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A common stochastic restriction in econometric models separable in the latent variables

is the assumption of stochastic independence between the unobserved and observed exogenous

variables.  Both simple and composite tests of this assumption are derived from properties of

independence empirical processes and the consistency of these tests is established.  As an

application, we stimulate estimation of a random quasilinear utility function, where we apply

our tests of independence.
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TESTS OF INDEPENDENCE IN SEPARABLE ECONOMETRIC
MODELS: THEORY AND APPLICATION

DONALD J. BROWN, RAHUL DEB, AND MARTEN H. WEGKAMP

Abstract. A common stochastic restriction in econometric models separable in the
latent variables is the assumption of stochastic independence between the unobserved
and observed exogenous variables. Both simple and composite tests of this assumption
are derived from properties of independence empirical processes and the consistency
of these tests is established. As an application, we simulate estimation of a random
quasilinear utility function, where we apply our tests of independence.

1. Introduction

Recently, Brown and Wegkamp (2002) proposed a family of extremum estimators for

semiparametric econometric models separable in the latent variables W , where W =

ρ(X, Y, θ), X a random vector of observed exogenous variables, Y a random vector of

observed endogenous variables, W is drawn from a fixed but unknown distribution and

θ is a vector of unknown parameters. An important special case is the implicit nonlinear

simultaneous equations model, where a reduced form function Y = ρ−1(X, W, θ) exists.

Of course, in general Y = ρ−1(X,W, θ) is non-additive in W , e.g., consider the random

quasilinear utility model V (Y,W, θ) proposed by Brown and Calsamiglia (2006), where

V (Y,W, θ) = U(Y, θ) + W · Y + Y0. In this case the structural equations defined by

W = ρ(X, Y, θ) are equivalent to the first order conditions of maximizing V (Y,W, θ)

subject to the budget constraint P · Y + Y0 = I (P and I stand for prices and income,

respectively and Y0 is the numeraire good). The details can be found in Section 2

below.

The principal maintained assumption in Brown and Wegkamp (2002) is the stochastic

independence between W and X. In this paper we propose tests of this assumption

using the elements of empirical independence processes. We present both simple tests,

i.e., the null hypothesis states that for a given θ0, ρ(X, Y, θ0) and X are independent,

Date: October 2, 2006.
Key words and phrases. Cramér–von Mises distance, empirical independence processes, random

utility models, semiparametric econometric models, specification test of independence.
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2 DONALD J. BROWN, RAHUL DEB, AND MARTEN H. WEGKAMP

as well as composite tests where the null hypothesis is that there exists some θ0 ∈ Θ,

the set of possible parameter values, such that X and ρ(X, Y, θ0) are independent.

Here we extend the analysis of Brown and Wegkamp (2002) beyond the characteri-

zation of the independence of random vectors in terms of their distribution functions.

In particular, we define a family of weighted minimum mean-square distance from in-

dependence estimators in terms of characteristic or moment generating functions. The

latter characterization is well suited for estimating separable econometric models with

non-negative endogenous and exogenous variables. These estimates are computation-

ally more tractable than the ones considered by Brown and Wegkamp (2002). We

show asymptotic normality, and consistency of the bootstrap for our estimates and

consistency of the tests for independence.

The paper is organized as follows. In Section 2 of this paper we present both the

general econometric model and the example which motivated this research. Properties

of empirical independence processes are reviewed in Section 3. Asymptotic properties

of our estimators are derived in Section 4, and Section 5 discusses tests of independence

between the observed and unobserved exogenous variables. Simulations results are in

the Appendix.

2. The Econometric Model

In this paper we consider semiparametric econometric models, which are separable

in the latent variables. In these models we have a triple (X, Y, W ) ∈ Rk1 × Rk2 × Rk2

of random vectors, where X and W are stochastically independent. The exogenous

variable W = ρ(X, Y ) ∈ Rk2 is unobserved and drawn from a fixed but unknown

distribution. In this paper we consider structural equations ρ of the parametric form

ρ(x, y) = ρ(x, y, θ) for some θ ∈ Θ ⊆ Rp.

In general, two random vectors X ∈ Rk1 and W ∈ Rk2 are independent if and only if

IEf(X)g(W ) = IEf(X)IEg(W ) for all f ∈ F1, g ∈ F2,(2.1)

where F ! (# = 1, 2) are

(2.2) F ! =
{
1(−∞,t](·), t ∈ Rk!

}
.

Note that each F ! in (2.2) is a universal Donsker class, indexed by a set of finite

dimensional parameters (s, t) ∈ Rk1 × Rk2 only. This situation has been considered in
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Brown and Wegkamp (2002). Indeed, there are other classes F !, for which (2.1) holds

as well. For example, the classes

(2.3) F ! =
{
exp(< t, · >), t ∈ Rk!

}
,

or the classes

(2.4) F ! =
{
exp(i < t, · >), t ∈ Rk!

}
where i =

√
−1,

or the classes of all C∞ functions on Rk! . The first two sets of classes are Donsker, pro-

vided t ranges in a bounded subset. In (2.3) we compare the joint moment generating

functions (m.g.f.’s) with the product of its marginal m.g.f.’s, and in (2.4) the compar-

ison is based on characteristic functions. The class of all C∞ functions is not finite

dimensional, and therefore is uninteresting from a computational perspective. We note

in passing that this formulation using expected values does not allow for comparison

between the joint density of X and ρ(X, Y, θ), and the product of its marginal densities.

In fact, our estimators can be viewed as moment estimators as (2.1) is a family, albeit

infinite, of moment conditions.

Let (X1, Y1), · · · , (Xn, Yn) be independent copies of the pair (X, Y ). Motivated by

the equivalence (2.1), we compare the empirical version

1

n

n∑

i=1

f(Xi)g(ρ(Xi, Yi, θ)) =
1

n

n∑

i=1

f(Xi) · 1

n

n∑

i=1

g(ρ(Xi, Yi, θ)),

for all f ∈ F1 and g ∈ F2. Letting Pn = n−1
∑n

i=1 δXi,Yi be the empirical measure

based on the sample (X1, Y1), · · · , (Xn, Yn), we can write the preceding display more

compactly as

Pnf(x)g(ρ(x, y, θ)) = Pnf(x)Png(ρ(x, y, θ)) for all f ∈ F1, g ∈ F2.

Observe that this amounts to comparing the joint cumulative distribution functions

(c.d.f.’s) with the product of the marginal c.d.f.’s.

In order to obtain a tractable large sample theory, we consider the statistics

Mn(θ; Pn; µ) ≡
∫ ∫

Rk1×Rk2

{Pnfs(x)gt(ρ(x, y, θ))− Pnfs(x)Pngt(ρ(x, y, θ))}2 dµ(s, t),

where µ is a c.d.f. acting as a weight function. We require that µ has a strictly positive

density. In this way, we guarantee that all values s and t, that is, all functions f! ∈ F !,

are taken into account. The heuristic idea is that the unique minimizer of Mn(θ; Pn; µ)
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should be close to the unique minimizer of

M(θ; P ; µ) ≡
∫ ∫

Rk1×Rk2

{Pfs(x)gt(ρ(x, y, θ))− Pfs(x)Pgt(ρ(x, y, θ))}2 dµ(s, t),

where P is the probability measure of the pair (X, Y ). The unique minimizer of this

criterion is denoted by θP = θ(P ; µ). Observe that M(θ; P ; µ) is finite for all θ since µ

is a distribution function, and that M(θP ; P ; µ) = 0 if and only if ρ(X, Y, θP ) and X

are independent. In this case θ(P ; µ) does not depend on µ and we say that the model

is identified. We can interpret M(θ) as the Cramér-von Mises distance between the

actual distribution of the pair (X, ρ(X, Y, θ)) and the (product) distribution of (X, Wθ),

where the marginals X and Wθ are independent and Wθ has the same distribution as

ρ(X, Y, θ). Observe that

M(θ̂n) = M(θP ) +
1

2
(θ̂n − θP )′M ′′(θn)(θ̂n − θP ),

provided M ∈ C2(Θ), for some θn between θP and θ̂n. We can view the first term on the

right as the approximation error due to the finite dimensional model, and the last term

can be thought of as the estimation error, which has an asymptotic χ2
p distribution (cf.

Theorem 4.1 below) under some regularity assumptions. For instance, suppose that

ρ(X, Y ) and X are independent for some ρ which we approximate by some finite series

ρ(x, y) ∼= ρ(x, y, θ) ≡
p∑

i=1

θiψi(x, y)

based on some finite dimensional basis ψ1, · · · , ψp.

We end this section with an example of an implicit nonlinear simultaneous equations

model separable in the latent variables, which motivated our research. In this example,

we show that the econometric model is identified for the class of extremum estimators

proposed in this paper and hence can be estimated by these methods.

Example . (A Random Quasilinear Utility Model of Consumer Demand)

We consider a consumer with a random demand function Y (P, I, W, θ0) derived from

maximizing a random utility function V (Y, W, θ0) subject to her budget constraint

P · Y + Y0 = I. First, the consumer draws W from a fixed and known distribution.

Then nature draws X = (P, I), from a fixed but unknown distribution. The main

model assumption is that W and X are stochastically independent. The consumer

solves the following optimization problem:

maximize V (y, w, θ0) over y such that p · y + y0 = I.(2.5)
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The econometrician knows V (y, w, θ) and Θ, the set of all possible values for the

parameter θ, but does not know θ0, the true value of θ. Nor does the econometrician

observe W or know the distribution of W . The econometrician does observe X = (P, I).

The econometrician’s problem is to estimate θ0 and the distribution of W from a

sequence of observations Zi = (Xi, Yi) for i = 1, 2, ..., n. The structural equations

for this model are simply the first-order conditions of the consumer’s optimization

problem. These conditions define an implicit nonlinear simultaneous equations model

of the form W = ρ(X, Y, θ), where the reduced form function is the consumer’s random

demand function Y (P, I, W, θ0) for the specification of V (y, w, θ) proposed by Brown

and Calsamiglia (2006), i.e., V (y, w, θ) = U(y, θ) + w · y + y0. They assume that for all

θ ∈ Θ, U(y, θ) is a smooth monotone strictly concave utility function on the positive

orthant of Rk, i.e., DU(y, θ) > 0 and D2U(y, θ) is negative definite for all y in the

positive orthant of Rk, and W ≥ 0.

Our examples are suggested by their model, where first we consider:

V (y, w, θ) = y0 +
K∑

k=1

θkgk(yk) +
K∑

k=1

wkyk,(2.6)

where θk ∈ (0, 1) and y0 is the numeraire good. Then the first-order conditions for

this optimization problem can be written as W = ρ(X, Y, θ), where X = (P1, P2, . . . , PK),

Y = (Y1, Y2, . . . , YK) and θ = (θ1, θ2, . . . , θK) and each gk is smooth, strictly concave

and increasing. Note that, because our utility is linear in the numeraire and we assume

an interior solution, our variable X does not include the income I and Y does not

include Y0. Our first order conditions are thus

wk = pk − θk
∂gk(yk)

∂yk
(2.7)

Because of our assumptions on gk the above system can be solved uniquely for

the random demand functions Yk(X, W, θ). This verifies that there exists a unique

reduced form Y = γ(X, W, θ) such that W = ρ(X, γ(X, W, θ), θ). Clearly an important

special case of the above form is the Cobb-Douglas function where we can take each

gk(yk) = ln yk.

We now need to show that the above system is identified. We will use the necessary

and sufficient condition for observational equivalence in an econometric model, where
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W and X are independent, from Matzkin (2005)1. If we can find an x and y such that

Matzkin’s identity is not satisfied for different θ, θ̃ then our model is identified.

Matzkin’s Identity is given by

∂ log(fW (ρ(y, x, θ)))

∂w

[
∂ρ(y, x, θ)

∂x
− ∂ρ(y, x, θ)

∂y

(
∂ρ(y, x, θ̃)

∂y

)−1
∂ρ(y, x, θ̃)

∂x

]
(2.8)

+

[
∂

∂x
log

(∣∣∣∣∣
∂ρ(y, x, θ)

∂y

∣∣∣∣∣

)
− ∂

∂x
log

(∣∣∣∣∣
∂ρ(y, x, θ̃)

∂y

∣∣∣∣∣

)]

−
[(

∂

∂y
log

(∣∣∣∣∣
∂ρ(y, x, θ)

∂y

∣∣∣∣∣

)
− ∂

∂y
log

(∣∣∣∣∣
∂ρ(y, x, θ̃)

∂y

∣∣∣∣∣

))(
∂ρ(y, x, θ̃)

∂y

)−1
∂ρ(y, x, θ̃)

∂x

]
≡ 0

where fW (w) is the fixed but unknown distribution of our parameter W and the func-

tion ρ is the system of first order conditions.

The identity

(2.9)

∂

∂y
log

(∣∣∣∣∣
∂ρ(y, x, θ)

∂y

∣∣∣∣∣

)
=

∂

∂y
log

(∣∣∣∣∣
∂ρ(y, x, θ̃)

∂y

∣∣∣∣∣

)
=

(
g′′′1 (y1)

g′′1(y1)

g′′′2 (y2)

g′′2(y2)
. . .

)

follows from (2.7). Hence the third term is zero. The second term is also zero, since

∂

∂x
log

(∣∣∣∣∣
∂ρ(y, x, θ)

∂y

∣∣∣∣∣

)
=

∂

∂x
log

(∣∣∣∣∣
∂ρ(y, x, θ̃)

∂y

∣∣∣∣∣

)
= 0

Simplifying the remaining term we get the following equation:

∂ log(fW (ρ(y, x, θ)))

∂w

[
I−





θ1

θ̃1
0 0 . . .

0 θ2

θ̃2
0 . . .

...
...

. . .





]
= 0(2.10)

Since θ and θ̃ are different, there exists a k such that θk )= θ̃k. Assuming that the kth

component of the derivative of fW is not identically zero implies there exist x and y

such that Matzkin’s identity is not satisfied. That is, the model is identified.

This is the example we compute in the Appendix. We can show that general utility

functions of the form

V (y, w, θ) = y0 + U(y1, . . . , yK , θ1, . . . , θK) +
K∑

k=1

wkyk,(2.11)

1Lenkard and Berry (2006) show that the necessary and sufficient conditions for identification,
proposed by Brown (1983) and Roehrig (1988), which are widely cited in the literature and used in
Brown and Wegkamp (2002), are incorrect. This paper corrects the error in Brown and Wegkamp
(2002).



TESTS OF INDEPENDENCE IN SEPARABLE ECONOMETRIC MODELS 7

(where U is some concave, monotone function of y) are identified under the following

restrictions:

Theorem 2.1. The system wk = pk − ∂U(y1,y2,...,yK ,θ)
∂yk

is identified if

(1) w = ρ(y, x, θ) or equivalently wk = pk − ∂U(y1,y2,...,yK ,θ)
∂yk

is an invertible function

in y and w.

(2) For any fixed θ )= θ′ and ∀c, ∃y such that U(y1, y2, . . . , yK , θ)−U(y1, y2, . . . , yK , θ′) )=
c.

(3) ∀y, x ∂
∂x

∂ log(fW (ρ(y,x,θ)))
∂w is invertible.

Proof. The proof follows from the following observation - Matzkin’s identity holds only

if all derivatives of the identity w.r.t. x and y are also zero. We differentiate Matzkin’s

identity with respect to x and examine the individual terms.

For all x, y

(2.12)

∂

∂x

[(
∂

∂y
log

(∣∣∣∣∣
∂ρ(y, x, θ)

∂y

∣∣∣∣∣

)
− ∂

∂y
log

(∣∣∣∣∣
∂ρ(y, x, θ̃)

∂y

∣∣∣∣∣

))(
∂ρ(y, x, θ̃)

∂y

)−1
∂ρ(y, x, θ̃)

∂x

]
= 0

because the term inside the square brackets does not depend on x.

Similarly the second term is independent of x, hence
[

∂

∂x
log

(∣∣∣∣∣
∂ρ(y, x, θ)

∂y

∣∣∣∣∣

)
− ∂

∂x
log

(∣∣∣∣∣
∂ρ(y, x, θ̃)

∂y

∣∣∣∣∣

)]
= 0(2.13)

This leaves the first term. Once again the term inside the square brackets does not

depend on x, thus our sufficient condition for identification is that for some y, x

(2.14)

∂

∂x

[
∂ log(fW (ρ(y, x, θ)))

∂w

][
∂ρ(y, x, θ)

∂x
− ∂ρ(y, x, θ)

∂y

(
∂ρ(y, x, θ̃)

∂y

)−1
∂ρ(y, x, θ̃)

∂x

]
)= 0

But using assumption (3) we need only consider the claim:

∂ρ(y, x, θ)

∂x
− ∂ρ(y, x, θ)

∂y

(
∂ρ(y, x, θ̃)

∂y

)−1
∂ρ(y, x, θ̃)

∂x
)= 0(2.15)

However,
∂ρ(y, x, θ)

∂x
=

∂ρ(y, x, θ̃)

∂x
= I

Hence

∂ρ(y, x, θ)

∂y

(
∂ρ(y, x, θ̃)

∂y

)−1

)= I(2.16)



8 DONALD J. BROWN, RAHUL DEB, AND MARTEN H. WEGKAMP

for some y and x suffices for identification. Suppose not, then (∀y), U(y1, y2, . . . , yK , θ)−
U(y1, y2, . . . , yK , θ̃) = a constant; which contradicts assumption (2). !

As an example assume that the w’s are independent and half normally distributed

with parameter θ or

fW (w) =
K∏

k=1

2θk

π
e−w2

kθ2
k/π(2.17)

Then

∂ log(fW (w))

∂w
=

[
− 2θ2

1w1

π
, . . . ,−2θ2

KwK

π

]

and therefore

∂

∂x

∂ log(fW (ρ(y, x, θ))

∂w
=




−2θ2

1
π 0 . . .

0 −2θ2
2

π . . .
...

...
. . .



(2.18)

which is invertible for all y, x.

Table 1 summarizes the distributions for which our assumption (3) holds. Note

that for the checked distributions it holds for all values of parameters. For the other

distributions our assumption holds only if we consider a restricted subset of parameters.

Table 1. List of Distributions

Weibull (Exponential) X
Gamma (Chi Square)

√

Half Normal
√

Log Normal X
Pareto

√

Rayleigh
√

Type 2 Gumbell X
Wald X
Levy X

3. Independence Empirical Processes

Given the classes F1 and F2, we define F ≡ F1 and

G ≡ {f(ρ(·, ·, θ)) : f ∈ F2, θ ∈ Θ} = {gt(ρ(·, ·, θ)) : t ∈ Rk2 , θ ∈ Θ}.
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As before, we denote the joint probability measure of the pair (X, Y ) by P , and the

empirical measure based on the sample (X1, Y1), · · · , (Xn, Yn) by Pn. For any f ∈ F
and g ∈ G, set

Dn(f, g) ≡ Pnfg − PnfPng

and

D(f, g) ≡ Pfg − PfPg,

so that

Mn(θ) =

∫ ∫

Rk1×Rk2

D2
n(fs, gt,θ) dµ(s, t)

in the new notation. Finally, we define the independence empirical process Zn indexed

by F × G by

Zn(f, g) ≡
√

n(Dn −D)(f, g).

Observe that [cf. Van der Vaart and Wellner (1996, page 367)]

Zn(f, g) =
√

n {(Pn − P )(fg)− (Png)(Pn − P )(f)− (Pf)(Pn − P )(g)}

=
√

n(Pn − P )((f − Pf)(g − Pg))−
√

n(Pn − P )(f)(Pn − P )(g)(3.1)

The minor difference with the original formulation of independence empirical processes

in Van der Vaart and Wellner (1996, Chapter 3.8) is that we consider the marginal

distributions of (X, ρ(X, Y, θ)) rather than (X, Y ). The next result states sufficient

conditions for weak convergence of the independence empirical process Zn in #∞(F×G).

Let ‖P‖F be the sup-norm on #∞(F) for any class F , i.e. ‖P‖F = supf∈F P |f |.

Theorem 3.1. Let F ,G and F × G be P -Donsker classes, and assume that ‖P‖F <

∞ and ‖P‖G < ∞. Then Zn converges weakly to a tight Gaussian process ZP in

#∞(F × G).

Proof. The first term on the right in (3.1) converges weakly as F × G is P -Donsker.

The second term in this expression is asymptotically negligible, since F and G are

P -Donsker. We invoke Slutsky’s lemma to conclude the proof. !

We can also bootstrap the limiting distribution of Zn. Let (X∗
1 , Y

∗
1 ), · · · , (X∗

n, Y ∗
n ) be

an i.i.d. sample from Pn, and let P∗n be the corresponding bootstrap empirical measure.

Then we define the bootstrap counterpart of Zn by

Z∗
n(f, g) =

√
n(D∗

n − Dn)(f, g),

where D∗
n(f, g) =

√
n(P∗nfg − P∗nfP∗ng).



10 DONALD J. BROWN, RAHUL DEB, AND MARTEN H. WEGKAMP

Theorem 3.2. Let F ,G and F × G be P -Donsker classes, and assume that ‖P‖F <

∞ and ‖P‖G < ∞. Then Z∗
n converges weakly to a tight Gaussian process ZP in

#∞(F × G), given P∞-almost every sequence (X1, Y1), (X2, Y2), · · · .

Proof. We first note that

Z∗
n(f, g) =

√
n(P∗n − Pn)((f − Pnf)(g − Png))−

√
n(P∗n − Pn)(f)(P∗n − Pn)(g)

and recall that
√

n(P∗n − Pn) converges weakly [cf. Theorem 3.9.12 in Van der Vaart

and Wellner (1996)]. An application of Slutsky’s lemma concludes our proof. !

4. Estimation of θP

4.1. A general result. Given P -Donsker classes F = {fs : s ∈ Rk1} and G =

{gt,θ : t ∈ Rk2 , θ ∈ θ} and a c.d.f. µ, we can define

Mn(θ) =

∫ ∫

Rk1×Rk2

D2
n(fs, gt,θ) dµ(s, t)

and

M(θ) =

∫ ∫

Rk1×Rk2

D2(fs, gt,θ) dµ(s, t).

We propose to estimate θP = θ(P ; µ) by θ̂n = θ(Pn; µ) which minimizes the random

criterion function Mn over Θ. Then, provided M has a unique, well-separated minimum

at an interior point θP of Θ, it follows immediately by the weak convergence of Zn (cf.

Theorem 3.1) and Theorem 5.9 in Van der Vaart (1998, page 46) that

θ̂n ∈ arg min Mn(θ) → arg min M(θ) = θP ,

in probability. We will now show the asymptotic normality of the standardized distri-

bution
√

n(θ̂n − θP ).

We impose the following set of assumptions:

(A1) M has a unique global, well-separated minimum at θP in the interior of Θ and

M(θ; P ) ∈ C2(Θ) and M ′′(θP ; P ) is non-degenerate.

(A2) D(fs, gt,θ) is differentiable with respect to θ for all s, t, and its derivative satisfies
∣∣∣Ḋ(s, t, θ)− Ḋ(s, t, θP )

∣∣∣ ≤ |θ − θP |∆(s, t)

for some ∆ ∈ L2(µ).

(A3) sups,t P |fsgt,θ − fsgt,θP |2 → 0 as θ → θP .

(A4) The map ρ(·, ·, θ) is continuously differentiable in θ.
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(A5) The classes F ,G and F × G are P -Donsker.

We have the following result:

Theorem 4.1. Assume (A1) – (A5). Then,
√

n(θ̂n−θP ) has a non-degenerate Gauss-

ian limiting distribution.

Proof. The result follows from Theorem 3.2 in Wegkamp (1999, page 48). We need to

verify the following three conditions:

(i) θ̂n → θP in probability.

(ii) M has a non-singular second derivative at θP .

(iii)
√

n(Zn − Z)(θ) is stochastically differentiable at θP .

As noted above, (i) follows from general theory. Condition (ii) is subsumed in (A1).

It remains to establish (iii). Let the symbol " denote weak convergence in general

metric spaces. (A3) implies that

Zn(θ)− Zn(θP ) " 0 as θ " θP , n →∞.

Consequently, by the continuous mapping theorem

∫ ∫

Rk1×Rk2

[
Z2

n(fs, gt,θ)− Z2
n(fs, gt,θP )

]
dµ(s, t) " 0

as θ " θP , n →∞. (A2), (A3) and the continuous mapping theorem yield also that

∫ ∫

Rk1×Rk2

[D(fs, gt,θ)Zn(fs, gt,θ)−D(fs, gt,θP )Zn(fs, gt,θP )

−(θ − θP )′Ḋ(s, t, θP )Zn(fs, gt,θP )
]

dµ(s, t) " 0



12 DONALD J. BROWN, RAHUL DEB, AND MARTEN H. WEGKAMP

as θ " θP , n →∞. Conclude that

√
n(Mn −M)(θ)

=

∫ ∫

Rk1×Rk2

Z2
n(fs, gt,θ) dµ(s, t) + 2

∫ ∫

Rk1×Rk2

D(fs, gt,θ)Zn(fs, gt,θ) dµ(s, t)

=

∫ ∫

Rk1×Rk2

Z2
n(fs, gt,θP ) dµ(s, t) + 2

∫ ∫

Rk1×Rk2

D(fs, gt,θP )Zn(fs, gt,θP ) dµ(s, t) +

+2(θ − θP )′
∫ ∫

Rk1×Rk2

Ḋ(s, t, θP )Zn(fs, gt,θP ) dµ(s, t) + op(1 + ‖θ − θP‖)

=
√

n(Mn −M)(θP ) + 2(θ − θP )′
∫ ∫

Rk1×Rk2

Ḋ(s, t, θP )Zn(fs, gt,θP ) dµ(s, t)

+op(1 + ‖θ − θP‖),

which establishes (iii). !

In fact, the asymptotic linear expansion

√
n(θ̂n − θP )(4.1)

= −2 [M ′′(θP )]−1
∫ ∫

Rk1×Rk2

Ḋ(s, t, θP )Zn(fs, gt,θP ) dµ(s, t) + op(1)

holds. This expression coincides with the one derived in Brown and Wegkamp (2002,

page 2045).

In addition, the conditional distribution of the bootstrap estimators
√

n(θ̂∗n − θ̂n)

has the same limit in probability. Here θ̂∗n is based on i.i.d. sampling from Pn, see

Section 3. The proof of this assertion follows from similar arguments as Theorem 4.1,

see Brown and Wegkamp (2002, pages 2046 - 2048) and is for this reason omitted.

Theorem 4.2. Assume (A1) – (A5). Then

|
√

n(θ̂∗n − θ̂n)|− |
√

n(θ̂ − θP )| " 0.

We apply the developed theory to the special cases where F and G are indicator

functions of half-spaces (−∞, ·] or exponential functions exp(t′x).
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4.2. Estimators based on the distribution functions. For every s ∈ Rk1 , t ∈ Rk2

and θ ∈ Θ, define the empirical distribution functions

Fn(s) =
1

n

n∑

i=1

{Xi ≤ s}, Gnθ(t) =
1

n

n∑

i=1

{ρ(Xi, Yi, θ) ≤ t} and

Hnθ(s, t) =
1

n

n∑

i=1

{Xi ≤ s, ρ(Xi, Yi, θ) ≤ t}.

The criterion function Mn becomes in this case

Mn(θ) ≡ M(θ; Pn; µ) =

∫ ∫

Rk1×Rk2

{Fn(s)Gnθ(t)−Hnθ(s, t)}2 dµ(s, t).

This is essentially the empirical criterion proposed by Brown and Wegkamp (2002).

We obtain its theoretical counterpart M(θ) = M(θ; P ; µ) by replacing the empirical

distributions Fn, Gnθ and Hnθ by the population distributions.

Assumption (A3) is verified if ρ(x, y, θ) is Lipschitz in θ, see Brown and Wegkamp

(2002, page 2043, proof of Lemma 3). Assumptions (A2), and (A4) follow from smooth-

ness assumptions on ρ(·, ·, θ) and P . For (A1), we refer to Brown and Wegkamp (2002,

Theorem 3, page 2038). We now show how to verify (A5).

We define the sets

Aθ,t =
{
(x, y) ∈ Rk1+k2 : ρ(x, y, θ) ≤ t

}
, t ∈ Rk2 , θ ∈ Θ,

and the associated collection

A =
{
Aθ,t : θ ∈ Θ, t ∈ Rk2

}
.

Note that G corresponds to the indicators IA of sets A ∈ A, and F corresponds to

corresponds to the indicators IB of sets B ∈ B ≡
{
{x ∈ Rk1 : x ≤ t}, t ∈ Rk1

}
, which

is universally Donsker. Condition (A5) becomes in this specific setting

(A5’) The classes of sets A, A× B are P -Donsker.

Sufficient conditions for A to be P -Donsker are either smoothness of ρ(x, y, θ) (with

respect to x and y, not θ) or that ρ ranges over a finite dimensional vector space. See

Brown and Wegkamp (2002) for a discussion.

Example 4.3. Let {ρ(·, ·, θ), θ ∈ Θ} be a subset of a finite dimensional vector space.

Then both A and B are VC-classes, and A × B, the product of two VC-classes, is
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again VC, see Van der Vaart and Wellner (1996, page 147). Hence A,B and A×B are

universally Donsker.

Example 4.4. Let the support of (X, Y ) be a bounded, convex subset of Rk1+k2 with

non-empty interior, and, for each θ, ρ(x, y, θ) have uniformly bounded (by K) partial

derivatives through order β = 0α1, and the derivatives of order β satisfy a uniform

Hölder condition of order α − β, and with Lipschitz constant bounded by K. For a

complete description of the space Cα
K [X × Y ], we refer to Van der Vaart and Wellner

(1996), page 154. If α > d and P has a bounded density, then A and A × B are

P -Donsker. To see why, we first notice that A× B has constant envelope 1, and that

Q|fg − f̃ g̃|2 ≤ 2Q|f − f̃ |2 + 2Q|g − g̃|2,

and that fL ≤ f ≤ fU and gL ≤ g ≤ gU implies fLgL ≤ fg ≤ fUgU . Hence

NB(2ε, L2(Q),F × G) ≤ NB(ε, L2(Q),F)NB(ε, L2(Q),G),

where NB(ε, L2(Q),F) is the ε-bracketing number of the set F with respect to the

L2(Q) norm. Since logNB(ε, L2(Q),B) # log(1/ε), the bound on the bracketing num-

bers in Corollary 2.7.3 in Van der Vaart and Wellner (1996) on A implies that A× B
is P -Donsker.

4.3. Estimators based on the moment generating functions. Assume that X

and ρ(X, Y, θ) are bounded, so that in particular their m.g.f.’s exist. For every s ∈
Rk1 , t ∈ Rk2 and θ ∈ Θ, define the empirical m.g.f.’s

φn(s) =
1

n

n∑

k=1

exp(< s,Xk >), ψnθ(t) =
1

n

n∑

k=1

exp {< t, ρ(Xk, Yk, θ) >}

and ζnθ(s, t) =
1

n

n∑

k=1

exp {< s,Xk > + < t, ρ(Xk, Yk, θ) >} .

Let k = k1 + k2, and Cε > 0 be such that µ[−Cε, Cε]k = 1− ε. In this case we take the

random criterion function Mn

Mn(θ) ≡ M(θ; Pn; µ) =

∫ ∫

[−Cε,+Cε]k

{φn(s)ψnθ(t)− ζnθ(s, t)}2 dµ(s, t).

This setting corresponds to

F ε = {exp(< t, x >), t ∈ [−Cε, +Cε]
k1}
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and

Gε = {exp(< t, ρ(x, y, θ) >), t ∈ [−Cε, +Cε]
k2 , θ ∈ Θ}.

Van de Geer (2000, Lemma 2.5) shows that the box [−Cε, Cε]k1 can be covered by

(4Cεδ−1 + 1)k1 many δ-balls in Rk1 . Since

Pn |exp(< s,X >)− exp(< t, X >)|2 # Pn‖X‖2‖s− t‖2,

it follows from the above covering number calculation that the uniform entropy condi-

tion (cf. Van der Vaart and Wellner (1996, page 127) is met, and consequently the class

F ε is P -Donsker. Restricting the integration over [−Cε, Cε]k, which has µ-probability

equal to 1− ε, forces the function M to be within ε of the original criterion function,

since
∣∣∣∣∣∣∣

∫ ∫

Rk1×Rk2

D2(s, t) dµ(s, t)−
∫ ∫

[−Cε,Cε]k

D2(s, t) dµ(s, t)

∣∣∣∣∣∣∣
≤ µ

(
Rk \ [−Cε, Cε]

k
)
≤ ε.

Assumption (A1) will force the corresponding unique minimizers to be close as well.

Notice that F ε is not a Donsker class if we take Cε = +∞. Gε will be a P -Donsker

class if {ρ(·, ·, θ) : θ ∈ Θ} has this property. This is a consequence of the fact that the

Donsker property of a class is preserved under Lipschitz transformations, see Theorem

2.10.6 in Van der Vaart and Wellner (1996, page 192).

Assumptions (A2) and (A3) follow from (A4), smoothness of ρ(·, ·, θ), and the

smoothness of the exponential function. Again, for (A1) we refer to Brown and

Wegkamp (2002, Theorem 3, page 2038).

5. Tests of independence

Our null hypothesis is that ρ(X, Y ) and X are independent for some specified struc-

tural equation ρ(x, y) = ρ(x, y, θ0). Following the discussion in Van der Vaart and

Wellner (Chapter 3.8, 1996), a reasonable test is based on the Kolmogorov-Smirnov

type statistic

Kn ≡ sup
s,t

√
n |Pnfs(x)gt(ρ(x, y))− Pnfs(x)Pngt(ρ(x, y))| .

Provided F × G, F and G are P -Donsker, the limiting distribution of Kn under the

null is known and can be bootstrapped (see Van der Vaart and Wellner, 1996, pages

367 -369).
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Alternatively, we propose tests based on the criteria Mn defined above. Given ob-

servations (Xi, Yi) we can compute (Xi, Wi) ≡ (Xi, ρ(Xi, Yi)). Next, we note that

Zn(f, g) ≡
√

n(Dn −D)(f, g ◦ ρ)

=
1√
n

n∑

i=1

{f(Xi)g(Wi)− IEf(Xi)IEg(Wi)}

− 1√
n

n∑

i=1

{f(Xi)− IEf(Xi)}
1√
n

n∑

i=1

{g(Wi)− IEg(Wi)}

is the same independence empirical process discussed in Van der Vaart and Wellner

(1996, Section 3.8). Theorem 3.8.1 in Van der Vaart and Wellner (1996, page 368) states

that Zn(f, g) converges weakly to a tight Gaussian process ZH in F×G. Consequently,

under the null hypothesis

(5.1) nMn =

∫ ∫

Rk1×Rk2

{
Zn(fs, gt) +

√
nD(fs, gt)

}2
dµ(s, t)

converges weakly to

(5.2)

∫ ∫

Rk1×Rk2

Z2
P (fs, gt) dµ(s, t)

by the continuous mapping theorem. However,

nMn → +∞ (in probability)

under any alternative PX,W with
∫

D2(fs, gt) dµ(s, t) > 0,

which, provided F and G are generating classes as in (2.2), (2.3) or (2.4), is equivalent

with X and W = ρ(X, Y ) are dependent. This implies that the power of the test

converges to one under each alternative, that is, the test is consistent.

In lieu of the normal limiting distribution (5.2), we can also rely on the following

bootstrap approximation for the distribution of the test statistic under the null. Let

PX and PW be the probability measures of X and W , respectively, with empirical

counterparts denoted by PX
n and PW

n , respectively. Under the null hypothesis, the joint

distribution of (X,W ) is the product measure PX × PW , and a natural estimate for

the joint distribution of (X, W ) is PX
n × PW

n . In order to imitate the independence

structure under the null hypothesis, we sample from the product measure PX
n × PW

n .
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Let (X∗
1 , W

∗
1 ), · · · , (X∗

n, W ∗
n) be the resulting i.i.d. sample from PX

n × PW
n , and define

1√
n

Z∗
n(f, g) =

1

n

n∑

i=1

f(X∗
i )g(W ∗

i )− 1

n

n∑

j=1

f(X∗
j )

1

n

n∑

k=1

g(W ∗
k ).

Since the bootstrap sample is taken from PX
n × PW

n and not the ordinary empirical

measure Pn, the variables Z∗
n(f, g) have conditional mean zero. Van der Vaart and

Wellner (1996, Theorem 3.8.3) obtain sufficient conditions (F ×G satisfies the uniform

entropy condition (cf. Van der Vaart and Wellner (1996, page 171) for envelope func-

tions F, G and F × G in L2(P )) that Z∗
n(f, g) converges weakly to ZP X×P W almost

surely. Since this limit coincides with the limiting distribution of Zn under the null

hypothesis, nM∗
n =

∫
{Z∗

n(fs, gt)}2 dµ(s, t) can be used to approximate the finite sample

distribution of nMn in a consistent manner (under the null hypothesis). Note that this

procedure is model based as the resampling is done from the estimated model under

the null hypothesis.

In addition, we present a specification test where the composite null hypothesis is the

existence of a θ0 ∈ Θ such that X and ρ(X, Y, θ0) are independent. We base the test on

the statistic Tn ≡ nMn(θ̂), and we show that Tn equals in distribution approximately

nMn(θ0) plus some drift due to θ̂n. In general the limiting distribution depends on θ0,

but it can be bootstrapped.

Theorem 5.1. Assume (A1) – (A5) and M(θ0) = 0. Then

nMn(θ̂n)−
∫ [

Zn(fs, gt,θ0) +
√

n(θ̂n − θ0)
′Ḋ(s, t, θ0)

]2

dµ(s, t) " 0,(5.3)

and
∫ [

Zn(fs, gt,θ0) +
√

n(θ̂n − θ0)
′Ḋ(s, t, θ0)

]2

dµ(s, t)(5.4)

is asymptotically tight.

Proof. First, we note that Zn(fs, gt,θ) is stochastically differentiable in θ for all s, t by

Condition (A3). An application of the functional continuous mapping theorem yields

that
∫ ∫

Rk1×Rk2

[Zn(fs, gt,θ′)− Zn(fs, gt,θ)]
2 dµ(s, t) " 0, for θ′ " θ.
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The stochastic equicontinuity, weak convergence of θ̂n and (A2) yield the following

expansion of Mn(θ̂n):

nMn(θ̂n) =

∫
nD2

n(fs, gt,bθn
) dµ(s, t)

=

∫ [{
Zn(fs, gt,bθn

)− Zn(fs, gt,θ0)
}

+ Zn(fs, gt,θ0) +
√

nD(fs, gt,bθn
)
]2

dµ(s, t)

=

∫ [
Zn(fs, gt,θ0) +

√
n(θ̂n − θ0)

′Ḋ(s, t, θ0)
]2

dµ(s, t) + op(1).

Since θ̂n is asymptotically linear [cf. (4.1)], the vector
(
Zn(fs, gt,θ0) ,

√
n(θ̂n − θ0)

)

converges weakly to a tight limit. Claim (5.3) and (5.4) follow from the continuous

mapping theorem. !

Notice that we may write under the null hypothesis

Tn = nMn(θ̂) =

∫ [√
n{Dn(fs, gt,bθ)−D(fs, gt,θ0)}

]2

dµ(s, t).

Motivated by this expression, we propose the following bootstrap procedure. Let

(X∗
1 , Y

∗
1 ), . . . , (X∗

n, Y ∗
n ) be an i.i.d. bootstrap sample from Pn. The distribution of

Tn can be approximated by

T∗
n =

∫ [√
n{D∗

n(fs, gt,θ∗)− Dn(fs, gt,bθ)}
]2

dµ(s, t).

Theorem 5.2. Assume (A1) – (A5) and M(θ0) = 0. Then

Tn − T∗
n " 0(5.5)

given P -almost every sequence X1, Y1, X2, Y2, . . ..

Proof. By Theorems 3.1, 3.2 and 4.2, the functional continuous mapping theorem and

condition (A2), we find

T∗
n =

∫ [
Z∗

n(fs, gt,bθ) + Zn(fs, gt,θ∗)− Zn(fs, gt,bθ) +
√

n(D(fs, gt,θ∗)−D(fs, gt,bθ)
]2

dµ(s, t)

=

∫ [
Z∗

n(fs, gt,θ∗) +
√

n(θ∗ − θ̂)Ḋ(s, t, θ0)
]2

dµ(s, t) + op(1)

=

∫ [
Z∗

n(fs, gt,θ0) +
√

n(θ∗ − θ̂)Ḋ(s, t, θ0)
]2

dµ(s, t) + op(1)

Finally invoke that Z∗
n(fs, gt,θ0)−Zn(fs, gt,θ0) " 0 and

√
n(θ∗− θ̂)−

√
n(θ̂−θ0) " 0 by

Theorems 3.1, 3.2 and 4.2, so that after another application of the continuous mapping

theorem, T∗
n − Tn " 0 as asserted. !
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This result says that the distribution of T∗
n can be used to approximate the fi-

nite sample distribution of our test statistics Tn. Again, we note that the power

of the test converges to one, as nMn(θ̂n) → +∞ under any alternative PX,W with
∫

D2(fs, gt) dµ(s, t) > 0, that is, PXPW )= PX,W .

Remark: A model based bootstrap as described in the introduction would resam-

ple X∗
1 , . . . , X

∗
n from X1, . . . , Xn and W ∗

1 , . . . ,W ∗
n from Ŵ1 = ρ(X1, Y1, θ̂), . . . , Ŵn =

ρ(Xn, Ynθ̂). Let D̂∗
n be the bootstrap equivalent of Dn based on this bootstrap sample.

The bootstrap equivalent of Tn, namely n
∫

[D̂∗
n(fs, gt)]2 has the same limiting distri-

bution as Tn following section 2.8.3 in Van der Vaart and Wellner (1996, pp 173-174).

Appendix A. Simulation Results : Estimating A One Parameter Model

We simulate a data set for the simple one-dimensional parameter model

U(y0, y1, y2) = θ log y1 + (1− θ) log y2 + W1y1 + W2y2 + y0

subject to

p1y1 + p2y2 + y0 = I

where 0 ≤ θ ≤ 1 is the parameter. We set the true parameter θ0 = .4. The first order

conditions are

w1 = p1 −
θ

y1

w2 = p2 −
1− θ

y2

We use the estimator based on the moment generating functions (section 4.3) to com-

pute our estimate θ̂. Because of the exponential form of the mgf’s, the random criterion

function has a simple exponential form which is computationally inexpensive to eval-

uate, since the integral is not explicitly computed. To minimize the random criterion

function, we use a simple grid search. Below we give the expression for Mn(θ) for the

k dimensional version of the above 2 dimensional model. In this section we set k = 2

whereas in Section B of the appendix we set k = 4.

Mn(θ)

∫ ∫

[−2,+2]k

{φn(s)ψnθ(t)− ζnθ(s, t)}2 dµ(s, t).
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Plugging in values for φ , ψ and ζ, and setting Wi(θ) = ρ(Xi, Yi, θ), we get

Mn(θ) =

∫ ∫

[−2,+2]k

{
1

n2

n∑

i1=1

n∑

i2=1

k∏

l=1

eslXl
i1etlW l

i2
(θ) − 1

n

n∑

j1=1

k∏

l=1

eslXl
j1etlW l

j1
(θ)

}2

dµ(s, t)

=

∫ ∫

[−2,+2]k

{
1

n4

n∑

i1=1

n∑

i2=1

n∑

i3=1

n∑

i4=1

k∏

l=1

eslXl
i1etlW l

i2
(θ)eslXl

i3etlW l
i4

(θ)

+
1

n2

n∑

j1=1

n∑

j2=1

k∏

l=1

eslXl
j1etlW l

j1
(θ)eslXl

j2etlW l
j2

(θ)

− 2

n3

n∑

i1=1

n∑

i2=1

n∑

j1=1

k∏

l=1

eslXl
i1etlW l

i2
(θ)eslXl

j1etlW l
j1

(θ)

}
dµ(s, t)

=
1

n4

n∑

i1=1

n∑

i2=1

n∑

i3=1

n∑

i4=1

∫ ∫

[−2,+2]k

{
k∏

l=1

esl(Xl
i1

+Xl
i3

)etl(W l
i2

(θ)+W l
i4

(θ))

}
dµ(s, t)

+
1

n2

n∑

j1=1

n∑

j2=1

∫ ∫

[−2,+2]k

{
k∏

l=1

esl(Xl
j1

+Xl
j2

)etl(W l
j1

(θ)+W l
j2

(θ))

}
dµ(s, t)

− 2

n3

n∑

i1=1

n∑

i2=1

n∑

j1=1

∫ ∫

[−2,+2]k

{
k∏

l=1

esl(Xl
i1

+Xl
j1

)etl(W l
i2

(θ)+W l
j1

(θ))

}
dµ(s, t)

We take for µ the uniform distribution on [−2, +2]k. This makes computing the integral

computationally inexpensive since it is simply the integral of exponentials.

In this simulation we draw parameter W from a uniform distribution. This seems

to contradict Theorem 2.1 which requires the distribution for W to be smooth, but we

can approximate a uniform distribution arbitrarily closely by a smooth distribution.

We run two simulations:

(1) The first simulation corresponds to Theorem 4.1. It demonstrates that our

estimates are normally distributed around the true value of the parameter we

are estimating.

(2) The second simulation corresponds to Theorem 4.2. It demonstrates that the

bootstrap estimates are normally distributed around the estimated value of the

parameter.
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Figure 1. Resampled histogram

In the first simulation, we randomly sample p1, p2 from U[1, 2] and we sample w1, w2

from U[0, 1]. We pick a 100 price and corresponding consumer demands. The supports

of the uniform distributions are chosen to ensure an interior solution. We resample

values of p and w a 1000 times and calculate the estimated θ̂ each time. Recall that

θ0 = .4. We obtain the following results

θ =
1

1000

1000∑

n=1

θ̂n = 0.406116 std =

√√√√ 1

999

1000∑

n=1

(θ̂n − θ)2 = 0.051247

mse =
1

1000

1000∑

n=1

(θ̂n − θ)2 = 0.00266103

and plot the standardized histogram centered around θ0 (Figure 1)

In our second simulation, we sample p, W (100 points) only once from the same

uniform distributions. We estimate our parameter θ, bootstrap the sample a thousand
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Figure 2. Bootstrapped histogram

times and obtain the following results

θ̂ = estimated value without bootstrapping = 0.405

θ =
1

1000

1000∑

b=1

θ̂b = mean of bootstrapped estimates = 0.400463

std =

√√√√ 1

999

1000∑

b=1

(θ̂b − θ)2 = 0.051756

mse =
1

1000

1000∑

b=1

(θ̂b − θ̂)2 = 0.00269659

And finally we plot the standardized histogram of the bootstrapped estimates centered

around our estimate θ̂ to get Figure 2.

Appendix B. Simulation Results : Estimating A Three Parameter

Model

The purpose of this section is to show that the estimator works well even with

as little as 100 data points. The estimator naturally works better with larger data
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sets. Due to computational complexity we estimate only up to 3 parameters. We

also estimate with a least count of .01 for the same reason. It is possible to make

the computations relatively inexpensive using the fast Laplace transform and more

sophisticated optimization techniques.

We simulate a data set as in Appendix A with multiple parameters. Hence, our

multidimensional model is

U(y0, y1, y2, y3, y4) =
4∑

i=1

θi log yi +
4∑

i=1

Wiyi + y0

subject to

p1y1 + p2y2 + p3y3 + p4y4 + y0 = I

where 0 ≤ θi ≤ 1, i ∈ {1, 2, 3} are the parameters we must estimate, since θ4 =

1− (θ1 + θ2 + θ3). The true parameters values are: θ1 = .2, θ2 = .3 and θ3 = .4.

First, we sample p1, p2, p3, p4 from U[1, 2] and w1, w2, w3, w4 from U[0, 1]. Then we

choose 100 price vectors and the corresponding consumer demands. The supports of

the uniform distributions are chosen to ensure an interior solution. We obtain the

following estimates for our parameters:

θ̂1 = .23 θ̂2 = .27 θ̂3 = .4

Appendix C. Simulation Results (Tests For Independence)

We will simulate both the simple and composite null hypotheses outlined in Section

5. Below is an outline of the simulations

(1) The first set of simulations are for the null hypothesis that ρ(X, Y ) and X are

independent for some specified structural equation ρ(x, y) = ρ(x, y, θ0). We test

both when the null hypothesis is true and also some local alternatives when the

null is false.

(2) The second set of simulations are for the composite null hypothesis i.e. the

existence of a θ0 ∈ Θ such that X and ρ(X, Y, θ0) are independent. We test

separately the independent case as well as cases where there is perfect and slight

correlations.

In the first simulations we test the two parameter model used in appendix A. In

particular we fix the true value θ = .4. We generate X and W independently and
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then back out the Y ’s using the true value of θ, and then test for independence of

ρ(X, Y ) and X for specified structural equations ρ(x, y) = ρ(x, y, θ0), where we allow

θ0 to take the true value .4 as well as local alternatives .3 and .5. We approximate the

distribution of the test statistic by bootstrapping the sample and ordering the values

of the test statistic from the bootstrapped distribution in ascending order, where we

take the 95th percentile value as the critical value. The null is rejected if the value of

the test statistic from the original sample is greater than this critical value and repeat

this for various sample sizes. Our results are summarized in the following tables

Table 2. Independence Test Results θ0 = .4 (True θ = .4)

Sample Size No of Simulations No of Accepts
500 1000 892
1000 1000 989

Table 3. Independence Test Results θ0 = .3 (True θ = .4)

Sample Size No of Simulations No of Rejects
500 1000 924
1000 1000 984

Table 4. Independence Test Results θ0 = .5 (True θ = .4)

Sample Size No of Simulations No of Rejects

500 1000 887
1000 1000 971

The second simulations requires the generation of independent random vectors X

and W and testing their independence. We generate independent data, dependent data

as well as correlated data and test for various sample sizes. The details of the tests are

summarized in the tables below.

We first test for dependence

Table 5. Independence Test Results (wk = pk − 1)

Sample Size No of Simulations No of Rejects

500 1000 997
1000 1000 1000
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For correlated data we generate multivariate (X1, X2, W1, W2) with mean (0, 0, 0, 0)

and covariance matrix





X1 X2 W1 W2

X1 1 0 σ 0
X2 0 1 0 σ
W1 σ 0 1 0
W2 0 σ 0 1





We test for different values of the correlation σ and report the results below

Table 6. Independence Test Results (σ = .5)

Sample Size No of Simulations No of Rejects

500 1000 986
1000 1000 998

Table 7. Independence Test Results (σ = .1)

Sample Size No of Simulations No of Rejects

500 1000 541
1000 1000 712

Table 8. Independence Test Results (σ = 0)

Sample Size No of Simulations No of Accepts

500 1000 935
1000 1000 972

Remark: The parameter estimation procedure works well for small samples sizes of

n = 100, 200 but the tests for independence are not effective for these values of n.
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