and of the inputs on the technical frontier are presented in the first part of
the table. They are very similar within the models across the years and highly
significantly different from zero (except of the number of caring staff in the
technical frontier in 2002). They also show the expected positive effects on the
respective dependent variables.36

The coefficient estimates of the exogenous factors in the second part of the
table are read as effects on inefficiency. First and most importantly, they reveal
that both private and non-profit ownership have a positive effect on inefficiency
in Germany. Despite the fact that our results for the years 2001 to 2003 con-
firm international studies, we interpret them cautiously with regard to policy

33When estimating the models without controlling for severity of illness, all signs of the
estimated coefficients coincide with our final estimates (where significant). Standard errors
decrease.

34The first year is dropped due to the lagged variable no subs−1 included into the model.
If we do not use lagged variables, the results hold similarly for 2000, too.

35For an explanation why the panel structure of our dataset is not exploited see footnote
20.

36Using unadjusted total costs instead of adjusted costs influences the results only slightly,
namely such that non-profit ownership and Eastern Germany are not significantly different
from zero any more in 2002 and 2003.
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implications. Privatisation of public and non-profit hospitals has started in the
late nineties and has not for a long time yet finished. Structural and managerial
changes may need more time to precipitate efficiency improvements. Public au-
thorities mainly privatised their hospitals in order to rehabilitate their finances
and to dispose of the hospitals in deficit. Furthermore, as it is well-known from
studies analysing profits and debts of German hospitals, public hospitals front a
much higher risk of insolvency and closure (Augurzky et al., 2004). It is possible
that, given the incentives provided by the system of cost reimbursement, private
hospitals may gain profits accepting simultaneously that they do not produce
on a technical or cost efficient scale.37

One solution to this seeming contradiction lies in the regulatory regime. The
former system of cost reimbursement induces profit maximising hospitals to
increase occupancy rates by increasing the lengths of stay. Although producing
more costly, they may still gain profits given the prevailing price regime. The
introduction of capitation fees in 2004 and a probable subsequent decrease of
the average lengths of stay may reduce the differences between the ownership
types. This question will be left to our further research.

The result that private hospitals are less efficient than public hospitals does
not imply that hospitals which have been privatised are less or more efficient
than if they had not been privatised. To answer the question whether privati-
sation per se yields to a higher efficiency, a difference-in-difference approach
would have to be applied on the group of ownership-changers where the priva-
tised hospitals (treatment group) could be compared to a non-privatised (i.e.
non-treated) group of public or non-profit hospitals before and after the treat-
ment. However, only 0.8% of the general hospitals have been privatised between
2000 and 2003.

Hospitals which had not received subsidies the year before are significantly
more inefficient than those having been partly or fully subsidised, independent of
ownership type.38 Yearly negotiations about the amount of public funding and
the need to justify its spending may yield hospitals to produce more efficiently.
To understand the effect of the subsidies on hospital efficiency better, it would
again be desirable to apply the difference-in-difference estimator discussed above
which is again not possible due to the small group of hospitals changing their
subsidy-state.

Table 2 reveals that technical inefficiency remains unaffected by occupancy-
rates and location. Looking at the cost model (table 3), however, having higher
capacity utilisation and being located in the West are associated with lower
cost inefficiency. The former finding could be explained by the fact that tech-
nical efficiency does not include the costs of empty beds or any other variable
capturing capital use. The latter could reveal regional price differentials. Hos-
pitals employing more nurses per bed are more inefficient in both models, which
validates theoretical considerations about firm efficiency.

Looking at the patient characteristics, higher female- and surgery ratios in-
corporate significantly lower inefficiency. This reduction could be due to more
standardised treatments in gynaecological departments and learning-by-doing,
respectively. Dealing with multi-morbidity and higher risk of adverse side-

37It would be interesting to estimate profit efficiency but the dataset does not provide
information about profits or revenues.

38If the hospitals which do not receive subsidies are dropped, relative results remain mainly
unaffected.
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effects, the ratio of more than 75-years old patients affects efficiency negatively.
In a last step, the stochastic frontier estimation results are used to esti-

mate expected efficiency scores E[exp(−ui)|εi].39 Over the years 2001 to 2003,
average estimated mean technical (cost) efficiency is measured to be around
87% (83%).40 Although efficiency scores range between 25% (12%) and 99%
(98%), they are clustered around their mean value due to the underlying normal
truncated normal distributional assumption. Since both models yield the same
results with respect to the sign of the coefficients as well as similar efficiency es-
timates, our results are robust with respect to the model used. This observation
is confirmed by ranking the hospitals with respect to their estimated efficiency
scores. The two rankings (cost and technical efficiency) correlate highly for each
of the three years with a correlation coefficient of at least 0.7.

Descriptive statistics reveal that average estimated efficiency scores differ
much between the different ownership types. Whereas the public hospitals are in
the final model on average around 90.5% technically efficient and 85%−86% cost
efficient, private hospitals manage to increase their efficiency scores from 77% to
82% and from 71% to 76%, respectively, still being at the lowest level. Taking
up a middle position, efficiency scores of non-profit hospitals stay relatively
constant over time (86%−87% technical efficient and 82%−84% cost efficient).

For further robustness checks, the models were estimated using different
samples and frontier variables (results are not reported). First, estimating for
each year under study the half-normal model including the exogenous variables
into the frontier specification (analogously to Zuckerman et al. (1994)) as well
as simple OLS, the direction of the effects of the exogenous variables on costs
and the number of cases can be confirmed (with a single exception: non-profit
ownership is not significantly different from zero in the half-normal case in 2002).
Second, if the weighted number of cases is replaced by the unweighted number
of cases, the signs of the coefficient estimates and their relative values coincide
with the results obtained by using the final sample. Estimated standard errors
and efficiency scores, however, decrease.

Third, if the sample is not trimmed, i.e., contrary to our final sample the
smallest and biggest general hospitals are included (adding around 60 hospitals
per year), the signs of the estimated coefficients and their significance levels
persist over the time and coincide with our presented results in both models
with one exception.41 In the cost model, the only difference is that non-profit
ownership is not significantly different from zero in 2002.

Fourth, if the specification of the truncated-normal model is changed such
that it is not controlled for ownership type and subsidy status conducting the
one-step estimation method, some of the remaining exogenous variables do not
have a significant impact for some years and efficiency estimates increase. How-
ever, if then mean estimated efficiency scores of the subgroups are compared,
we again find, that public hospitals have on average the highest scores whereas
private hospitals have the lowest both on a higher level than in the final speci-

39As explained in subsection 3.1, these estimates are inconsistent not using very long panel
data.

40These values are presented for illustrative reasons, depend on model specification and
increase with the inclusion of exogenous variables or the exclusion of the ownership dummies.

41In the technical model, the occupancy rate has a negative impact on inefficiency in 2001
when using untrimmed data while it is weakly significantly positive in 2003 when using the
final sample.
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fication.42

These robustness checks show that, additional to the consistency of the esti-
mated results across the two models, both models are very robust with respect
to sample selection and specification.

5 Conclusion

This study is the first to analyse the efficiency of German general hospitals
accounting for the heterogeneity in their organisations’ and patients’ character-
istics conducting a stochastic frontier analysis. In addition, this paper is the
first to construct case-mix weights based on average lengths of stay including
all inpatient stays of all health insurance types.

Using the one-step approach developed by Huang and Liu (1994), and assum-
ing a constant returns to scale production technology, the results of international
studies with respect to most of the exogenous influences on hospital efficiency
can be confirmed for Germany. First and most important, it is shown that pri-
vate and non-profit ownership are associated with both higher cost inefficiency
and higher technical inefficiency compared to public ownership in each of the
years from 2001 to 2003. If the incentives provided by the regulatory regime
are such that it is profitable to keep patients, at least at the margin, longer
than medically required,43 privatisation does not need to increase technical or
cost efficiency. In fact, this study reveals that privatisation needs to be comple-
mented by an appropriate regulatory framework. However, the fact that private
hospitals are less technical and cost efficient than public hospitals should not
be confounded with the fact that privatisation of an inefficient public hospital
may reduce inefficiency compared to the counter-factual situation in which the
particular hospital had not been privatised. This question is left for further
research.

Over all ownership type, hospitals which had not been incorporated in the
federal hospital planning one year before, turn out to be on average more in-
efficient than those having been partly or fully subsidised. Hospitals with a
relatively high number of nursing staff per bed are aligned with higher ineffi-
ciency in both models, where the location in the West and a high occupancy-rate
only influence cost inefficiency negatively. Regarding the hospital specific pa-
tient characteristics, the results indicate that a high ratio of more than 75-years
old patients has a positive effect on both cost and technical inefficiency, whereas
a high surgery ratio and a high ratio of female patients affect it negatively. Es-
timated individual mean efficiency varies much over the hospitals due to their
heterogeneity. Nevertheless, the majority of the hospitals is clustered around
the expected mean efficiency scores of 87% (technical efficiency) and 83% (cost
efficiency). Since estimated average cost and technical efficiency scores are very
similar and the hospital rankings of both efficiency models correlate highly, the
results are considered as robust with respect to the frontier model.

In this first attempt to analyse the efficiency of German hospitals, the tech-
nology is restricted to have constant returns to scale, which could be overcome
by assuming a translog functional form. For this reason and for the application

42The same holds for a simple comparison of non-subsidised and subsidised hospitals.
43Until 2004, hospitals faced a system of cost reimbursement.
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of advanced panel data methods, the use of long panel datasets would be de-
sirable. For instance the so called ”true” fixed effects approach introduced by
Greene (2005) would enable us to additionally capture unobserved heterogeneity
of the hospitals. A further improvement would be to complement the German
hospital statistics with information about patients’ health insurance types or
hospital quality. In future research it would be of interest to evaluate the intro-
duction of capitation fees in 2004 and the subsequent changes in length of stay
and estimated efficiency of private, non-profit and public German hospitals.
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6 Appendix

Total Public Non-profit Private

variable mean s.d. mean s.d. mean s.d. mean s.d.

output/costs
cases [in 1,000] 9.01 7.76 11.46 9.29 8.38 5.83 4.39 5.41
weighted cases [in 1,000] 8.90 7.60 11.28 9.17 8.25 5.61 4.49 5.40
total adj costs [in mio e] 26.50 28.10 34.70 36.60 23.50 18.00 13.40 17.60
inputs
days [in 1,000] 80.12 66.49 100.41 81.27 74.84 47.60 41.94 47.67
docsa 53.66 70.96 73.11 97.47 45.34 38.49 25.50 37.89
nursesa 158.99 154.92 208.07 199.41 142.63 99.71 76.89 96.03

price docb [in 1,000e] 84.59 18.58 85.15 12.05 84.95 18.66 82.00 29.55
price nurseb [in 1,000e] 42.88 6.33 44.08 5.11 43.31 54.20 38.47 9.18
price bed [in 1,000e] 14.21 12.55 14.30 9.39 13.30 10.12 16.56 22.18
exogenous variables
no subs 0.06 0.24 0.02 0.13 0.02 0.12 0.31 0.46
occupancy rate 0.78 0.10 0.79 0.08 0.78 0.09 0.75 0.18
nurse/bed 0.54 0.16 0.56 0.12 0.54 0.15 0.50 0.26
east 0.17 0.38 0.19 0.39 0.13 0.34 0.24 0.42
female rat .56 .09 0.55 0.07 0.57 0.09 0.56 0.15
75plus rat .21 .11 0.21 0.08 0.22 0.13 0.16 0.13
surgery rat .43 .27 0.43 0.23 0.42 0.25 0.43 0.37
other figures of interest
av. length of stay per hosp. 10.06 4.24 9.22 2.87 10.26 4.02 11.67 6.68
beds 276.42 218.74 342.62 265.31 261.65 159.63 144.69 153.47
total costs/case 3,014 1,230 2,951 952 2,968 1,013 3,311 2,105
total adj costs/case 2,909 1,174 2,820 805 2,880 995 3,232 2,076
total costs/bed [in 1000e] 91.13 35.47 94.70 31.31 88.18 27.85 90.24 57.71
total adj costs/bed [in
1000e]

87.86 33.30 90.42 26.50 85.45 26.79 88.10 57.30

Sample size N 6,461 2,610 2,860 991

Table 1: Descriptive Statistics of the sample of the Hospital Statistics, Federal Statisti-
cal Office, Germany. Average over the years 2000-2003. a: number of full time equivalent
employees, b: costs per full time equivalent employee.
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Table 2: Technical efficiency of German hospitals, 2000-2003. Standard errors in parentheses.
Significance level: *** p < .01, ** p < .05, * p < .1

ln weighted cases 2001 2002 2003
Frontier estimates

ln docs 0.164 0.178 0.139
(0.015)∗∗∗ (0.014)∗∗∗ (0.013)∗∗∗

ln care 0.079 0.037 0.079
(0.023)∗∗∗ (0.023) (0.023)∗∗∗

ln other staff 0.086 0.037 0.071
(0.018)∗∗∗ (0.016)∗∗ (0.016)∗∗∗

ln days 0.589 0.666 0.630
(0.021)∗∗∗ (0.021)∗∗∗ (0.021)∗∗∗

constant 1.086 0.646 0.833
(0.148)∗∗∗ (0.146)∗∗∗ (0.142)∗∗∗

effects on µ
private 1.610 0.974 1.319

(0.404)∗∗∗ (0.257)∗∗∗ (0.453)∗∗∗

non-profit 1.039 0.615 0.974
(0.303)∗∗∗ (0.188)∗∗∗ (0.354)∗∗∗

(no subs×private)−1 0.768 1.023 1.379
(0.221)∗∗∗ (0.224)∗∗∗ (0.410)∗∗∗

(no subs×non-profit)−1 1.508 1.631 1.915
(0.383)∗∗∗ (0.354)∗∗∗ (0.538)∗∗∗

(no subs×public)−1 2.627 1.817 2.182
(0.643)∗∗∗ (0.432)∗∗∗ (0.731)∗∗∗

east 0.182 0.006 -0.166
(0.154) (0.130) (0.187)

nurse/bed 0.780 0.380 0.813
(0.250)∗∗∗ (0.264) (0.400)∗∗

occupancy ratio -0.033 0.091 0.911
(0.487) (0.360) (0.519)∗

plus75 ratio 0.789 1.689 2.327
(0.387)∗∗ (0.389)∗∗∗ (0.711)∗∗∗

surgery ratio -2.930 -1.640 -1.900
(0.686)∗∗∗ (0.364)∗∗∗ (0.596)∗∗∗

female ratio -1.069 -1.437 -1.710
(0.551)∗ (0.432)∗∗∗ (0.720)∗∗

constant -1.580 -1.003 -2.728
(0.684)∗∗ (0.506)∗∗ (1.075)∗∗

σ2
u 0.304 0.210 0.303

σ2
v 0.011 0.009 0.010

γ = σ2
u/(σ2

u + σ2
v) 0.966 0.957 0.970

Log likelihood 605.286 693.056 692.309
N 1556 1549 1565
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Table 3: Cost efficiency of German hospitals, price for nursing staff used for normalisation,
2000-2003. Standard errors in parentheses. Significance level: *** p < .01, ** p < .05, *
p < .1

ln total adj costs 2001 2002 2003
Frontier estimates

ln price doc 0.105 0.149 0.110
(0.033)∗∗∗ (0.033)∗∗∗ (0.035)∗∗∗

ln price otherstaff 0.219 0.180 0.226
(0.029)∗∗∗ (0.030)∗∗∗ (0.030)∗∗∗

ln price bed 0.186 0.255 0.215
(0.016)∗∗∗ (0.015)∗∗∗ (0.015)∗∗∗

ln weighted cases 1.020 0.987 0.999
(0.009)∗∗∗ (0.009)∗∗∗ (0.009)∗∗∗

constant -3.027 -2.668 -2.834
(0.097)∗∗∗ (0.095)∗∗∗ (0.100)∗∗∗

effects on µ
private 0.802 0.834 0.766

(0.185)∗∗∗ (0.247)∗∗∗ (0.214)∗∗∗

non-profit 0.361 0.288 0.353
(0.125)∗∗∗ (0.162)∗ (0.144)∗∗

(no subs×private)−1 0.942 1.263 1.232
(0.182)∗∗∗ (0.272)∗∗∗ (0.258)∗∗∗

(no subs×non-profit)−1 1.665 2.249 1.843
(0.319)∗∗∗ (0.480)∗∗∗ (0.409)∗∗∗

(no subs×public)−1 1.879 2.053 1.804
(0.380)∗∗∗ (0.507)∗∗∗ (0.447)∗∗∗

east 0.370 0.414 0.228
(0.116)∗∗∗ (0.168)∗∗ (0.133)∗

nurse/bed 1.702 2.073 1.986
(0.231)∗∗∗ (0.370)∗∗∗ (0.338)∗∗∗

occupancy ratio -2.570 -3.026 -1.982
(0.478)∗∗∗ (0.611)∗∗∗ (0.458)∗∗∗

plus75 ratio 0.380 1.438 1.031
(0.319) (0.429)∗∗∗ (0.378)∗∗∗

surgery ratio -1.390 -1.762 -1.119
(0.257)∗∗∗ (0.387)∗∗∗ (0.289)∗∗∗

female ratio -1.228 -1.192 -1.042
(0.421)∗∗∗ (0.476)∗∗ (0.454)∗∗

constant 0.824 0.320 -0.391
(0.352)∗∗ (0.451) (0.450)

σ2
u 0.277 0.322 0.271

σ2
v 0.013 0.018 0.016

γ = σ2
u/(σ2

u + σ2
v) 0.955 0.948 0.943

Log likelihood 282.802 269.083 287.031
N 1556 1549 1565
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