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Evolutionarily Stable Preferences in Contests

Abstract
We define an indirect evolutionary approach formally and apply it to
(Tullock)contests. While it is known (Leininger, 2003) that the direct evolu-
tionary approach in the form of finite population ESS (Schaffer, 1988) yields
more aggressive behavior than in Nash equilibrium, it is now shown that the
indirect evolutionary approach yields the same more aggressive behavior, too.
This holds for any population size N, if evolution of preferences is determined
by behavior in two-player contests. The evolutionarily stable preferences
(ESP) of the indirect approach turn out to be negatively interdependent,
thereby “rationalizing” the more aggressive behavior.

JEL Classification: C 79, D 72
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1 Introduction

Contest models based on a family of contest success functions, which was introduced
by Tullock (1980), have become a standard workhorse of contest and conflict theory;
this is true for both, the growing number of economic and non-economic areas of
applications of contest theory as well as the theoretical advancement of contest
theory itself (see e.g. the survey volumes edited by Lockard and Tullock (2001) and
- most recently - Congleton, Hillman and Konrad (2008)). The present paper hence
addresses a new theoretical question on purpose in the framework of Tullock‘s model
without striving for utmost generality of results.

Most of the theoretical body of contest theory, and in particular rent-seeking theory,
is based on the solution concept Nash equilibrium. Only recently have evolutionary
solution concepts like the notion of an evolutionarily stable strategy (ESS) success-
fully entered the field, in particular in the notion of Schaffer‘s (1988) adaptation
of the standard notion of an ESS (Maynard-Smith, 1974) to finite population of
players. While the latter amounts to a refinement of Nash equilibrium, the former
can, but need not, be different from Nash equilibrium. Leininger (2003) shows, that
for a large class of contest success functions, including Tullock contest success func-
tions, the two solution concepts must always give different solutions. Hehenkamp,
Leininger and Possajennikov (2004) provide a full ESS-analysis of Tullock‘s original
contest model and relate the results to those of the Nash-based theory. Among the
most striking results is the observation, that overdissipation of the rent can be an
ESS-outcome of the contest. Further analyses of contests, which use Schaffer‘s con-
cept are contained in Leininger (2006), Schmidt(2007), and Hehenkamp (2007). All
these papers refer to evolution of strategies, respectively behavior; i.e. the solution
concept ESS is applied to the strategy sets of a game with fixed preferences, which
could be termed the standard (or direct) evolutionary approach. In contrast, Güth
and Yaari (1992) have pioneered (and termed) an indirect evolutionary approach, in
which evolution operates at the level of preferences, while actions are still determined
by Nash equilibrium w.r.t. fixed strategy sets. The quest then is for evolutionarily
stable preferences (ESP). Güth and Peleg (2001) have addressed this question w.r.t.
Maynard-Smiths‘ notion of ESS by searching for conditions under which standard
payoff (maximization) is evolutionarily stable, while Wärneryd (2008) has identified
evolutionarily stable preferences w.r.t. Schaffer‘s ESS notion in a contest model, in
which cost parameters evolve evolutionarily.

The present paper goes one step further by investigating the relation between be-
havior determined by the direct evolutionary approach at the level of strategies and
the indirect evolutionary approach at the level of preferences. We develop both
approaches in detail and apply them to simple versions of an indirect evolutionary
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Tullock contest. As is standard in evolutionary game theory we mainly concentrate
on two-player evolutionary games, which, however, are played by populations of ar-
bitrary size. For each population size we determine evolutionarily stable preferences
(ESP) uniquely and relate Nash equilibrium behavior w.r.t. ESP to behavior which
results from applying ESS to strategies directly according to the direct evolutionary
approach. Our main finding is that both approaches determine the same behavior
for all sizes of the population.

The paper is organized as follows: Section 2 summarizes Nash solution theory (Tul-
lock 1980) and ESS solution theory (Hehenkamp et al. 2004) of Tullock contests.
Section 3 introduces the indirect evolutionary approach, while section 4 gives an
illustrative example of a Tullock contest, in which non-standard preferences yield an
evolutionary advantage over standard preferences. Section 5 presents the indirect
evolutionary game and its solution concept in detail. Section 6 contains the main
body of analysis of two-player evolutionary games with variable population size.
Section 7 concludes.

2 Nash behavior and evolutionarily stable behav-

ior

Recall that Tullock (1980) proposed a model, in which n rent-seekers compete for a
rent of size V . If the contestants expend x = (x1, ..., xn), xi ≥ 0, the probability of
success for player i, i = 1, ..., n is given by

pi(x1, ..., xn) =
xr

i
n∑

j=1
xr

j

and expected profit for player i is given by

Πi(x1, ..., xn) = pi(x1, ..., xn)V − xi =
xr

i
n∑

j=1
xr

j

V − xi.

One can show that for r ≤ n/(n − 1), a unique Nash equilibrium in pure strategies
exists in this game, in which each player maximizes expected payoff by bidding

x∗ = n−1
n2 rV .

Aggregate rent-dissipation then amounts to

nx∗ = n−1
n

rV .
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Equilibrium expenditures never exceed V , the value of the rent, but may be strictly
less than V . The ”full rent dissipation”-hypothesis does not hold; yet overdissipation
is incompatible with individually rational payoff maximization as it would imply,
that at least one contestant has a negative payoff in equilibrium (and would therefore
be better off by non-participation or bidding zero).

Later Hehenkamp, Leininger and Possajennikov (2004) used the concept of an evo-
lutionarily stable strategy (ESS) for finite population (Schaffer, 1988) to reanalyse
this game.

A strategy is evolutionarily stable, if a whole population using that strategy cannot
be invaded by a sufficiently small group of ”mutants” using another strategy. Simi-
larly, a standard of behavior in an economic contest is evolutionarily stable, if - upon
being adopted by all participants in the contest - no small subgroup of individuals
using a different standard of behavior can invade and ”take over”. Obviously, in
the context of finite populations the smallest meaningful number of mutants is one.
The emphasis of the evolutionary approach is not on explaining action (as a result
of particular choice or otherwise), but on the diffusion of forms of behavior in groups
(as a result of learning, imitation, reproduction or otherwise).

The definition of invadability is all important:

Definition 1:

i) Let a strategy (standard of behavior) x be adapted by all players i, i = 1, ..., n.
A mutant strategy x̄ �= x can invade x, if the payoff for a single player using x̄
(against x of the (n − 1) other players) is strictly higher than the payoff of a
player using x (against (n− 2) other players using x and the mutant using x̄).

ii) A strategy xESS is evolutionarily stable, if it cannot be invaded by any other
strategy.

Roughly speaking, an ESS is such that, if almost all members of a group adopt
it, there is no other strategy that could give a higher relative payoff, if used by
a group member. The dynamic justification for this notion of equilibrium is, that
more successful strategies diffuse or ”reproduce” faster than less successful ones
and ultimately extinguish the latter. Formally, consider a group of N potential
contestants, who may recurrently engage in a contest of size n < N ; i.e. only n out
of N contestants compete in the contest. The expected payoff of a single mutant
among the N contestants if he is drawn into a contest and plays a strategy x̄ against
(n − 1) other players using strategy x is then still given by

Π1(x̄, x, ..., x) = x̄r

(n−1)xr+x̄r V − x̄;
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but one of the other (n − 1) players i, i ∈ {2, ..., n}, chosen for the contest expects

Πi = (1 − n−1
N−1

)Πi(x, ..., x) + n−1
N−1

Πi(x̄, x, ..., x)

as the probability, that a chosen player i will face the mutant player 1 from the
remaining (N − 1) potential players among the further chosen (n − 1) players is
(n−1)/(N−1). Note that we have assumed that players are chosen for participation
randomly and with equal probability. Consequently, an ESS strategy xESS must now
solve the problem (Schaffer, 1988) of relative payoff maximization

max
x

Π1(x, xESS, ..., xESS) − (1 − n−1
N−1

)Πi(x
ESS, ..., xESS)

− n−1
N−1

Πi(x, xESS, ..., xESS)

Eliminating the constant term (1− (n− 1)/(N − 1))Πi(x
ESS, ..., xESS) equivalently

yields

(E) max
x

Π1(x, xESS, ..., xESS) − n−1
N−1

Πi(x, xESS, ..., xESS).

We can directly read off from the maximand, that as N → ∞ we approach the
Nash equilibrium problem and hence the difference in behavior among n contestants
in Nash equilibrium and among n contestants (chosen out of large population of
potential contestants) in evolutionary equilibrium disappears.

Hehenkamp et al. (2004, Theorem 5) show that for r ≤ n/(n − 1) a unique ESS
exists, in which each player maximizes relative payoff by bidding

(DE) xESS = n−1
n2

N
N−1

rV .

Hence a unique ESS exists under precisely those circumstances, which imply exis-
tence of a Nash equilibrium (NE) in pure strategies. Both concepts predict different
behavior for a population of N = n players! ESS behavior is more aggressive as
xESS = r

n
V always exceeds x∗ = (n−1)r

n2 V . Moreover, aggregate ESS-behavior does
not depend on the number of players involved in the contest, only on the value of
the price V and the contest technology parameter r as n · xESS = r · V . This means
over-/under-dissipation of the rent if r>

<
1; in case r = 1 full rent dissipation applies.

3 The indirect evolutionary approach

The indirect evolutionary approach (Güth and Yaari, 1992) assumes that behavior
evolves evolutionarily indirectly; i.e. the evolutionary forces do not work on actions
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or strategies directly, but on entities or ”stimuli” which in turn determine or at least
influence behavior. A quite general and economically highly relevant case occurs
when such genetically determined stimuli shape individual preferences of players.
Evolutionary forces then work towards preference evolution rather than behavior
(or strategy) evolution directly.

The indirect evolutionary approach assumes a large population of players, who play
an evolutionary game as follows: For expositional clarity let us focus on two-player
contests. From the population pairs of players are randomly drawn into playing
the contest, in which they non-cooperatively interact by choosing a strategy each,
which determines outcome and payoffs of the game. Moreover, the outcome of the
game also determines evolutionary fitness according to a ”fitness function”, which
need not be identical to the payoff function of the players. This is the key insight
of the indirect approach that success in short terms of payoff need not coincide
with evolutionary success in the long-run. If, however, players differ with respect
to evolutionary success, the more successful will spread faster within the population
than the less successful and hence their ”stimuli” resp. preferences will become
more frequent in the population. This triggers an evolutionary process in the space
of preferences, which determines in the long-run a distribution of evolutionarily
stable preferences, which then in turn determine a stable distribution of behavior
(as the process of preference evolution has come to a halt). It is this behavior, which
results from indirect evolution, which we want to compare and relate to behavior
resulting from direct evolution of strategies (as determined by ESS according to the
Definition 1).

More precisely, we shall assume that any two players with whatever preferences (to
be specified later) play according to Nash equilibrium when drawn into a contest.
I.e. they behave rationally, which may be the result of a learning process. The Nash
equilibrium with respect to the given preferences then determines the evolutionary
success of both players (resp. preferences) according to the fitness function. This
fitness function is identified with economic, i.e. material success or payoff which
results from the differences between prize(s) won and effort or bids expended. The
indirect evolution of preferences then resembles incentive structures from strategic
commitment or delegation problems, in that direct (material) payoff maximization
may lead to lower evolutionary success than the maximization of other preferences,
which might emerge in the evolutionary process. One strand of the literature poses
independent preferences (i.e. material pay off) against interdependent preferences
(i.e. those which also express positive or negative concern for others) and ask for
strategic advantages of one over the other (see Kockesen et al. (2000 a, b) and for
contests in particular Guse and Hehenkamp (2006)). This literature, however, does
not ask, let alone answer the question of evolutionary stability of preferences; it
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states advantages in material terms of one preference type over another. The next
section illustrates this point.

4 A simple (motivational) example

Consider a Tullock contest with just two players and a conflict technology parameter
r = 1, in which player 1 is an absolute payoff maximizer, while player 2 maximizes
relative payoff (a particular form of interdependent preferences):

Π1(x1, x2) = x1

x1+x2
V − x1 and

Π2(x1, x2) = ( x2

x1+x2
V − x2) − ( x1

x1+x2
V − x1)

= x2−x1

x1+x2
V − (x2 − x1)

Then it is easily calculated that the unique Nash equilibrium is given by

x∗
1 = 2

9
V and x∗

2 = 4
9
V

yielding payoffs of Π∗
1 = 1

9
V and Π∗

2 = 1
9
V .

So, due to his relative concern player 2 spends twice as much as player 1.

Suppose now that for evolutionary success the ”material” payoff of each player is
decisive; i.e. the evolutionary success or ”fitness” function is given by the absolute
payoff Πi(x1, x2) = xi

xi+xj
V − xi with i, j = 1, 2, i �= j.

Then the Nash equilibrium behavior (x∗
1, x

∗
2) determines material payoffs as

Π1(x
∗
1, x

∗
2) = 1

9
V

Π2(x
∗
1, x

∗
2) = 2

9
V .

Consequently, the player with interdependent preferences is evolutionarily more suc-
cessful than the player with independent strategies! Does this mean that indepen-
dent preferences - i.e. classical homo oeconomicus - cannot be evolutionarily stable?
As we shall show, this depends on the size of the population, which plays the indirect
evolutionary game. For this we have to specify this game in detail.
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5 The indirect evolutionary game

We now specify an evolutionary game in full detail by following ideas of Güth and
Peleg (2001). As is standard in evolutionary game theory (see e.g. Weibull, 1995)
we look at symmetric 2-player games.

Denote by M = M1 ×M2 the ”mutation space” of stimuli, which determines prefer-
ences parametrically. In the literature on delegation these would be called ”types”
of players; and let S = S1 × S2 denote the strategy sets of players 1 and 2.

An individual preference Πi is then a function

Πi : S × M → R i = 1, 2,

i.e. payoffs are determined by types and actions.

However, types and actions result via separate processes. Types evolve through an
evolutionary process while action choice is always the result of (Nash-) equilibrium
behavior in a game with given types.

Let fi : S → R, i ∈ N denote the evolutionary success or ‘fitness‘ function for
player i where N denotes the player population of the evolutionary game. Note,
that fitness of a player is the result of behavior only and does not - at least not
directly - depend on the types of players.

Whenever two players from N with types m1 and m2 are randomly drawn into a
contest, they play the following game Ḡ:

Ḡ(m1, m2) = ({1, 2}, S, Π1(·, ·, m1, m2), Π2(·, ·, m1, m2))

Ḡ is well-defined for any player set {1, 2} ⊂ N .

Any equilibrium ((x∗
1(m1, m2), x

∗
2(m1, m2)) of Ḡ(m1, m2) - in our case

equilibrium is always unique - determines not only equlibrium pay-
offs (Π∗

1(x
∗
1(m1, m2), x

∗
2(m1, m2), m1, m2), Π

∗
2(x

∗
1(m1, m2), x

∗
2(m1, m2), m1, m2))

but also evolutionary fitness - or material payoff - of the players as
(f1(x

∗
1(m1, m2), x

∗
2(m1, m2)), f2(x

∗
1(m1, m2), x

∗
2(m1, m2))).

This gives rise to indirect fitness functions

Fi(m1, m2) = fi(x
∗
1(m1, m2), x

∗
2(m1, m2)) i = 1, 2

for the players, which can be regarded as the payoff functions of an evolutionary
game, which is played over types resp. preferences. Denote this game by
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G = ({1, 2}, M, F1(m1, m2), F2(m1, m2))

and the solution concept applied to G is ESS as defined above. Since an evolution-
arily stable strategy of this game is a type; i.e. a preference, we call an ESS of G in
the following ESP, which stands for evolutionarily stable preference.

Hence a solution of the (full) indirect evolutionary game is given by a vector of types
and strategies

(m∗, x∗(m∗)) = ((m∗
1, m

∗
2), (x

∗
1(m

∗
1, m

∗
2), x

∗
2(m

∗
1, m

∗
2))

such that

i) m∗ = (m∗
1, m

∗
2) is an ESP of G and

ii) x∗(m∗) = (x∗
1(m

∗
1, m

∗
2), x

∗
2(m

∗
1, m

∗
2)) is a Nash equilibrium of Ḡ(m∗

1, m
∗
2).

This configuration is a stationary one, if we think of evolution as a process (which
we have not modelled), that determines the share of induviduals of type mi in the
overall population at stage (t+ 1) as a function of types and their realized fitness in
period t. In particular, x∗(m∗) is the (indirectly) evolutionarily stable behavior.

6 Evolutionarily stable Preferences in 2-player

Contests

We now specify a two-player Tullock contest, which is played by a population of
contestants whose preferences can be of the following interdependent type:

Π1(x1, x2|α1) = x1

x1+x2
V − x1 − α1(

x2

x1+x2
V − x2) and

Π2(x1, x2|α2) = x2

x1+x2
V − x2 − α2(

x1

x1+x2
V − x1)

with α1 ∈ [−1, 1] and α2 ∈ [−1, 1]. Hence M = M1 × M2 = [−1, 1] × [−1, 1]
and S = S1 × S2 = R+ × R+.

The stimuli αi, i = 1, 2, can be interpreted as determining ”social attitude” of a
single player: preferences with αi < 0 can be termed altruistic, those with αi > 0 are
spiteful, while αi = 0 refers to the independent type of pure self-interest. Accordingly
preferences with αi < (>) 0 are also termed positively (negatively) interdependent.
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So let us analyse the game G(α1, α2), in which the two contestants have preferences

π1(x1, x2) = x1−α1x2

x1+x2
V − (x1 − α1x2)

π2(x1, x2) = x2−α2x1

x1+x2
V − (x2 − α2x1)

It is then immediate that

Lemma 1:

The unique Nash equilibrium of G(α1, α2) is given by

x∗
1(α1, α2) = 1+α2

(1+
1+α2
1+α1

)2
V and x∗

2(α1, α2) = 1+α1

(1+
1+α1
1+α2

)2
V .

Note that x∗
1 = 1+α1

1+α2
· x∗

2 and hence x∗
1 + x∗

2 = 1+α1+α2+α1·α2

2+α1+α2
V < V as α1 · α2 < 1,

if αi ∈ (−1, 1). So whatever the two types of contestants - altruistic preferences
meeting spiteful ones or otherwise - there is always incomplete dissipation of the
rent at stake. Equilibrium payoffs to both players are always equal:

Π∗
1 = Π∗

2 = (1−α1α2)2

(2+α1+α2)2
V ;

i.e. the equality of payoffs in our motivating example Ḡ(0, 1) is a general feature
over all games Ḡ(m1, m2), (m1, m2) ∈ M .

Also observe that a more spiteful player behaves more aggressively against any kind
of opponent as

∂x∗
i

∂αi
> 0 for all αj ∈ (−1, 1), i, j = 1, 2 , i �= j. Does this give spiteful

players the edge on less spiteful players in the game of preference evolution?

The answer to this question is given by an analysis of the resulting material payoffs
from equilibrium play x∗

1(α1, α2) and x∗
2(α1, α2). Material payoffs are given by

f1(x1, x2) = x1

x1+x2
V − x1 and

f2(x1, x2) = x2

x1+x2
V − x2

and hence

F1(α1, α2) =
x∗
1(α1,α2)

x∗
1(α1,α2)+x∗

2(α1,α2)
V − x∗

1(α1, α2)

F2(α1, α2) =
x∗
2(α1,α2)

x∗
1(α1,α2)+x∗

2(α1,α2)
V − x∗

2(α1, α2).

Inserting the expressions for x∗
1(α1, α2) and x∗

2(α1, α2) according to Lemma 1 yields

F1(α1, α2) =
1−α1·α2

1+α1

(1+
1+α2
1+α1

)2
V =

1+α2
1+α1

−α2

(1+
1+α2
1+α1

)2
V
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F2(α1, α2) =
1−α1·α2

1+α2

(1+
1+α1
1+α2

)2
V ==

1+α1
1+α2

−α1

(1+
1+α1
1+α2

)2
V .

Note again, that F1(α1, α2) = 1+α1

1+α2
F2(α1, α2); i.e. the fitness of player 1 is higher if

and only if α1 > α2.

More importantly, F1(α1, α2) and F2(α1, α2) are symmetric in the sense that
F1(α1, α2) = F2(α2, α1) for all (α1, α2) ∈ [−1, 1]2. Note that at this stage we can
safely exclude ”perfect” altruists; i.e. α1 = −1 resp. α2 = −1, from further consid-
eration. A perfect altruist would bid x∗ = 0 against any opponent. Any opponent
would reply in equilibrium with a bid of 0. But this means that an opponent with
α > −1 ends up with positive fitness of V , whereas the perfect altruist obtains
fitness 0 (e.g. lim

α2→−1
F1(α1, α2) = V and lim

α2→−1
F2(α1, α2) = 0, if α1 > −1). The

case of two perfect altruists is indeterminate with regard to resulting fitness and can
hence not satisfy the stability criterion of evolutionary equilibrium.

We now solve the symmetric game G = (M, F ) = ([−1, 1] × [−1, 1],
F1(α1, α2), F2(α1, α2)). In order to do this we have to specify the population of
players playing the indirect evolutionary game, two cases are considered:

i) Infinite Population

Suppose the population of contestants is infinitely large. We then define the concept
of evolutionarily stable preferences (ESP) in terms of the preference parameters α as
a symmetric Nash equilibrium, which is stable against invasion of another preference.

Definition 2:

α∗ ∈ [−1, 1] yields evolutionarily stable preferences, if (α∗, α∗) satifies

i) F1(α
∗, α∗) ≥ F1(α1, α

∗) for all α1 ∈ [−1, 1] and

ii) F1(α
∗, α∗) > F1(α, α) for all α ∈ [−1, 1] which satisfy F1(α

∗, α∗) =
F1(α, α∗).

Note that because of symmetry this implies the same inequalities with respect to F2.
Hence (α∗, α∗) must be a symmetric Nash equilibrium, which satisfies the stability
condition ii). We now prove

Proposition 1:

For an infinite population the unique symmetric Nash equilibrium of G is given
by (α∗, α∗) = (0, 0); i.e. the evoutionarily stable preferences are given by

13



Π1(x1, x2|0) = x1

x1+x2
V − x1 and Π2(x1, x2|0) = x2

x1+x2
V − x2

(Proof: see Appendix 1)

Hence material payoff or independent preferences turn out to be the unique ESP!
In an infinite population material payoff maximization also leads to evolutionary
success, a point already made by Alchian (1950). If we now compare behavior
determined by the direct evolutionary approach and indirect evolutionary approach
w.r.t. the same material payoff, we realize:

Theorem 1:

For an infinite population of players engaged in 2-player contests, ESS behavior
with respect to material payoff (direct evolution) coincides with Nash behavior
with respect to ESP (indirect evolution).

The Theorem expresses the fact that Nash equilibrium (if unique) and ESS coincide
conceptually, if the population in the evolutionary game is infinite, and that material
payoff is the evolutionarily stable preference, if the population in the evolutionary
game is infinite.

Our Proposition 1 can then be related to Güth and Peleg (2001), who for such
2-player evolutionary games ask under what conditions payoff maximization (un-
derstood as material payoff maximization) will survive in the evolutionary game,
if this is played by an infinite population. Our game satisfies their Theorem 7 (p.
487), which gives necessary conditions. More precisely, our game satisfies their tech-
nical assumption (II.10). However, their additional assumption (II.11), which would
make (II.10) a sufficient condition is not satisfied everywhere in our type spaces.

ii) Finite Population

We now assume that the population of players in the evolutionary game, from which
contestants are pairwise randomly drawn, is finite. Schaffer’s (1988) definition of an
ESS has then to be adapted to the preference level, again we call it for this reason
an ESP.

Definition 3:

α∗ ∈ [−1, 1] yields evolutionarily stable preferences (ESP), if (α∗, α∗) satisfies
the condition that α∗ maximizes

F1(α, α∗) − 1
N−1

F2(α, α∗)

14



Note that this condition simply results from (E), if n = 2.

So look at the following problem:

max
α1

F1(α1, α2) − 1
N−1

F2(α1, α2) which reads

max
α1

1+α2
1+α1

−α2

(1+
1+α2
1+α1

)2
V − 1

N−1
·

1+α1
1+α2

−α1

(1+
1+α1
1+α2

)2
V

The first-order condition of this problem is given by

(1+
1+α2
1+α1

)2(− 1+α2
(1+α1)2

)−(
1+α2
1+α1

−α2)2·(1+ 1+α2
1+α1

)(− 1+α2
(1+α1)2

)

(1+
1+α2
1+α1

)4
V

− 1
N−1

· (1+
1+α1
1+α2

)2( 1
1+α2

−1)−(
1+α1
1+α2

−α1)(1+
1+α1
1+α2

)·2· 1
1+α2

(1+
1+α1
1+α2

)4
V = 0.

Since we are looking for a symmetric solution we can set α1 = α2 = α, which yields

4(− 1
1+α

)−(1−α)·4·(− 1
1+α

)

16
− 1

N−1

4( 1
α+1

−1)−(1−α)·4· 1
1+α

16
= 0.

Hence it must hold that

− 4
1+α

+ 4 · 1−α
1+α

− 1
N−1

· 4
1+α

+ 4
N−1

+ 4
N−1

· 1−α
1+α

= 0

or - after multiplication by (1+α)
4

-

−1 + (1 − α) − 1
N−1

+ (1+α)
N−1

+ 1
N−1

(1 − α) = 0

−α − 1
N−1

+ 1
N−1

(1 + α + 1 − α) = 0

−α − 1
N−1

+ 2
N−1

= 0

−α + 1
N−1

= 0

⇒ α = 1
N−1

.

We have proven the following

Proposition 2:

For a finite population of size N the unique evolutionary stable preferences
(ESP) are given by (α∗, α∗) = ( 1

N−1
, 1

N−1
); i.e.

Π1(x1, x2,
1

N−1
, 1

N−1
) = x1

x1+x2
V − x1 − 1

N−1
( x2

x1+x2
V − x2)

Π2(x1, x2,
1

N−1
, 1

N−1
) = x2

x1+x2
V − x2 − 1

N−1
( x1

x1+x2
V − x1).
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Proposition 2 shows that the evolutionary stable preferences vary between absolute
(or material) payoff; i.e. (α∗, α∗) = (0, 0), in the case of an infinite population to
relative payoff; i.e. (α∗, α∗) = (1, 1), if the overall population is N = 2. Those are
the maximal and minimal population sizes of the evolutionary game. In any case,
ESP are negatively interdependent for all 2 ≤ N < ∞.

An immediate consequence of Proposition 2 is

Theorem 2:

For a finite population of size N of players engaged in 2-player contests ESS
behavior with respect to material payoff (direct evolution) coincides with Nash
behavior with respect to ESP (indirect evolution).

Proof:

The direct evolutionary approach yields ESS behavior according to equation
(DE) as xESS = N

4(N−1)
V . The indirect evolutionary approach yields ESP as

( 1
N−1

, 1
N−1

), which yields Nash equilibrium behavior according to Lemma 1 as

x∗( 1
N−1

, 1
N−1

) =
1+ 1

N−1

4
V =

N
N−1

4
V = N

4(N−1)
V q.e.d.

Our Theorems can be summaried as

Corollary 1:

For evolutionary 2-player contest games direct evolution (of actions) and indi-
rect evolution (of preferences) determine the same behavior of players, which
only depends on the size of the population.
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7 Conclusion

Our investigation has produced an ”equivalence” result: applying the direct evolu-
tionary approach to Tullock’s contest model is equivalent to applying the indirect
evolutionary approach. Whatever the size of the population involved in two-player
contests, the same behavior is determined by the evolutionary solutions ESS and
ESP. We know from Leininger (2003) and Hehenkamp et al. (2004), that in case of a
finite population the former yields more aggressive - spiteful - behavior than rational
behavior according to Nash equilibrium w.r.t. independent preferences. The latter,
which combines an evolutionary process at the preference level with rational choice
at the action level, is now seen to determine negatively interdependent - spiteful
- preferences, which ”rationalize” (in Nash equilibrium) this increased aggression.
With a fixed population size evolutionary forces at the preference level completely
neutralize the change in the choice criterion at the action level (from ESS to NE),
if preferences are endogenous to evolution.

Whether evolution works at the preference level or the action level it increases com-
petition among contestants beyond the level that would apply without any evolution.
With endogenous population sizes this would work towards a reduction in popula-
tion sizes (because more ‘fitness‘ is dissipated in contest interaction) and hence to
the detriment of the population. This should - evolutionarily - favour groups who
manage to suppress this tendency, a topic which we want to pursue in future re-
search.
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Appendix 1:

Proof of Proposition 1:

We have to search for an interior symmetric Nash equilibrium of the game with payoff
functions (F1(α1, α2), F2(α1, α2)) and ”strategies” α1 ∈ [−1, 1] and α2 ∈ [−1, 1].

Consider player 1 and his best response to any α2 ∈ [−1, 1] of his opponent.

max
α1∈[−1,1]

F1(α1, α2) yields the first-order condition

∂
∂α1

(
1−α1·α2

1+α1

(1+
1+α2
1+α1

)2
V ) = ∂

∂α1
(

1+α2
1+α1

−α2

(1+
1+α2
1+α1

)2
V )

=
(1+

1+α2
1+α1

)2(− 1+α2
(1+α1)2

)−2(1+
1+α2
1+α1

)(− 1+α2
(1+α1)2

)(
1+α2
1+α1

−α2)

(1+
1+α2
1+α1

)4
= 0.

After some rearrangement it can be seen, that the nominator can only assume value
0, if

1 + 1+α2

1+α1
= 21+α2

1+α1
− 2α2

which is equivalent to

(A1) α1 = 1+α2

1+2α2
− 1 = − α2

1+2α2

(A1) gives the best reply function of player 1 as

(B1) α1(α2) = − α2

1+2α2
α2 ∈ [−1, 1].

A symmetric argument w.r.t. player 2’s maximization problem yields 2’s best reply
function as

α2(α1) = − α1

1+2α1
α1 ∈ [−1, 1].

The following Lemma may then come as a surprise.

Lemma:
For any α, α �= −1

2
, the combination (α,− α

1+2α
) is a Nash equilibrium.

Proof:
We have to show that α2(α1(α)) = α for all α �= −1

2
.

α2(α1(α)) = α2(− α
1+2α

) = −
−α

1+2α

1+2( −α
1+2α

)

= α
1+2α−2α

= α for all α �= −1
2

q.e.d.
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In other words: Since the game is symmetric and yields symmetric best reply func-
tions, those best reply functions coincide in (α1, α2)-space. Figure 1 illustrates this
fact in detail.

We see from Figure 1, that only for values α2 > −1
3

the best reply of player 1 lies
within his mutation space M1 = [−1, 1]; the same holds for player 2 w.r.t. the type
α1 of player 1. Since we are not interested in the path of the evolutionary process,
but only its possible rest points, we do not pursue and provide a full analysis, which
would take account of boundary values when our restrictions on types would become
binding. But it is obvious that the only relevant symmetric Nash equilibrium of
the game is given by (α∗

1, α
∗
2) = (0, 0), which proves our Proposition 1, since this

equilibrium is a strict one (which implies stability). The other symmetric solution
of the first order condition; namely α1 = α2 = −1, is not an equilibrium w.r.t.
M = [−1, 1] × [−1, 1]. If e.g. 1 deviates to α1 = −1 + ε, ε > 0, then 2 would
like to respond with an α2 < −1, but is prevented from doing so, which makes the
deviation by 1 profitable.
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It is worthwile to have a closer look at this family of Nash-equilibria.

Payoffs in equilibrium (α, α
1+2α

) are

F ∗
1 (α,− α

1+2α
) = 1+2α

4(1+α)
V

F ∗
2 (α,− α

1+2α
) = 1

4(1+α)
V

Hence F ∗
1 ≥ F ∗

2 ⇔ α ≥ 0.

Note that the sum of equilibrium payoffs is constant over all equilibria as

F ∗
1 + F ∗

2 = 2+2α
4(1+α)

V = 1
2
V .

It is only the distribution of fitness, which differs in different equilibria. Naturally,
an unequal distribution would give a disadvantage to the recipient of the lower
part. None of these equilibria can be evolutionarily stable. Note also, that only
interdependent preferences of differing type can be equilibrium matches; if one is
positively interdependent the other has to be negatively interdependent and vice
versa.

Moreover, if we look at the 2-player contest Ḡ(α,− α
1+2α

) we see that the Nash
equilibrium bids are given by

x∗
1(α,− α

1+2α
) = 1+2α

4(1+α)
V and

x∗
2(α,− α

1+2α
) = 1

4(1+α)
V and hence

x∗
1 + x∗

2 = 1
2
V independent of α. In all contests, which are played with (Nash)

equilibrium preferences of the evolutionary game, exactly one half of the value of
the prize is dissipated in material terms, which leaves the other half of material
payoff to be distributed between the two players in order to determine their fitness.
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