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Abstract

The paper provides a new proof of the positivity of the optimal
marginal income tax, in a more general model, under weaker assump-
tions. The analysis focusses on the (weakly) relaxed problem in which
upward incentive constraints are replaced by a monotonicity condition
on consumption. Without upward incentive constraints, nonnegativity
of the optimal marginal income tax is straightforward; strict positivity
follows from an assumption on the desirability of redistributing leisure.
The resulting allocation is incentive compatible, and is optimal for the
original income tax problem. The argument is the same for distribu-
tions with finitely many types and for a continuous type distribution.

Key Words: Optimal Income Taxation, Utilitarian Welfare Maxi-
mization, Redistribution

JEL Classificaton: D63, H21

1 Introduction

The central result of the theory of optimal utilitarian income taxation states
that, under asymmetric information, when individual productivity (earning
ability) is a hidden characteristic, the optimal marginal income tax is strictly
positive at all income levels other than the very top and, in some specifica-
tions, the very bottom of the income distribution. The first version of this

∗I am very grateful to Felix Bierbrauer, Christoph Engel, Thomas Gaube, and Peter
Norman for very helpful discussions and comments on earlier drafts. The usual disclaimer
applies.
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result was proved by Mirrlees (1971, 1976) for a model with a continuum of
types; his result has subsequently been generalized by Seade (1977, 1982),
Ebert (1992), and Brunner (1993, 1995). For models with finitely many
types, different versions of the result have been provided by Guesnerie and
Seade (1982), Stiglitz (1982), Roëll (1985), and Weymark (1986).

In this paper, I develop a new approach to proving this result. The
new approach provides for a sharper formulation of the theorem, in a more
general model, under weaker assumptions. More importantly, it provides for
a transparent account of the underlying logic, relating the mathematics to
the economics and making clear where exactly and how the key assumptions
enter the analysis. In contrast to the literature, the overall proof strategy is
the same for models with finitely many types and with a continuum of types.
Moreover, for models with a continuum of types, there is no need to have
different arguments for different cases. In contrast, Seade’s (1982) analysis,
on which most subsequent work has built,1 involves separate treatments
depending on whether consumption and leisure are (Edgeworth) substitutes
or complements; this makes it hard to see the common underlying structure.

The new approach proceeds indirectly. Following Matthews and Moore
(1987), I study a modification of the optimal income tax problem, which
is obtained if upward incentive constraints are replaced by a monotonicity
condition on consumption. Under suitable assumptions, I show that the
modified problem is equivalent to the optimal income tax problem in the
sense that, up to modifications on a null set, any solution to one problem is
also a solution to the other and vice versa.

In the modified problem, it is straightforward to show that optimal mar-
ginal income taxes are never negative. Negative marginal income taxes, i.e.,
a subsidization of work at the margin, would induce people to work and
to consume more than is efficient.2 Such a distortion could only be justi-
fied by upward incentive constraints requiring workloads to be fixed with a

1E.g., Ebert (1992), Brunner (1993, 1995).
2This argument assumes that, as in Mirrlees (1971), consumption-leisure choices are

made at the intensive margin. Saez (2002) has shown that negative marginal income taxes
can be optimal if consumption-leisure choices are made at the extensive margin, so people
of type n choose only whether to work at a job of type n or not to work; see also Laroque
(2005). In this case, there is no question of a person of type n choosing to work at a
job of type n-1 and earning a lower income; marginal income taxes as such are therefore
economically unimportant. The optimal tax on income earned on a job of type n is
obtained from a simple elasticities consideration involving only people of type n. A model
involving choices at both the intensive and the extensive margins would have to allow for
multidimensional type heterogeneity; the proper treatment of incentive compatibility in
such a model is as yet an open issue.
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view to preventing people with lower earning abilities from imitating people
with higher earning abilities. When upward incentive constraints are not
imposed, such considerations cannot play a role.

The fact that one does not have to worry about negative marginal taxes
makes it easier to see under what conditions it is desirable to have strictly
positive marginal taxes. This makes it possible to widen the scope, sharpen
the conclusions, and weaken the key assumption of the main theorem.

Since Mirrlees (1971), papers on optimal income taxation with a contin-
uum of types have usually assumed that the unknown productivity parame-
ter corresponds to the wage rate that a person earns. In contrast, for models
with a finite number of types, Guesnerie and Seade (1982) have introduced a
more abstract formulation in which the productivity parameter is simply an
argument of the utility function which affects attitudes towards consumption
and output provision. The present paper uses the abstract formulation of
Guesnerie and Seade (1982) for models with a continuum, as well as a finite
number of types. The greater abstractness of the formulation necessitates a
more abstract formulation of the underlying assumptions. This contributes
to clarifying their respective roles.

The key assumption providing the rationale for utilitarian redistribution
is formulated in local terms. Moreover, this assumption is formulated in
terms of redistributing leisure rather than consumption. I postulate that, in
the absence of incentive considerations, certain allocations cannot be welfare
maximizing because, at any one of these allocations, utilitarian welfare can
be increased by redistributing leisure from people with a given productivity
level to people with slightly higher productivity levels, allowing the former
to work less and requiring the latter to work more so that total output is
unchanged. This postulate is imposed for all allocations with consumption-
leisure choices that are efficient for people with the lower productivity level
and either efficient or distorted in the direction of too little consumption
and too much leisure for people with the higher productivity levels.

Under this assumption, I show that, if the type set is finite, the optimal
marginal income tax is strictly positive for all types below the top. If the
type set is an interval and the distribution of types has a continuous and
strictly positive density on this interval, the optimal marginal income tax is
strictly positive and bounded away from zero on any compact set of types
between the bottom and the top of the distribution. In contrast to past
treatments, this result does not leave open the possibility that the optimal
marginal income tax might be zero at or arbitrarily close to zero near some
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isolated point.3

These results can be understood in terms of a local equity-efficiency
tradeoff. If the marginal tax rate that is relevant for a given type is zero, then
this type’s consumption-leisure choice is efficient. Given the information
that marginal tax rates are never negative, any higher type’s consumption-
leisure choice is either efficient or distorted in the direction of too little
consumption and too much leisure. The assumption on the desirability of
redistribution therefore implies that, if the relevant marginal tax rate for
any type is zero, then it is desirable to redistribute output requirements
from people with this type to people with slightly higher types. Ceteris
paribus, such a redistribution may violate downward incentive compatibility.
However, the incentive effects can be neutralized by distorting the lower
type’s consumption-leisure choice in the direction of too little consumption
and too much leisure. The question then is whether the efficiency loss of
this shift away from an efficient consumption-leisure pair is outweighed by
the postulated gain from the redistribution. By standard arguments, this is
always the case because, for a small shift away from efficiency, the efficiency
loss is negligible.4

In formulating the key assumption on the desirability of redistribution
exclusively in terms of leisure, I depart from the traditional utilitarian no-
tion that it is desirable to redistribute consumption because people with
higher consumption have a lower marginal utility of consumption. In the
theory of income taxation, this notion goes back (at least) to Edgeworth
(1897/1925).5 Mirrlees (1971, 1976), as well as Guesnerie and Seade (1982)
and Weymark (1986), have followed this tradition. They recognized that
differences in consumption levels which are due to differences in the hid-

3Thus, Seade (1982) proceeds by assuming that positivity fails on some interval and
obtains a contradiction by comparing the consumption-income pairs that are associated
with the two endpoints of the interval. This argument neglects the possibility that the
interval in question might be degenerate, i.e., consist of a single point, in which case the
comparison in question is moot.

4The argument presumes that the two sets of people that are involved are of commen-
surate sizes. This presumption holds for the specifications studied in this paper. However,
it does not hold if the two sets of people that are involved are not of commensurate sizes,
in particular, if the lower type has positive mass and any nearby higher type has zero
mass. In this case, the aggregate potential gains from redistributing output requirements
between people with these types are zero and do not outweigh the efficiency loss from
reducing consumption and increasing leisure for the mass of people with the lower type.
Thus, in Hellwig (2005 b), I show that, for a type distribution involving mass points, as
well as an interval support, the optimal marginal tax for a type with positive mass is zero
unless there is bunching.

5For a comprehensive account, see Chapter 5 of Musgrave (1959).
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den productivity parameters are likely to be correlated with differences in
leisure, but, through additional assumptions, they avoided the complications
that this might cause. Thus, in Mirrlees (1971), additive separability of util-
ity functions eliminates the possibility that people with higher consumption
may be hungrier, even at the margin, because these people also work more.

The focus on the desirability of redistributing consumption was loos-
ened by Seade (1982) and Roëll (1985). For the model of Mirrlees (1971),
Seade (1982) showed that the assumption of additive separability of the
utility function can be replaced by the assumption that leisure is a non-
inferior good. For the more abstract utility specification of Guesnerie and
Seade (1982), Roëll (1985) showed that the traditional redistribution as-
sumption in terms of consumption can be weakened to the assumption that
it is desirable to redistribute consumption or leisure from high-productivity
to low-productivity participants.6 She also showed that, for the utility spec-
ification of Mirrlees (1971), this condition is implied by noninferiority of
leisure.7

This paper goes one step further and eliminates any reference to the de-
sirability of redistributing consumption. At first sight, this may seem more
restrictive than Roëll’s formulation: Where she postulates the desirability of
redistributing consumption or leisure, I postulate the desirability of redis-
tributing leisure. However, I impose this condition on a smaller set of initial
allocations. For the initial allocations on which I impose it, the desirability
of redistributing consumption necessarily also implies the desirability of re-
distributing leisure, i.e., the alternative that Roëll allows for is moot. For
the utility specification of Mirrlees (1971), with types corresponding to wage
rates, the redistribution assumption which I use is actually weaker than all
the assumptions that have been used previously. The weakening is possible
because the indirect approach to the optimal income tax problem eliminates
many allocations from consideration before one ever gets to questions of
redistribution.

For the model with a continuum of types, the paper also provides a tech-
nical generalization. Relying on a reformulation of Pontryagin’s maximum
principle for problems with monotonicity constraints on controls, I can do
without requirements such as continuity or piecewise continuous differentia-
bility of optimal allocations and optimal tax schedules, which have hitherto
been imposed. Given that optimal allocations and optimal tax schedules are

6 In the formal statement of her theorem, Roëll only claims nonnegativity of the optimal
marginal income tax. However, the arguments given by Guesnerie and Seade (1982) for
strict positivity apply to her specification as well.

7On this point, see also Brunner (1993, 1995) and Homburg (2004).
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endogenous, the imposition of such conditions by fiat is problematic.
In the following, Section 2.1 formulates the optimal and relaxed income

tax problems. Section 2.2 states the assumptions which I impose and re-
lates them to the assumptions imposed in the literature. Section 3 states
and explains the main results. Section 4 provides a proof for the case of
finitely many types, Section 5 for the case when the type set is an interval
and the type distribution has a continuous, strictly positive density. Some
supplementary proofs are given in the Appendix.

2 The Optimal Income Tax Problem

2.1 The Problem

Following Mirrlees (1971, 1976) and Seade (1977, 1982), I study a large
economy with one produced good and labour. Each agent in the economy
is characterized by a productivity parameter n. An agent with productivity
parameter n who consumes c units of the produced good and who supplies
the labour needed to produce y units of output obtains the payoff u(c, y, n).
The leading example in the literature is the specification

u(c, y, n) = U(c,
y

n
). (2.1)

In this specification, n is labour productivity (the wage rate) and y
n

is the
number of hours the person needs to work to produce the output y or to
obtain the labour income y. The analysis here encompasses (2.1), but is not
limited to this specification.

The productivity parameter n of any one person is the realization of
a nondegenerate random variable ñ with probability distribution F with
compact support N ⊂ ℜ+. The distribution F is the same for all agents. By
a large-numbers effect, F is also assumed to be the cross-section distribution
of the realizations of people’s productivity parameters.

In this economy, an allocation is a pair of functions, (c(·), y(·)), which
indicate how an individual’s consumption level c(n) and output provision
level y(n) depend on his productivity parameter n. An allocation is feasible
if ∫

N

c(n)dF (n) ≤

∫

N

y(n)dF (n), (2.2)

so aggregate consumption does not exceed aggregate production. The allo-
cation is incentive compatible if

u(c(n′), y(n′), n′) ≥ u(c(n), y(n), n′) (2.3)
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for all n and n′ in N , so nobody has an incentive to claim that his pro-
ductivity parameter is n when in fact it is n′. An individual’s productivity
parameter and labour input are taken to be private information, so incentive
compatibility is a prerequisite for the implementation of an allocation.

Allocations are assessed according to the utilitarian welfare functional
∫

N

v(n)dF (n), (2.4)

where, for each n,
v(n) = u(c(n), y(n), n) (2.5)

is the utility that a person with productivity parameter n obtains from the
allocation. The utilitarian welfare maximization problem is to maximize
(2.4) over the set of feasible and incentive compatible allocations. By the
taxation principle of Hammond (1979) and Guesnerie (1995), this problem is
equivalent to the problem of choosing an optimal tax schedule T (·) and then
letting each person choose an output provision level y and a consumption
level c = y−T (y). Therefore, I refer to it as the optimal income tax problem.

As discussed in the introduction, I will not study the optimal income tax
problem directly. Following a line of argument that was first developed by
Matthews and Moore (1987) for a monopoly problem, I will instead study
the modified problem which is obtained if the requirement of incentive com-
patibility is weakened to downward incentive compatibility and, in addition,
a weak monotonicity requirement is imposed on consumption. I refer to
this modified problem as the weakly relaxed income tax problem. The word
"weakly" highlights the fact that I do not just drop the upward incentive
constraints, but that I replace them with a monotonicity constraint on con-
sumption.8

In the weakly relaxed income tax problem, an allocation (c(·), y(·)) is
chosen to maximize (2.4) subject to the feasibility constraint (2.2) and the
requirement that

u(c(n′), y(n′), n′) ≥ u(c(n), y(n), n′) (2.6)

and
c(n′) ≥ c(n) (2.7)

8 In contrast, Matthews and Moore (1987) study a relaxed problem involving only down-
ward incentive constraints. In their general discussion of how to simplify global incentive
constraints, they mention the possibility of using monotonicity in combination with adja-
cent downward incentive compatibility; see in particular fn. 15, p. 447. Their discussion
is taken up again by Besley and Coate (1995, p. 197).
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for all n and all n′ ≥ n in N. I will show that, under standard assump-
tions, this problem is actually equivalent to the optimal income tax problem,
namely that both problems have the same solutions. This is useful because,
in the weakly relaxed income tax problem, the implications of redistribu-
tion concerns and incentive constraints are easier to disentangle than in the
optimal income tax problem itself.

I restrict the analysis to canonical solutions. A solution (c(·), y(·)) to
the weakly relaxed or the optimal income tax problem is called canonical if
it is continuous at any endpoint of N to which the distribution F assigns
zero mass. By focussing on canonical solutions, I avoid having to account
for the trivial multiplicity of equivalent solutions which arises because mod-
ifications of an allocation on null sets have no effects on the value of the
welfare functional (2.4) or the validity of the feasibility constraint (2.2) and,
moreover, at the endpoints n0 = minN and n1 = maxN, such modifica-
tions are possible without upsetting downward incentive compatibility or
incentive compatibility.

The restriction to canonical allocation involves no significant loss of gen-
erality. Indeed, if N is finite, it involves no loss of generality at all. If N
is an interval, then, for any non-canonical solution of the weakly relaxed or
the optimal income tax problem, there an equivalent canonical solution can
always be obtained by replacing (c(n), y(n)) at any endpoint that has zero
mass with the corresponding limit of (c(n′), y(n′)) as n′ converges to the
endpoint in question.

Remark 2.1 If (c(·), y(·)) is a solution to the weakly relaxed or the opti-
mal income tax problem, an equivalent canonical solution (c̄(·), ȳ(·)) is ob-
tained by setting (c̄(n0), ȳ(n0)) = limn↓n0(c(n), y(n)) if F ({n0}) = 0 and
(c̄(n1), ȳ(n1)) = limn↑n1(c(n), y(n)) if F ({n1}) = 0, leaving everything else
unchanged.

I shall be interested in the efficiency properties of the canonical solutions
to the weakly relaxed and the optimal income tax problem. For any n ∈ N,
the consumption/output pair (c(n), y(n)) is said to be efficient for n if

(c(n), y(n)) = (c∗(n, v(n)), y∗(n, v(n))), (2.8)

where, for any v, (c∗(n, v), y∗(n, v)) is the pair which provides the person
with productivity parameter n with the utility v at the lowest cost in terms
of required net resources c− y, i.e., (c∗(n, v), y∗(n, v)) solves the problem

min
u(c,y,n)≥v

(c− y); (2.9)
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the pair (c(n), y(n)) is said to be distorted downward from efficiency if

(c(n), y(n)) << (c∗(n, v(n)), y∗(n, v(n))) (2.10)

and to be distorted upward from efficiency if

(c(n), y(n)) >> (c∗(n, v(n)), y∗(n, v(n))). (2.11)

2.2 Assumptions

The following assumptions are imposed throughout the paper.

RMQ Regularity, Monotonicity, and Quasiconcavity: The utility func-
tion u : ℜ3+ → ℜ is twice continuously differentiable, as well as increas-
ing in c, decreasing in y, nondecreasing in n, and strictly quasiconcave
in c and y.

PEP Positivity of Efficient Production: For all n ∈ N and all v in the
range of u(·, ·, n), there exists a unique pair (c∗(n, v), y∗(n, v)) that
solves problem (2.9); moreover, y∗(n, v) > 0.

SSCC Strict Single-Crossing Condition: The utility function satisfies

∂

∂n

[
uc(c, y, n)

|uy(c, y, n)|

]
> 0 (2.12)

for all (c, y, n) ∈ ℜ2++ × (0, 1).

DR Desirability of Redistribution: For any (c, y, n) ∈ ℜ2+ × [n
0, n1),

there exists ε > 0 such that n + ε ∈ N, and, for all n′ ∈ (n, n + ε]
and all (c′, y′) ∈ ℜ2+ satisfying c′ ≥ c and u(c′, y′, n′) ≥ u(c, y, n′), the
inequality ∣∣uy(c′, y′, n′)

∣∣ < |uy(c, y, n)| (2.13)

holds (a) if c′ = c and y′ ≤ y, and (b) if (c, y) is efficient for n, and
(c′, y′) is efficient or distorted downwards from efficiency for n′.

Assumptions RMQ, PEP, and SSCC are standard. In RMQ, I postulate
quasiconcavity rather than concavity of u. As indicated by Proposition 2.2
below, concavity can play a role in the desirability of redistribution, but
then, it belongs in the context of DR. PEP means that, for every n and and
every attainable utility level v, the efficient pair (c∗(n, v), y∗(n, v)) is well
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defined and unique; moreover, the efficient output level y∗(n, v) is strictly
positive. SSCC reflects the notion that the tradeoff between consumption
and leisure results in a higher level of consumption and a lower level of
leisure (more output provision) when the productivity parameter is higher.
As discussed, e.g., in Milgrom and Shannon (1994), under RMQ, SSCC
implies that, for all (c, y), (c′, y′) in ℜ2+ and all n, n′ in ℜ+, the inequalities
u(c, y, n) ≥ u(c′, y′, n), y > y′, and n > n′ imply u(c, y, n) > u(c′, y′, n).9

Condition DR provides the rationale for utilitarian redistribution. If
an allocation (c(·), y(·)) satisfies the inequality (2.13) for some n and n′ in
N , then, at this allocation, people with productivity parameter n′ have a
lower marginal disutility of providing additional output than people with
productivity parameter n. The sum of these people’s utilities is therefore
increased if output requirements are redistributed from people with pro-
ductivity parameter n to people with productivity parameter n′. If there
are no incentive considerations standing in the way, the utilitarian welfare
maximizer would like to redistribute output requirements so as to allow the
people with productivity parameter n to enjoy more and the people with
productivity parameter n′ to enjoy less leisure.

Condition DR postulates this desirability of redistributing output re-
quirements for two types of allocations. Part (a) postulates it for allocations
satisfying c(n′) = c(n) and y(n′) ≤ y(n) where n′ > n is close to n. In combi-
nation with downward incentive compatibility, this postulate will be used to
show that, at a solution to the weakly relaxed income tax problem, people
with the same consumption must also produce the same output. For the
utility specification (2.1) with concave U , this property holds automatically
because people with type n′ have to work fewer hours to provide any given
output than people with type n < n′.

Part (b) of DR postulates the desirability of redistributing output re-
quirements for allocations where (c(n), y(n)) is efficient for n, (c(n′), y(n′))
is efficient or distorted downward from efficiency for n′, and n′ > n is close
to n. This postulate will be used to show that, at any solution to the weakly
relaxed income tax problem, unless n = n0 and F ({n0}) = 0, the pair

9 If N is a finite set, the strictness of the inequality in (2.12) is only needed near the
top; below the second-highest type, it is enough to have a weak inequality in (2.12). If N
is an interval, this weakening is not possible; equality in (2.12) might imply that types in
some subinterval are observationally indistinguishable. The model then is equivalent to
one where the distribution of types has a mass point, and the result in Hellwig (2005 b)
implies that, unless there is additional bunching, a zero marginal tax is optimal.
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Figure 1: The set of outcome pairs (c′, y′) for n′ to which part (b) of DR
applies.

(c(n), y(n)) cannot be efficient.
The condition is illustrated in Figure 1. In this figure, (c∗(n), y∗(n)) is

an efficient outcome pair for type n, I(n′) is the indifference curve of type
n′ > n through (c∗(n), y∗(n)), and A − A is the locus of efficient outcome
pairs for type n′. Part (b) of DR postulates that, if n′ > n is sufficently
close to n, then (2.13) hold for all outcome pairs (c(n′), y(n′)) in the shaded
area to the left of the locus A−A of efficient outcome pairs for type n′ and
on or above the indifference curve I(n′) and the horizontal line through the
reference pair (c∗(n), y∗(n)).

To appreciate the relation of condition DR to the literature, it is useful
to consider the following alternative condition:

GMSC Generalized Mirrlees-Seade Condition: (a) For all (c, y, n) ∈
ℜ3+, uyy(c, y, n) ≤ 0 and uyn(c, y, n) > 0, and (b) for any two triples
(c, y, n) and (c′, y′, n′) such that n′ > n, c′ ≥ c, and u(c′, y′, n′) ≥
u(c, y, n′), one has

uc(c
′, y′, n′) < uc(c, y, n) or

∣∣uy(c′, y′, n′)
∣∣ < |uy(c, y, n)| . (2.14)

For concave u, part (a) of GMSC is the same as part (a) of DR. For
utility functions taking the special form (2.1), this condition is automatically
satisfied if u is concave.10 Part (b) of GMSC corresponds to the ”very weak

10For arbitrary utility specifications, this is not true. For such specifications, GMSC
is therefore stronger than Roëll’s imposition of concavity and part (b) of GMSC. The
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redistribution assumption” that Roëll (1985) gave for the finite-type model
of Guesnerie and Seade (1982). This condition differs from part (b) of DR in
two respects. First, in GMSC, the condition is formulated in global rather
than local terms, referring to all n′ > n, rather than all n′ > n that are
sufficiently close to n. Second, part (b) of GMSC asserts the desirability
of redistributing required output or consumption. If the premises of this
condition are satisfied, then either the marginal utility of consumption or the
marginal disutility of working to provide additional output is lower for the
person with productivity parameter n′ than for the person with productivity
parameter n; the utilitarian welfare maximizer then desires a redistribution
of leisure or of consumption from the former to the latter. In contrast,
part (b) of DR asserts the desirability of redistributing output requirements.
Moreover, this condition compares uy(c, y, n) and uy(c

′, y′, n′) only for types
and outcome pairs such that n and n′ are close to each other, (c, y) efficient
for type n and (c′, y′) not distorted upwards from efficiency for type n′.

Because (2.14) allows for an alternative and (2.13) does not, one may be
tempted to consider GMSC to be the weaker condition. In fact, the opposite
is true. If the additional premises of part (b) of DR are satisfied, i.e., if (c, y)
is efficient for n and (c′, y′) is efficient or distorted downwards from efficiency
for n′, one has uc(c, y, n) ≤ |uy(c, y, n)| and uc(c′, y′, n′) ≥ |uy(c′, y′, n′)| , so
(2.14) actually implies (2.13). Thus GMSC implies DR.

What does condition DR mean for the utility function u? For utility
functions taking the special form (2.1), GMSC is implied by strict concavity
of u in combination with Seade’s (1982) assumption that leisure is a noninfe-
rior good.11 Trivially therefore, for such utility functions, DR is also implied
by strict concavity of u and noninferiority of leisure. The following result
gives a more general condition for u to satisfy DR. This condition does not
presume that u takes the special form (2.1).

Proposition 2.2 Assume RMQ, PEP, and SSCC, and suppose that, for
any n, the indifference curves of the utility function u(·, ·, n) have strictly
positive Gaussian curvature.12 Assume also that N is an interval. Then
condition DR holds if u is concave in c and y and, moreover,

uyn(c, y, n) > 0 (2.15)

additional assumption is needed to eliminate the possibility that the weakly relaxed income
tax problem has a solution with c(n) = c(n′) and y(n) > y(n′) for some n and n′ > n. For
the optimal income tax problem itself, this possibility is eliminated by upward incentive
compatibility.

11See Roëll (1985), Brunner (1993, 1995), and Homburg (2004).
12 I.e. that the quadratic forms u2yucc−2ucuyucy+u

2
cuyy are everywhere strictly negative.
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for all (c, y, n) and

uny(c
∗(n, v), y∗(n, v), n)

∂y∗

∂v
+ unc(c

∗(n, v), y∗(n, v), n)
∂c∗

∂v
< 0, (2.16)

for all n ∈ N and all v in the range of u(·, ·, n). Under these assumptions on
the functions u, c∗, and y∗, condition DR also holds if N is a finite set and
the differences between neighbouring elements of N are uniformly small.

Proposition 2.2 reduces the desirability of redistribution to three sub-
stantive properties of the utility function: First, u is concave. Second, the
marginal disutility of producing additional output is decreasing in n. Third,
for any n′ ∈ N, the function v → un(c

∗(n′, v), y∗(n′, v), n′) is differentiable,
and its slope is negative. Thus, in Figure 1, un is strictly decreasing as one
is moving up along the locus A−A of efficient outcome pairs for type n′.

The first two properties are familiar from the literature. Concavity of u
reflects inequality aversion or neutrality. Positivity of uyn reflects the idea
that a person with higher productivity has a lower marginal disutility of
producing additional output than a person with lower productivity. For the
simple utility specification (2.1) with concave U , this idea combines the two
notions that (i) the person with higher n needs less labour to produce the
given output y and therefore has a lower marginal disutility of labour, and
(ii) the person with higher n needs a smaller labour increment to obtain a
given output increment.

To understand the third property, observe that the locus of efficient out-
come pairs coincides with the locus of solutions to the problem of maximizing
u(c, y, n′) under the budget constraint c = α+ y. Let v∗, given by

v∗(α, n′) := max
y≥0

u(α+ y, y, n′), (2.17)

be the associated indirect utility function. Under the given assumptions, v∗

is twice continuously differentiable, with v∗n = un and

v∗nα =
∂un(c

∗(n′, v), y∗(n′, v), n′)

∂v
v∗α.

Condition (2.16) is therefore equivalent to the requirement that v∗nα(α,n
′) <

0 for all n′ and α. This requirement in turn is equivalent to the requirement
that v∗αn(α, n

′) < 0 for all n′ and α, i.e., that, in the absence of distortionary
taxation, the "social marginal utility of income" is a decreasing function of
n.

13



This latter condition is again well known. It figures prominently in the
literature on optimal utilitarian linear income taxation, see e.g., Hellwig
(1986). However, there it is used globally, to assess the welfare implications
of raising the marginal income tax everywhere above zero. Here, the con-
dition vαn < 0 is used locally to establish part (b) of consition DR, i.e.,
to show that, for any n ∈ N and any n′ > n sufficiently close to n, the
inequality (2.13) is satisfied if the assignment of (c, y) to n and of (c′, y′)
to n′ is compatible with consumption monotonicity and downward incentive
compatibility and, moreover, (c, y) is efficient for n and (c′, y′) is efficient or
distorted downwards from efficiency for n′.

For utility functions taking the form (2.1), the inequality v∗αn < 0 and
therefore (2.16) is implied by strict concavity of u and noninferiority of
leisure.13 For arbitrary utility functions, (2.16) holds if consumption is nor-
mal,14 if leisure is noninferior, and if uyn > 0 and ucn < 0.

Regardless of the signs of ∂y∗

∂v and ∂c∗

∂v , i.e., regardless of the ordinal
properties of u, condition DR is always satisfied if u is sufficiently concave.
To see this, suppose that u = ϕ◦ û, where û satisfies RMQ, PEP, and SSCC,
and ϕ is twice continuously differentiable, increasing and strictly concave.
Then u and û have the same ordinal properties. Moreover, conditions (2.15)
and (2.16) take the form

ϕ′ûyy + ϕ′′û2y ≤ 0 (2.18)

ϕ′ûyn + ϕ′′ûyûn > 0 (2.19)

and

ϕ′
[
ûny

∂y∗

∂v
+ ûnc

∂c∗

∂v

]
+ ϕ′′ûn < 0. (2.20)

From these conditions, one immediately obtains:

Corollary 2.3 Assume that û satisfies RMQ, PEP, and SSCC, and suppose
that the efficient-outcome function (c∗(·, ·), y∗(·, ·)) is continuously differen-
tiable. Let ϕ be twice continuously differentiable, increasing and strictly
concave. If N is an interval, the function u = ϕ ◦ û satisfies condition DR
if the curvature −ϕ′′

ϕ′ of the function ϕ is everywhere sufficiently large.

13See Christiansen (1983) or Werning (2000). For utility functions taking the form
(2.1), Roy’s identity implies that the indirect utility function v∗ satisfies v∗n = v

∗

α
y

n
. Hence,

v∗αn = v
∗

nα = v
∗

αα
y

n
+ v∗α

yα
n
.

14Under RMQ and SSCC, (2.16) is also satisfied if consumption is nonnormal and uyn >
0.
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Corollary 2.3 highlights the importance of the cardinal properties of u
for the desirability of redistribution. Whereas, e.g., Seade (1982) used strict
concavity, a cardinal property, and noninferiority of leisure, an ordinal prop-
erty, to derive the desirability of redistribution, Corollary 2.3 shows that,
whatever the ordinal properties of u may be, (local) redistribution of leisure
is always desirable if u(·, ·, n) is sufficiently concave.

This being said, one should also see that, for reasons related to the ordi-
nal properties of u, condition DR can be satisfied even if u is not concave.
This is the case, e.g., for the linearly homogeneous Cobb-Douglas specifica-
tion

u(c, y, n) = cβ(1−
y

n
)1−β . (2.21)

This specification satisfies DR. However, the desire for redistributing leisure
is driven by the consideration that the disutility of producing additional
output is lower for people with higher n, rather than by inequality aversion.
This observation indicates that, in model with heterogeneous productivity
levels, redistributive utilitarian intervention is motivated not only by in-
equality aversion, but also by the consideration that the total burden of
producing a given aggregate output is smaller if output requirements are
aligned with productivity parameters.

3 The Main Theorems

Throughout the paper, conditions RMC, PEP, SSCC, and DR will be taken
for granted without any further mention. Under these assumptions, one can
prove the following results.

Theorem 3.1 Assume that the support N of the distribution F is finite or
that N is an interval [n0, n1] and F has a density f, which is continuous
and strictly positive on N. Let (c(·), y(·)) be any canonical solution to the
weakly relaxed income tax problem, and let v(·) be the associated indirect
utility function. Then (c(·), y(·)) and v(·) satisfy the following:

a: There is no distortion at the top, i.e.,

(c(n1), y(n1)) = (c∗(n1, v(n1)), y∗(n1, v(n1))). (3.1)

b: Between the bottom and the top of N , i.e., for n ∈ (n0, n1), the pair
(c(n), y(n)) is distorted downward from efficiency and satisfies

(c(n), y(n)) << (c∗(n, v(n)), y∗(n, v(n))); (3.2)

15



indeed, on any compact subset of (n0, n1), (c(n), y(n)) is bounded away from
efficiency.

c: At the bottom, i.e., for n = n0, consumption-output pairs are also dis-
torted downward from efficiency if the N is a finite set or if the monotonicity
constraint on c(·) is strictly binding at n0. If F has a density on N = [n0, n1]
and if c(·) is strictly increasing at n = n0, 15 there is no distortion at the
bottom, i.e.,

(c(n0), y(n0)) = (c∗(n0, v(n0)), y∗(n0, v(n0))). (3.3)

d: The functions c(·) and y(·) are co-monotonic on N, i.e., for any n and
n′ > n in N, y(n′) > y(n) if c(n′) > c(n), and y(n′) = y(n) if c(n′) = c(n).
Moreover, the allocation (c(·), y(·)) is incentive compatible.

e: The function y(·)− c(·) is co-monotonic with c(·) and y(·). Moreover,
there exists n̄ ∈ (n0, n1) such that y(n) < c(n) for n ∈ [n0, n̄) and y(n) >
c(n) for n ∈ (n̄, n1]; in particular, c(n0) > y(n0) ≥ 0.

Theorem 3.2 Under the assumptions of Theorem 3.1, the weakly relaxed
income tax problem and the optimal income tax problem have the same
canonical solutions. In particular, any canonical solution (c(·), y(·)) to the
optimal income tax problem satisfies statements (a) - (e) of Theorem 3.1.

Theorem 3.3 Under the assumptions of Theorem 3.1, any tax schedule T
that is associated with a canonical solution to the weakly relaxed and the
optimal income tax problem is strictly increasing on the range y(N) of the
output provision function. If T is differentiable from the right,16 the right-
hand derivative τ(·) satisfies

lim
n↑n1

τ(y(n)) = 0, (3.4)

as well as
τ(y(n)) ∈ (0, 1) (3.5)

15A nondecreasing function g(.) is said to be strictly increasing at n if, for every ε > 0,
one has g(n+ ε) > g(n) or g(n) > g(n− ε).

16 If N is an interval and the allocation (c(·), y(·)) is continuous, the tax schedule T (·) is
necessarily differentiable on y(N); its derivative τ(·) is then given by (3.10) holding with
equality. However, if N is a finite set or if the allocation (c(·), y(·)) is not continuous, the
set y(N) is not an interval. In this case, the specification of T(y) for y /∈ y(N) is somewhat
arbitrary; this arbitrariness introduces the possibility that, at a boundary point of y(N),
the specified tax schedule may not be differentiable from the right. However, it is always
possible to specify T(·) so that the right-hand derivative τ(y) exists for all y and satisfies
(3.10) for all n ∈ N.
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for all n ∈ (n0, n1); indeed, on any compact subset of (n0, n1), τ(y(n)) is
bounded away from zero and one. If F has a density on N = [n0, n1] and if
c(·) is strictly increasing at n = n0,

lim
n↓n0

τ(y(n)) = 0; (3.6)

if N is finite or if the monotonicity constraint on c(·) is strictly binding at
n0, then

lim
n↓n0

τ(y(n)) > 0. (3.7)

Theorem 3.1 characterizes the solutions to the weakly relaxed income
tax problem. Theorem 3.2 establishes the equivalence of the weakly relaxed
income tax problem with the optimal income tax problem. Theorem 3.3 for-
mulates the implications of Theorems 3.1 and 3.2 for optimal tax schedules,
showing that the optimal marginal income tax is zero at the top and strictly
positive between the top and the bottom; indeed, on any compact subset
of (n0, n1), the optimal marginal tax is bounded away from zero. At y(n0),
the optimal marginal income tax is positive if the fraction of the population
producing the output y(n0) is positive (because n0 has positive mass or be-
cause there is bunching). The optimal marginal income tax at y(n0) is zero
if F (n0) = 0, and there is no bunching at y(n0).

Theorems 3.2 and 3.3 follow in a straightforward manner from Theorem
3.1. Without going into details, I briefly sketch the arguments. For Theorem
3.2, one notes that the constraint set for the optimal income tax problem is
a subset of the constraint set for the weakly relaxed income tax problem. By
Statement (d) of Theorem 3.1, any solution to the weakly relaxed income
tax problem is incentive compatible and therefore lies in the constraint set
for the optimal income tax problem. Such a solution must therefore also be a
solution to the optimal income tax problem. Moreover, because all solutions
to the optimal income tax problem generate the same welfare level, any other
solution to the optimal income tax problem generates the same welfare level
as a solution to the weakly relaxed income tax problem and must itself be
a solution to the latter problem. Given Theorem 3.1, these considerations
establish Theorem 3.2.

As for Theorem 3.3, a tax schedule that implements the allocation (c(·), y(·))
must satisfy

T (y(n)) := y(n)− c(n) (3.8)
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for all n ∈ N.17 Incentive compatibility requires that, for all n ∈ N , y(n)
maximizes u(y − T (y), y, n). If T (·) has a right-hand derivative τ(y(n)) at
y(n), the first-order condition for this maximization is

uc(c(n), y(n), n)(1− τ(y(n))) + uy(c(n), y(n), n) ≤ 0. (3.9)

By a rearrangement of terms, this implies

τ(y(n)) ≥
uc(c(n), y(n), n) + uy(c(n), y(n), n)

uc(c(n), y(n), n)
, (3.10)

so τ(y(n)) is zero, positive, or negative as (c(n), y(n)) is efficient, distorted
downward, or distorted upward from efficiency. Equations (3.4) - (3.7) thus
follow from statements (a) - (c) of Theorem 3.1. As for the first statement of
Theorem 3.3, this follows directly from (3.8) and statement (e) of Theorem
3.1.

The argument for Theorem 3.1 is less straightforward. It involves the
following major steps. First, if consumption is constant on some set of types,
then output requirements must also be constant on this set. If they were
not constant, then, by downward incentive compatibility, they would have
to be decreasing in n. However, by RMQ and part (a) of DR, it would
then be possible to raise welfare by equalizing output requirements for the
productivity parameters in question. The change could be executed without
affecting adjacent downward incentive compatibility.

Second, because upward incentive constraints play no role, outcome pairs
cannot be distorted upward from efficiency. If, for type n, they were dis-
torted upward, then it would be possible to reduce this type’s consumption
c(n) and output provision y(n) in such a way that the difference c(n)−y(n)
is reduced even though the utility v(n) = u(c(n), y(n), n) is unchanged. By
SSCC, such a reduction would not affect downward incentive compatibility.
The decrease in c(n) − y(n) could be used to make, e.g., types near the
top better off without affecting downward incentive compatibility. Thus,
the initial allocation could not have been a solution to the weakly relaxed
income tax problem.

Third, at any n between the bottom and the top, either consumption
monotonicity or downward incentive compatibility is strictly binding.18 If

17 If there is bunching, with y(n) = ȳ for several types n, incentive compatibility dictates
that cA(n) = c̄ for the same types, so (3.8) is still unambigous.

18 In the sense that the corresponding Kuhn-Tucker multipliers or Pontryagin costate
variables are nonzero. This is stronger than merely having one of the constraints hold as
an equation.
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neither constraint were strictly binding, the consumption-output pair as-
signed to type n would be efficient. Because, by the previous argument, the
consumption-output pairs for higher types are efficient or distorted down-
ward from efficiency, part (b) of condition DR would imply that the sum of
utilities could be increased by redistributing output requirements from type
n to some slightly higher types, making type n better off and the higher types
worse off, without affecting adjacent downward incentive compatibility.

Fourth, at any n′ ∈ (n0, n1), some downward incentive compatibility con-
straint holds as an equation. For suppose that downward incentive compat-
ibility is not binding at n′. Then, by the preceding argument, consumption
monotonicity is strictly binding, i.e., c(·) must be constant in a neighbour-
hood of n′. By the first step, y(·) is also constant on this interval. Therefore,
for n′ and n belonging to this interval, the downward incentive compatibility
condition (2.6) holds as an equation, i.e., downward incentive compatibility
is weakly binding.

Fifth, the functions c(·) and y(·) are co-monotonic, and the allocation
is incentive compatible. Given that downward incentive compatibility is
everywhere weakly binding, an increase in c(·) must always be accompanied
by an increase in y(·) and vice versa. In particular, therefore, the allocation is
nondecreasing. Incentive compatibility then follows from the single-crossing
condition.

Sixth, c(n) > 0 for all n ∈ N ; in particular, c(n0) > 0. Because downward
incentive compatibility is everywhere weakly binding, the indifference curve
of any type n ∈ N in the point (c(n), y(n)) must be tangent to the image
set of the function (c(·), y(·)) to the left of this point. In the absence of
upward distortions from efficiency, the slope dc

dy of this indifference curve
at (c(n), y(n)) is no greater than one. Therefore, c(·) cannot be steeper at
n than y(·), i.e., the difference c(·) − y(·) must be nonincreasing. Because
c(·) − y(·) is nonincreasing, one has c(n) − y(n) ≤ c(n0) − y(n0) for all
n ∈ N. It follows that c(n0) > 0 and, by monotonicity, c(n) > 0 for all
n ∈ N. Otherwise, by PEP, all types would be worse off than they are under
laissez-faire.

Finally, given that consumption is strictly positive, the same argument
as in the third step can be used to show that, for n ∈ (n0, n1), the pair
(c(n), y(n)) must be distorted downward from efficiency. If (c(n), y(n)) were
efficient, then, with c(n) > 0 and, by PEP, y(n) > 0, the pair (c(n), y(n))
would have to satisfy the first-order condition

uc(c(n), y(n), n) + uy(c(n), y(n), n) = 0. (3.11)
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If (3.11) holds, a small reduction in type n’s consumption and output pro-
vision by the same amount would leave the feasibility constraint (2.2) unaf-
fected. This reduction would have no first-order effects on the utility of type
n. However, it would have a first-order effect on the utility u(c(n), y(n), n′)
that type n′ > n could obtain by imitating type n. Therefore, it would make
room for some redistribution of output requirements from type n to type
n′. By part (b) of DR, the overall effect of these changes would be to raise
the sum of utilities, contrary to the presumed optimality of the given al-
location. Given that (c(n), y(n)) is distorted downward from efficiency for
n ∈ (n0, n1), the argument in the preceding step can be strengthened to
the effect that c(n)− y(n) is decreasing at any n at which c(·) and y(·) are
increasing.

4 The Case of Finitely Many Types

In this section, I prove Theorem 3.1 for the case when the support N of
the type distribution F is finite. Without loss of generality, I set N =
{n1, n2, ..., nm}, where n0 = n1 < ... < nm = n1. I also write fi := F ({ni}) >
0. An allocation (c(·), y(·)) is identified with a sequence {(ci, yi)}mi=1 such
that (ci, yi) = (c(ni), y(ni)) for i = 1, ...,m.

I will not actually study the weakly relaxed income tax problem as such.
Instead, I study the problem of choosing {(ci, yi)}

m
i=1 to maximize

max
{(ci,yi)}

m
i=1

m∑

i=1

u(ci, yi, ni) fi (4.1)

subject to the feasibility condition

m∑

i=1

(yi − ci) ≥ 0, (4.2)

and the requirement that the adjacent downward incentive constraint

u(ci, yi, ni) ≥ u(ci−1, yi−1, ni), (4.3)

and the monotonicity condition

ci ≥ ci−1 (4.4)

be satisfied for i = 2, ...,m. In this formulation, the downward incentive
constraints (2.6) have been replaced by the adjacent downward incentive
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constraints (4.3). I will show that the conclusions of Theorem 3.1 hold for
any solution to this maximization problem. By the same argument as in
the proof of Theorem 3.2, it follows that the solutions to the weakly relaxed
income tax problem coincide with the solutions to the problem of maximizing
(4.1) subject to (4.2) - (4.4) and that these solutions satisfy statements (a)
- (e) of Theorem 3.1.

The Lagrangian for problem (4.1) can be written as

m∑

i=1

u(ci, yi, ni) fi + λ
m∑

i=1

(yi − ci) fi

+
m∑

i=2

µi[u(ci, yi, ni)− u(ci−1, yi−1, ni)] +
m∑

i=2

νi(ci − ci−1), (4.5)

where λ and µi, νi, i = 2, ...m, are nonnegative multipliers for the constraints
(2.2), (2.6), and (2.7). The Kuhn-Tucker conditions for a solution are:

uc(ci, yi, ni)(fi + µi)− λfi − µi+1uc(ci, yi, ni+1) + νi − νi+1 ≤ 0 (4.6)

for ci, i = 1, ..., m, with a strict inequality only if ci = 0, and

uy(ci, yi, ni)(fi + µi) + λfi − µi+1uy(ci, yi, ni+1) ≤ 0 (4.7)

for yi, i = 1, ...,m, with a strict inequality only if yi = 0.
19 Moreover,

λ
m∑

i=1

(yi − ci)fi = 0, (4.8)

µi[u(ci, yi, ni)− u(ci−1, yi−1, ni)] = 0 (4.9)

and
νi(ci − ci−1) = 0 (4.10)

for i = 2, ..., m. In the remainder of this section, the allocation {(ci, yi)}mi=1
is taken to be a solution to problem (4.1); λ, µi, and νi, i = 2, ...m, are the
associated Kuhn-Tucker multipliers.

If the monotonicity constraint on consumption is binding, then people
with the same consumption must also provide the same output. If they
didn’t, then, by downward incentive compatibility, the "higher" type would
be providing less output. Then part (a) of DR would imply that a redistri-
bution of output requirements from the "lower" type to the "higher" type
would raise welfare. This is formally shown as:

19 If i = m, (4.6) and (4.7) hold with µi+1 = νi+1 = 0.

21



Lemma 4.1 For any k, ck = ck−1 implies yk = yk−1.

Proof. Suppose that the lemma is false, and let k be such that ck = ck−1
and yk �= yk−1. Then downward incentive compatibility implies yk < yk−1,
hence

u(ck, yk, nk) > u(ck−1, yk−1, nk). (4.11)

By (4.9), it follows that µk = 0. Therefore (4.7) becomes:

uy(ck−1, yk−1, nk−1)(fk−1 + µk−1) + λfk−1 = 0 (4.12)

for i = k − 1 and

uy(ck, yk, nk)fk + λfk − µk+1uy(ck, yk, nj) ≤ 0 (4.13)

for i = k. From (4.12) and (4.13), one obtains

uy(ck−1, yk−1, nk−1) ≥ −λ ≥ uy(ck, yk, nk), (4.14)

contrary to part (a) of DR. The assumption that ck = ck+1 and yk �= yk+1
for some k has thus led to a contradiction and must be false.

The next lemma shows that, for a solution to problem (4.1), distortions
from efficiency all go in the same direction. Consumption and output provi-
sion are never distorted upward from efficiency. To abbreviate the notation,
I write (c∗k, y

∗
k) for the pair (c∗(nk, v(nk)), y

∗(nk, v(nk))) that provides type
nk with the utility v(nk) = u(ck, yk, nk) at the lowest net resource require-
ment.

Lemma 4.2 For any k, (ck, yk) ≤ (c
∗
k, y

∗
k).

Proof. If the lemma is false, one has ck > c∗k or yk > y∗k for some k. Let

k̂ be the largest index k for which this is the case. Further, let I(k̂) be the
set of indices i with the same consumption as index k̂, and let ı̂ := min I(k̂).
Lemma 4.1 implies (ck, yk) = (ck̂, yk̂) for all k ∈ I(k̂). By RMQ and the fact
that

u(c
k̂
, y
k̂
, n
k̂
) = v(n

k̂
) = u(c∗

k̂
, y∗
k̂
, n
k̂
),

one must actually have c
k̂

> c∗
k̂
and y

k̂
> y∗

k̂
. It follows that c

k̂
and y

k̂

are both strictly positive, so for k ∈ I(k̂), the first-order conditions (4.6)
and (4.7) hold as equations. Upon summing these equations from ı̂ to
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k̂, cancelling out all terms that refer to adjacent downward incentive and
monotonicity constraints for indices between ı̂ and k̂, one obtains

k̂∑

i=ı̂

[uc(ck̂, yk̂, ni)fi−λfi]+µı̂uc(ck̂, yk̂, nı̂)−µ
k̂+1uc(ck̂, yk̂, nk̂+1)+ν ı̂−ν

k̂+1 = 0

(4.15)
and

k̂∑

i=ı̂

[uy(ck̂, yk̂, ni)fi+λfi]+µı̂uy(ck̂, yk̂, nı̂)−µ
k̂+1

uy(ck̂, yk̂, nk̂+1) = 0. (4.16)

Upon adding (4.15) and (4.16) and rearranging terms, noting that, by the
definition of ı̂ and (4.10), ν ı̂ must be equal to zero, one further obtains

k̂∑

i=ı̂

[uc(ck̂, yk̂, ni) + uy(ck̂, yk̂, ni)]fi + µı̂[uc(ck̂, yk̂, nı̂) + uy(ck̂, yk̂, nı̂)]

= µ
k̂+1
[uc(ck̂, yk̂, nk̂+1) + uy(ck̂, yk̂, nk̂+1)] + ν

k̂+1
. (4.17)

Because c
k̂
> 0 and y

k̂
> 0, (c

k̂
, y
k̂
) >> (c∗

k̂
, y∗
k̂
) implies uc(ck̂, yk̂, nk̂) +

uy(ck̂, yk̂, nk̂) < 0. By SSCC, it follows that

uc(ck̂, yk̂, ni) + uy(ck̂, yk̂, ni) < 0 (4.18)

for all i < k̂. Therefore the left-hand side of (4.17) is strictly negative.
Because µ

k̂+1 and ν
k̂+1 are both nonnegative, it follows that (4.17) implies

µ
k̂+1 > 0 and

uc(ck̂, yk̂, nk̂+1) + uy(ck̂, yk̂, nk̂+1) < 0. (4.19)

Now µ
k̂+1 > 0 implies k̂ < m and, by (4.9),

u(c
k̂+1, yk̂+1, nk̂+1) = u(c

k̂
, y
k̂
, n
k̂+1). (4.20)

Because u is quasiconcave and c
k̂+1 ≥ c

k̂
, (4.19) and (4.20) imply that

uc(ck̂+1, yk̂+1, nk̂+1) + uy(ck̂, yk̂, nk̂+1) < 0, hence

(c
k̂+1, yk̂+1) >> (c∗

k̂+1
, y∗
k̂+1
),

contrary to the definition of k̂ as the largest index for which the assertion
of the lemma is false. The assumption that ck > c∗k or yk > y∗k for some k
has thus led to a contradiction and must be false.
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The following lemma shows that, for any k below the top, either the
downward incentive compatibility constraint or the consumption monotonic-
ity constraint of type k+1must be strictly binding. Part (b) of DR is crucial
for this result.

Lemma 4.3 For any k < m, at least one of the multipliers µk+1, νk+1 is
nonzero.

Proof. If the lemma is false, then, for some k̂ < m, one has µ
k̂+1

=

ν
k̂+1 = 0. For i = k̂, the first-order conditions (4.6) and (4.7) become

uc(ck̂, yk̂, nk̂)(fk̂ + µ
k̂
)− λf

k̂
+ ν

k̂
≤ 0, (4.21)

with equality unless c
k̂
= 0, and

uy(ck̂, yk̂, nk̂)(fk̂ + µ
k̂
) + λf

k̂
≤ 0, (4.22)

with equality unless y
k̂
= 0. Upon adding these equations, one obtains

[uc(ck̂, yk̂, nk̂) + uy(ck̂, yk̂, nk̂)](fk̂ + µ
k̂
) + ν

k̂
≤ 0, (4.23)

with equality unless c
k̂
= 0 or y

k̂
= 0. By RMQ and the nonnegativity of

ν
k̂
, it follows that (c

k̂
, y
k̂
) ≥ (c∗

k̂
, y∗
k̂
). By Lemma 4.2, therefore, (c

k̂
, y
k̂
) =

(c∗
k̂
, y∗
k̂
).

By PEP, it follows that y
k̂
> 0. Therefore, (4.22) holds as an equation.

This yields:
uy(ck̂, yk̂, nk̂) ≥ −λ. (4.24)

Further, because µ
k̂+1

= 0 and µ
k̂+2

uy(ck̂+1, yk̂+1, nk̂+2) ≤ 0, the first-order

condition (4.7) for i = k̂ + 1 yields

uy(ck̂+1, yk̂+1, nk̂+1) ≤ −λ. (4.25)

Upon combining (4.24) and (4.25), one obtains
∣∣∣uy(ck̂+1, yk̂+1, nk̂+1)

∣∣∣ ≥
∣∣uy(ck̂, yk̂, nk̂)

∣∣ . (4.26)

However, because uy(ck̂+1, yk̂+1, nk̂+1) ≥ uy(ck̂, yk̂, nk̂+1), c
k̂+1 ≥ c

k̂
,

and, by Lemma 4.2, (c
k̂+1, yk̂+1) ≤ (c∗

k̂+1
, y∗
k̂+1
), for i = k̂ + 1, part (b)

of condition DR implies
∣∣∣uy(ck̂+1, yk̂+1, nk̂+1)

∣∣∣ <
∣∣uy(ck̂, yk̂, nk̂)

∣∣ . (4.27)
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The assumption that µ
k̂+1

= ν
k̂+1

= 0 for some k̂ < m has thus led to a
contradiction and must be false.

On the basis of Lemma 4.3, one easily finds that adjacent downward
incentive constraints are everywhere binding.20

Lemma 4.4 For any k < m,

v(nk+1) = u(ck, yk, nk+1), (4.28)

Proof. If the lemma is false, there exists k̂ < m, such that

v(n
k̂+1) > u(c

k̂
, y
k̂
, n
k̂+1). (4.29)

(The reverse inequality is ruled out by downward incentive compatibility.)
Because v(n

k̂+1
) = u(c

k̂+1
, y
k̂+1

, n
k̂+1
), one also has (c

k̂+1
, y
k̂+1
) �= (c

k̂
, y
k̂
).

By Lemma 4.1 and monotonicity, therefore, c
k̂+1 > c

k̂
. Then (4.9) and (4.10)

yield µ
k̂+1 = 0 and ν

k̂+1 = 0. By Lemma 4.3., this is impossible.

Lemma 4.5 The sequences {ci}
m
i=1 and {yi}

m
i=1 are co-monotonic, i.e., for

any k < m, yk ≤ yk+1,with equality if and only if ck = ck+1. Moreover, the
allocation {(ci, yi)}

m
i=1 is incentive compatible.

Proof. Under RMQ, the first statement follows trivially from (4.28) and
the inequality ck+1 ≥ ck. Because (ck, yk) ≤ (ck+1, yk+1), (4.28) and SSCC
imply

v(nk) ≥ u(ck+1, yk+1, nk). (4.30)

The allocation {(ci, yi)}mi=1 thus satisfies adjacent upward as well as adjacent
downward incentive compatibility. Given the monotonicity of the allocation
and SSCC, overall incentive compatibility follows by standard arguments.

Relying on Lemmas 4.4 and 4.2, the next two lemmas show that the
difference ck − yk is nondecreasing in k and that consumption is everywhere
strictly positive. The argument for Lemma 4.6 is familiar from Guesnerie
and Seade (1982).

20Without taking recourse to Lemma 4.3, (4.28) could also be established by the geo-
metric argument of Guesnerie and Seade (1982), see also Homburg (2004). However, for
Lemma 4.9 below, one needs Lemma 4.3 anyway.
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Lemma 4.6 For any k < m,

ck+1 − yk+1 ≤ ck − yk; (4.31)

moreover, the inequality in (4.31) is strict unless ck+1 = ck.

Proof. For any k < m, Lemma 4.4 implies that, for type nk+1, the
point (ck, yk) lies on the indifference curve through (ck+1, yk+1). By Lemma
4.2 in combination with the strict quasiconcavity of u, the slope of this
indifference curve at any point (c, y) below (ck+1, yk+1) is less than one.
The lemma follows immediately.

Lemma 4.7 For all k, ck > 0.

Proof. If the lemma is false, there is a nonempty set I0 of indices k such
that ck = 0 for k ∈ I0. I claim that, in this case, the allocation {(ci, yi)}mi=1
is strictly dominated by the laissez-faire allocation {(yLFi , yLFi )}mi=1, where,
for any i, yLFi = argmaxu(y, y, ni).

By (2.7), I0 takes the form {1, ..., k̂}, where k̂ < m. By RMQ and PEP,
one has

u(0, yk, nk) ≤ u(0, 0, nk) < u(yLFk , yLFk , nk) (4.32)

for all k ∈ I0. For k > k̂, Lemma 4.6 implies ck−yk ≤ c
k̂+1−y

k̂+1 and, since
c
k̂+1 > c

k̂
, c
k̂+1 − y

k̂+1 < −y
k̂
≤ 0. By RMQ, it follows that

u(ck, yk, nk) < u(yLFk , yLFk , nk), (4.33)

for k /∈ I0, as well as for k ∈ I0. However, dominance of the laissez-faire
allocation contradicts the assumption that {(ci, yi)}

m
i=1 is a solution to the

weakly relaxed income tax problem. The assumption that ck = 0 for some
k must therefore be false.

Relying on the positivity of consumption, the next lemma shows that,
at the top, there is no distortion and the allocation is strictly increasing.

Lemma 4.8 (cm, ym) = (c
∗
m, y∗m) and (cm−1, ym−1) << (cm, ym).

Proof. By Lemma 4.7, cm > 0. In combination with the feasibility con-
straint (2.2), Lemma 4.7 also implies yk > 0 for some k. By the monotonic-
ity of output provision that was established in Lemma 4.4, it follows that
ym > 0. For i = m, therefore, (4.6) and (4.7) hold as equations. Upon

26



adding these equations and noting that µm+1 = νm+1 = 0 and νm ≥ 0, one
obtains

(uc(cm, ym, nm) + uy(cm, ym, nm))(fm + µm) ≤ 0, (4.34)

hence (cm, ym) ≥ (c
∗
m, y∗m). By Lemma 4.2, it follows that (cm, ym) = (c

∗
m, y∗m).

By SSCC, (4.34) implies uc(cm, ym, nm−1) + uy(cm, ym, nm−1) < 0. By
Lemmas 4.2 and 4.4, it follows that (cm−1, ym−1) << (cm, ym).

To conclude the argument, I finally show that, below the top, consump-
tion and output provision must be distorted downward from efficiency. The
argument again relies on Lemma 4.3 and, thereby, on part (b) of condition
DR.

Lemma 4.9 For any k < m, (ck, yk) << (c∗k, y
∗
k).

Proof. Suppose that the lemma is false. Then, for some k < m, one has
ck > 0 and ck ≥ c∗k or yk ≥ y∗k. Let k̂ be the largest index for which this is the
case. By Lemma 4.2, c

k̂
≥ c∗

k̂
or y

k̂
≥ y∗

k̂
is only possible if (c

k̂
, y
k̂
) = (c∗

k̂
, y∗
k̂
).

By PEP, it follows that y
k̂
> 0. For i = k̂, therefore, (4.7) as well as (4.6)

must hold as equations. Upon adding these equations, one obtains

[uc(ck̂, yk̂, nk̂) + uy(ck̂, yk̂, nk̂)](fk̂ + µ
k̂
) + ν

k̂

= µ
k̂+1[uc(ck̂, yk̂, nk̂+1) + uy(ck̂, yk̂, nk̂+1)] + ν

k̂+1. (4.35)

With c
k̂
> 0 and y

k̂
> 0, efficiency of the pair (c

k̂
, y
k̂
) implies

uc(ck̂, yk̂, nk̂) + uy(ck̂, yk̂, nk̂) = 0, (4.36)

so (4.35) yields

ν
k̂
= µ

k̂+1[uc(ck̂, yk̂, nk̂+1) + uy(ck̂, yk̂, nk̂+1)] + ν
k̂+1. (4.37)

I claim that the left-hand side of (4.37) is zero. For suppose not and let
ν
k̂
> 0. By (4.10) and Lemma 4.1, one then has c

k̂−1 = c
k̂

and y
k̂−1 = y

k̂
.

At the same time, (4.36) and SSCC imply

uc(ck̂, yk̂, ni) + uy(ck̂, yk̂, ni) < 0,

so Lemma 4.2 implies (c
k̂−1, yk̂−1) �= (ck̂, yk̂) for i < k̂. The assumption that

ν
k̂
> 0 thus leads to a contradiction and must be false.
Thus, (4.37) implies

µ
k̂+1[uc(ck̂, yk̂, nk̂+1) + uy(ck̂, yk̂, nk̂+1)] + ν

k̂+1 = 0. (4.38)
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However, by SSCC, (4.36) also implies uc(ck̂, yk̂, nk̂+1) + uy(ck̂, yk̂, nk̂+1) >
0. Because µ

k̂+1 and ν
k̂+1 are nonnegative, it follows that (4.38) implies

µ
k̂+1

= ν
k̂+1

= 0. By Lemma 4.3, this is impossible.

The preceding arguments show that the conclusions of Theorem 3.1 hold
for any solution to problem (4.1): Statement (a) follows from Lemma 4.8,
statements (b) and (c) from Lemma 4.9, statement (d) from Lemma 4.5,
and statement (e) from Lemmas 4.6 and 4.7.

Given that the constraint set for the weakly relaxed income tax problem
is a subset of the constraint set for problem (4.1) and, by Lemma 4.5, any
solution to the latter problem is incentive compatible, any such solution
must also be a solution to the weakly relaxed income tax problem. Moreover,
because all solutions to the weakly relaxed income tax problem generate the
same welfare level, any other solution to this problem generates the same
welfare level as a solution to problem (4.1) and must itself be a solution to
the latter problem. The validity of Theorem 3.1 for the case of finitely many
types follows immediately.

5 The Case of a Continuum of Types

5.1 The Optimal Control Problem

The optimal-control problem is formulated in terms of the indirect utility
function v(·). If F has a continuous density f on N = [n0, n1], the welfare
functional (2.4) and the feasibility constraint (2.2) take the form

∫ n1

n0
v(n)f(n)dn (5.1)

and ∫ n1

n0
(y(n)− c(n))f(n)dn ≤ 0. (5.2)

By well known arguments,21 in the model with a continuum of types
satisfying SSCC, the incentive compatibility condition (2.3) is equivalent to
the requirement that v(·) satisfy the equation

v(n) = v(n0) +

∫ n

n0
un(c(n

′), y(n′), n′)dn′ (5.3)

for all n ∈ N and that y(·) be nondecreasing on N . The following lemma,
provides an analogous characterization of downward incentive compatibility.

21See, e.g., Mirrlees (1976).
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Lemma 5.1 An allocation (c(·), y(·)) with nondecreasing c(·) is downward
incentive compatible if and only if the indirect utility function v(·) that is
given by (2.5) satisfies

v(n) = S(n) +

∫ n

n0
un(c(n

′), y(n′), n′)dn′ (5.4)

for some nondecreasing function S(·).

The proof of Lemma 5.1 is given in the Appendix. The function S(·)
can be interpreted as a measure of cumulative slack in downward incentive
compatibility conditions. A comparison of (5.4) with (5.5) indicates that
a downward incentive compatible and nondecreasing allocation is incentive
compatible if and only if this slack function takes the constant value v(n0).

The weakly relaxed problem is thus equivalent to the problem of choosing
v(·), c(·), y(·), S(·) so as to maximize (5.1), subject to (2.5), (5.2), (5.4), and
weak monotonicity of c(·) and S(·). If the functions c(·) and S(·) were known
to be absolutely continuous, this problem would be actually be a standard
problem of optimal control: In this case, one could treat v(·), c(·), and S(·)
as state variables and the slopes q(·) := c′(·) and r(·) := S′(·), as well as
the output requirement y(·), as control variables. The downward incentive
compatibility condition could be rewritten as

v′(n) = r(n) + un(c(n), y(n), n), (5.5)

and the slopes q(n) = c′(n) and r(n) = S′(n) would have to be nonnegative.
The Hamiltonian for this control problem would be

H(n) = v(n)f(n) + λ(y − c(n))f(n) + χ(n)(u(c(n), y, n)− v(n))

+ϕ(n)[r(n) + un(c(n), y, n)] + ψ(n)q(n), (5.6)

where λ and χ(n) are the Lagrange multipliers of the constraints (5.2) and
(2.5); ϕ(·) and ψ(·) are the costate variables associated with the state vari-
ables v(·) and c(·).

Maximization of the Hamiltonian with respect to the controls requires
that for almost every every n ∈ N,

λf (n) + χ(n)uy(c(n), y(n), n) + ϕ(n)uny(c(n), y(n), n) ≤ 0, (5.7)

with equality if y(n) > 0; further,

ϕ(n) ≤ 0, (5.8)
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with equality if r(n) > 0, and

ψ(n) ≤ 0, (5.9)

with equality if q(n) > 0. The costate variables ϕ(·) and ψ(·) must be ab-
solutely continuous, with derivatives satisfying

ϕ′(n) = −f(n) + χ(n) (5.10)

and

ψ′(n) ≤ λf (n)− χ(n)uc(c(n), y(n), n)− ϕ(n)unc(c(n), y(n), n) (5.11)

for almost all n ∈ N ; (5.11) holds with equality if c(n) > 0. In addition, ϕ(·)
and ψ(·) must satisfy the transversality conditions

ϕ(n0) = ϕ(n1) = 0, (5.12)

and
ψ(n0)c(n0) = ψ(n1) = 0. (5.13)

The Lagrange multiplier λ must be nonnegative and must satisfy

λ

∫ n1

n0
(y(n)− c(n))f(n)dn = 0. (5.14)

The argument that I have just sketched, with c(·) and S(·) assumed to be
absolutely continuous, corresponds to the approach of Guesnerie and Laffont
(1984) or Ebert (1992). In fact, there is no reason to presume that c(·) and
S(·) are continuous, let alone absolutely continuous. However, the analysis
in Hellwig (2005a) shows that absolute continuity of c(·) and S(·) is not
actually needed. Monotonicity itself provides enough structure to permit
the formulation of a maximum principle for the given control problem.

The resulting necessary conditions are identical to the ones just given,
with one modification: (5.8) must hold as an equation if S(·) is strictly
increasing at n, and (5.9) must hold as an equation if c(·) is strictly increasing
at n; these requirements extend the maximum principle for the "slopes" of
c(·) and S(·) from the case where these slopes are well defined to the case
where these "slopes" may be infinite, e.g., because the functions c(·) and
S(·) are discontinuous. Even in this case, the values of the "slopes" that are
being chosen must maximize the products of these "slopes" with the costate
variables of c(·) and S(·); i.e., if c(·) or S(·) is strictly increasing at n, the
corresponding costate variable must be zero.
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If one uses (5.10) to eliminate χ(n) from (5.11) and (5.7), one obtains:

ψ′(n)− λf(n) + ucf(n) + ϕ′(n)uc + ϕ(n)unc ≤ 0, (5.15)

with equality if c(n) > 0, and

λf(n) + uyf(n) + ϕ′(n)uy + ϕ(n)uny ≤ 0, (5.16)

with equality if y(n) > 0. Except for the fact that ψ′(n) appears in the
condition for c(n) rather than y(n), these conditions are familiar from Ebert
(1992) and Brunner (1993). If ψ′(n) = 0, they reduce to the corresponding
conditions in Mirrlees (1971, 1976) and Seade (1977, 1982).

Upon combining (5.15) and (5.16) so as to eliminate ϕ′(n), one further
obtains

ψ′(n) ≤ λ
uc + uy

uy
f(n)− ϕ(n)(unc −

uc
uy

uny), (5.17)

with equality if c(n) > 0 and y(n) > 0. This is the central condition of the
model with a continuous type distribution. If c(n) > 0 and y(n) > 0 and
ψ′(n) = 0, it yields the equation

λ
uc + uy

uy
f (n) = ϕ(n)(unc −

uc
uy

uny), (5.18)

which lies at the core of the analysis of Mirrlees and Seade. Because uy < 0,
the left-hand side is negative or positive, depending on whether uc + uy is
positive or negative, i.e., on whether (c(n), y(n)) is distorted downward or
upward from efficiency. The Single-Crossing Condition implies that unc −
uc
uy

uny is positive, so the sign of the right-hand side is the same as the sign

of ϕ(n).
Whereas, at this point, Seade (1982) proceeds to investigate the sign of

ϕ(n) by considering the global properties of ϕ when treated as a solution
to (5.15) and (5.16), the indirect approach developed here has ϕ(n) ≤ 0
already from the necessary condition (5.8) for the choice of the slack function
S(·). For any n at which (5.18) holds, one immediately knows that uc +
uy is nonnegative, i.e., that (c(n), y(n)) cannot be distorted upward from
efficiency.

Moreover, for any n, ϕ(n) = 0 implies that ϕ reaches a maximum at n. If
ϕ were known to be twice continuously differentiable, then for n ∈ (n0, n1),
ϕ(n) = 0 would imply that ϕ′(n) = 0 and ϕ′′(n) ≤ 0. From (5.18) and from
(5.16) holding as an equation, one would therefore obtain uc + uy = 0 and
λ+uy = 0. Moreover, for (5.16) holding as an equation, total differentiation
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would yield d
dn

uy = −ϕ′′(n)uy ≤ 0. Because this is incompatible with con-
dition DR, it seems that, for n ∈ (n0, n1), one cannot have ϕ(n) = 0. This
implies ϕ(n) < 0 and hence, by (5.18), uc + uy > 0 so that (c(n), y(n)) is
distorted downward from efficiency.

Unfortunately, matters are not so simple: One cannot presume that ϕ is
twice continuously differentiable, not even that ϕ′ is continuous. Moreover,
one must consider the role of ψ′(n) in (5.15) and (5.17) and the possibility
that (5.15) - (5.17) are inequalities rather than equations. The formal proof,
which is given in the next subsection, addresses these issues.

The proof will follow the same line of argument as the proof for the case
of finitely many types. To understand the parallel, it is useful to note that
the Hamiltonian (5.6) has the same structure as the sum of terms with index
i in the Lagrangian (4.5) for the finite-type problem, except that (5.6) has
ϕ(n) and ψ(n) where (4.5) has −µi and −νi. The optimality conditions here
have also the same structure as the first-order conditions (4.6) - (4.10). For
instance, if one rewrites (4.6) in the form

νi − νi+1 − λfi + uc(ci, yi, ni)fi − [µi+1uc(ci, yi, ni+1)− µiuc(ci, yi, ni)] ≤ 0,

one sees that, with −µi and −νi taking the place of ϕ(n) and ψ(n), this has
the same structure as (5.15). Once the parallel is seen, the line of argument
to be followed is clear from the finite-type case.

5.2 Proof of Theorem 3.1 for a Continuum of Types

Throughout this subsection, (c(·), y(·)) is a canonical solution to the weakly
relaxed income tax problem, v(·) is the associated payoff function, and λ ≥ 0,
χ(·), ϕ(·), ψ(·) are the associated Lagrange multipliers and costate variables.

The first step of the proof shows that people with the same consumption
must also provide the same output. This corresponds to Lemma 4.1 in the
finite-type case. Part (a) of condition DR again plays a central role.

Lemma 5.2 For any n and n′ > n, in N, c(n) = c(n′) implies that y(·) is
constant on (n, n′).

Proof. Suppose that the lemma is false, and let n, n′ > n be such
that that c(n) = c(n′), and y(·) is not constant on (n, n′). Because c(·) is
constant on [n, n′], downward incentive compatibility implies that y(·) is
nonincreasing on [n, n′]. Therefore, if y(·) is not constant on (n, n′), there
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exists a point n̂ ∈ (n, n′) at which y(·) is strictly decreasing. Then one has

v(nk)− v(nj) =

∫ nk

nj

uy(c(n̆), y(n̆), n̆)dy(n̆) +

∫ nk

nj

un(c(n̆), y(n̆), n̆)dn̆

>

∫ nk

nj

un(c(n̆), y(n̆), n̆)dn̆,

for all nj ∈ (n, n̂) and all nk ∈ (n̂, n′). The slack function S(·) is therefore
strictly increasing at n̂. Because (5.8) must hold as an equation if S(·) is
strictly increasing at n, it follows that ϕ(n̂) = 0. If one defines

hy(n) := ϕ(n)e
∫ n
n0

uny

uy
dn′

, (5.19)

then (5.8) implies hy(n) ≤ 0 for all n, and ϕ(n̂) = 0 implies hy(n̂) = 0,
so the function hy(·) has a maximum at n̂. For some sequence {nj} which
converges to n̂ from below, one therefore has h′y(nj) ≥ 0, hence

ϕ′(nj) + ϕ(nj)
uny(c(nj), y(nj), nj)

uy(c(nj), y(nj), nj)
≥ 0 (5.20)

for all j. Moreover, for some sequence {nk} which converges to n̂ from above,
one has h′y(n

k) ≤ 0, hence

ϕ′(nk) + ϕ(nk)
uny(c(nk), y(nk), nk)

uy(c(nk), y(nk), nk)
≤ 0 (5.21)

for all k. Because y(·) is strictly decreasing at n̂, one must have y(nj) > 0
for all j. For n = nj, therefore, (5.16) must hold as an equation. Upon
combining this equation with (5.20), one concludes that

−
λ+ uy(c(nj), y(nj), nj)

uy(c(nj), y(nj), nj)
≥ 0 (5.22)

for all j. In contrast, for n = nk, (5.16) holds as inequality. Upon combining
this inequality with (5.21), taking account of the fact that uy(c(nk), y(nk), nk) <
0, one finds that

−
λ+ uy(c(nk), y(nk), nk)

uy(c(nk), y(nk), nk)
≤ 0 (5.23)

for all k. (5.22) and (5.23) imply that uy(c(nj), y(nj), nj) ≥ uy(c(nk), y(nk), nk)
for all j and k.
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However, for any sufficiently large j and k, one also has c(nj) = c(nk)
and y(nj) > y(nk). For such j and k, RMC implies uy(c(n

k), y(nk), nj) >
uy(c(n

k), y(nk), nk), contrary to part (a) of DR. The assumption that, for
some n, n′ > n, and n̂ ∈ (n, n′), one has c(n) = c(n′) and y(·) strictly
decreasing at n̂ has thus led to a contradiction and must be false.

Lemma 5.3 The Lagrange multiplier of the feasibility constraint is strictly
positive, i.e. λ > 0.

In the finite-type case, the assertion of Lemma 5.3 is trivial because any
slack in the feasibility constraint can be used to raise the highest type’s
consumption without upsetting downward incentive compatibility or con-
sumption monotonicity. In the continuous-type case, the conclusion is still
true, but one has to pay more attention to the constraints. The argument,
which is given in the Appendix, is purely technical and provides no addi-
tional insight.

The next lemma shows that consumption and output provision are (al-
most) never inefficiently high. This corresponds to Lemma 4.2 in the finite-
type case. A minor complication is caused by the possibility that v(·) or c(·)
might be discontinuous. Relying on the monotonicity of v(·) and c(·), I there-
fore introduce the left-hand limits v̂(n) = limn′↑n v(n

′), ĉ(n) = limn′↑n c(n
′).

By RMQ, one can also define ŷ(n) so that v̂(n) = u(ĉ(n), ŷ(n), n), and one
has ŷ(n) = limn′↑n y(n

′). Further, using abbreviated notation again, I write
(c∗(n), y∗(n)) and (ĉ∗(n), ŷ∗(n)) for the efficient pairs (c∗(n, v(n)), y∗(n, v(n)))
and (c∗(n, v̂(n)), y∗(n, v̂(n))) corresponding to the utility levels v(n) and
v̂(n).

Lemma 5.4 For all n ∈ N, (ĉ(n), ŷ(n)) ≤ (ĉ∗(n), ŷ∗(n)). In particular,
(c(n), y(n)) ≤ (c∗(n), y∗(n)) for all n ∈ N at which (c(·), y(·)) is continuous.

Proof. If the lemma is false, one has (ĉ(n̂), ŷ(n̂)) >> (ĉ∗(n̂), ŷ∗(n̂)) for
some n̂ ∈ N. Because v̂(n̂) = limn↑n̂ v(n), RMC implies that

(ĉ∗(n̂), ŷ∗(n̂)) = lim
n↑n̂
(c∗(n), y∗(n)).

By the definition of (ĉ(n̂), ŷ(n̂)), it follows that, for some δ > 0, one has
(c(n), y(n)) >> (c∗(n), y∗(n)) for all n ∈ (n̂− δ, n̂). It follows that c(n) > 0
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and y(n) > 0 for all n ∈ (n̂− δ, n̂). On the interval (n̂− δ, n̂), (5.17) must
therefore hold as an equation, i.e., one has

ψ′(n) = λ
uc + uy

uy
f(n)− ϕ(n)(unc −

uc
uy

uny). (5.24)

By RMQ, the inequality (c(n), y(n)) >> (c∗(n), y∗(n)), and Lemma 5.3, the
first term on the right-hand side of (5.24) is strictly positive. By SSCC
and (5.8), the second term on the right-hand side of (5.24) is nonnegative.
Therefore, ψ′(n) > 0 for n ∈ (n̂ − δ, n̂). Since (5.9) implies ψ(n̂) ≤ 0, it
follows that ψ(n) < 0 for all n ∈ (n̂− δ, n̂).

By the transversality condition ψ(n0) = 0, the set {n < n̂− δ|ψ(n) = 0}
is nonempty. Let n̄ be the supremum of this set. By the continuity of ψ, one
has ψ(n̄) = 0 and n̄ < n̂− δ. By the definition of n̄, one also has ψ(n) < 0
for all n ∈ (n̄, n̂). Therefore, c(n) = c(n̂) for all n ∈ (n̄, n̂). By Lemma 5.2,
it follows that y(n) = y(n̂) for all n ∈ (n̄, n̂ + δ). However, by SSCC, the
inequality

uc(c(n̂), y(n̂), n̂) + uy(c(n̂), y(n̂), n̂) < 0

implies that
uc(c(n̂), y(n̂), n) + uy(c(n̂), y(n̂), n) < 0 (5.25)

for all n < n̂. By (5.24), it follows that ψ′(n) > 0 for n ∈ (n̄, n̂− δ), as well
as n ∈ (n̂− δ, n̂). Since ψ(n̂− δ) < 0, it follows that ψ(n̄) < 0, contrary to
the definition of n̄. The assumption that (ĉ(n̂), ŷ(n̂)) >> (ĉ∗(n̂), ŷ∗(n̂)) for
some n̂ ∈ N thus leads to a contradiction and must be false.

The next lemma shows that, at any n ∈ (n0, n1), either the monotonicity
constraint on S(·) or the monotonicity constraint on consumption must be
strictly binding. This corresponds to Lemma 4.3 in the finite-type case.
Again, part (b) of condition DR is central to the argument.

Lemma 5.5 For any n ∈ (n0, n1), at least one of the costate variables ϕ(n),
ψ(n) is nonzero.

The proof of Lemma 5.5 follows the same line of argument as the proof
of Lemma 4.3, namely:
Step 1: If ϕ(n̂) = ψ(n̂) = 0 for some n̂ ∈ (n0, n1), then (ĉ(n̂), ŷ(n̂)) =

(ĉ∗(n), ŷ∗(n)), i.e., the left-hand limit limn↑n̂(c(n), y(n)) is efficient for n̂.
Step 2: If ϕ(n̂) = ψ(n̂) = 0 for some n̂ ∈ (n0, n1), then |uy(ĉ(n̂), ŷ(n̂), n̂)| ≤

λ.
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Step 3: If ϕ(n̂) = ψ(n̂) = 0 for some n̂ ∈ (n0, n1), then there exists a se-
quence {nk}, which converges to n̂ from above, such that

∣∣uy(c(nk), y(nk), nk)
∣∣ ≥

λ for all k.
Step 4: The conclusions of Steps 1 - 3 are in conflict with part (b) of

condition DR.
However, in the continuous-type case, the argument for each of these

steps is significantly more involved than in the finite-type case. The first
three steps are therefore given as separate lemmas.

Lemma 5.6 For any n̂ ∈ (n0, n1], ϕ(n̂) = ψ(n̂) = 0 implies

(ĉ(n̂), ŷ(n̂)) = (ĉ∗(n), ŷ∗(n)). (5.26)

Moreover, if ĉ(n̂) > 0, then c(n) < ĉ(n̂) for n < n̂.

Proof. ψ(n̂) = 0 implies that, for some sequence {nk} which converges
to n̂ from below, one has ψ′(nk) ≥ 0 for all k. For any element of this
sequence, (5.18) yields

ϕ(nk)(uknc −
ukc
uky

ukny) ≤ λ
ukc + uky

uky
f(nk). (5.27)

By the continuity of ϕ, ϕ(n̂) = 0 implies that the left-hand side of (5.27)
goes to zero as nk converges to n̂. Since uky < 0 for all k, it follows that

lim
k→∞

(ukc + uky) ≤ 0,

and hence, by RMQ, that

uc(ĉ(n̂), ŷ(n̂), n̂) + uy(ĉ(n̂), ŷ(n̂), n̂) ≤ 0. (5.28)

Thus (ĉ(n̂), ŷ(n̂)) ≥ (ĉ∗(n̂), ŷ∗(n̂)). By Lemma 5.4 and RMQ, one also has
(ĉ(n̂), ŷ(n̂)) ≤ (ĉ∗(n̂), ŷ∗(n̂)). (5.26) follows immediately.

By PEP, it follows that ŷ∗(n̂) > 0. If ĉ(n̂) > 0, the first-order condition
for (ĉ∗(n̂), ŷ∗(n̂)) implies that

uc(ĉ(n̂), ŷ(n̂), n̂) + uy(ĉ(n̂), ŷ(n̂), n̂) = 0. (5.29)

For n < n̂ therefore, SSCC implies

uc(ĉ(n̂), ŷ(n̂), n) + uy(ĉ(n̂), ŷ(n̂), n) < 0,

so Lemma 5.4 yields (c(n), y(n)) �= (ĉ(n̂), ŷ(n̂)). By Lemma 5.2, it follows
that c(n) �= ĉ(n̂). By consumption monotonicity, therefore, c(n) < ĉ(n̂) for
n < n̂.
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Lemma 5.7 For any n̂ ∈ (n0, n1), ϕ(n̂) = ψ(n̂) = 0 implies

|uy(ĉ(n̂), ŷ(n̂), n̂)| ≤ λ. (5.30)

Proof. Let n̂ ∈ (n0, n1) be such that ϕ(n̂) = ψ(n̂) = 0. I distinguish two
cases according to whether ĉ(n̂) is zero or positive. In either case, Lemma
5.6 yields (5.26), so PEP implies ŷ(n̂) > 0.

If ĉ(n̂) = 0, then, by the monotonicity of consumption and Lemma 5.2,
one must have c(n) = 0 and y(n) = ŷ(n̂) for n < n̂. Positivity of ŷ(n̂) implies
that, for n ∈ (n0, n̂), (5.16) must hold as an equation. With c(n) = 0 and
y(n) = ŷ(n̂), this equation takes the form

λf(n) + uy(0, ŷ(n̂), n)f(n) +
d

dn
ϕ(n)uy(0, ŷ(n̂), n) = 0. (5.31)

Now RMC and (5.8) imply that ϕ(n)uy(0, ŷ(n̂), n) ≥ 0 for all n. Because
ϕ(n̂)uy(0, ŷ(n̂), n̂) = 0, it follows that, for some sequence {nj} which con-
verges to n̂ from below, one has d

dn [ϕ(·)uy(0, ŷ(n̂), ·)](nj) ≤ 0 for all j, hence
λf(nj) + uy(0, ŷ(n̂), nj)f(nj) ≥ 0 for all j. Upon taking limits as nj con-
verges to n̂, one finds that |uy(0, ŷ(n̂), n̂)| ≤ λ, which is just (5.30).

If ĉ(n̂) > 0, then, by Lemma 5.6, one has ĉ(n̂) > c(n) for all n < n̂.
Therefore there exists a sequence {nk} converging to n̂ from below such
that ψ(nk) = 0 for all k. Because ĉ(n̂) > 0, one may also suppose that, for
some k0, (5.15) must hold as an equation for all n ≥ nk0 . This equation can
be rewritten as:

d

dn

(
ϕ(n)e

∫ n
n0

unc
uc
dn′
)
=

[
λ− uc

uc
f (n)−

ψ′(n)

uc

]
e
∫ n
n0

unc
uc
dn′ , (5.32)

so integration between nk and n̂ yields:

ϕ(n̂)e
∫ n̂
n0

unc
uc
dn′ = ϕ(nk)e

∫ nk
n0

unc
uc
dn′ +

∫ n̂

nK

λ− uc
uc

f(n)e
∫ n
n0

unc
uc
dn′dn

−

∫ n̂

nK

ψ′(n)

uc
f(n)e

∫ n
n0

unc
uc
dn′dn. (5.33)

Because ϕ(n̂) = 0 and, by (5.8), ϕ(nk) ≤ 0, it follows that
∫ n̂

nk

λ− uc
uc

f(n)e
∫ n
n0

unc
uc
dn′dn ≥

∫ n̂

nk

ψ′(n)

uc
f(n)e

∫ n
n0

unc
uc
dn′dn (5.34)

for all k. Lemma A.4 in the Appendix shows that the right-hand side of
(5.34) is equal to zero for all k. Thus,

∫ n̂

nk

λ− uc
uc

f(n)e
∫ n
n0

unc
uc
dn′dn ≥ 0 (5.35)
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for all k. (5.35) holding, regardless of k, implies that, for some sequence
{nj} converging to n̂ from below, one has λ ≥ uc(c(nj), y(nj), nj) for all j.
By RMQ, it follows that λ ≥ uc(ĉ(n̂), ŷ(n̂), n̂). To establish (5.30), it now
suffices to observe that, with ĉ(n̂) > 0 and ŷ(n̂) > 0 (5.26) implies

uc(ĉ(n̂), ŷ(n̂), n̂) + uy(ĉ(n̂), ŷ(n̂), n̂) = 0.

Lemma 5.8 For any n̂ ∈ (n0, n1), ϕ(n̂) = ψ(n̂) = 0 implies that, for some
sequence {nk} which converges to n̂ from above, one has

∣∣∣uy(c(nk), y(nk), nk)
∣∣∣ ≥ λ (5.36)

for all k.

Proof. Let n̂ ∈ (n0, n1) be such that ϕ(n̂) = ψ(n̂) = 0. As in the proof

of Lemma 5.2, let hy(n) = ϕ(n) exp
(∫ n
n0

uny
uy

dn′
)
, so (5.8) implies hy(n) ≤ 0

for all n, and ϕ(n̂) = 0 implies hy(n̂) = 0. Because hy(·) has a maximum at
n̂, there exists a sequence {nk} which converges to n̂ from above, such that
h′y(n

k) ≤ 0 for all k, hence

ϕ′(nk) + ϕ(nk)
uny(c(n

k), y(nk), nk)

uy(c(nk), y(nk), nk)
≤ 0

for all k. By (5.16), it follows that

λ+ uy(c(nk), y(nk), nk)

uy(c(nk), y(nk), nk)
≥ 0

for all k. Given that uy(c(nk), y(nk), nk) < 0, (5.36) follows immediately.

Proof of Lemma 5.5. By downward incentive compatibility, Lemma
5.6, and Lemma 5.4, the triples (ĉ(n̂), ŷ(n̂), n̂) and (c(nk), y(nk), nk) satisfy
all the premises of part (b) of DR. For any sufficiently large k, one therefore
has

∣∣uy(c(nk), y(nk), nk)
∣∣ < |uy(ĉ(n̂), ŷ(n̂), n̂)|. However, this is incompatible

with (5.30) and (5.36).

Given Lemma 5.5, the following lemma shows that downward incentive
compatibility is everywhere locally binding. This is the analogue of Lemma
4.4 in the finite-type case.
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Lemma 5.9 For any n ∈ (n0, n1),

dv

dn
(n) = un(c(n), y(n), n). (5.37)

Proof. If the lemma is false, then, by (5.4), there exists a point n̂ ∈
(n0, n1) at which the slack function S(·) is strictly increasing. By the comple-
mentary slackness condition associated with (5.8), it follows that ϕ(n̂) = 0.
By Lemma 5.5, it follows that ψ(n̂) < 0. Because ψ is continuous, one must
have ψ(n) < 0 for all n in some neighbourhood [n̂ − δ, n̂ + δ] of n̂. By
the complementary slackness condition associated with (5.9), it follows that
(c(n), y(n)) = (c(n̂), y(n̂)) for all n ∈ [n̂− δ, n̂+ δ]. Hence

v(n̂+ δ)− v(n̂− δ) = u(c(n̂), y(n̂), n̂+ δ)− u(c(n̂), y(n̂), n̂− δ)

=

∫ n̂+δ

n̂−δ
un(c(n), y(n), n)dn. (5.38)

By (5.4), it follows that S(n̂+ δ)−S(n̂− δ) = 0, contrary to the assumption
that S(·) is increasing at n̂. The assumption that S(·) is increasing at n̂ must
therefore be false.

From (5.37), RMQ, and SSCC, in combination with the continuity of
the allocation at n0 and n1, one immediately obtains:

Corollary 5.10 The functions c(·) and y(·) are co-monotonic, i.e., y(·) is
increasing at any point at which c(·) is increasing and constant on any set
on which c(·) is constant. Moreover, the allocation (c(·), y(·)) is incentive
compatible.

Relying on Lemmas 5.4 and 5.9, the following two lemmas replicate
Lemmas 4.6 and 4.7, showing that the difference between consumption and
required output is nondecreasing and that consumption must be positive.

Lemma 5.11 The function n→ c(n)−y(n) is nonincreasing on N ; on any
subset of N on which (c(n), y(n)) is distorted downward from efficiency, the
function n→ c(n)− y(n) is strictly decreasing.

Proof. For any n̂ ∈ [n0, n1) and any n ∈ (n̂, n1], one can write

c(n)− y(n) = c(n̂)− y(n̂) +

∫ n

n̂

dc(n′)−

∫ n

n̂

dy(n′). (5.39)
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By (5.37), one has

∫ n

n̂

dc(n′) = −

∫ n

n̂

uy(c(n
′), y(n′), n′)

uc(c(n′), y(n′), n′)
dy(n′).

Because Lemma 5.4 implies that uc(c(n
′), y(n′), n′) ≥ −uy(c(n

′), y(n′), n′) for
almost all n′, with a strict inequality if (c(n′), y(n′)) is distorted downward
from efficiency, the result follows.

Lemma 5.12 For n ∈ N, consumption is bounded away from zero.

Proof. If the lemma is false, one has c(n0) = 0. By Lemma 5.11, one
then has

c(n)− y(n) ≤ −y(n0) ≤ 0 (5.40)

for all n ∈ N. But then, for all n ∈ N, one has

u(c(n), y(n), n) ≤ u(yLF (n), yLF (n), n), (5.41)

where, for any n, yLF (n) is the laissez-faire level of output provision and
consumption, i.e.,

yLF (n) = argmax
y

u(y, y, n).

The allocation (c(·), y(·)) would thus be dominated by the laissez-faire allo-
cation (yLF (·), yLF (·)) and could not be a canonical solution to the weakly
relaxed income tax problem unless one had (c(n), y(n)) = (yLF (n), yLF (n))
for almost all n ∈ N. Given that c(n0) = 0, it follows that yLF (n0) = 0. By
PEP, this is impossible.

Lemma 5.13 On any compact subset of (n0, n1), (c(n), y(n)) is distorted
downward and bounded away from efficiency.

Proof. If the lemma is false, there exists a sequence {nj} converging to
some n̂ ∈ (n0, n1) such that

lim
j→∞

(c(nj), y(nj)) = lim
j→∞

(c∗(nj), y
∗(nj)). (5.42)

By Lemma 5.9, the function v(·) is continuous at n̂. Therefore,

lim
k→∞

(c∗(nj), y
∗(nj)) = (c

∗(n̂), y∗(n̂)). (5.43)
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By (5.43) and Lemma 5.12, one has c∗(n̂) > 0 and, by PEP, y∗(n̂) > 0.
Therefore,

uc(c
∗(n̂), y∗(n̂), n̂) + uy(c

∗(n̂), y∗(n̂), n̂) = 0. (5.44)

I claim that ψ(n̂) = 0. If ψ(n̂) < 0, then, by the continuity of ψ, there
exists δ > 0 such that ψ(n) < 0 for all n ∈ (n̂− δ, n̂+ δ). Then c(n) = c∗(n̂)
and, by Lemma 5.2, y(n) = y∗(n̂) for all n ∈ (n̂ − δ, n̂+ δ). By SSCC and
(5.44), it follows that (c(n̂), y(n̂)) >> (c∗(n̂), y∗(n̂)) for all n ∈ (n̂ − δ, n̂),
contrary to Lemma 5.4. The assumption that ψ(n̂) < 0 thus leads to a
contradiction and must be false.

Since ψ(n̂) = 0 and, by (5.9), ψ(n) ≤ 0 for n > n̂, there exists a sequence
{nk} which converges to n̂ from above such that ψ′(nk) ≤ 0 for all k. By
the monotonicity of the allocation, one has

(c(nk), y(nk)) ≥ lim
j→∞

(c(nj), y(nj)) >> (0, 0) (5.45)

for all k, so, for n = nk, (5.17) must hold as an equation. Thus, ψ′(nk) ≤ 0
implies

λ
ukc + uky

uky
f(nk)− ϕ(nk)(uknc −

ukc
uky

ukny) ≤ 0 (5.46)

where the derivatives ukc , u
k
y, etc. are all evaluated at (c(nk), y(nk), nk). By

Lemma 5.4, one also has (c(nk), y(nk)) ≤ (c∗(nk), y∗(nk)). Upon combining
this inequality with (5.45), (5.42), and (5.43), one sees that

lim
k→∞

(c(nk), y(nk)) = (c∗(n̂), y∗(n̂)).

By (5.44) and RMQ, it follows that

lim
k→∞

λ
ukc + uky

uky
f(nk) = 0. (5.47)

By RMQ and the continuity of ϕ, (5.46) and (5.47) yield

−ϕ(n̂)(unc −
uc
uy

uny) ≤ 0. (5.48)

By SSCC, (unc −
uc
uy

uny) is strictly positive, so (5.48) implies ϕ(n̂) ≥ 0. By

(5.8), it follows that ϕ(n̂) = 0.
However, the finding that ϕ(n̂) = ψ(n̂) = 0 contradicts Lemma 5.5. The

assumption that (5.42) holds for some sequence {nj} converging to some
n̂ ∈ (n0, n1) must therefore be false.
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To complete the proof of Theorem 3.1 for the continuum case, I consider
the behaviour of the allocation near the top and the bottom. Given the
canonicity assumption that (c(n1), y(n1)) = (ĉ(n1), ŷ(n1)), Lemma 5.6 and
the transversality conditions (5.12) and (5.13) immediately yield (c(n1), y(n1)) =
(c∗(n1), y∗(n1)), as well as c(n1) > c(n1) for n < n1. At the bottom, matters
are slightly more complicated.

Lemma 5.14 If c(·) and y(·) are strictly increasing at n0, then

(c(n0), y(n0)) = (c∗(n0, v(n0)), y∗(n0, v(n0))); (5.49)

if the monotonicity constraint on c(·) is strictly binding at n0, then

(c(n0), y(n0)) << (c∗(n0, v(n0)), y∗(n0, v(n0))). (5.50)

Proof. Let {nk} be any sequence which converges to n0 from above.
Because c(n0) > 0, one must have c(nk) > 0 and y(nk) > 0 for all k.

Then (5.17) becomes

ψ′(nk) = λ
ukc + uky

uky
f(nk)− ϕ(nk)(uknc −

ukc
uky

ukny) (5.51)

for all k. Because ϕ and f , as well as the allocation (c(·), y(·)) are continuous
at n0, it follows that ψ′(nk) converges to a limit ψ′(n0). By the transversality

condition (5.12), the term ϕ(nk)(uknc−
ukc
uky

ukny) on the right-hand side of (5.51)

goes to zero as k becomes large. Therefore

ψ′(n0) = λ
uc(c(n0), y(n0), n0) + uy(c(n0), y(n0), n0)

uy(c(n0), y(n0), n0)
f(n0). (5.52)

If c(·) and y(·) are strictly increasing at n0, the sequence {nk} can be chosen
in such a way that ψ′(nk) ≥ 0 for all k. Given that ψ(n0) = 0 and ψ(nk) ≤ 0
for all k, it follows that ψ′(n0) = 0, so (5.52) implies (5.49). In contrast, if
ψ′(n0) < 0, (5.52) implies (5.50).

The proof of Theorem 3.1 for the continuous-type case is now complete.
Theorems 3.2 and 3.3 follow from Theorem 3.1 by the argument given in
the text.

42



A Appendix: Supplementary Proofs

A.1 Proof of Proposition 2.2

The proof of Proposition 2.2 proceeds in several steps. Each step corresponds
to a different subset of the set of pairs (c′, y′) for which the inequality (2.13)
is deemed to hold. For a better understanding of the structure, it will be
useful to refer back to Figure 1.

The first step concerns those outcome pairs (c′, y′) that lie on the hor-
izontal line from the pair which is assigned to type n to the vertical axis.
The following claim shows that, for such outcome pairs, the inequality (2.13)
holds regardless of whether the pair which is assigned to type n is efficient
or not. This claim follows directly from the concavity of u and (2.15).

Claim A.1 If (c, y, n) ∈ ℜ2+×[n
0, n1) and (c′, y′, n′) ∈ ℜ2+×(n, n1] are such

that c′ = c and y′ ≤ y, then |uy(c′, y′, n′)| < |uy(c, y, n)| .

The second step concerns outcome pairs (c′, y′) that lie on the indifference
curve I(n′) of type n′ between the reference point (c∗(n), y∗(n)) and the point
(c∗(n′), y∗(n′)) that is efficient for n′.

Claim A.2 For any (c, y, n) ∈ ℜ2+ × [n
0, n1) such that (c, y) is efficient for

n, there exists ε > 0 such that |uy(c
′, y′, n′)| < |uy(c, y, n)| for any n′ ∈

(n, n+ ε] and any (c′, y′) that satisfies

u(c′, y′, n′) = u(c, y, n′), (A.1)

as well as c ≤ c′ ≤ c∗(n′, u(c, y, n′)).

Proof. If c = 0 or y = 0 and if the first-order condition for (c, y) to be
efficient for n,

uc(c, y, n) + uy(c, y, n) ≤ 0, (A.2)

holds as a strict inequality, then, for n′ sufficiently close to n, (c, y) must
also be efficient for n′. In this case, (A.1) and c ≤ c′ ≤ c∗(n′, u(c, y, n′))
imply (c′, y′) = (c, y), hence

uy(c
′, y′, n′)− uy(c, y, n) =

∫ n′

n

uyn(c, y, n
′′)dn′′,

and the claim follows from (2.15).
Alternatively, if (c, y) satisfies the equation

uc(c, y, n) + uy(c, y, n) = 0, (A.3)
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then, for n′ > n, SSCC implies

uc(c, y, n
′) + uy(c, y, n

′) > 0

By PEP, there exists a unique pair (c∗(n′, u(c, y, n′)), y∗(n′, u(c, y, n′))) that
lies on I(n′) and is efficient for n′. This pair is strictly greater than (c, y) and
satisfies the first-order condition for an interior efficient point, uc + uy = 0.

By RMQ, the indifference curve I(n′) is strictly convex. Between the
reference point (c, y) and the efficient pair for n′, its slope is strictly de-

creasing from uc(c,y,n′)
|uy(c,y,n′)|

to one. For any point (c′, y′) on I(n′) that satisfies

c ≤ c′ ≤ c∗(n′, u(c, y, n′)), there must therefore exist some δ ∈ [0, 1] such
that

uc(c
′, y′, n′)

|uy(c′, y′, n′)|
= δ

uc(c, y, n
′)

|uy(c, y, n′)|
+ (1− δ). (A.4)

Conversely, for the given n′ and any δ ∈ [0, 1], there exists a pair (ĉ(n′, δ), ŷ(n′, δ))
such that (c′, y′) = (ĉ(n′, δ), ŷ(n′, δ)) lies between (c, y) and (c∗(n′), y∗(n′))
and is the unique solution to equations (A.1) and (A.4). By construction,
one has (ĉ(n, δ), ŷ(n, δ)) = (c, y) for all δ. One also has (ĉ(n′, 0), ŷ(n′, 0)) =
(c∗(n′, u(c, y, n′)), y∗(n′, u(c, y, n′))) for all n′.

By standard arguments, relying on the implicit function theorem, the
assumption that indifference curves have positive Gaussian curvature implies
that the functions ĉ(·, ·) and ŷ(·, ·) that are defined by (A.1) and (A.4) are
continuously differentiable. It follows that, for any δ ∈ [0, 1] and any n′ ≥ n,
the derivative

duy(ĉ(n
′, δ), ŷ(n′, δ), n′)

dn′
=

[
uyc

∂ĉ

∂n′
(n′, δ) + uyy

∂ŷ

∂n′
(n′, δ) + uyn

]
(A.5)

is well defined. At n′ = n and any δ, one computes22

∂ĉ

∂n′
(n, δ) =

∂ŷ

∂n′
(n, δ) = −(1− δ)

(ucn + uyn)

ucc + ucy + uyc + uyy
. (A.6)

22Positivity of the Gaussian curvature implies that the denominator in (A.6) is strictly
negative.
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For any δ ∈ [0, 1], one therefore obtains

duy(ĉ(n
′, δ), ŷ(n′, δ), n′)

dn′
(n, δ)

= −(1− δ)
(ucn + uyn)

ucc + ucy + uyc + uyy
(uyc + uyy) + uyn

= (1− δ)

[
−

(uyc + uyy)

ucc + ucy + uyc + uyy
ucn +

(ucc + ucy)

ucc + ucy + uyc + uyy
uyn

]
+ δuyn

= (1− δ)

[
ucn

∂c∗(n, v)

∂v
+ uyn

∂y∗(n, v)

∂v

]
+ δuyn

≥ min

[
−

(
ucn

∂c∗(n, v)

∂v
+ uyn

∂y∗(n, v)

∂v
(n)

)
, uyn

]
. (A.7)

The right-hand side of (A.7) is independent of δ. By (2.15) and (2.16), it is
also strictly positive. It follows that, for some ε > 0, n′ ∈ (n, n+ ε] implies

duy(ĉ(n
′, δ), ŷ(n′, δ), n′)

dn′
(n′, δ) > 0

for all δ ∈ [0, 1]. The claim follows immediately.

The third step concerns those outcome pairs (c′, y′) for type n′ that lie in
the shaded area to the left of the curve A−A of efficient points in Figure 1
and strictly above the indifference curve I(n′), as well as the horizontal line
through the reference point (c∗(n), y∗(n)). The argument is adapted from
Brunner (1995).

Claim A.3 Suppose that (c, y) is efficient for n, and let ε be given by
Claim 2. Then |uy(c

′, y′, n′)| < |uy(c, y, n)| for any n′ ∈ (n, n + ε] and
any (c′, y′) such that c′ > c, u(c′, y′, n′) > u(c, y, n′), and uc(c

′, y′, n′) +
uy(c′, y′, n′) ≥ 0.

Proof. Let q be such that

quc(c
′, y′, n′) + uy(c

′, y′, n′) = 0. (A.8)

Because uy(c
′, y′, n′) < 0 and uc(c

′, y′, n′) + uy(c
′, y′, n′) ≥ 0, one must have

q ∈ (0, 1]. For any v in the range of u, let (c̄(v), ȳ(v)) be the solution to the
problem of minimizing c′′ − qy′′ under the constraint that u(c′′, y′′, n′) ≥ v.
The existence of such a solution follows from RMQ, PEP and the fact that
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q ≤ 1. By RMQ, the solution satisfies (c̄(v), ȳ(v)) ≤ (c∗(n′, v), y∗(n′, v)) for
all v.

From (A.8), one easily finds that (c′, y′) = (c̄(u(c′, y′, n′)), ȳ(u(c′, y′, n′))).
Because u is concave, one also has

∣∣uy(c̄(v), ȳ(v), n′)
∣∣ ≥

∣∣uy(c′, y′, n′)
∣∣ (A.9)

whenever v < u(c′, y′, n′). In particular,
∣∣uy(c̄(u(c, y, n′)), ȳ(u(c, y, n′)), n′)

∣∣ ≥
∣∣uy(c′, y′, n′)

∣∣ .

If c̄(u(c, y, n′)) ≥ c, the claim follows from (A.9) because Claim A.2 yields
|uy(c̄(u(c, y, n′)), ȳ(u(c, y, n′)), n′)| < |uy(c, y, n)| . If c̄(u(c, y, n′)) < c, then,
by the intermediate value theorem, there exists v̂ ∈ (u(c, y, n′), u(c′, y′, n′))
such that c̄(v̂) = c and ȳ(v) < y. For this v̂, Claim A.1 yields |uy(c̄(v̂), ȳ(v̂), n′)| <
|uy(c, y, n)| , so again, the claim follows from (A.9).

To complete the proof of Proposition 2.2, it suffices to note that, if N is
an interval, then there is no loss of generality in postulating that n + ε is
an element of N. The same is true if N is a finite set and the elements of N
are sufficiently close.

A.2 Additional Proofs for Section 5

Proof of Lemma 5.1. The argument follows Mirrlees (1976). For any n,
let S(n) be the difference between v(n) and the integral

∫ n
n0

un(c(n′), y(n′), n′)dn′.
If S(·) is a nondecreasing function, one has

∫ n

n′
χ(n′′, n)dS(n) ≥ 0 (A.10)

for all n, all n′ < n, and every nonnegative-valued function χ. By the defin-
ition of S(·), (A.10) is equivalent to the inequality
∫ n

n′
χ(n′′, n)[uc(c(n

′′), y(n′′), n′′)dc(n′′) + uy(c(n
′′), y(n′′), n′′)dy(n′′)] ≥ 0.

With χ(n′′, n) = uy(c(n′′),y(n′′),n)
uy(c(n′′),y(n′′),n′′)

, it follows that

∫ n

n′
uy(c(n

′′), y(n′′), n)dy(n′′)

+

∫ n

n′

uy(c(n
′′), y(n′′), n)

uy(c(n′′), y(n′′), n′′)
uc(c(n

′′), y(n′′), n′′)dc(n′′) ≥ 0 (A.11)
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for all n and all n′ < n.
By SSCC and RMC, one also has

−uy(c(n
′′), y(n′′), n)

uc(c(n′′), y(n′′), n)
<
−uy(c(n

′′), y(n′′), n′′)

uc(c(n′′), y(n′′), n′′)
,

whenever n′′ < n. Because c(·) is nondecreasing, it follows that

−

∫ n

n′

uy(c(n
′′), y(n′′), n)

uy(c(n′′), y(n′′), n′′)
uc(c(n

′′), y(n′′), n′′)dc(n′′)

≥ −

∫ n

n′
uc(c(n

′′), y(n′′), n)dc(n′′) (A.12)

for all n and all n′ < n. Now (A.11) and (A.12) imply
∫ n

n′
uc(c(n

′′), y(n′′), n)dc(n′′) +

∫ n

n′
uy(c(n

′′), y(n′′), n)dy(n′′) ≥ 0, (A.13)

hence
u(c(n), y(n), n) ≥ u(c(n′), y(n′), n) (A.14)

for all n and all n′ < n. Monotonicity of c(·) and S(·) is thus sufficient for
downward incentive compatibility.

Conversely, for all n and all n′ < n, downward incentive compatibility
implies

v(n)− v(n′) ≥

∫ n

n′
un(c(n

′), y(n′), n′′)dn′′. (A.15)

By standard arguments, it follows that

v(n)− v(n′) =
K∑

k=1

(v(nk+1)− v(nk))

≥
K∑

k=1

∫ nk+1

nk

un(c(nk), y(nk), n
′′)dn′′ (A.16)

for every increasing sequence {nk}
K
k=1 with n1 = n′ and nK = n. Upon

taking limits across sequences {nk}
K
k=1 as K goes out of bounds and the

sequence {nk}Kk=1 becomes dense in the interval [n′, n], one concludes that

v(n)− v(n′) ≥

∫ n

n′
un(c(n

′′), y(n′′), n′′)dn′′

and, hence, that S(n) ≥ S(n′) for all n and all n′ < n.

47



Lemma A.4 For any n̂ and n̄ ∈ [n0, n1] such that ψ(n̂) = 0 and ψ(n̄) ≤ 0,
one has ∫ n̂

n̄

ψ′(n)

uc
f(n)e

∫ n
n0

unc
uc
dn′dn ≥ 0; (A.17)

(A.17) holds with equality if and only if ψ(n̄) = 0.

Proof. Without loss of generality, let n̄ < n̂. Neglecting null sets, one
may suppose that ψ′(n) is nonzero only on intervals of constancy of c(·). On
such intervals, by Lemma 5.2, y(·) is also constant. Let I be the collection
of such intervals between n̄ and n̂ and note that I is at most countable.
For any I ∈ I, let n0(I) and n1(I) be the infimum and the supremum of
I, and let c(I), y(I) be the common value of (c(n′), y(n′)) on (n0(I), n1(I)).
Because ψ′(n) may be taken to vanish outside the union of intervals in I,
one can write:

∫ n̂

n̄

ψ′(n)

uc
f(n)e

∫ n
n0

unc
uc
dn′dn =

∑

I∈I

∫ n1(I)

n0(I)

ψ′(n)

uc
e
∫ n
n0

unc
uc
dn′dn. (A.18)

For any I ∈ I and any n′ ∈ (n0(I), n1(I)), one has (c(n′), y(n′)) = (c(I), y(I)).
Therefore

exp

(∫ n

n0

unc
uc

dn′
)

= exp

(∫ n0(I)

n0

unc
uc

dn′ +

∫ n

n0(I)

d lnuc
dn′

dn′

)

= exp

(∫ n0(I)

n0

unc
uc

dn′ + ln
uc(c(I), y(I), n)

uc(c(I), y(I), n0(I))

)

=
uc(c(I), y(I), n)

uc(c(I), y(I), n0(I))
exp

(∫ n0(I)

n0

unc
uc

dn′

)

For any I ∈ I(n), it follows that
∫ n1(I)

n0(I)

ψ′(n)

uc(c(n), y(n), n)
e
∫ n
n0

unc
uc
dn′dn

=
1

uc(c(I), y(I), n0(I))
e
∫ n0(I)
n0

unc
uc
dn′
∫ n1(I)

n0(I)

ψ′(n)dn

=
1

uc(c(I), y(I), n0(I))
e
∫ n0(I)
n0

unc
uc
dn′ [ψ(n1(I))− ψ(n0(I))]. (A.19)

If ψ(n̄) = 0, then, by the definition of n0(I) and n1(I) and the continuity of
ψ, one has ψ(n0(I)) = ψ(n1(I)) = 0, hence

∫ n1(I)

n0(I)

ψ′(n)

uc
e
∫ n
n0

unc
uc
dn′dn = 0 (A.20)
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for all I ∈ I. Given that the set I is at most countable, (A.18) and (A.20)
imply ∫ n̂

n̄

ψ′(n)

uc
f(n)e

∫ n
n0

unc
uc
dn′dn = 0.

If ψ(n̄) < 0, there exists an initial interval I1 of constancy of c(·) such that
n̄ = n0(I1). For I ∈ I\{I1}, one again has ψ(n0(I)) = ψ(n1(I)) = 0, so
(A.20) holds and (A.18) - (A.20) imply
∫ n̂

n̄

ψ′(n)

uc
f(n)e

∫ n
n0

unc
uc
dn′dn =

∫ n1(I1)

n̄

ψ′(n)

uc
f(n)e

∫ n
n0

unc
uc
dn′dn

=
1

uc(c(I), y(I), n̄)
e
∫ n̄
n0

unc
uc
dn′ [ψ(n1(I1))− ψ(n̄)].

By the definition of n1(I1) and the continuity of ψ, one has ψ(n1(I1)) = 0.
Therefore ψ(n̄) < 0 implies

∫ n̂

n̄

ψ′(n)

uc
f(n)e

∫ n
n0

unc
uc
dn′dn > 0.

Proof of Lemma 5.3. If the lemma is false, λ = 0. Then (5.15) can
be written as

ψ′(n)

uc
+ f(n) + ϕ′(n) + ϕ(n)

unc
uc

≤ 0, (A.21)

which in turn implies

ψ′(n)

uc
e
∫ n
n0

unc
uc
dn′
+

d

dn

(
ϕ(n)e

∫ n
n0

unc
uc
dn′
)
< 0.

By integration, one obtains
∫ n1

n0

ψ′(n)

uc
e
∫ n
n0

unc
uc
dn′dn+ ϕ(n1)e

∫ n1
n0

unc
uc
dn′ − ϕ(n0) < 0. (A.22)

By (5.12), therefore,
∫ n1

n0

ψ′(n)

uc
e
∫ n
n0

unc
uc
dn′dn < 0. (A.23)

However, by Lemma A.4, in combination with (5.13) and (5.9), one also has
∫ n1

n0

ψ′(n)

uc
e
∫ n
n0

unc
uc
dn′dn ≥ 0.

The assumption that λ = 0 has thus led to a contradiction and must be
false.
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