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Abstract

This paper examines how the implementation of a new dark order – Midpoint Extended Life Order
on NASDAQ – impacts financial markets stability in terms of occurrences of mini-flash crashes in
individual securities. We use high-frequency order book data and apply panel regression analysis to
estimate the effect of M-ELO trading on market stability and liquidity provision. The results suggest
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introduction of M-ELO increases market stability by reducing the average number of mini-flash
crashes, but its impact on market quality is mixed.

Keywords: Market microstructure, financial market stability, mini-flash crash, dark trading, speed
bump, investor protection
JEL: G10, G14

IThis work was supported by the Luxembourg National Research Fund.
IIWe are grateful to NASDAQ Global Data Products for providing the data. We want to thank Yacine Aït-Sahalia,

Tarun Chordia, Hans Degryse, Thierry Foucault, Anthony Haynes, Albert Menkveld, Per Mykland, Charles Nathanson,
Roberto Steri, Jos van Bommel, Ulf von Lilienfeld-Toal, and Michael Weber for their valuable comments. We also
benefited from the comments of all participants in the 4th International Workshop on “Financial Markets and Nonlinear
Dynamics” in Paris, and the 2019 Summer School on Market Microstructure in Lugano. All errors are our own.

∗Corresponding author.
Email addresses: jorge.goncalves@uni.lu (Jorge Gonçalves), roman.kraussl@uni.lu (Roman Kräussl),

vladimir.levin@uni.lu (Vladimir Levin)
1Declaration of interest: none.

Electronic copy available at: https://ssrn.com/abstract=3384719Electronic copy available at: https://ssrn.com/abstract=3384719



1. Introduction

For a couple of decades, market participants have been spending massive resources to obtain

quick access to the richest data and invested in technologies to execute trades as fast as possible.

According to Easley et al. (2012), for the period from 2009 to 2012, the share of high-frequency

trading (HFT) firms have risen to more than 70% in the U.S. equity markets and approached 50%

of the volume in futures markets. Since then, the percentage of HFT firms had increased further.

Generally, HFTs use computer algorithms to look at patterns of prices, volumes, and past trading

activity and react to any changes in those patterns at a matter of micro- or even nanoseconds. Some

of them would not consider themselves as investing in fundamental information, but rather acquiring

information about market dynamics and liquidity. Because fast actions of one algorithm may trigger

responses of many others, small mispricing can rapidly self-reinforce itself and occasionally cause

flash-crashes in securities’ prices.

Golub et al. (2012) study the increase in the number of mini-flash crashes in individual securities

between 2006 and 2011 and suggest that HFT causes those crashes. Leal et al. (2016) build an

agent-based model to study how the interplay between low- and high-frequency trading affects

asset price dynamics. They find that the presence of HFT increases market volatility and plays

a fundamental role in the generation of flash crashes. On the other hand, Kirilenko et al. (2017)

examine the structure of the E-mini S&P 500 stock index futures market on May 6, 2010, and

observe that trading patterns of HFT did not change when prices fell during the Flash Crash.

Biais and Foucault (2014) and Biais et al. (2015) propose to create a segment of slow-friendly

markets but to leave room for investment in the fast trading technology. In the spirit of this
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recommendation, exchanges started to introduce technology-based solutions to protect the interests

of long-term investors. Those solutions were implemented in the form of latency delays and are

commonly known as “speed bumps”. The Investors Exchange (IEX) applied the first such measure

by introducing a 350-microsecond delay to all incoming and outgoing correspondences. Hu (2018)

observes improvements in market functioning around the period when IEX became a national

securities exchange. Moreover, he documents a positive impact of such speed bumps on market

quality in terms of tighter spreads and improved liquidity. Several other exchanges followed the

example of IEX and applied for the introduction of such a delay to the Securities and Exchange

Commission (SEC).

Allowing for dark trading may also help in protecting the interests of long-term investors as dark

orders hide trading intentions. When trading large amounts of stock using visible market or limit

orders, one cannot prevent the price to be moved. To reduce price impact, a trader can submit the

order to the dark pool and often even receive a better execution price. The downside of going to the

dark pool is execution uncertainty since there is no guarantee that a trader will find a counterparty.

Major exchanges nowadays run their own dark pools where the execution price is referenced by

the current mid-price (the average of the best bid and the best ask prices). It is difficult, however,

to hide dark orders from HFT firms. They use their speed advantage to submit hidden orders inside

the spread and quickly cancel them if they do not execute right away. If HFTs identified hidden

orders, they could easily manipulate the best quotes to transact with those orders at comfortable

prices.

In 2018, the NASDAQ exchange came up with a solution to improve dark orders and shield

3
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them from HFTs. Introduced on March 12, 2018, the Midpoint Extended Life Order (M-ELO)

is targeted toward long-term investors. Anonymity and confidentiality of M-ELO are the critical

tools to prevent potentially predatory counterparties from determining intentions and using that

information to generate short-term profits at the expense of slow traders. This order becomes

executable 500 milliseconds after submission and does not interact with other NASDAQ dark orders

that have not met the 500 milliseconds holding period requirement. On May 11, 2020, NASDAQ

revisited the design of the M-ELO order and decided to reduce the holding period to 10 milliseconds.

The exchange motivated this change by optimization in M-ELO opportunities and execution. The

decrease in the holding period was expected to open up M-ELO to use cases that were previously

unavailable2.

Despite increasing volumes traded in dark pools, there is still limited theoretical work discussing

the effect of hidden orders on market quality, stability, and price discovery. Boulatov and George

(2013) build a model where the strategies of informed traders can be adjusted in response to the

visible and hidden liquidity on the market. They analyze venue and order choices of traders and

find that hidden liquidity has a beneficial impact on market quality due to increased competition

among informed market participants.

In contrast to Boulatov and George (2013), Zhu (2014) argues that adding a dark pool alongside

the exchange decreases its liquidity. His model suggests that, since informed orders are much more

correlated than uninformed ones, informed traders would rather choose the lit venue to avoid low

execution probabilities in the dark pool. This relatively high presence of informed trading on the lit

2More information on the rule change may be found at https://www.nasdaq.com/articles/the-midpoint-extended-
life-order-m-elo%3A-m-elo-holding-period-2020-02-13
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exchange naturally increases price discovery which, in turn, leads to reduced liquidity. Buti et al.

(2017) numerically solve a discrete model in which traders decide to submit their order to either an

exchange or a dark pool. The authors obtain a set of equilibrium order submission probabilities

and show that the introduction of a dark pool alongside the exchange widens bid-ask spread and

reduces the depth available around the midquote. Those negative changes in market quality are

partially mitigated when the initial liquidity of the limit order book increases.

Overall, theoretical works propose mixed results about the effects of dark trading on market

quality and price discovery. It is still a challenge for regulators to decide on the degree of control

of dark trading. Moreover, the aspect of market stability received much less attention. However,

it remains a relevant topic in the current times of algorithmic trading proliferation since fragile

markets may undermine investors’ trust in the financial market system.

This paper adds to the existing literature on dark trading, speed bumps and also expands on its

relation to market stability.

Our paper aims to identify the degree to which M-ELO is used in securities trading and its

impact on the number of mini-flash crashes during a continuous trading period. We also investigate

the association between M-ELO trading and market liquidity. The analysis employs high-frequency

trades and quotes data from NASDAQ to identify mini-flash crashes in individual securities and to

relate crash occurrences to the intensity of dark M-ELO trading through panel regression analysis.

Recently implemented change in the order design allows also to disentangle the darkness and

the speed bump effects of the M-ELO. Our results suggest a strong relationship between M-ELO

volumes and measures of market quality and stability. This relationship is more pronounced through
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the speed bump effect of M-ELO rather than through the dark order effect. Overall, M-ELO is

associated with fewer flash crashes, greater visible volumes in the limit order book, but widened

spreads.

The remainder of the paper is organized as follows. Section 2 describes the data sources of

intra-day trading and M-ELO volumes. It also presents measures of liquidity and summary statistics.

Section 3 presents the methodology, empirical results, and describes various robustness checks.

Section 4 concludes.

2. Data and Descriptive Statistics

2.1. Data sources

The Order Book Message data come from NASDAQ historical ITCH. This data set contains

time-stamped in nanoseconds order submissions, executions, cancellations, and modifications on the

NASDAQ equity market. The data, however, do not identify market participants and their activity

in the dark. Submissions of hidden orders of any kind are not reported, while the executions are

visible for all order types.

The data allow us to directly observe liquidity provision on each depth level of the limit order

book at any time. The sample period covers three years of trading from January 2, 2018, to

December 31, 2020. We consider a set of 1,342 firms traded on NASDAQ, where the trading activity

is considerably high. We, therefore, in line with similar analyses of Andersen et al. (2001) and

Brogaard et al. (2018), preserve the sufficiently large number of observations by focusing our analysis

on large and medium firms.

6
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The limitations of this data are straightforward and similar to those that previous research

encountered (see, e.g., Carrion (2013); Brogaard et al. (2014); O’Hara et al. (2014); Brogaard et al.

(2018)). We do not observe individual HFT activity as well as trading activity on other venues.

Trades on NASDAQ account for, on average, 33% of trading activity for NASDAQ listed stocks,

about 12.5% for NYSE stocks, and 16% for ARCA stocks. Despite the high fragmentation nature of

financial markets, we share the reasoning of Brogaard et al. (2018) that liquidity transfers to other

venues are unlikely due to the short period of interest and overall similar liquidity provision rules

among exchanges. Thus, we argue that although the results obtained could not readily expand to

other exchanges, still they should be taken into account in the matters of market design.

The M-ELO order became available on March 12, 2018, and quickly gained its share of trading

volume which averages to be around 1.06% of NASDAQ’s total matched volume for the period

from 2018 to 2020. Weekly volumes of M-ELO trades come from NASDAQ’s M-ELO Transparency

Statistics3. Only weekly or lower frequencies of M-ELO trades are available. This is one of the

biggest limitations of the present analysis. By shifting to weekly observations one might lose

statistical power in identifying the effect of M-ELO trading. We resort to the fact, however, that

the size of the sample is sufficient and the panel structure of the data allows us to obtain robust

estimates.

Securities’ characteristics to serve as covariates in our analysis were both computed from trades

data and obtained from the SEC’s MIDAS Market Structure Metrics database. As an instrument

to the potentially endogenous M-ELO trading, we use the market-wide level of M-ELO trading in

3 Available at https://www.nasdaqtrader.com
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securities of the same market capitalization group.

2.2. Mini-flash crash identification

For the identification of mini-flash crashes, we only consider periods of continuous trading from

9:30 a.m. to 4:00 p.m. Our identification approach is similar to Brogaard et al. (2018) for extreme

price movements (EPM) identification. In their methodology, the trading day is split into 10-second

intervals between 9:35 a.m. and 3:55 p.m. The intervals are then ranked by the midquote return

magnitude and those with returns exceeding the 99.99th percentile are identified as EPMs.

However, our methodology differs from Brogaard et al. (2018) in several aspects. Firstly, we

account for cross-sectional heterogeneity in trading activities for different firms. This is done by

switching from a static time interval of 10 seconds to an interval with variable length. The length of

the interval depends directly on the number of trades in the security for a day. To make sure the

turnover is considerably high, we keep only those securities for which the number of trades for the

period from 09:30 a.m. to 4:00 p.m. is not less than 11,700. This way, we require each time interval

for mini-flash crash identification to contain at least 30 trades on average. Throughout the period

from 2018 to 2020, we identified 1,342 firms, who satisfy the minimum number of daily trades.

Secondly, as flash crashes are known for their subsequent reversals a simple calculation of

midquote returns has a flaw of missing those intervals within which the price suddenly jumps and

quickly retraces back. To overcome this problem, for each time interval we compute the maximum

possible midquote return. In such a way we obtain a series of intra-day extreme returns for a

security.

Next, for each firm, we identify the intervals containing mini-flash crashes as those where the

8
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Z-score for the midquote extreme returns at day t exceeds the value 7. These are the returns that

satisfy rt,i > µt + 7σt, where rt,i is the ith extreme return on day t, µt is the average extreme return

on day t, and σt is the standard deviation of extreme returns on day t for this particular security.

Lastly, we separate systematic flash crashes from idiosyncratic ones. Systematic crashes are not

limited to a particular security or exchange that is why it is unrealistic to expect any impact of

M-ELO activity on a single stock on a single exchange. For 221,005 identified mini-flash crashes,

for each stock, we check how many other stocks experienced a crash within a two-minute window

around the initial crash. We mark flash crashes that have 25 or more instances in other stocks as

systematic ones and remove them from the analysis.

The procedure gets a total of 30,942 idiosyncratic mini-flash crashes with 54.62% of them being

negative. This identification technique is in line with previous works of Golub et al. (2012) and

Johnson et al. (2013) that do not make a sharp distinction between crashes and spikes and require

the price to move fast and severely. Similar to the approach of Bellia et al. (2020), we study only

those mini-flash crashes which possess transitory dynamics. The average price reversal in the next

10 minutes following the end of the crash is 91.8%.

The first panel of Figure 1 shows the distribution of mini-flash crashes throughout the sample

period. There is no much visual evidence of M-ELO introduction having a significant effect on the

frequency of mini-flash crashes. We associate this fact with relatively low trading volumes of M-ELO

orders. There is, however, a decrease in the number of crashes not long after the introduction of

M-ELO that coincides with the spike in the M-ELO trading at this period. As we show in this

work, there is a statistically significant association between the degree of M-ELO trading and the
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expected number of mini-flash crashes observed during a week.

The last two panels of Figure 1 show the time trends for the median values of the quoted spread

and the depth available 30 basis points around the midquote relative to the daily trading volume.

The dynamics of the depth suggests market quality is improving during times of active M-ELO

trading in the first half of 2018. In 2019, the relative depth is at its highest levels, sometimes

exceeding 2% of the daily trading volume, while the spread stays moderate around 3 basis points.

In early 2020 we can clearly see the impact of the COVID-19 crisis. Spreads more than double while

fewer shares are available close to the midquote.

Figure 1 around here

An example of a mini-flash crash, identified by our approach is presented in Figure 2. The crash

occurred in the price of Procter & Gamble (PG) on March 21, 2018. Panel A spans the trading

during the opening auction, continuous trading period, and closing auction. This example illustrates

the typical dynamics of midprice during a mini-flash crash. At 2 p.m., the price experienced a

rapid, massive spike of about 1%. In the next five minutes, however, the price dropped more than

1.4% and eventually returned to the region of previous daily consolidation. The price became more

volatile during the rest of the day.

Figure 2 around here

Panel B shows a zoomed representation of the crash event, where each dot represents a single trade.

We note that the crash did not trigger the circuit breaker, even though the return associated with

the initial spike had a Z-score of 7. The duration of this mini-flash crash in the price of PG was 26.2
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seconds (the initial spike), with a cumulative return of 0.98%, and a trading volume that exceeded

$633 thousand.

2.3. Midpoint Extended Life Order

Recent research on dark trading looks at the economics of liquidity provision in the dark.

Academics start to distinguish two types of dark trading. The first, “one-sided” type, reflects

dark trading at a single price which, in most cases, is the midquote. It is usually not regarded

as a beneficial type of dark trading due to its low execution probability, absence of profitable

market strategies of earning the spread, and limited abilities to hide trading intentions because of

susceptibility to probing orders. The other, “two-sided” dark trading, allows dark buy and sell limit

orders to exist simultaneously. This type of dark trading is believed to be benign to price discovery

and market quality.

Foley and Putnin, š (2016) and Comerton-Forde et al. (2018) analyze the effect of both types of

dark trading by exploiting natural experiments in Canadian and Australian markets. They find that

two-sided dark trading reduces quoted, effective, and realized spreads as well as market illiquidity

measured by the price impact. On the other hand, they find no evidence that one-sided dark trading

affects markets. The dark order studied in our paper can be mainly referred to as one-sided dark

trading. However, it possesses some features of the two-sided type as well.

On March 12, 2018, NASDAQ launched a new order type: Midpoint Extended Life Order

(M-ELO), which is designed to attract long-term investors to trade with each other at the midpoint

of the National Best Bid and Offer (NBBO). M-ELO is a hidden order which interacts only with
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other M-ELO-type orders4. Because of this, M-ELO orders stay out of the way of the book clearing

orders, with the aim to reduce information leakage and to provide a better execution price.

From the start, there was a 500 millisecond period called the “Holding Period” before an M-ELO

order can be executed. This restriction protects market participants from the negative price impact

as well as from adverse selection. If a bid or an ask price moves, M-ELO orders are automatically

tagged to the new midquotes but the 500 milliseconds timer does not restart. If that was not the

case, then one would expect to see fewer M-ELO orders executed during volatile markets, since

prices will move a lot and sometimes exhibit mini-flash crashes. As the waiting locked-in times

cannot be easily extended by the NBBO moves, the documented negative association between the

number of matched M-ELOs and the number of mini-flash crashes may not be simply explained by

built-in “protective” features of M-ELOs.

Starting from May 11, 2020, the NASDAQ exchange reduced the holding period of M-ELO

orders from 500 to 10 milliseconds. Following the satisfactory M-ELO performance, the exchange

decided to increase the opportunity set for its clients. With a 98% reduction of the waiting period,

more trading strategies will be able to incorporate the benefits of the M-ELO. For the current

research, this rule change is crucial as it helps to disentangle the dark trading effects and the speed

bump effects of M-ELO orders.

Figure 3 shows that median M-ELO trading spikes to about 3% of the total matched by NASDAQ

volume at the end of April 2018. In the second half of 2018, it starts to decline which can be

associated with the change in the submission fees for this order type. M-ELO was fees-free until

4 Specifications and more details of M-ELO order type can be found in the Appendix.
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May 2018, with the possibility of a one-month extension, given that some trading activity-based

milestones were reached. Since June 2018, M-ELO order submission incurs a fee for all stocks. This

might be the reason for the gradual decline in relative M-ELO volumes already in the early autumn

of 2018.

In 2019, relative M-ELO trading reached near maximum levels. On average M-ELO executions

constituted 1.3% of the total amount matched by NASDAQ. The share of M-ELO executions

reduced significantly during the first months of 2020. We observe an increase in relative M-ELO

volumes right at the time of the design change. As the holding period became less restrictive, more

market participants opted for this order. In our analysis, we control for this change by introducing a

dummy variable that equals one if the current holding period is 10 milliseconds and zero otherwise.

Also, we include time effects into the regression to rule out the end of the year effects as well as the

COVID-19 related financial crisis.

Figure 3 around here

Another remarkable feature of M-ELO is that the sizes of executed orders are usually bigger than

the sizes of visible limit orders, submitted to the book. Figure 4 plots density curves of sizes of

visible limit orders and M-ELO orders. It can be seen that the distribution of sizes for M-ELO

dominates the distribution of sizes of visible orders. The fact that M-ELO is associated with bigger

order sizes can be a potential channel through which M-ELO activity may impact market stability.

HFT would benefit from taking the opposite side relative to market participants who submit large

orders. This contrarian trading by HFT may create unreasonable price pressure that can lead to

crashes. It is possible that as more market participants opt for non-displayed M-ELO orders, fewer
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flash crashes occur in the market.

Figure 4 around here

2.4. Measures of liquidity and order imbalance

Liquidity is generally understood as the ability to quickly trade considerable volumes at a low

cost. It is a multi-dimensional concept that includes trading costs, depth available to customers

placing large orders, speed of execution, and protection against execution risks (Foucault et al.

(2013)).

To measure market liquidity, we use the Order Book Message data from NASDAQ historical

ITCH. It is the most granular type of data as it records every message sent to the exchange.

High-frequency quote updates and trades allow for high-frequency estimation of the market liquidity

metrics. Later, these metrics are aggregated to weekly frequencies by time-weighting.

Our first empirical measure of liquidity is the quoted half spread. It represents a scaled by the

midpoint price difference between the lowest ask price (at) and the highest bid price (bt) available

at the moment:

QSt = at − bt
2mt

= at − bt
at + bt

, (1)

where mt = (at + bt)/2 is the midprice. The quoted spread for stock-day is time-weighted and based

on the local limit order book.

The other measures are the 5-minute realized spread and price impact. They are calculated per

trade and then averaged over the trading day. The 5-minute proportional realized spread for the tth
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transaction is defined as

RSt = gt
pt −mt+5min

mt
, (2)

where pt is the trade price, gt is the buy-sell indicator that equals +1 if the trade is a buy and −1 if

the trade is a sell, and mt+5min is a quote midpoint 5 minutes after the tth trade.

A price impact measure is based on the extent to which a trade generates an adverse reaction in

the market price. The midprice tends to rise when buy orders arrive, to an extent that is positively

correlated with their size. Symmetrically, it tends to fall in the wake of sell orders. The 5-minute

price impact of a tth trade is defined as follows:

PIt = gt
mt+5min −mt

mt
. (3)

Our data set allows us to construct various depth measures and incorporate the limit orders

beyond the best price levels. Similar to the work of Degryse et al. (2015), we measure the aggregate

monetary value of shares offered within a fixed interval around the midpoint. We keep the original

notation and refer to this measure as Depth(X). Denote the price level j = {1, 2, . . . , J} on the

pricing grid and the midpoint of the local limit order book as m, then

Depth Ask(X) =
J∑
j=1

paj · qaj · I{paj < m(1 +X)}, (4)

Depth Bid(X) =
J∑
j=1

pbj · qbj · I{pbj > m(1−X)}, (5)

Depth(X) = Depth Bid(X) + Depth Ask(X), (6)
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where paj (pbj) is the price of the limit sell (buy) order at price level j and qaj (qbj) is the number of

shares available at this level. We use the indicator function I{} to determine if a limit order of a

certain price is within the required interval around the midquote. The depth measure is expressed

in U.S. dollars and calculated for X = 30 basis points.

Further, we calculate an imbalance measure similar to that of Belter (2007). This measure

allows us to compare the liquidity supplied to different sides of the book beyond the best price levels.

Having the interval of X basis points around the midquote and the price levels j = {1, 2, . . . , J},

the depth imbalance is defined as follows:

DI(X) =

J∑
j=1

(
qa

j

(pa
j−m) · I{p

a
j < m(1 +X)} − qb

j

(m−pb
j) · I{p

b
j > m(1−X)}

)
J∑
j=1

(qaj + qbj) · I{1−X < pj/m < 1 +X}
. (7)

For each stock-day, we compute the average depth imbalance for X = 30 basis points. This measure

is scaled by the total number of shares available in the given interval X.

2.5. Measure of algorithmic trading

It is hard to discriminate between orders placed by humans and orders placed by computer

algorithms. A methodology to identify HFT depends heavily on the availability of data. If the data

include information on HFT firms, it can be used directly to account for algorithmic trading (AT)

activity. Most financial markets, however, do not provide information on whether an order comes

from a human or an algorithm.

In case that HFT cannot be classified exactly, researchers use various proxies to quantify levels

of HFT. Those proxies are constructed from trade and order submission data. We use the empirical
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measure developed in Hasbrouck and Saar (2013) as our major proxy for AT. This measure calculates

the intensity of “strategic runs”, which are series of linked messages. The linking results from HFT

dynamically submitting and canceling orders to incorporate the latest information into prices.

Following their methodology, we connect a newly submitted limit order to a previously deleted

order if the time between the two events does not exceed 100 milliseconds. The newly submitted order

should have the same direction and size in shares as the previously deleted one. Only sufficiently

long runs of 10 and more linked orders are kept. We scale the sum of durations of all runs, which

are allowed to overlap, by the duration of the trading day. Our proxy for the AT activity on day t

is defined as follows:

ATt = 1
6.5 · 3,600

∑N

j=1
Tjt, (8)

where 6.5 · 3,600 is the total time in seconds from 9:30 a.m. to 4:00 p.m., N is the number of

strategic runs on day t, and Tjt is the duration in seconds of run j on day t.

2.6. Summary statistics

Table 1 presents descriptive statistics for the sample stocks. There is considerable variation in

average daily price and daily dollar volume traded. The average coefficient of variation of stock

extreme returns (σr/µr) is centered around 0.84 with a relatively small standard deviation. This

suggests the firms fall in pretty much the same volatility cohort. The NASDAQ’s share shows what

fraction of the consolidated volume in a particular security was matched by the NASDAQ exchange.

The mean and the median share of NASDAQ across all listing venues are around 21%.

Table 1 around here
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Table 1 also reports descriptive statistics on liquidity measures and measures of AT. The average

daily quoted half spread throughout the sample period is about 9.2 basis points. Five-minute

realized spread and price impact are centered around zero with the first (the third) quartile being

about minus (plus) one basis point. There is a large variation in the dollar value of shares available

30 basis points around the midquote. Its mean of $2.29 million is higher than the value of its 3rd

quartile. The majority of depth available is sell-side volume, as the positive mean value of depth

imbalance suggests.

The proxy of AT based on strategic runs suggests that somebody is engaging in dynamic order

submission about 1.2% of the time during the period from 9:30 a.m. to 4:00 p.m. The messages-to-

trade ratio clearly illustrates the fact that quoting activity nowadays is superior to trading activity.

Its mean shows that there are about 36 times more quote update messages than actual trades.

Table 2 shows summary statistics for 30,942 identified mini-flash crashes. The Z-score of the

return is the value ri−µr

σr
, where ri is the return during the mini-flash crash, µr and σr are the mean

and standard deviation of maximum interval returns during the day. The threshold for the Z-score

was chosen to be equal to 7, to identify extreme price movements. The table reports the average

Z-score for the extreme returns around 8.5.

The average duration of a crash is approximately 31 seconds. In fact, 95% of identified mini-flash

crashes do not last longer than 78 seconds. The mini-flash crash returns are distributed around

-12.622 basis points, which is explained by the fact that only 54.62% of crashes are negative. The

median absolute mini-flash crash return is about 56 basis points.

Table 2 around here

18

Electronic copy available at: https://ssrn.com/abstract=3384719Electronic copy available at: https://ssrn.com/abstract=3384719



As Table 2 reports, mini-flash crashes are remarkable in subsequent price reversals. The 10-minute

price reversal after the crash is on average 91.8%. The number of trades during the crash period is

substantially higher than in normal times. With the mean number of trades of 185 and the mean

crash duration, one obtains that the average number of trades per second to be 6 trades. This is a

more than 7 times higher trading intensity compared to the average across the whole sample. The

number of shares traded and the dollar volume during a crash tell a similar story. Also, the size of

the trade increases slightly during crash times. The average size of the trade during normal times is

around 127.3 shares, while it increases to 170.9 at the periods where we identify mini-flash crashes.

Table 2 also reports summary statistics on the crash aftermath volatility. This is the standard

deviation of the extreme returns for the next 30 minutes following the end of the mini-flash crash.

It is scaled by the standard deviation of the extreme returns throughout the day. The average

volatility after the crash is approximately 22.7% higher than the volatility for that particular day.

Finally, descriptive statistics on the relative amount of M-ELO trading are provided. The average

share of all M-ELO orders relative to all matched by NASDAQ orders is 1.18% for the stocks with

identified mini-flash crashes. Also, the size of M-ELO orders is usually larger than the average size

of visible orders on NASDAQ. These results suggest that M-ELO trading is more active in less

liquid stocks when the market participants wish to trade large orders. This might seem unrealistic

that such a small order type can impact any aspect of markets’ behavior. However, in the next

section, we show a steady coupling between the share of M-ELO trading and mini-flash crashes’

intensity and liquidity provision quality.
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3. Empirical Approach and Results

This section analyzes the effect of M-ELO trading on market stability which is approximated

by the number of mini-flash crashes in individual securities. We also study the effect on various

crash characteristics and liquidity measures. Our empirical approach involves relating market

stability and liquidity characteristics to the M-ELO trading via stock-week panel regressions.

For the panel regressions, we take two methods: (i) two-stage least squares (2SLS) instrumental

variable regressions, and (ii) two-stage GMM estimations, which are efficient in the presence of

heteroskedasticity of unknown type and apply heteroskedasticity and autocorrelation robust standard

errors. As a robustness test, we apply difference-in-differences approach for the periods around the

policy changes.

3.1. Mini-flash crashes

In this section, we identify the impact of M-ELO trading on the general number of mini-flash

crashes and their characteristics. To account properly for both the cross-section variation and time

variation, we employ the panel structure of the data and estimate the following panel regression

with time and fixed effects:

yit = αt + β1 ·M-ELOit + β2 · dt ·M-ELOit + θ ·Xit + Ci + uit, (9)

where yit is one of the following: (i) weekly number of mini-flash crashes in security i on week t, or

(ii) one of the various crash characteristics like the maximum absolute return during the crash, the

duration of the crash, subsequent price reversal, and others. The variable M-ELOit is a fraction
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of M-ELO shares matched by NASDAQ to the total number of shares the exchange matched for

security i on week t, dt is the indicator that the holding period of M-ELO orders has been reduced

from 500 milliseconds to 10 milliseconds. It equals one for all the days after May 11, 2020, and zero

otherwise. Xit is a set of control variables that includes market capitalization and turnover ranks

from the MIDAS database, messages-to-trades ratio, and the proxy for the AT activity. The set of

controls also includes our proxy for the institutional trading activity that is based on the market

participant identifier flag in the Order Add message.

Identifying the causal effect of dark M-ELO trading is generally problematic due to endogeneity.

The possibility of reverse causality arises because M-ELO activity may affect market stability, but,

at the same time, less stable markets may push participants to the dark. Econometrically, this

means that endogenous regressors will make the estimates biased, inefficient, and inconsistent.

One potential solution to the endogeneity problem is the instrumental variable approach. A

good instrument should be correlated with the potentially endogenous variable and should not be

correlated with the model error. In the spirit of Hasbrouck and Saar (2013), Degryse et al. (2015),

and Comerton-Forde and Putninš (2015), we instrument M-ELO trading in stock i on week t with

M-ELOother
it which is the average level of M-ELO trading across all stock in our sample in the same

market capitalization rank excluding: (i) stock i itself, (ii) stocks from the same sector as stock i,

(iii) stocks in the same index as stock i. If M-ELO activity has a significant market-wide component,

then a market-wide average is likely to satisfy the first requirement. By excluding stocks from

the same index and the same sector, we eliminate the potential cross-trading strategies candidates

and maintain the economic intuition for using it as an instrument, in accordance with the second
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requirement. The formal tests of instruments’ relevance and exogeneity can be found in Table A.1

of the Appendix.

Thus, we extend the linear regression model (9) by the following first-stage regression:

M-ELOit = at + π1M-ELOother
it + γXit + C ′i + vit, (10)

where at and C ′i are time and fixed effects, respectively, Xit is the set of control variables included to

weaken the instrument exogeneity assumption. The set of control variables also includes such strong

determinants of M-ELO activity as the dummy for the introduction of M-ELO and the holding

period reduction dummy variable.

In the equation (9), both M-ELOit and dt ·M-ELOit are potentially endogenous. To get consistent

estimates, we use dt ·M-ELOother
it as an instrument for dt ·M-ELOit. The same economic argument

used to support M-ELOother
it as an instrument for M-ELOit will carry through to the interaction

term. Therefore, we estimate an additional regression in first-stage:

dt ·M-ELOit = at + π1 · dt ·M-ELOother
it + γXit + C ′i + vit. (11)

In the second-stage regression, we can then estimate the causal effect of M-ELO trading on

market stability. We regress yit on M̂-ELOit and ̂dt ·M-ELOit to obtain the Two Stage Least Squares

estimators β̂1, 2SLS and β̂2, 2SLS .

An additional way to handle the endogeneity problem is the construction of a weekly panel of

stocks and estimation of a dynamic model using the GMM system estimator developed by Blundell
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and Bond (1998). The property of GMM of not relying on any specific assumption of the distribution

of the residuals makes it appropriate for our estimation. To mitigate the bias caused by endogenous

regressors, the GMM estimation allows using lagged explanatory variables to eliminate correlations

between explanatory variables and error terms. Under these conditions, the resulting estimator

consistently estimates the impact of an exogenous change in M-ELO trading activity on the market

stability of the stock.

The general form of our dynamic panel regression is as follows:

yit = αt + β1yi t−1 + β2M-ELOit + β3 · dt ·M-ELOit + θXit + Ci + uit. (12)

To construct the set of moment conditions we assume sequential exogeneity. As GMM instruments

for the lags of the dependent variable, we use its next three further lags. The GMM estimates are

robust but typically weakened if the number of instruments is large. This is a common practice to

either collapse the instruments to avoid the bias that arises as the number of instruments becomes

high or to just use the most recent lags of the dependent variable as instruments.

The regression results for the models (9) and (12) are reported in Table 3. For the panel

GMM, we estimate the model (12) including the first lag of the dependent variable (Column 2).

The estimation results for both models suggest that the relative M-ELO trading effect is highly

significant and is negatively associated with mini-flash crash occurrences during the week. Thus, in

the linear panel specification (1), the loading on the M-ELO volume relative to the total NASDAQ

matched volume indicates that a ten basis points increase in the relative volume of M-ELO orders

is associated with the decrease in the average number of mini-flash crashes for that week by about
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0.224 in that specific security for the period from March 2018 to May 2020.

In contrast, the reduction of the holding period from 500 milliseconds to 10 milliseconds resulted

in a weakening of the initial market-stabilizing effect of M-ELO trading. After May 11, 2020, a

ten basis points increase in relative M-ELO volumes is associated with on average 0.048 decrease

in the weakly number of mini-flash crashes. We observe, that the 98% reduction in speed bump

properties of M-ELO orders comes together with 79% reduction in the initial stability improvements

associated with the M-ELO trading.

Table 3 around here

Table 3 shows that for the specification (2) of the panel GMM, the first lag of the number of

mini-flash crashes turns out to be significant as well. Having all the parameters fixed, an additional

mini-flash crash on the previous week is associated with a 0.34 decrease in the average number of

crashes on a current week.

The estimation results from the panel GMM model suggest a smaller economic effect of M-ELO

trading. With a ten basis points increase in relative M-ELO volume, during the first two years, the

average number of crashes decreased by around 0.093. After the design change in May 2020, this

effect diminishes by 92% and equals 0.0075 points of decrease in the average number of mini-flash

crashes per security per week for a ten basis points increase in M-ELO activity.

We further investigate if M-ELO trading can explain the variation in different crash characteristics.

Table 4 reports the estimation results of the panel regression where the dependent variables are the

absolute value of the flash crash return, duration of the crash, a number of trades during the crash,

10-minute price recovery after the crash, and the relative volatility of extreme returns during the
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next 30 minutes after the crash.

Since we observe 30,942 mini-flash crashes throughout the sample period, and, more specifically,

only 10,970 stock-week observations with a non-zero number of crashes, we decide to proceed with

2SLS linear panel estimation5.

Table 4 around here

The effect of M-ELO volume relative to the total volume matched by NASDAQ is statistically

significant for the absolute value of the mini-flash crash return and for the duration of the crash.

An increase of ten basis points in M-ELO activity is associated with an average increase of 6.6

basis points in the absolute return during the crash and with an increase of the crash duration by

0.98 seconds on average. This result may suggest that for the securities with a higher degree of

M-ELO trading flash crashes may stand out more in terms of how volatile they are compared to

usual periods, but, at the same time, they happen less rapidly.

We also find a strong impact of M-ELO activity on the 10-minute price recovery and the following

volatility 30 minutes after the crash. On average, the price reverts about 1.83% less for every

additional ten basis points in relative M-ELO trading. The effect on the subsequent price volatility

is positive and significant but is not sizable economically. Ten basis points higher M-ELO activity is

associated with 0.88 basis points higher price volatility relative to its average level. The model finds

no impact of M-ELO on the number of trades during the crash.

All the impact of M-ELO trades on crash characteristics is mitigated by approximately 77.9%

5 It is known that when the number of instruments in the GMM setting is increasing the bias in estimates increases

as well. That is why OLS regression is likely to have higher statistical power.
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during the period when the holding time of M-ELO orders was reduced to 10 milliseconds. Clearly,

the speed bump effect of M-ELO is dominating in its impact on the characteristics of the crashes.

Table 4 also reports the controls which are best in explaining various mini-flash crash character-

istics. We observe that the security’s turnover rank and the messages-to-trades ratio are statistically

significant in almost all specifications. The effect of the messages-to-trades ratio is not sizable

economically for any regression, while a higher turnover rank is associated with on average shorter

mini-flash crashes, a greater number of trades during the crash, and a more pronounced price

recovery. The security’s market capitalization rank and the presence of institutional traders are

statistically significant in the absolute crash return and the aftermath volatility regressions but are

not noticeable economically.

On the other hand, our proxy for the algorithmic trading based on the intensity of “strategic

runs” shows to be relevant for the price recovery regression. With a one percentage point higher

algorithmic trading activity in a security, the price reversal after the crash tends to be 0.87 percentage

points higher. This is in line with the previous results of Brogaard et al. (2014) that HFT firms

on average trade in the opposite direction of the crash and supply liquidity to non-high frequency

traders.

3.2. Liquidity provision measures

We further analyze the impact of relative M-ELO trading on various measures of liquidity. Table

5 reports the estimation results of model (9), where the dependent variable is one of the liquidity

measures mentioned in Section 2.4. As spreads, depth, and depth imbalance are high-frequency

liquidity measures, we do not expect to find a strong seasonality in those measures at weekly time
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frames. Therefore, a static panel regression is preferable for the analysis since the estimates have

higher statistical power.

Table 5 around here

We find no statistically significant effect of M-ELO activity on the quoted half spread, the 5-minute

price impact of trades, and on the absolute depth imbalance. At the same time, the model results

suggest there is a strong effect of M-ELO trading on the relative depth available near the midprice.

One percentage point increase in M-ELO activity in security i is associated with 1.4 percentage

points increase in the share of available depth 30 basis points around the midprice relative to the

average daily dollar volume in security i.

This effect was once again reduced after May 11, 2020, when the holding period of M-ELO

orders was reduced from 500 milliseconds to 10 milliseconds. The positive effect on the available

depth decreased by around 85.1%.

Table 5 also reports estimation results for control variables in each model specification. We

observe that, in most cases, the market capitalization rank of the security is a significant determinant

of its liquidity. Stocks with a higher rank in terms of market capitalization tend to have a lower

quoted spread and a more balanced limit order book profile. A higher level of institutional investors’

presence is associated with on average higher quoted spreads and at the same time deeper limit

order books throughout a day. Also, more intense algorithmic trading is detected in the security

that is associated with a lower relative depth in the book, but this effect is not large economically.
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3.3. Robustness

In the following section, we detail additional robustness tests to support previous results. As the

first robustness exercise, we estimate the model using alternative specifications of M-ELO trading.

Previously, we used to relate M-ELO volumes to NASDAQ’s total matched volumes. But M-ELO

activity can also be compared to the overall dark volume handled by NASDAQ. This allows to

distinguish M-ELO trading from other dark trading activity and to determine any additional or

specific impact of M-ELO on market stability measures.

Also, we relate M-ELO volumes to the consolidated volume traded in each particular security.

This specification of M-ELO activity takes into account the fact that M-ELO orders are available

only to NASDAQ’s participants, while NASDAQ may not have the biggest share in trading for

some particular stock. Table 6 reports the results of the analysis for M-ELO volume related to

NASDAQ’s dark volume in columns 1 and 3, and total consolidated volume in columns 2 and 4.

The estimation results for both static and dynamic panels suggest the effect of M-ELO stays highly

significant and becomes more pronounced economically.

Table 6 around here

As an additional robustness test, we estimate the model separately for big and small stocks. We

define a stock as a big one if its daily dollar trading volume is above all stocks’ median trading

volume throughout the sample period. Columns 1 and 2 in Table 7 report the estimation results for

samples of big and small stocks separately. The estimates suggest that the results are driven by the

most actively traded securities. There is only a marginally significant effect of M-ELO orders on

the stability of small stocks, while the effect on the sample of big stocks is strongly significant at a
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1% level. For both samples of small and big stocks, the economical effect of M-ELO is of the same

order as for the full sample.

Table 7 around here

Additionally, in column 3 of Table 7, we report the estimation results of the linear panel model

in Equation (9) after we remove the outliers in the stock trading activity. We drop stock-week

observations where the average daily trading volume is located in the outside 1% of the empirical

distribution. In total, about 15.3% of the observations were removed. The estimates indicate a

strongly significant but less pronounced effect of the M-ELO activity on the market stability. For

the period from March 2018 to May 2020 a higher degree of M-ELO trading was associated with

fewer number of mini-flash crashes, while, after the holding period of M-ELO orders was decreased

by 98%, this positive effect reduced by 80.2%.

Finally, as a robustness exercise, we apply a difference-in-difference strategy. As we do not have

data on stocks where M-ELO is not implemented (e.g. outside the US), so we perform a Rajan and

Zingales type of difference-in-difference (see Rajan and Zingales (1996)) by making two groups of

stocks within our current sample based upon where we expect the benefit to be highest. We consider

the introduction of M-ELO orders and the reduction in the holding period as separate events and

estimate two difference-in-difference regressions with different control and treatment groups.

For the first event, of the introduction of M-ELO orders, we expect stocks with a previously

high volume of dark trading to benefit the most from the M-ELO. Therefore, we mark stocks that

before week 11 of the year 2018 had a relative dark trading share above the median in our sample

as the treatment group and those that had a relative dark trading share below the median as the
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control group.

For the second event, when the holding period of M-ELO was reduced from 500 milliseconds

to 10 milliseconds, we expect stocks that had a high level of M-ELO activity to be impacted by

the rule change. Thus, the treatment group for the second event will consist of stocks that had a

relative level of M-ELO trading above the median in our sample prior to the rule change.

Table 8 presents the results of estimation of the following regression:

yit = β0 + β1Timet + β2Interventioni + β3Timet × Interventioni + uit, (13)

where yit is an average weekly number of mini-flash crashes in security i at period t, Timet is dummy

variable for a treatment period that is equal to one if the rule change is active and zero otherwise,

Interventioni is a dummy variable for a treatment group that is equal to one if the security i is

believed to be strongly affected by the rule change and zero otherwise. The interaction of Time and

Intervention represents the causal effect of the rule change. The data for the analysis covers eight

weeks before and after each rule change.

Table 8 around here

The estimation results are in line with our previous analysis. The difference-in-differences regressions

suggest that there was a negative effect of M-ELO introduction on the average number of mini-flash

crashes for the securities with a considerable level of dark trading. On the other hand, when the

holding period of M-ELO decreased, the initial change to the average M-ELO frequency was gone.

We would not, however, fully rely upon the above results as the treatment and control groups were
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created from the existing sample of all stocks traded on NASDAQ.

4. Conclusion

This paper provides novel evidence on market stability and liquidity provision due to the

implementation of a non-displayed (dark) Midpoint Extended Life Order (M-ELO). M-ELO is a

dark order that cannot interact with lit (visible) orders. It also possesses the speed bump effect due

to the holding period prior to the execution. We use high-frequency order book message data from

the NASDAQ exchange for the three years of M-ELO existence. The rule change applied on May

11, 2020, makes it possible to disentangle the dark and the speed bump impacts of M-ELO orders

on market stability and liquidity.

For the period from January 2018 to December 2020, the degree of M-ELO activity is associated

with a lower frequency of mini-flash crashes for NASDAQ traded securities. Results from panel

regressions suggest the presence of significant effects of the M-ELO trading on crash returns,

duration, volatility, and price recovery after the crash. Higher relative volumes traded via M-ELO

are associated with less rapid crashes with a smaller price recovery, which brings them closer to

natural information incorporation events. The effect of the M-ELO on the quality of the liquidity

provision is mixed. We find no statistically significant effects of M-ELO trading on both spreads

and depth imbalance. At the same time, the limit order book tends to be deeper for securities with

a higher degree of M-ELO activity.

Our analysis shows that trading activity in M-ELO impacts market stability and liquidity mainly

due to the speed bump effect. The reduction in the M-ELO’s holding period by 98% decreases the

influence of M-ELO on the market by around 79% on average. The robustness of the results to
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different specifications of the model strengthens the conclusion that only about 21% of the M-ELO

market stabilizing effect comes from its dark properties and 79% from the speed bump properties.

As M-ELO volumes are relatively small, we are cautious about extrapolating the results of this

analysis. The main goal of our research is to identify the effects of M-ELO on market stability during

recent years. Our study delivers an important insight for market participants, policymakers, and

researchers. The trade-off between execution speed and order transparency is capable of impacting

the general stability of financial markets.

References

Andersen, T. G., Bollerslev, T., Diebold, F. X., Ebens, H., 2001. The distribution of realized stock
return volatility. Journal of Financial Economics 61 (1), 43–76.

Bellia, M., Christensen, K., Kolokolov, A., Pelizzon, L., Renò, R., 2020. High-frequency trading
during flash crashes: walk of fame or hall of shame? Unpublished working paper.

Belter, K., 2007. Supply and information content of order book depth: the case of displayed and
hidden depth. Unpublished working paper.

Biais, B., Foucault, T., 2014. Hft and market quality. Bankers, Markets & Investors (128), 5–19.

Biais, B., Foucault, T., Moinas, S., 2015. Equilibrium fast trading. Journal of Financial Economics
116 (2), 292–313.

Blundell, R., Bond, S., 1998. Initial conditions and moment restrictions in dynamic panel data
models. Journal of Econometrics 87 (1), 115–143.

Boulatov, A., George, T. J., 2013. Hidden and displayed liquidity in securities markets with informed
liquidity providers. Review of Financial Studies 26 (8), 2095–2137.

Brogaard, J., Carrion, A., Moyaert, T., Riordan, R., Shkilko, A., Sokolov, K., 2018. High frequency
trading and extreme price movements. Journal of Financial Economics 128 (2), 253–265.

Brogaard, J., Hendershott, T., Riordan, R., 2014. High-frequency trading and price discovery. Review
of Financial Studies 27 (8), 2267–2306.

Buti, S., Rindi, B., Werner, I. M., 2017. Dark pool trading strategies, market quality and welfare.
Journal of Financial Economics 124 (2), 244–265.

32

Electronic copy available at: https://ssrn.com/abstract=3384719Electronic copy available at: https://ssrn.com/abstract=3384719



Carrion, A., 2013. Very fast money: High-frequency trading on the NASDAQ. Journal of Financial
Markets 16 (4), 680–711.

Comerton-Forde, C., Malinova, K., Park, A., 2018. Regulating dark trading: Order flow segmentation
and market quality. Journal of Financial Economics 130 (2), 347–366.

Comerton-Forde, C., Putninš, T. J., 2015. Dark trading and price discovery. Journal of Financial
Economics 118 (1), 70–92.

Degryse, H., De Jong, F., Kervel, V. v., 2015. The impact of dark trading and visible fragmentation
on market quality. Review of Finance 19 (4), 1587–1622.

Easley, D., López de Prado, M. M., O’Hara, M., 2012. Flow toxicity and liquidity in a high-frequency
world. Review of Financial Studies 25 (5), 1457–1493.

Foley, S., Putnin, š, T. J., 2016. Should we be afraid of the dark? Dark trading and market quality.
Journal of Financial Economics 122 (3), 456–481.

Foucault, T., Pagano, M., Roell, A., Röell, A., 2013. Market liquidity: theory, evidence, and policy.
Oxford University Press.

Golub, A., Keane, J., Poon, S.-H., 2012. High frequency trading and mini flash crashes. Unpublished
working paper.

Hasbrouck, J., Saar, G., 2013. Low-latency trading. Journal of Financial Markets 16 (4), 646–679.

Hu, E., 2018. Intentional access delays, market quality, and price discovery: Evidence from IEX
becoming an exchange. Unpublished working paper.

Johnson, N., Zhao, G., Hunsader, E., Qi, H., Johnson, N., Meng, J., Tivnan, B., 2013. Abrupt rise
of new machine ecology beyond human response time. Scientific Reports 3, 2627.

Kirilenko, A., Kyle, A. S., Samadi, M., Tuzun, T., 2017. The Flash Crash: High-frequency trading
in an electronic market. Journal of Finance 72 (3), 967–998.

Leal, S. J., Napoletano, M., Roventini, A., Fagiolo, G., 2016. Rock around the clock: An agent-based
model of low- and high-frequency trading. Journal of Evolutionary Economics 26 (1), 49–76.

O’Hara, M., Yao, C., Ye, M., 2014. What’s not there: Odd lots and market data. Journal of Finance
69 (5), 2199–2236.

Rajan, R., Zingales, L., 1996. Financial dependence and growth. NBER Working paper series.

Zhu, H., 2014. Do dark pools harm price discovery? Review of Financial Studies 27 (3), 747–789.

33

Electronic copy available at: https://ssrn.com/abstract=3384719Electronic copy available at: https://ssrn.com/abstract=3384719



Tables and Figures

Table 1. Descriptive statistics of the sample firms.
The data set covers observations for 1,342 firms and exchange traded funds for the period from January 2,
2018 to December 31, 2020. The table shows the mean, standard deviation, and quartiles of all variables. The
coefficient of variation of the extreme returns (σr/µr) shows the extent of return variability in relation to its
mean, where extreme returns are maximum possible returns during crash identification intervals. NASDAQ’s
share denotes the share of consolidated traded volume handled by NASDAQ. QS is quoted half spread, RS5min
and PI5min are realized spread and price impact in the following 5 minutes after the trade, respectively.
Depth(30) is the U.S. dollar value of shares available 30 basis points around the midquote. DI(30) shows
the imbalance of buy-sell orders 30 basis points around the midquote. The strategic runs variable shows
the fraction of time, high-frequency traders (HFTs) engage in strategical order submission during the day.
Msg/Trades represents the ratio of all order modification messages relative to executed trades. Msg/$100
shows how many order add messages are submitted for every $100 traded. The statistics are equally weighted
based on a daily observations per firm.

Mean StDev 25th 50th 75th

General Characteristics
Price 103.58 192.71 34.76 58.50 110.36
Trades ’000 15.95 18.46 7.70 11.61 16.95
Shares, ’M 2.03 2.80 0.66 1.14 2.20
Volume $’M 161.26 430.13 39.03 70.76 131.80
σr/µr 0.84 0.17 0.73 0.82 0.93
NASDAQ’s share 0.23 0.11 0.13 0.19 0.33

Liquidity Measures
QS, bps 9.23 65.96 2.79 4.17 6.65
RS5min, bps 0.01 11.41 -1.42 -0.20 1.01
PI5min, bps 0.32 9.18 -0.97 0.16 1.40
Depth(30), $’M 2.29 4.85 0.42 0.85 1.88
DI(30) 3.50 126.14 0.18 1.47 3.57

Algorithmic Trading (AT) Measures
Strategic Runs, % 1.21 4.69 0.11 0.29 0.75
Msg/Trades 35.56 23.52 20.64 29.95 43.64
Msg/$100 0.67 0.59 0.28 0.51 0.86
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Table 2. Descriptive statistics of the identified mini-flash crashes.
The data set covers observations for 1,342 firms and exchange traded funds for the period from January 2,
2018 to December 31, 2020. The table shows the mean, standard deviation, and quartiles of various crash
characteristics for 30,942 identified mini-flash crashes. The Z-score of the return is the value of ri−µr

σr
, where

ri is the extreme return on the interval i, µr and σr are the mean and standard deviation of extreme returns
on that day. The reversal shows what fraction of the initial jump did the price retrace 10 minutes after
the crash. Number of trades, shares traded, and dollar volume traded are counted during the period of the
crash. Aftermath volatility shows the size of the standard deviation of the extreme returns during the next
30 minutes after the crash ends relative to the standard deviation of the extreme returns throughout the day.
M-ELO/Matched represents the relative amount of shares traded with M-ELO orders compared to the total
amount of shares matched by the NASDAQ exchange. The statistics are equally weighted based on a daily
observations per firm.

Mean StDev 25th 50th 75th
# of Crashes 0.874 1.807 0.00 0.00 1.00
Return, bps -12.622 203.067 -59.55 -5.51 52.04
Abs. Return, bps 97.869 178.372 31.21 56.02 98.49
Return Z-score 8.486 1.560 7.49 8.06 8.93
Duration, s 30.929 23.782 13.00 25.43 42.50
Reversal 0.918 0.525 0.56 0.85 1.18
# of Trades 185.051 164.806 79.00 142.00 241.00
# of Shares, ’000 31.621 62.176 7.13 16.04 36.01
Volume, $’M 2.153 4.066 0.46 0.99 2.23
Aftermath Volatility 1.227 0.434 0.98 1.17 1.39
M-ELO/Matched, % 1.181 1.842 0.22 0.63 1.47
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Table 3. The effect of M-ELO trading on the average weekly number of mini-flash crashes.
The table reports the estimation results for the following regressions (with and without a lag of yit):

yit = αt + β1yi t−1 + β2M-ELOit + β3 · dt ·M-ELOit + θXit + Ci + uit,

which is estimated on a sample of 1,342 stocks traded on NASDAQ from January 2, 2018 to December 31,
2020. The specification in column (1) is a linear static panel instrumental variables model with time and fixed
effects. The model specification in column (2) describes a dynamic panel estimated using GMM with the
three most recent lags of the dependent variable as GMM instruments. The dependent variable is the average
number of mini-flash crashes. The set of control variables includes market capitalization and turnover ranks
from the MIDAS database, messages-to-trades ratio, and proxies for the AT activity of Hasbrouck and Saar
(2013) and the institutional trading activity. This is an unbalanced panel with weekly observations. M-ELO is
the share of the Midpoint Extended Life Order volume relative to the total volume handled by NASDAQ for
the particular stock, dt is a dummy variable that equals one at the time when NASDAQ decreased the M-ELO
holding period by 98%, and zero otherwise. The value of M-ELO trading is instrumented by the market
average M-ELO activity of the stocks within the same market capitalization rank and excluding: (i) stock i
itself, (ii) stocks from the same sector as stock i, (iii) stocks in the same index as stock i. Heteroskedasticity
corrected t-statistics are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%,
and 10% levels, respectively.

Dependent variable:
Average weekly number of crashes

Panel Panel
linear GMM
(1) (2)

yi,t−1 −0.345∗∗∗

(−26.745)

M-ELO −224.079∗∗∗ −93.458∗∗∗

(−3.262) (−4.403)

dt ·M-ELO 176.382∗∗∗ 85.989∗∗∗

(3.139) (4.174)

P value(β2 = 0 and β3 = 0) 9.093 · 10−17 < 2 · 10−16

Controls Yes Yes
Observations 25,497 21,528
F-statistic 727.3∗∗∗ 1,011.5∗∗∗
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Table 4. The effect of M-ELO trading on crash characteristics.
The table reports the estimation results for the following linear panel regression:

yit = αt + β1M-ELOit + β2 · dt ·M-ELOit + θXit + Ci + uit,

which is estimated on a sample of 1,342 stocks traded on NASDAQ from January 2, 2018 to December 31,
2020. The dependent variables are the absolute value of the crash return, crash duration in seconds, the
number of trades executed during the crash, the price reversal 10 minutes after the crash and the relative
volatility 30 minutes after the crash. M-ELO is the share of the Midpoint Extended Life Order volume relative
to the total volume handled by NASDAQ for the particular stock, dt is a dummy variable that equals one at
the time when NASDAQ decreased the M-ELO holding period by 98%, and zero otherwise. The value of
M-ELO trading is instrumented by the market average M-ELO activity of the stocks within the same market
capitalization rank and excluding: (i) stock i itself, (ii) stocks from the same sector as stock i, (iii) stocks in
the same index as stock i. The control variables are proxies for the AT activity of Hasbrouck and Saar (2013)
and the institutional trading activity, market capitalization and turnover ranks from the MIDAS database,
and the messages-to-trades ratio. This is an unbalanced panel with weekly observations. Heteroskedasticity
corrected t-statistics are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%,
and 10% levels, respectively.

Dependent variable:
|Return| Duration # Trades Reversal σaft

(1) (2) (3) (4) (5)
M-ELO 0.663∗∗∗ 977.804∗∗ −943.399 −18.275∗∗ 0.088∗∗∗

(3.162) (2.367) (−0.401) (−2.009) (3.012)
dt ·M-ELO −0.514∗∗∗ −765.947∗∗ −182.451 14.018∗ −0.070∗∗∗

(−2.971) (−2.296) (−0.097) (1.884) (−2.913)
Institutional 0.117∗ 69.190 88.961 −0.188 0.020∗∗

(1.843) (1.158) (0.138) (−0.161) (2.264)
AT −0.009∗∗∗ −4.671 14.760 0.870∗∗∗ −8.252 · 10−4∗∗∗

(−4.685) (−0.894) (0.518) (6.536) (−3.547)
Market Cap. Rank −0.005∗∗∗ −1.205 −0.745 −0.007 −7.305 · 10−4∗∗∗

(−4.467) (−1.440) (−0.132) (−0.432) (−5.271)
Turnover Rank −4.636 · 10−4∗∗∗ −5.646∗∗∗ 15.530∗∗∗ 0.064∗∗∗ 8.075 · 10−6

(−3.925) (−13.302) (7.628) (9.061) (0.514)
Msg/Trades 3.827 · 10−5∗∗∗ 0.327∗∗∗ −0.579∗∗∗ −0.006∗∗∗ 7.046 · 10−7

(3.241) (9.454) (−3.231) (−7.140) (0.404)
P value(β1 = 0 and β2 = 0) 7.782 · 10−7 0.002 1.699 · 10−4 0.040 6.508 · 10−7

Observations 10,970 10,970 10,970 10,970 10,769
R2 0.006 0.059 0.012 0.010 0.011
F-statistic 364.458∗∗∗ 1.206 · 103∗∗∗ 152.441∗∗∗ 308.697∗∗∗ 573.865∗∗∗
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Table 5. The effect of M-ELO trading on market liquidity.
The table reports the estimation results for the following linear panel regression:

yit = αt + β1M-ELOit + β2 · dt ·M-ELOit + θXit + Ci + uit,

which is estimated on a sample of 1,342 stocks traded on NASDAQ from January 2, 2018 to December 31,
2020. Dependent variables are quoted half-spread, 5-minute realized spread, dollar depth available 30 basis
points around the midquote relative to the average daily dollar trading volume, and the absolute depth
imbalance 30 basis points around the midquote. M-ELO is the share of the Midpoint Extended Life Order
volume relative to the total volume handled by NASDAQ for the particular stock, dt is a dummy variable
that equals one at the time when NASDAQ decreased the M-ELO holding period by 98%, and zero otherwise.
The value of M-ELO trading is instrumented by the market average M-ELO activity of the stocks within
the same market capitalization rank and excluding: (i) stock i itself, (ii) stocks from the same sector as
stock i, (iii) stocks in the same index as stock i. The control variables are proxies for the AT activity of
Hasbrouck and Saar (2013) and the institutional trading activity, market capitalization and turnover ranks
from the MIDAS database, and the messages-to-trades ratio. This is an unbalanced panel with weekly
observations. Heteroskedasticity corrected t-statistics are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:

QS RS5min
Depth(30)
$ Volumes |DI(30)|

(1) (2) (3) (4)
M-ELO −121.522 −155.429 1.403∗∗∗ −722.069

(−0.173) (−1.565) (2.656) (−0.450)
dt ·M-ELO 129.268 121.760 −1.193∗∗∗ 581.767

(0.226) (1.482) (−2.757) (0.443)
Institutional 861.277∗∗∗ 55.550 0.120∗∗ −164.172

(3.276) (0.898) (2.335) (−0.334)
AT 2.742 2.825∗∗ −0.032∗∗∗ 0.291

(0.474) (2.406) (−3.840) (0.033)
Market Cap. Rank −5.656∗∗∗ 0.086 −0.002∗∗ −7.302∗

(−2.676) (0.367) (−2.384) (−1.836)
Turnover Rank 0.212 −0.035 −0.002∗∗∗ 0.222

(0.665) (−0.765) (−6.953) (0.450)
Msg/Trades −0.014 −0.007 3.709 · 10−4∗∗∗ −0.051

(−0.385) (−1.372) (7.180) (−0.726)
P value(β1 = 0 and β2 = 0) 0.284 0.014 1.829 · 10−12 0.775
Observations 25,497 25,481 25,497 25,485
R2 0.020 3.484 · 10−4 0.044 6.520 · 10−5

F-statistic 533.461∗∗∗ 54.163∗∗∗ 1.310 · 103∗∗∗ 15.223∗∗
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Table 6. Alternative M-ELO activity specifications.
The table reports the estimation results for the following regressions (with and without a lag of yi,t):

yit = αt + β1yi t−1 + β2M-ELOit + β3 · dt ·M-ELOit + θXit + Ci + uit,

which are estimated on a sample of 1,342 stocks traded on NASDAQ from January 2, 2018 to December
31, 2020. The specification in columns (1) and (2) is a linear static panel instrumental variables model
with time and fixed effects. The specifications for columns (3) and (4) describe a dynamic panel estimated
using GMM with three most recent lags of the dependent variable as GMM instruments for differenced
equation. The dependent variable is the average number of mini-flash crashes. M-ELO (Dark) and M-ELO
(Cons) represent a share of M-ELO volume relative to, respectively, the volume of dark trading on NASDAQ,
and total consolidated volume across exchanges, dt is a dummy variable that equals one at the time when
NASDAQ decreased the M-ELO holding period by 98%, and zero otherwise. The set of control variables
includes market capitalization and turnover ranks from the MIDAS database, messages-to-trades ratio, and
proxies for the AT activity of Hasbrouck and Saar (2013) and the institutional trading activity. This is an
unbalanced panel with weekly observations. The value of M-ELO trading is instrumented by the market
average M-ELO activity of the stocks within the same market capitalization rank and excluding: (i) stock i
itself, (ii) stocks from the same sector as stock i, (iii) stocks in the same index as stock i. Heteroskedasticity
corrected t-statistics are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%,
and 10% levels, respectively.

Dependent variable:
Average weekly number of crashes

Panel Panel
linear GMM

(1) (2) (3) (4)
yi,t−1 −0.343∗∗∗ −0.342∗∗∗

(−26.568) (−26.441)

M-ELO (Dark) −442.927∗∗∗ −180.401∗∗∗

(−2.665) (−4.274)

M-ELO (Cons) −1.295 · 103∗∗∗ −652.454∗∗∗

(−3.054) (−4.415)

dt ·M-ELO (Dark) 370.549∗∗∗ 170.462∗∗∗

(2.595) (4.125)

dt ·M-ELO (Cons) 1.089 · 103∗∗∗ 605.685∗∗∗

(2.939) (4.207)

P value(β2 = 0 and β3 = 0) 1.829 · 10−11 4.221 · 10−15 < 2 · 10−16 < 2 · 10−16

Controls Yes Yes Yes Yes
Observations 25,497 25,497 21,528 21,528
F-statistic 481.4∗∗∗ 801.7∗∗∗ 974.3∗∗∗ 964.4∗∗∗
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Table 7. The effect of M-ELO trading on the number of mini-flash crashes for big and small stocks and
outlier-robust effects.
This table reports the estimation results for the following linear panel regression:

yit = αt + β1M-ELOit + β2 · dt ·M-ELOit + θXit + Ci + uit,

which is estimated on a sample of 1,342 stocks traded on NASDAQ from January 2, 2018 to December 2,
2020. The dependent variable is the average number of mini-flash crashes. Column (1) reports results for
the sub-sample of small stocks, and column (2) for the sub-sample of big stocks in terms of average daily
trading volumes. Column (3) reports results for the full sample but after discarding the highest and the
lowest 1% values of the average daily number of trades, shares and U.S. dollar volume. M-ELO is the share
of the Midpoint Extended Life Order volume relative to the total volume handled by NASDAQ for the
particular stock, dt is a dummy variable that equals one at the time when NASDAQ decreased the M-ELO
holding period by 98%, and zero otherwise. The value of M-ELO trading is instrumented by the market
average M-ELO activity of the stocks within the same market capitalization rank and excluding: (i) stock i
itself, (ii) stocks from the same sector as stock i, (iii) stocks in the same index as stock i. The set of control
variables includes market capitalization and turnover ranks from the MIDAS database, messages-to-trades
ratio, and proxies for the AT activity of Hasbrouck and Saar (2013) and the institutional trading activity.
This is an unbalanced panel with weekly observations. Heteroskedasticity corrected t-statistics are reported
in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:
Average weekly number of crashes

(1) (2) (3)
M-ELO −117.831∗ −145.442∗∗∗ −114.053∗∗∗

(−1.952) (−3.181) (−3.391)
dt ·M-ELO 96.414∗ 109.031∗∗∗ 91.494∗∗∗

(1.839) (2.960) (3.238)
P value(β1 = 0 and β2 = 0) 1.135 · 10−4 8.782 · 10−16 7.702 · 10−11

Controls Yes Yes Yes
Sample Small Stocks Big Stocks Full
Outliers Removed No No Yes
Observations 6,874 18,623 21,501
R2 0.004 0.018 0.010
F-statistic 154.240∗∗∗ 991.815∗∗∗ 531.058∗∗∗
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Table 8. Difference-in-differences approach.
This table reports the estimation results for the following regression

yit = β0 + β1Timet + β2Interventioni + β3Timet × Interventioni + uit,

for two rule changes: (i) M-ELO introduction in March 2018, and (ii) M-ELO holding period reduction in
May 2020. Variable yit is an average weekly number of mini-flash crashes in security i at period t, Timet is
dummy variable for a treatment period that is equal to one if the rule change is active and zero otherwise,
Interventioni is a dummy variable for a treatment group that is equal to one if the security i is believed to be
strongly affected by the rule change and zero otherwise. For the first event the treatment group formation is
based on the level of dark trading, while for the second event it is based on the level of M-ELO trading. The
interaction of Time and Intervention represents the causal effect of the rule change. The data for the analysis
cover 8 weeks before and after each rule change. Heteroskedasticity corrected t-statistics are reported in
parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:
Average weekly number of crashes

(1) (2)
Time (2018) −0.009

(−0.979)
Intervention (2018) 0.181∗∗∗

(12.103)
Intervention × Time (2018) −0.040∗∗

(−1.970)
Time (2020) −0.114∗∗∗

(−8.090)
Intervention (2020) −0.191∗∗∗

(−8.575)
Intervention × Time (2020) 0.069∗∗

(2.149)
Constant 0.140∗∗∗ 0.429∗∗∗

(21.330) (39.511)
Observations 12,224 14,243
R2 0.024 0.009
F-statistic 101.959∗∗∗ 40.928∗∗∗
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Figure 1. Mini-flash crashes, quoted spread, and book depth throughout the sample.

The first panel of the figure plots the total amount of identified mini-flash crashes across the sample of 1,342

liquid stocks traded on NASDAQ from January 2, 2018 to December 31, 2020. The second panel shows

the median quoted spread (in basis points) across securities. The last panel presents the median aggregate

monetary value (in thousands of dollars) of shares offered within 30 basis points around the midquote. The

dashed line indicates the time when the M-ELO became available on March 12, 2018, the dotted line indicates

the time of the holding period reduction from 500 ms to 10 ms on May 11, 2020. All observations are on

weekly frequency.
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Figure 2. Example of the mini-flash crash.

Panel A plots the Procter&Gamble (P&G) share price on March 21, 2018. At 2 p.m., the price experienced a

mini-flash crash. The pre-market price of P&G was at around $78.2, dropped to the region $77.4 – $77.7,

where it stayed fairly stable until 2 p.m., and experienced then a massive spike to the levels of approximately

$78.3. Within the next five minutes, the price dropped more than 1.4% to $77.16, and eventually returned

to the region of its previous daily consolidation. Panel B zooms in around the time of the crash. Each dot

represents a trade. The duration of the crash is 26.2 seconds, the cumulative return of the first spike is 0.98%,

the volume traded during the crash is $633 thousand.
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Figure 3. Share of M-ELO executions.

This figure plots time trends in M-ELO volumes relative to the total volumes matched by the NASDAQ

exchange. The 10th, 50th, and 90th percentiles are depicted. M-ELO orders became available on March 12,

2018. The shaded area represents the period starting when NASDAQ decreased the M-ELO “Holding period”

from 500 milliseconds to 10 milliseconds on May 11, 2020.
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Figure 4. Densities of lit (visible) order sizes and M-ELO order sizes.

This figure plots densities of order sizes of two types of orders: (i) visible limit orders, and (ii) non-displayed,

M-ELO orders. For better representation, only order sizes less than 400 shares are considered. All observations

are stock-day averages.
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Appendix

M-ELO order specifications
• Non-displayed order type: M-ELO executions are reported to the Securities Information

Processors and provided in NASDAQ’s proprietary data feed in the same manner as all
other transactions occurring on NASDAQ (i.e., without any new or special indication that a
transaction is an M-ELO execution).

• The M-ELO timer for 500 millisecond waiting period starts upon entry if the order is marketable
at the midpoint. If the order is not eligible to trade at the midpoint upon the entry, the
M-ELO timer will start when the price of the order is at or better than the midpoint of the
NBBO.

• Effective May 11, 2020, the holding period was reduced from 500 to 10 milliseconds.
• Any modification on a resting M-ELO order will result in a restart of the timer, except in the

case of reducing the order quantity.
• The timer does not reset if the NBBO moves.
• An M-ELO order is ranked in time priority among other M-ELO orders at the time it becomes

eligible to execute.
• Only round lots are accepted for the M-ELO submission.
• M-ELO orders may execute in a locked market but not in a crossed market6.
• The M-ELO order type will never route out.

6 In a locked market, a stock’s bid price at one exchange and ask price at another exchange are identical, that is,

the bid-ask spread is zero. In a crossed market, the bid price exceeds the ask price.
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Tests for the instruments

Table A.1. Properties of the instrumental variables.
The table reports the results of instrument relevance and exogeneity tests. To explain the variation in the
relative volume of M-ELO orders in the equation (9) the following instruments are used: Zit is the average
level of M-ELO trading across all stock in our sample in the same market capitalization rank excluding:
(i) stock i itself, (ii) stocks from the same sector as stock i, (iii) stocks in the same index as stock i. The
instruments’ relevance (Cov(Z,M-ELO) 6= 0 and Cov(dtZ, dt ·M-ELO) 6= 0) is tested by estimating the
first-stage regression, and obtaining F -statistics resulting from the test H0 : π1 = 0 against the the alternative
H1 : π 6= 0. The rule of thumb suggests that the F -statistics for significance of the instrument in the
first-stage should exceed 10. The instrument exogeneity assumption is weakened by including the control
variables Xit into the first-stage regression. The overidentifying test is implemented by, first, obtaining the
residulals of the 2SLS model:

û2SLS
it = yit − α̂t − β̂1M-ELOit − β̂2 · dt ·M-ELOit − θ̂Xit,

and then regressing these residuals on the instruments and control variables. The resulting J-statistic of the
test H0 : η1 = η2 = 0 versus H1 : η1 6= 0 or η2 6= 0 is distributed according to χ2

q where q is the number of
instruments minus the number of endogenous regressors.

Panel A.1: Instrument Relevance
Regression M-ELOit = at + π1Zit + γXit + Ci + vit,
Hypothesis H0 : π1 = 0
Statistics F(1, 24577) = 1353.167
p-value 2.065 · 10−288

Panel A.2: Instrument Relevance
Regression dt ·M-ELOit = at + π1 · dt · Zit + γXit + Ci + vit,
Hypothesis H0 : π1 = 0
Statistics F(1, 24577) = 412.701
p-value 5.297 · 10−91

Panel B: Instrument Exogeneity
Regression û2SLS

it = at + η1Zit + η2 · dt · Zit + γXit + Ci + eit
Hypothesis H0 : η1 = η2 = 0
Statistics J = mF = 2 · 0.0259 ∼ χ2

1
p-value 0.8201
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