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Abstract

Public-private partnerships (PPPs) cannot be justified because they free public funds.

When PPPs are justified on efficiency grounds, the contract that optimally balances de-

mand risk, user-fee distortions and the opportunity cost of public funds, features a mini-

mum revenue guarantee and a revenue cap. However, observed revenue guarantees and

revenue sharing arrangements differ from those suggested by the optimal contract. Also,

this contract can be implemented via a competitive auction with realistic informational

requirements. Finally, the allocation of risk under the optimal contract suggests that PPPs

are closer to public provision than to privatization.
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1 Introduction and motivation

The use of Public-Private Partnerships (PPPs) to replace the public provision of infrastruc-

ture services has become common in recent years.2 Projects that require large up-front

investments, such as highways, water and sewerage, bridges, seaports and airports, hos-

pitals, jails and schools are often provided via PPPs.3 The main characteristic of a PPP,

compared with the traditional approach to the provision of infrastructure, is that it bun-

dles investment and service provision in a single long term contract. For the duration of

the contract, which can be as long as twenty or thirty years, the concessionaire will manage

and control the assets, usually in exchange for user fees, which are its compensation for the

investment and other costs.4 At the end of the franchise, the project reverts to government

ownership.5

As the economics of PPPs is still imperfectly understood, practice has run ahead of the-

ory. Some practitioners and governments claim that PPPs relieve strained budgets and

release public funds,6 while others suggest that PPPs are appealing because finance, in-

vestment and management is delegated to private firms, which are more efficient. De-

spite these seemingly reasonable arguments, the experience with PPPs has been mixed.

Whereas in some cases previous expectations are met, in many more cases contracts are

renegotiated in favor of the concessionaire, or conversely, are subject to regulatory takings.

Often deadlines are not met, or the project requires substantial subsidies to be finished

2The surge in PPPs is reflected in the financial press. For example, articles in the Financial Times men-
tioning this concept increased twenty-fold over the last decade, from 50 in 1995 to 1,153 in 2004. In Britain
about 14% of public investment is now done under the so-called Private Finance Initiative (Bennet and Iossa,
2006).

3The case of PPPs in the transportation sector is particularly compelling. Congestion costs in the top U.S.
metro areas have grown steadily, reaching $63.1 billion in 2003, 60% higher (in real terms) than a decade
earlier (Schrank and Lomax, 2005). This fact, combined with budgetary problems, and technological im-
provements in toll collection, has led more than 20 U.S. states to pass legislation allowing the operation of
public-private partnerships to build, finance and operate toll-roads, bridges and tunnels (“Paying on the
Highway to Get Out of First Gear.” New York Times, April 28, 2005). Recent examples of PPP contracts in
the U.S. transport sector include the Dulles Greenway, the Southbay Expressway, the Chicago Skyway, the
Indiana Toll Road and the Pocahontas Parkway.

4Compensations may also include up front subsidies or shadow tolls, paid by the government for the use
of the project.

5There are several definitions for “Public-Private Partnership”. In this paper we take it to mean an infras-
tructure project such that (i) assets are controlled by a private firm for a (possibly infinite) term; (ii) during
the duration of the contract, the firm is the residual claimant, while the government is the residual claimant
at the end of the concession. However, these claims are ambiguous due to contract incompleteness; and (iii)
there is considerable amount of public planning in the design of the project. We use the term “concession”
as synonymous to PPP.

6“The boom is good news for governments with overstretched public finances: many local and national
authorities have found themselves sitting on toll roads, ports and airports that they can sell for billions of
dollars to fund other public services.” Financial Times, July 5, 2007.
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(Guasch, 2004).7 The reason seems to be that the profitability of PPP projects is subject

to large exogenous demand uncertainty, which is often not considered properly when de-

signing the contracts. This explains why renegotiations take place when demand is lower

than expected, as well as the array of risk sharing agreements that are observed.

The purpose of this paper is to contribute to the normative analysis of PPPs by answer-

ing two questions. First, what is the structure of the optimal risk-sharing contract between

government and concessionaire when there is substantial exogenous demand risk? Sec-

ond, what is the impact of PPP’s on the the government budget? In order to answer these

questions we use a stylized model in which the government contracts a risk averse firm to

build, operate and maintain an infrastructure project.8 The investment is upfront, there

are no further costs and the demand for the project is perfectly inelastic, exogenous and

stochastic.9 The concessionaire receives a combination of state dependent user fees and

subsidies (i.e., direct transfers) as compensation for its efforts. Thus our model encom-

passes the range from traditional provision of infrastructure, in which the government pays

for the project and the firm collects no user fees, to the case of full concession, in which the

only repayment is through user fees.10

We assume that there is a cost of raising public funds, so that a dollar in government

revenues costs more than a dollar to society. This leads directly to our first result, namely

that PPPs do not release public funds, contrary to the first argument for this contractual

arrangement. The reason is that the user fee revenues that are used to repay the franchise

holder could have been received by the government instead and used to reduce distor-

tionary taxes, so there is no net gain to the government in discounted value. That is, under

a PPP the government saves on investments early on in the relationship, yet these savings

are offset one-for-one by ceding revenue flows to the private sector.11 Hence the distor-

7This does not mean that the traditional approach to infrastructure provision, with the government con-
tracting a private firm to build the project, would have done better. For an early evaluation of infrastructure
PPPs, see Economic Planning Advisory Commission (EPAC) (1995), Final Report of the Private Infrastructure
Task Force, Australian Government Publishing Service, Canberra. For more recent evaluations, see Engel et
al. (2003) and Grimsey and Lewis (2007).

8As in principal-agent models, the less risk averse party —in our case the government— is assumed to be
risk neutral. Assuming a risk averse firm is a shortcut for agency problems preventing risk diversification,
see Appendix D in the working paper version of Engel et al. (2001) for a model along these lines. Martimort
and Pouyet (2006) also assume a risk-averse concessionaire. Finally, note that similar results are obtained by
assuming a risk neutral firm subject to expropriation risk, see Engel and Fischer (2008).

9Later we relax these restrictions on costs and demand.
10Given that demand is inelastic, in any given state the total revenue derived from user fees depends only

on the length of the franchise in that state.
11If the government is credit constrained, in the sense that it expects that the total cost of raising public

funds will be lower in the future, our argument fails. However this expectation should be credible and not
wishful thinking. In many countries, the government can be periodically credit constrained and our argu-
ment continues to hold.
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tionary cost of taxation is not a rationale for the use of PPPs.

Having shown that private financing cannot by itself justify a PPP raises the question

of whether there exist other reasons to use PPPs. Hart (2003) argued that the main charac-

teristic of these contractual arrangements is that they bundle investment expenditure with

life-cycle operation costs.12 A PPP achieves the most efficient mix of these costs and is

therefore superior to conventional methods of infrastructure provision when cost cutting

increases social welfare. In some environments cost cutting leads to lower service quality,

and conventional provision should be preferred.

In this paper we focus on the financial aspect of bundling in PPPs. In particular, we

observe that the firm can be compensated with user fees, and that these represent a large

fraction of their revenues. If the government is inefficient in the transfer of subsidies to

the concessionaire (because the private sector pays lower overhead, is less corrupt, or for

another reason), reducing subsidies and replacing them with revenues from user fees in-

creases productive efficiency. The reason is that PPPs avoid either intermediation by the

government (if user fees are incorporated into the government budget) or the increase in

the distortion in the economy caused by raising taxes in other sectors (if there are no user

fees). This argument is not sufficient for favoring PPPs, since it is possible that incentives

to reduce costs by lowering service quality militate against PPPs. However, we show that,

provided that PPPs are preferred due to Hart’s arguments, the optimal risk-sharing contract

has a common structure.

Given our assumption that there is a cost of the subsidy in addition to the distortive ef-

fect of collecting government revenue, the planner prefers user fees over subsidies as com-

pensation. However, the allocation of user fees and revenues across the different states

of nature is not obvious. Too see this, consider first the case in which there is no cost of

a transfer to the firm.13 The optimal contract eliminates risk by returning exactly the in-

vestment costs to the firm, by any combination of user fees and transfers that add up to

investment costs. If demand is high in a given state, this can be achieved by providing the

firm with user revenues until its costs are collected. In low demand states, a subsidy makes

up for the shortfall in revenues.

If subsidies are costly, it is still feasible to provide full insurance in all states. The plan-

ner can design a contract of infinite length in low demand states, in order to provide the

smallest subsidy that makes up the shortfall to investment costs, and maintain the previ-

ous contract length in high demand states. This is not, however, the optimal contract. The

reason is that the planner can improve on this contract by trading off increased risk for the

12See also Bennet and Iossa (2006), Bentz et al. (2005) and Martimort and Pouyet (2006).
13In this example we assume there are no maintenance costs.
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franchise holder against lower subsidies. It can lengthen the term of the franchise in high

demand states, so that user fee revenues exceed investment costs, thus lowering the need

for subsidies in low demand states. This contract is better because user fees foregone by

the planner in high demand states are less valuable at the margin than subsidies required

in low demand states: this wedge drives our results. This strategy tends to increase social

welfare but becomes increasingly expensive as the firm is forced to bear more risk. We

characterize the optimal contract under these circumstances.

In the optimal contract, all high demand states face a common revenue cap that is

higher than investment costs, and the contract length is finite. Low demand states are

characterized by user fee revenues below a bound, even with an infinite contract length.

Subsidies are then used to raise the compensation in those states to the common lower

bound (i.e., they represent a minimum revenue guarantee). In states with intermediate

demand, with insufficient revenues to attain the revenue cap, but with revenues above the

guaranteed lower bound, the franchise term is of infinite length, but the firm does not re-

ceive a subsidy. The reason is that the marginal cost to the firm of increased risk lies within

the wedge in marginal social costs.

There are two special cases where the optimal contract provides full insurance. When

all states have high demand, the franchise length depends on the state but is finite and user

fees recover investment costs in all states. On the other hand, when all states are low de-

mand and user fee revenues never recover investment costs, the franchise length is infinite

in all states and a subsidy covers the difference between user fee revenues and investment

costs. The reason for providing full insurance in both cases is that the marginal social cost

of compensation does not vary across states, so there is no marginal cost wedge to exploit.

These characteristics of the optimal contract is extended to the case when demand is price

responsive and when there are operational and maintenance costs.

Even though such a contract would appear to be difficult to implement, we show that

it can be attained in a competitive auction. The government announces the probability

density of the different states, and the marginal costs of government funds and of transfers.

Firms bid both a minimum revenue guarantee and a revenue cap. The government scores

the bids according to the planner’s objective function and chooses the one with the lowest

score. Assuming firms with identical costs and competition, the auction reproduces the

optimal revenues caps and guarantees. The auction does not require that the government

know investment costs or the degree of risk aversion of firms.

Moral hazard does not play a significant role for some important types of infrastructure,

such as highways, where service and infrastructure quality can be verified at a low cost

by independent parties. In other cases however, such as airport and seaports, jails and

4



hospital services, unenforceable effort by the concessionaire can play an important role.

For this reason, we extend the model to the case of moral hazard. We assume that effort

during the investment stage shifts the probability distribution towards higher realizations

of demand. Hence the optimal contract must provide incentives to effort. This implies that

this contract cannot have flat compensation regions as in the case of no moral hazard. The

optimal contract will still have demand levels defining high and low demand states, but the

compensation in these states combines the desire to reduce risk with the need to provide

incentives, and is therefore state-contingent, i.e., there is a partial subsidy in bad states and

a progressive tax in good states.

The optimal demand risk-sharing contract we derive in this paper has implications for

the ongoing debate on privatizations and PPPs.14 The literature points out that bundling

has several attributes which are typically associated to privatization. Thus in a PPP the

concessionaire owns assets (Hart, 2003);15 retains control over how to produce the service

and may unilaterally implement any cost-saving innovation (Bennet and Iossa, 2006); and

directly collects user fees (Grout and Stevens, 2003).16 However, another hallmark of pri-

vatization is that demand risk is transferred to the firm.17 In this paper we show that if de-

mand risk is allocated optimally, the allocation of revenue in PPPs, in present-value terms,

is often similar to that under conventional provision of infrastructure. Most, or even all,

risk is borne by the government and the concessionaire recovers the upfront investment in

most states. Moreover, in the optimal contract the concessionaire should receive no com-

pensation after the end of the concession, once the asset is transferred to the government.

By contrast, under privatization, assets and cash flows are transferred forever to a private

firm in exchange for a one time payment. This means that the link between the project and

the public budget is permanently severed. Under a PPP this link continues to exist, even

when the compensation to the concessionaire is derived solely from user fees.

14See, for example, Daniels and Trebilcock (1996, 2000), Gerrard (2001), Savas (2000), and Starr (1988)
15Though usually it needs authorization to sell assets that are comprised in the concession.
16In a different vein, Besley and Ghatak (2001) show that when contracts are incomplete, transferring the

ownership of the assets needed to produce a public good to a private party is efficient, when that party values
the benefits created by the public good relatively more.

17Eurostat, the Statistical Office of the European Communities, focuses on this feature when deciding
whether a PPP-asset should be classified as governmental or not: “Eurostat recommends that the assets in-
volved in a public-private partnership should be classified as non-government assets, and therefore recorded
off balance sheet for government, if both of the following conditions are met: (1) the private partner bears the
construction risk, and (2) the private partner bears at least one of either availability or demand risk.” Eurostat
Press Office, February 11, 2004.
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Relation to the Literature

There is a growing literature on PPPs related to this paper.18 Risk sharing between the

government and the concessionaire has been always a concern among practitioners and

policy makers. The standard prescription is that each risk should be allocated to the party

best able to manage it. Irwin (2007, p. 14) is more precise: each risk should be allocated to

maximize project value, taking account of moral hazard, adverse selection and risk-bearing

preferences.19 Martimort and Pouyet (2006) study this problem in a moral hazard model

where effort during investment affects both the quality of the infrastructure and its operat-

ing cost. Bentz et al. (2005), on the other hand, study a model with moral hazard in building

and adverse selection in operation.

Our paper, by contrast, studies the implications of the optimal allocation of demand

risk, when subsidy finance is less efficient than user-fee finance. Even though we consider

the extension to the case with moral hazard, our main findings are best illustrated with-

out this assumption. We show that intertemporal and not period-by-period risk matters

in the case of PPPs. This implies that variable, state-contingent concession lengths are a

key component of the optimal risk-sharing contract. Moreover, the explicit modeling of

the intertemporal nature of PPPs shows that there is no fundamental difference between

revenue guarantees and subsidies, since guarantees are analogous to state-contingent sub-

sidies. In addition, we provide a rigorous foundation for minimum revenue guarantees and

revenue caps and show that the optimal guarantees and caps bear no relation to observed

guarantees and revenue sharing agreements.

Our results follow from the assumption that a large risk-neutral government, able to

spread risk, contracts with a risk-averse firm to undertake a “small” project. In the context

of PPPs, some authors find this assumption entirely plausible and probably correct (see, for

example, Dewatripont and Legros [2005, pp. 133 and 134] and Hart [2003, p. C75]). Others

are skeptical, and point out that private firms can use the capital market to diversify risks at

least as well as the government.20 We do not claim to have solved this controversy. But we

point out that the case for PPPs is very weak if private firms are more efficient and better at

diversifying risks, because then privatization dominates PPPs. Moreover, it is a well known

fact that private firms routinely demand minimum revenue guarantees because they deem

18See Grimsey and Lewis (2004) for a survey, history and experience, and Grimsey and Lewis (2005) for a
collection of articles on PPPs. Vaillancourt-Rosenau (2000) and Akintoye et al. (2003) include useful collec-
tions of essays.

19See also the discussion in Dewatripont and Legros (2005).
20See, for example, Hemmings [2006 pp 12 and 13] and Klein (1997). For a discussion of the controversy in

economics see Brealey et al. (1997)
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demand risk in PPPs excessive.21

This paper is also related to the literature on franchise bidding pioneered by Chadwick

(1859) and Demsetz (1968), according to which competition for a monopoly infrastruc-

ture project will replicate the competitive outcome (see Stigler [1968], Posner [1972], Ri-

ordan and Sappington [1987], Spulber [1989, ch. 9], Laffont and Tirole [1993, chs. 7 and

8], Harstad and Crew [1999] and Engel et al. [2001] for papers within this tradition, and

Williamson [1976, 1985] for a criticism). We contribute to this literature by considering

cases where projects are not self-financing and government subsidies are necessary to

make them feasible. We also show that in that case the optimal risk-sharing contract can

be implemented with a two-threshold auction with realistic informational requirements.

Finally, in Engel et al. (2001), we studied the optimal private provision of infrastructure

projects by solving a Ramsey problem with variable concession lengths. In that paper we

assumed a “self-financing constraint,” which ruled out government transfers to the con-

cessionaire. In the present paper, demand-contingent government subsidies play a central

role, thus providing a framework to study the public finance of PPPs.

The remainder of the paper is organized as follows. The model and the basic irrelevance

result when there is no difference between government and private provisions is presented

in section 2. In section 3 we derive the optimal risk-sharing contract when subsidy spend-

ing is inefficient. Section 4 shows how the optimal contract can be implemented with an

auction, and section 5 presents the extensions. Section 6 concludes and is followed by

several appendices.

2 Benchmark model and irrelevance result

A risk-neutral benevolent social planner must hire a concessionaire to finance, build and

operate an infrastructure project with exogenous technical characteristics. There are no

maintenance nor operation costs,22 the up-front investment does not depreciate, and the

concessionaire is selected among many firms that can build the project at cost I > 0.23 All

21A similar concern possibly underlies the recent move in Europe away from shadow toll contracts towards
availability payments.

22This assumption is relaxed in section 5. In any case, there are two reasons why ignoring maintenance and
operations costs is not a serious limitation. First, for many infrastructure projects, upfront costs are much
larger than maintenance and operation costs (consider the examples of highways, dams, sport stadiums and
rail lines). Secondly, if maintenance and operations costs are proportional to demand for the project, which is
a good approximation in the case of highways and rail lines, then the case with maintenance and operations
costs is a trivial extension.

23That is, we ignore construction cost uncertainty and focus instead on demand uncertainty, which is con-
siderably larger for many PPP projects.
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firms are identical, risk-averse expected utility maximizers, with preferences represented

by the strictly concave utility function u (see footnote 8).

We assume that the project is socially profitable and that a PPP yields a higher social

surplus than conventional unbundled provision (appendices A and B spell out conditions

for this to be the case).

Demand uncertainty is summarized by a probability density over the present value of

user fee revenue that the infrastructure can generate over its entire lifetime, f (v), with c.d.f.

F (v). This density is common knowledge to firms and the planner, and is bounded from

below by vmin and from above by vmax. Also, for simplicity we assume that v equals the

discounted private willingness to pay for the project’s services.24

2.1 Planner’s problem

Let PS(v) denote producer surplus in state v , CS(v) denote consumer surplus in state v

and α ∈ [0,1] be the weight that the planner gives to producer surplus in the social welfare

function.25 The planner’s objective is to maximize26,27

∫
[CS(v)+αPS(v)] f (v)d v, (1)

subject to the concessionaire’s participation constraint∫
u(PS(v)) f (v)d v ≥ u(0),

where u(0) is the concessionaire’s outside option.28

To maximize (1), the planner chooses how much user fee revenue and subsidy the con-

cessionaire should receive in each state v . Denote by R(v) the present value of user fee

revenue collected by the concessionaire in state v , and by S(v) the present value of the

24In Appendix A we show that this and other simplifications do not affect the structure of the optimal PPP
contract.

25In many countries foreign firms are important investors in PPPs, which implies α< 1.
26This objective function assumes that the income of users is uncorrelated with the benefit of using the

project, so that if users spend a small fraction of their incomes on the services of the project they will value
the benefits produced by the project as if they were risk neutral. See Arrow and Lind (1970).

27The planner cares about firms’ profits not per se but because these constitute a source of income for firms’
owners. This, combined with the assumption that the planner can redistribute income among consumers at
no social cost and that each project is relatively small compared to the size of the economy, explains why
producer surplus, and not the expected utility of the firm’s profits, enters the planner’s objective function.

28Since the concave utility function u(·) captures the firm’s risk premium, we may assume the same prob-
ability density for the planner’s objective function and the concessionaire’s participation constraint.
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subsidy it receives. Hence

PS(v) = R(v)+S(v)− I (2)

Note that by “subsidy” we mean any cash transfer from the government to the private

concessionaire. It may be the up-front payment made by the government with conven-

tional unbundled provision (in which case S(v) is the same for all v), but it could also be

a cash transfer made over time, contingent on v , to supplement revenue from the project

under a Build-Operate-and-Transfer (BOT) contract (a so-called ‘minimum revenue guar-

antee’).

Since the concessionaire receives R(v) in state v , the government receives v −R(v) and

we have 0 ≤ R(v) ≤ v . If the term of the concession is finite and v −R(v) > 0, these funds

are used to reduce distortionary taxation elsewhere in the economy. Moreover, assuming

that willingness to pay is positive at all points in time, we have that R(v) = v only when the

concession lasts forever.

Let E be an externality generated by the project and 1+λ > 1 the cost of public funds.

Then

CS(v) = [v −R(v)− (1+λ)S(v)]+E +λ[v −R(v)] (3a)

= (1+λ) [v −R(v)−S(v)]+E . (3b)

The first term in the r.h.s. of (3a), v −R(v)− (1+λ)S(v), is the difference between users’

willingness to pay in state v and the total amount transferred to the concessionaire, where

the cost of the subsidy is increased by the tax distortion required to finance it. The term

v −R(v) is total revenue collected by the government (after the end of the concession), so

the second term in the r.h.s. of (3a) corresponds to the reduction in distortionary taxes due

to this increased revenue.

Substituting (2) and (3b) in (1) shows that maximizing the planner’s objective func-

tion (1) is equivalent to maximizing

−(1+λ−α)
∫

[R(v)+S(v)] f (v)d v.

and therefore to minimizing ∫
[R(v)+S(v)] f (v)d v. (4)

Where we have dropped E ,αI and (1+λ)v from the objective function because they do not

depend on the planner’s choice variables, R and S, and where we have used that 1+λ> 1 ≥
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α. The planner’s program can be rewritten as29

min
{R(v),S(v)}

∫
[R(v)+S(v)] f (v)d v. (5a)

s.t.
∫

u(R(v)+S(v)− I ) f (v)d v ≥ u(0), (5b)

0 ≤ R(v) ≤ v, (5c)

S(v) ≥ 0, (5d)

2.2 Irrelevance result

It has been claimed that a PPP is desirable because it relieves the public budget by substi-

tuting private finance for distortionary tax finance.30 Does this argument make the case

for PPPs?

It follows from the objective function (4) that the per-dollar cost of paying the conces-

sionaire with user fee revenues or subsidies is the same. Thus, social welfare only depends

on total transfers T (v) = R(v)+S(v) to the concessionaire, not on the partition between

subsidies and user fee revenue. This is the fundamental insight behind the following result:

Proposition 1 (Irrelevance of the cost-of-funds argument) Any combination of user fee and

subsidy schedules that satisfies constraints (5c) and (5d) and such that T (v) = I for all v

solves the planner’s program (5a)–(5d).

Proof See Appendix D.1.

What is the economics of this result? The standard reasoning in favor of PPPs points out

that subsidies are an expensive source of finance, because they are financed with distor-

tionary taxes. Yet the multiplicity of optimal subsidy-sales revenue combinations indicates

that distortionary taxation (λ> 0) is not sufficient to prefer private provision. One solution

is R(v) ≡ 0 and S(v) ≡ I . Another solution is that the concessionaire invests I , collects user-

fee revenues equal to I in present value, and no subsidies are paid.31 In addition, there is a

continuum of combinations where the government provides a partial subsidy.

29In Appendix A we consider several additional variables mentioned in the literature that may influence
the choice in favor or against a PPP. In all cases these additional variables are independent of the planner’s
choice functions, R and S. Consequently, if the planner goes for a PPP, her objective function remains similar
to (4). In Appendix A we also show that it is straightforward to model exogenous restrictions on term length,
an imperfect ability to appropriate consumer surplus using user fees, and so on. In all cases the additional
constraints or variables affect the particular solution to program (5a)–(5d), but not its structure.

30An even bolder claim is that I in public funds are permanently liberated with a PPP. But setting up the
problem in present value terms immediately exposes this fallacy—the concessionaire must recover its invest-
ment by receiving future payments.

31This is only possible if vmin ≥ I , for otherwise the project cannot be financed with user fees in all states.
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The intuition for this result is that if the user fee revenue collected by the concession-

aire increases by $1, the government has to levy $1 in additional taxes to replace this trans-

fer, which costs society 1+λ. This is the same cost that society bears when paying $1 in

additional subsidies. Hence, at the margin the opportunity cost of user fee revenue or sub-

sidizing the concessionaire is exactly the same. The rich set of optimal combinations of

state-contingent subsidies and concession terms reflects that user fees and subsidies are

perfect substitutes in the planner’s objective function.

A similar argument shows that the planner will satisfy the concessionaire’s participation

constraint with equality. An additional dollar in the concessionaires pocket increases social

welfare by α, but costs 1+λ to users. Since 1+λ > α, the planner chooses not to provide

rents to the concessionaire. Finally, note that the optimal contract provides full insurance

to the concessionaire.

Application: Evaluating shadow fees and availability payments

In several industrialized countries PPPs are fully financed with subsidies. However, in-

stead of paying for the infrastructure up-front, the concessionaire is compensated with

so-called “shadow fees,” that is, per-user fees paid directly by the government for a fixed

period of T years. For example, Britain highway concessionaires are paid a shadow toll

for each car on the highway. Proposition 1 suggests that these contracts are suboptimal

because the concessionaire is forced to bear risk.

If, on the other hand, the concessionaire is paid a so-called availability payment—a

yearly sum independent of the realization of demand, but conditional on delivering the

agreed service quality —, the concessionaire bears no risk, and the contract is optimal if

the concessionaire receives no rents.32 Thus, Proposition 1 provides an argument against

fixed term contracts with shadow fees, and in favor of availability contracts.33

Corollary 1 When no user fees can be charged (usually due to political constraints), S(v) = I

for all states v characterizes the unique optimal contract. Hence shadow fees which make

payments contingent on the use of the infrastructure for a fixed and finite term T are not

optimal. By contrast, availability contracts that leave no rents for the firm are optimal.

32This result extends to the case where yearly payments by the government also include operational costs
incurred by the firm to satisfy demand. What is central for the result to hold is the absence of a link between
demand realizations and the recovery of the upfront investment.

33Shadow fees may be more attractive when the firm can exert costly effort to influence demand. See
Section 5.2
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3 Optimal contract with inefficient subsidies

The irrelevance result implies that the case for PPPs cannot rest on the claim that they

relieve strained budgets. When are PPPs warranted? As mentioned in the introduction, one

justification of PPPs is that bundling may enhance productive efficiency (see section 3.6).

An additional advantage of PPPs is that they reduce the sums flowing through the public

budget, reducing the inefficiencies associated with subsidy transfers. In this section we

derive the optimal contract when subsidy financing is less efficient than user-fee financing.

3.1 Modeling the inefficiency of subsidy financing

To model inefficient subsidy financing, we assume that achieving $1 of useful spending

costs $1 if financed with user fees collected directly by the concessionaire, but 1+ζ> 1 dol-

lars if financed with a subsidy. If subsidies are monetary transfers from the government to

the concessionaire, then ζ> 0 means that some of the resources are wasted in the process,

perhaps because of agency problems faced by the budgetary authority when monitoring

the government agency in charge of the resource transfer. More generally, in Appendix C

we provide a microfoundation for the value of ζ. We show that if the government runs an

optimal fiscal policy, then the shadow cost of subsidizing the PPP with one additional dol-

lar can be assessed from two different, but equivalent, perspectives. On the one hand, one

could increase the aggregate tax burden by 1+ ζ, which would cost society (1+λ)(1+ ζ)

dollars. On the other hand, the government could achieve the same transfer by reducing

current spending by 1+ζ dollars. If fiscal policy is optimal, the opportunity cost is equal to

the return of the government’s marginal project, which equals (1+λ)(1+ζ).34

Formally, introducing ζ implies that the term (1+λ)S(v) in (3a) must be replaced by (1+
λ)(1+ζ)S(v)—the inefficient subsidy transfer increases the magnitude of the tax distortion.

The planner’s program now is

min
{R(v),S(v)}

∫
{(1+λ−α)R(v)+ [(1+λ)(1+ζ)−α]S(v)} f (v)d v. (6a)

s.t.
∫

u(R(v)+S(v)− I ) f (v)d v ≥ u(0), (6b)

0 ≤ R(v) ≤ v, (6c)

S(v) ≥ 0. (6d)

It is apparent from (6a) that if ζ> 0, user fees are a more efficientmeans of compensat-

34As discussed in Section 5.3, a value of ζ > 0 can be interpreted as temporary credit constraints faced by
the government.
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ing the concessionaire. The cost to society of one dollar in user fees is 1+λ−α, while a

subsidy costs (1+λ)(1+ ζ)−α. Of course, ζ > 0 is not a sufficient argument against sub-

sidizing projects, for the project’s social value may exceed I , and user fee revenue may be

insufficient to compensate the concessionaire in low demand states. But, as we will see

next, ζ> 0 determines the structure of the optimal risk-sharing contract.

3.2 Optimal risk-sharing contract: overview

The tradeoff faced by the planner when ζ> 0 is the following: On the one hand, she would

like to utilize user fee revenues as far as possible to compensate the concessionaire, in order

to avoid paying subsidies. On the other hand, using only user fees may expose the conces-

sionaire to excessive risk, and an efficient contract would insure against low demand states

through subsidies.

Figure 1: Optimal contract, intermediate demand project 
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Figure 1 shows how the trade off is resolved optimally when vmin < I < vmax (i.e., there

are some states of demand in which user fee revenues is smaller than I while there are
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others in which revenues are larger than I ). The horizontal axis plots the support of v

while the vertical axis shows the total revenue received by the concessionaire in each state,

R(v)+S(v).

In the next section we show that the optimal contract is characterized by two thresh-

olds, a minimum revenue guarantee m and a revenue cap M . These thresholds, in turn, de-

fine three types of demand states. In low demand states v < m, R(v) = v and S(v) = m − v .

Hence the concession lasts forever and the concessionaire receives a subsidy to attain the

guaranteed minimum revenue m. By contrast, in high demand states v > M and R(v) = M .

Thus the concession ends in finite time and the government gets v − M . The remaining

cases, which we call intermediate demand states, are such that m ≤ v ≤ M , R(v) = v and

S(v) = 0. In these states the concession lasts indefinitely, but no subsidies are paid.

3.3 A taxonomy of demand states

To derive the optimal contract, note that in state v the planner will only resort to subsidies

after exhausting user fees—otherwise, it could slightly reduce subsidy payments, which

would save (1+λ)(1+ζ)−α; and increase R(v), which would cost only 1+λ−α. Thus:

S(v) > 0 =⇒ R(v) = v,

or equivalently

R(v) < v =⇒ S(v) = 0.

Now let µ > 0 denote the multiplier of the concessionaire’s participation constraint

(6b).35 The FOC with respect to R(v) for a state v such that the term of the concession

is finite leads to

u′(R(v)− I ) = 1+λ−α
µ

. (7)

While the FOC with respect to S(v) for a state where subsidies are paid leads to

u′(v +S(v)− I ) = (1+λ)(1+ζ)−α
µ

, (8)

where in both cases we have used that revenue financing dominates subsidy financing.

35Note that the participation constraint will hold with equality because 1+λ>α, hence µ> 0.

14



Define m and M via

u′(m − I ) = (1+λ)(1+ζ)−α
µ

, (9)

u′(M − I ) = 1+λ−α
µ

, (10)

and define ζ̄ via:36

1+ ζ̄= (1+λ)(1+ζ)−α
1+λ−α .

Since ζ> 0 we have m < M and

u′(m − I ) = (1+ ζ̄)u′(M − I ),

It follows from (7) and (10) that in states with v > M no subsidies are paid out and the

concession lasts until the concessionaire collects M in present value. The government, on

the other hand, collects v −M after the concession ends. Thus, in high demand states the

concessionaire’s revenue is capped by M and the term of the concession is variable.37

Similarly, from (8) and (9) we have that a subsidy equal to m − v is paid in states with

v < m. Therefore, in low demand states the concession lasts indefinitely and the conces-

sionaire receives a minimum revenue guarantee.

Finally, there is a third class of states of demand such that m ≤ v ≤ M . In these states

the concession lasts indefinitely, for otherwise they would be high demand states. But no

subsidies are paid out by the government, for otherwise they would be low demand states.

It follows that R(v) = v and S(v) = 0 in this class.

We summarize this characterization in the following proposition:

Proposition 2 (A taxonomy of demand states) The optimal contract is characterized by a

minimum revenue guarantee, m, and revenue cap, M, with m < M, as follows:

1. If M < v, the concessionaire collects M in present discounted user fees while the gov-

ernment collects the remaining v −M. No subsidies are paid and the concession term

is finite. These are high demand states.

2. If m ≤ v ≤ M, the concession lasts indefinitely and no subsidies are paid. Total rev-

enues accrued to the concessionaire in present value equals v and the government

budget is unaffected by the concession. These are intermediate demand states.

36Note that ζ̄ = (1+λ)ζ/(1+λ−α). It follows that ζ̄ > 0 ⇐⇒ ζ > 0 and ζ̄ < 0 ⇐⇒ ζ < 0. Furthermore, ζ = ζ̄

when α= 0.
37If demand grows at a the same rate in all demand states, this implies that higher values of v correspond

to shorter concession terms. This is not necessarily true with more general demand schedules.
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3. If v < m, the concession lasts indefinitely and the government grants a subsidy of m−v

to the concessionaire. These are low demand states.

Let us comment on the economics of this taxonomy. In any state with a finite conces-

sion term, the social opportunity cost of the last dollar received by the concessionaire is

1+λ−α; this justifies equalizing the concessionaire’s revenue across high demand states

by fixing a revenue cap M . On the other hand, in any low demand state the last dollar paid

to the concessionaire comes from a subsidy and costs society (1+λ)(1+ζ)−α. Again, this

justifies equalizing revenue across low demand states at the minimum revenue guarantee

m < M .

As can be seen from Figure 1, the difference between 1+λ−α and (1+λ)(1+ ζ)−α

introduces a wedge M −m that leads to the emergence of intermediate demand states. To

see the intuition, consider one such state, ṽ . It is straightforward to obtain the following

inequalities
1

1+ ζ̄ < u′(ṽ − I )

u′(m − I )
< 1 < u′(ṽ − I )

u′(M − I )
< 1+ ζ̄.

These inequalities imply that the concessionaire’s marginal utility evaluated at ṽ − I is

smaller than the marginal utility at m, but higher than the marginal utility at M . In other

words, the shadow value of the last dollar received by the concessionaire in state ṽ is too

low to warrant a subsidy, as well as too high to warrant a revenue cap. Consequently, the

concession lasts forever, but no subsidies are paid.

3.4 A taxonomy of projects

To complete the characterization of the optimal contract, we show how m and M are de-

termined, which leads to a taxonomy of projects.

Consider first the case where user fees can finance the project in all demand states, that

is, vmin ≥ I . The optimal contract sets R(v) = M = I ≤ v for all v , and the concessionaire

receives full insurance—all states are high demand states when vmin ≥ I .38 To see that this

contract is optimal, note first that it is clearly feasible. Moreover, no contract can give less

than I on average to the concessionaire, for then the participation constraint would not

hold; and had the concessionaire been forced to bear risk, he would have required more

than I on average.

38The formal proof is similar to that of Proposition 1. Also note that from m < M it follows that no subsidies
are paid out for all feasible values of m, and therefore this threshold is irrelevant to pin down the optimal
contract.
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Consider next the case where user fees are never large enough pay for the project, that

is, vmax < I . Then m = I . For if m > I , all states are low demand, and the concessionaire’s

participation constraint holds with slack, which cannot be optimal. And if m < I , the con-

cessionaire’s participation constraint cannot be satisfied, because revenue in all demand

states is smaller than I . It follows that m = I while now M is irrelevant. Thus, the optimal

contract subsidizes the concessionaire in all demand states to ensure that total revenue is

equal to the cost of the project.

We refer to a project with vmin ≥ I as a high demand project, while one with vmax < I is

a low demand project, and summarize these results in the following Proposition.

Proposition 3 (Optimal contract for high and low demand projects) The optimal contract

for high and low demand projects specifies that R(v)+S(v) = I for all v. Given demand re-

alization v, the government collects v − I in each state if the project is high demand, while it

pays a subsidy of I − v in each state if the project is low demand.

The economics of Proposition 3 should be apparent. The social cost of transferring

an additional dollar to the concessionaire is 1+λ−α in all states when a project is high

demand, and full insurance immediately follows. In a low demand project the social cost

of transferring an additional dollar to the concessionaire is higher (i.e., (1+λ)(1+ ζ)−α),

but is also the same across states and therefore full insurance is optimal as well.

As we can see from Figure 1, the structure of the optimal contract is different for projects

such that vmin < I ≤ vmax, for a contract that gives full insurance to the concessionaire

(m = M = I ) is no longer optimal. To see this, consider decreasing m to I −∆m, and using

the funds to increase M to I +∆M . Lowering the minimum revenue guarantee frees up

resources F (I )∆m in expected value, and this can be used to finance an increase in M

of F (I )∆m/(1−F (I )).39 Society is made better off in the process, since each dollar saved

in guarantees is 1+ ζ̄ > 1 times more valuable than a dollar of foregone user fee revenue.

Thus it follows from (6a) that the planner’s objective function improves by (1+λ)ζF (I )∆m.

Increased risk reduces the concessionaire’s expected utility by an expression on the order

of (∆m)2. It follows that the optimal values of m and M satisfy m < I < M .

The following proposition characterizes the optimal values of both thresholds.

Proposition 4 (Optimal contract for intermediate demand projects) Consider a project with

vmin ≤ I < vmax (intermediate demand project). Assume u′(vmin − I ) > (1+ ζ̄)u′(vmax − I ).40

Then the optimal contract is characterized by quantities m and M, with vmin < m < I < M <
39Since this is an intermediate demand project, 0 < F (I ) < 1.
40This condition ensures that m > vmin and M < vmax, so that condition (12) below holds with equality.

Two possibilities arise if u′(vmin−I ) < (1+ζ̄)u′(vmax−I ). First, if
∫

u(v−I ) f (v)d v > u(0), the optimal contract
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vmax, such that states with v > M are high demand, states with m ≤ v ≤ M are intermediate

demand and states with v < m are low demand.41 Also, m and M are determined from the

concessionaire’s participation constraint

F (m)u(m − I )+
∫ M

m
u(v − I ) f (v)d v + (1−F (M))u(M − I ) = u(0) (11)

and the condition

u′(m − I ) = (1+ ζ̄)u′(M − I ). (12)

Proof See Appendix D.2.

3.5 Comparative statics

Comparative statics for high and low demand projects are straightforward. When I rises,

the planner must transfer more revenue to the concessionaire. On the other hand, changes

in ζ̄ or in the concessionaire’s degree of risk aversion have no effect on the optimal contract.

By contrast, in an intermediate demand project both an increase in ζ̄ or a fall in the

concessionaire’s degree of risk aversion increases the wedge between the minimum rev-

enue guarantee m and the revenue cap M . Moreover, the risk premium demanded by a

concessionaire with decreasing absolute risk aversion grows with I , but does not change if

absolute risk aversion is constant. The following proposition formalizes these results:

Proposition 5 (Comparative statics) Denote by m(ζ, I ) the minimum revenue guarantee,

and by M(ζ, I ) the revenue cap that characterize the optimal contract, both as a function of

the inefficiency parameter ζ and the upfront investment I . Assume (ζ, I ) is such that vmin <
m(ζ, I ) < M(ζ, I ) < vmax and denote CARA(c) ≡−u′′(c)/u′(c). Then:

(i) The risk borne by the concessionaire, as measured by the wedge M −m, increases with

involves no subsidies (m < vmin) and M is determined from∫ M

vmin

u(v − I ) f (v)d v + (1−F (M))u(M − I ) = u(0).

By contrast, the optimal contract involves no revenue cap when
∫

u(v − I ) f (v)d v < u(0). In this case the
minimum income guarantee is determined by

F (m)u(m − I )+
∫ vmax

m
u(v − I ) f (v)d v = u(0).

41See Proposition 2 for the definition of high, intermediate and low demand states.

18



the social cost of subsidies, ζ. Furthermore,

1+λ
[(1+λ)(1+ζ)−α]CARA(m − I )

≤ ∂M

∂ζ
(ζ, I ) − ∂m

∂ζ
(ζ, I ) ≤ 1+λ

[(1+λ)(1+ζ−α]CARA(M − I )
.

(ii) The thresholds m and M are increasing in I and grow faster than I . Moreover, for a

concessionaire with decreasing absolute risk aversion, the wedge between M and m

increases with I , while it does not depend on I if the concessionaire has constant abso-

lute risk aversion.

Proof See Appendix D.3.

3.6 Applications

Minimum income guarantees and revenue sharing Minimum income guarantees are

routine in many types of PPPs. However, most real world contracts have a fixed term and

therefore do not follow the prescriptions laid out in Proposition 4. These contracts would

be closer to the optimal contract if their durations were longer in low demand states, when

guarantees are paid out. Thus, real world contracts pay excessive guarantees in low de-

mand states.

Real world profit and revenue sharing agreements also do not coincide with the revenue

cap that characterizes the optimal contract. When governments impose profit sharing ar-

rangements, they split revenues in excess of a given threshold with the concessionaire in

fixed proportions. By contrast, Propositions 3 and 4 suggest assigning all the revenue in ex-

cess of a given threshold to the government—the windfall profits tax rate should be 100%.

More generally, the rationale behind real-world guarantees and revenue sharing schemes

is to reduce the risk borne by the concessionaire. By contrast, the rationale behind the op-

timal contract in Propositions 3 and 4 is to optimally trade off insurance on one hand, and

the use of user fees and subsidies on the other. This is why the concession lasts indefi-

nitely when subsidies (i.e., guarantees) are granted; the term is variable in high demand

states; and the concessionaire’s revenue in high demand states is higher than in low de-

mand states.

When is a PPP warranted? Bundling, incentives and the optimal contract The struc-

ture of the optimal risk-sharing contract is largely determined by the desire to minimize

subsidy finance. Bundling allows the planner to take cash flows off the public budget by

substituting user fees for subsidies, thus increasing productive efficiency. Yet this is not
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always enough to make the case for a PPP. Whether a PPP is better than conventional un-

bundled provision also depends crucially on how bundling affects incentives.

The central observation was made by Hart (2003), who showed that bundling links

investment spending with life-cycle operation costs. Hence, bundling stimulates non-

contractible investments that cut operation costs. But cost cutting is not necessarily desir-

able, because it may come at the expense of lower service quality. Therefore, in his model,

a PPP may be better if cost cutting is socially beneficial, but conventional provision proba-

bly carries the day if service quality cannot be well specified and cost cutting substantially

deteriorates it.42

In different guises, this insight emerges in most comparisons of PPPs with conventional

provision. Bennet and Iossa (2006) observe that PPPs also transfer ownership of the asset

to the concessionaire and, in many cases, substitute output and performance measures for

input specifications. With a PPP, then, the concessionaire retains some or all control rights

over how to produce the service, and may unilaterally implement any cost-saving innova-

tion. By contrast, with conventional provision the government retains the right to tell the

concessionaire how to produce, and cost-reducing innovations can be implemented only

after bilateral bargaining.43 Because of this, the case for a PPP again rests on the effect

of cost-reducing innovations. If the main impact is to cut costs, with little or no effect on

service quality and value, then a PPP is probably better. By contrast, if the main effect of

innovations is to increase social surplus and perhaps to increase operation costs, conven-

tional unbundled provision is better because only the government may care about social

welfare.

Martimort and Pouyet (2006), in turn, analyze a moral hazard model where non-verifiable

effort during construction increases quality and gross social surplus, but may either reduce

or increase costs during operation. In line with incomplete contracting models, they show

that a PPP beats conventional provision if and only if quality enhancements reduce opera-

tion costs.

Does the intertemporal incentive effects of bundling affect the structure of the optimal

risk-sharing contract derived above? The answer is no. As we show in Appendix B, the

costs and benefits affected by bundling are not functions of R or S. For this reason, and

as far as the planner’s program is concerned, these variables are just like terms E or αI

42See also Grout (1997).
43Typically, conventional unbundled provision assumes government ownership, while with a PPP the con-

cessionaire owns the asset and has control rights over how to produce the service. Of course, ownership
usually is limited, for example, authorization may be needed to sell assets or transfer the concession. Bennet
and Iossa (2006) also study two rather unconventional structures: bundling with government ownership and
unbundled provision with private ownership of assets and control rights over how to produce the service. We
ignore such structures here.
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in the planner’s problem. A neat separation thus emerges. On the one hand, incentives

change when investment and life cycle costs are linked, and this affects whether a PPP is

better than conventional provision. On the other hand, it does not affect the structure of

the optimal risk-sharing contract conditional on choosing a PPP.

4 Implementation

The informational requirements needed to implement the optimal contract might seem

formidable, but somewhat surprisingly, this is not the case. We show next how to imple-

ment the optimal contract with a competitive auction when the planner knows neither I

nor firms’ risk aversion.

4.1 High and low demand projects

Consider first a high demand project. Then an auction where the bidding variable is the to-

tal present value of user fee revenues (PVR) collected by the concessionaire, β, implements

the optimal contract. This follows from noting that rents will be dissipated in a competitive

auction, so that β will satisfy: ∫
u(β− I ) f (v)d v = u(0). (13)

Hence the winning bid will be β= I , which corresponds to the optimal contract derived in

the preceding section. Denote by T (v) the time it takes for user fee revenue accumulated in

state v to attain I . The concession term is shorter when demand is high, that is, when T (v)

is small.44 The concessionaire bears no risk because users pay him the same amount in all

states of nature.45 Furthermore, the planner can implement the optimal contract using a

PVR auction even if she does not know I , the density f (v) or the concessionaire’s degree of

risk aversion. All the planner needs to know is that the project can finance itself in all states

of demand, that is, that vmin ≥ I .46 Furthermore, moving from a fixed term contract to the

optimal contract can lead to substantial welfare gains.47

Consider next a low demand project. A PVR auction will implement the optimal con-

tract in this case as well, as long as the government subsidizes the difference between the

44As noted in footnote 37, this requires that demand grows at the same rate in all states.
45Uncertainty in I , which may be important in some projects, cannot be eliminated with a variable term

contract.
46This case is considered in Engel et al. (2001).
47Depending on the degree of risk aversion and revenue uncertainty, Engel et al. (2001) find welfare gains

between 16 and 64% of the upfront investment.
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winning bid and the present value of user fees collected. In this case firms end up bid-

ding on a minimum income guarantee and the winning bid ensures a total revenue of I .

Informational requirements are modest again, since the planner only needs to know that

vmax < I , and be able to verify revenue in each state. Note that the concession lasts forever

in this case. We summarize both cases reviewed so far as follows:

Proposition 6 (High and low demand projects) The optimal contract can be implemented

with a PVR auction, or a simple extensions thereof, for both high and low demand projects.

Furthermore, bidders reveal I in the auction and there is no need to know f or u.

Application: Evaluating least subsidy auctions Low demand projects are sometimes awarded

to the firm that makes a bid for the smallest subsidy. That is, the government sets a fixed

concession term T and a user fee p, and firms bid the subsidy they require to build, operate

and maintain the project.

Assume that cumulative user fee revenue accrued by time t in state v is equal toγ(t , v)v ,

with γ strictly increasing in t , and limt→∞γ(t , v) = 1. Assuming a competitive auction, so

that ex-ante rents are dissipated, the winning bid S then satisfies:∫
u

(
γ(T, v)v +S − I

)
f (v)d v = u(0),

which means that the concessionaire will be forced to bear risk.48 It follows that

S > I −
∫
γ(T, v)v f (v)d v,

and since γ(T, v) ≤ 1 we conclude that

S > I −µv ,

where µv is the mean of f (v).

By contrast, with a PVR auction the equilibrium outcome satisfies S(v) = I − v and ex-

pected expenditures are equal to:

E[S] = I −µv .

With a minimum subsidy auction the subsidy is the same in all states of demand, which

forces the concessionaire to bear risk. By contrast, the optimal contract features state-

contingent subsidies that ensure that the concessionaire bears no risk. This leads to the

somewhat counterintuitive result that the average subsidy paid out with a PVR auction is

48Note that limt→∞γ(t , v) = 1 and vmin < vmax imply that γ(T, v)v has to vary with v .
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lower than the winning bid in a lowest-subsidy auction. The concessionaire is forced to

bear risk in the latter case, therefore demanding higher revenue on average, and a higher

subsidy.

Proposition 7 (Sub-optimality of least subsidy auctions) A least-subsidy auction of a fixed-

term concession is not optimal. Furthermore, for low demand projects this auction does not

minimize the average subsidy paid out by the government.

4.2 The general case

Next we consider the case where the planner does not know if the project is high, interme-

diate or low demand. We also assume that the planner does not know firms’ risk aversion,

but does know the probability density f (v).49 We show next how to implement the optimal

contract with a simple scoring auction.

Proposition 8 (Optimality of the two-threshold auction) The following two-threshold, scor-

ing auction implements the optimal contract:

• The government announces the probability density of expected discounted user fee rev-

enue flow from the project, f (v), and the parameter ζ̄ that summarizes the wedge be-

tween the shadow cost of public funds and subsidies.

• Firms bid on the minimum revenue guarantee, m, and the cap on their user fee rev-

enue, M.

• The firm that bids the lowest value of the scoring function

W (M ,m) = M(1−F (M))+
∫ M

0
v f (v)d v + (1+ ζ̄)

∫ m

0
(m − v) f (v)d v (14)

wins the concession.

Proof Since all firms are identical, the winning bid of the competitive auction minimizes

the scoring function subject to firms’ participation constraints. And since the scoring func-

tion is equal to the planner’s objective function, where we use the fact that the optimal con-

tract is characterized by thresholds m and M , it follows that the winning bid maximizes the

49The government should be as informed about demand as third parties, because it either provides the ser-
vice directly or it must compare the PPP with unbundled provision. Furthermore, substantial public planning
is needed to design most PPP projects, and this requires an assessment of demand.

23



planner’s objective function subject to the firm’s participation constraint, thereby solving

the planner’s problem.

What is the intuition underlying this result? Note first that the planner’s objective func-

tion does not require knowledge of I . The objective function only depends on the prob-

ability distribution of the present value of revenue that the project can generate and the

distortions associated with government expenditures, as summarized by ζ̄. By awarding

the PPP to the bidder that maximizes his objective function, and assuming competitive

bidding, the planner induces the concessionaire to solve society’s problem without know-

ing the cost of the project or the firms’ degree of risk aversion.

In the case of a high demand project, the two-threshold auction is equivalent to a PVR

auction. If all states have high demand, any bid with M = I and m ≤ I will win the auction.

No subsidies are paid out and the concession term is shorter if demand is higher. Similarly,

in the case of a low demand project, a bid with m = I and M ≥ I wins the concession, since

this time the upper threshold is irrelevant. In this case the two-threshold auction reduces

to the extension of the PVR auction described above. However, the two-threshold auction

is more general than a PVR auction, as it can be used for intermediate demand projects or,

more importantly, for projects where the planner does not know whether the project is low,

intermediate or high demand.

5 Extensions

This section extends our results in three directions. First, we consider a general case where

demand responds to price changes and the concessionaire faces a standard convex short-

run cost curve. Second, we incorporate moral hazard, by assuming that demand responds

to the concessionaire’s unobservable effort. Finally, we reconsider the validity of the irrele-

vance result when the government faces temporary liquidity constraints.

5.1 Price-responsive demand

Assuming a totally inelastic demand simplifies the derivations, but is not realistic. We

show next that the main insights obtained above carry through to the case with a price-

responsive demand. Once tolls are set appropriately, the optimal contract continues to be

characterized by a minimum guarantee and a cap on revenues.

The planner’s problem

24



There exists a continuum of verifiable demand states indexed by θ and described by

a probability density g (θ). For tractability, we assume that the demand curve becomes

known immediately after the project is built and remains constant over time.50

In the earlier sections we had a one-to-one correspondence between demand states, θ,

and the present-value of user fee revenue, v . Now the present value of user fee revenue in

a given demand state depends on the user fee being charged. If user fee p is charged both

during and after the concession, we denote present discounted demand for the infrastruc-

ture in state θ by Q(p,θ), while the present discounted cost of producing Q units is c(Q,θ),

which is increasing and convex in Q.51 It follows that the concessionaire’s discounted cash

flow is:

Π(p,θ) ≡ pQ(p,θ)− c(Q,θ),

which we assume increasing in θ.

Assume that the planner gives weight η ≥ 0 to the firm’s discounted cash flow, and let

CS(p,θ) denote discounted consumer surplus if the user fee is p in state θ. Then

H(p,η,θ) ≡ CS(p,θ)+ηΠ(p,θ) (15)

is the planner’s discounted welfare.52

Let p∗(η,θ) ≡ argmaxp H(p,η,θ). We assume that p∗(η,θ) increases with η for a fixed

value of θ. That is, the user fee that maximizes (15) increases with the relative importance

of producer’s surplus.53 From the first order condition that characterizes p∗(η,θ) we have:

η=−CSp (p∗(η,θ),θ)

Πp (p∗(η,θ),θ)
, (16)

where CSp andΠp denote the partial derivatives of CS andΠwith respect to p. As η grows,

p∗(η,θ) approaches the monopoly price for state θ, denoted by pM (θ). We also assume

thatΠ(p,θ) is concave and strictly increasing in p in the range [p∗(1,θ), pM (θ)].

For every demand state θ, the planner chooses two prices, the user fee paid during the

concession, pC (θ), and the user fee collected by the government after the concession ends,

pG (θ). The planner also sets the optimal concession length T (θ). Let r be the discount

50The results that follow extend easily to the case where the demand schedule grows at an exogenous rate
that may vary over time and with θ, since the price-elasticities of demand do not vary over time in this case
as well. The problem becomes considerably harder when demand is allowed to evolve arbitrarily over time.

51This formulation makes it easy to extend the model to include congestion, which is important in the case
of projects such as roads, tunnels and bridges. See, e.g., Engel et al. (2001).

52For notational simplicity, we use η as a placeholder for α or other valuations of profits.
53See Engel et al. (2001) for an example with congestion where this property is derived from first principles.

Of course, demand must be relatively inelastic.
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rate. For notational convenience we work with a monotonic transformation of T (θ), L(θ) ≡
e−r T (θ), so that L decreases as T grows, from a value of 1 when T = 0 to a value of zero when

T =∞. Therefore the planner chooses functions pC (θ), pG (θ), L(θ) and S(θ), that solve the

following program:

max
∫ {

[1−L(θ)]H(pC (θ),α,θ)+L(θ)H(pG (θ),1+λ,θ)− [(1+λ)(1+ζ)−α]S(θ)
}

g (θ)dθ (17a)

s.t.
∫

u
(
[1−L(θ)]Π(pC (θ),θ)+S(θ)− I

)
g (θ)dθ = u(0), (17b)

0 ≤ L(θ) ≤ 1, (17c)

S(θ) ≥ 0. (17d)

The first term in the integrand of (17a) is the planner’s welfare during the concession—

the planner weighs the cash flow generated during this period by α, because it accrues

to the concessionaire. By contrast, the second term reflects welfare after the concession

ends—during this period user fees are collected by the government and substitute for dis-

tortionary taxation, thus explaining why the planner’s weight on instantaneous cash flow is

1+λ. The third term in the objective function subtracts the cost of subsidies, which reflect

the difference between the social cost of one dollar of subsidy, (1+λ)(1+ζ), and the weight

the planner gives to an additional dollar in the concessionaire’s pocket, α. As before, the

terms αI and E are omitted because they do not depend on the planner’s choice variables.

The optimal contract

While the determination of optimal user fees is no longer trivial, the structure of the

optimal contract remains identical to the case of perfectly inelastic demand. Thus, the

present value of the cash flow received by the concessionaire is equal to M across all high

demand states, and m across low demand states, with m < M . As before, the cash flow re-

ceived by the concessionaire in intermediate demand states lies between m and M . More-

over, high, intermediate and low demand projects are defined as before. The following

proposition characterizes the optimal risk-sharing contract which solves program (17a)-

(17d).

Proposition 9 (Taxonomy of projects) Projects can be classified into three types:

(i) A project is high demand if and only if Π(p∗(1+λ,θ),θ) ≥ I for all states θ. The conces-

sionaire receives cash flow I in all states of demand, the concession term is finite, and

the government collectsΠ(p∗(1+λ,θ),θ)− I . Moreover, pC = pG = p∗(1+λ,θ).
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(ii) A project is low demand if and only if Π(p∗((1+λ)(1+ζ),θ),θ) < I . The concessionaire

receives cash flow I in all states of demand, the concession term is indefinite, and the

government pays I −Π(p∗((1+λ)(1+ζ),θ),θ). Moreover, pC = p∗((1+λ)(1+ζ),θ) (and

pG is irrelevant).

(iii) A project is intermediate demand if and only if there exists at least one state θ such that

Π(p∗(1+λ,θ),θ) < I <Π(p∗((1+λ)(1+ζ),θ),θ).

For these projects, the optimal contract is characterized by thresholds m and M, with

m < I < M, as follows:54

• A state θ is high demand if and only if Π(p∗(1+λ,θ),θ) > M. The concession

term is finite and the user fee is p∗(1+λ,θ), both during and after the conces-

sion. The concessionaire’s discounted cash flow is M and the government collects

Π(p∗(1+λ,θ),θ)−M.

• A state θ is low demand if and only if Π(p∗((1+λ)(1+ζ),θ) < m. The user fee is

p∗((1+λ)(1+ζ)), the concession lasts indefinitely, and the concessionaire receives

a subsidy equal to m −Π(p∗((1+λ)(1+ζ),θ)).

• A state θ is intermediate demand if and only if:55

m ≤Π(p∗(1+λ,θ),θ) <Π(p∗((1+λ)(1+ζ),θ),θ) ≤ M .

The concession lasts indefinitely but no subsidies are paid. The user fee p∗(η(θ),θ) ∈
[p∗(1+λ,θ), p∗((1+λ)(1+ζ),θ)] is determined by solving for η in:

η−α
(1+λ)(1+ζ)−αu′(m − I ) = u′ (Π(p∗(η,θ))− I

)= η−α
1+λ−αu′(M − I ). (18)

Proof See Appendix D.4.

The economics of optimal user fees

We now discuss how user fees are optimally set, thereby providing the intuition for the

results in Proposition 9. Consider first pG , the user fee after the concession ends. There

54As before, we assume u′(vmin − I ) > (1+ ζ̄)u′(vmax − I ). If this is not the case, then the optimal policy is
described along the lines of footnote 40.

55The assumptions we made—p∗(η,θ) increasing in η and Π(p,θ) increasing and concave for p ∈
(p∗(1,θ), pM (θ))—ensure thatΠ(p∗(1+λ,θ) <Π(p∗((1+λ)(1+ζ),θ)). Therefore, our taxonomy of states cre-
ates a partition of the set of possible states.
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are no more profits for the concessionaire, so the planner just maximizes H(pG (θ),1+λ,θ).

Hence η= 1+λ in equation (16) and pG (θ) = p∗(1+λ,θ).

The economic intuition is that when demand is responsive to user fees there is an ad-

ditional margin. The cash flow generated by user fees in each state increases with p as long

as p < pM . Thus, it is optimal to depart from marginal cost pricing as long as the distortion

at the margin is smaller than the cost of the alternative source of funding at the margin. If

ε is the elasticity of demand and cq is the short-run marginal cost, simple manipulations

show that at the optimum the Lerner margin that maximizes (15) is such that

p∗− cq

p∗ = λ

1+λ × 1

ε
,

i.e., the planner chooses a user fee that creates a distortion commensurate with the cost of

public funds.

The same principle applies, mutatis mutandis to the different types of demand states

during the life of the concession. Consider optimal user fees during the concession. In a

high demand state, pC must solve

max
pC ,L

{
(1−L)H(pC ,α)+LH(p∗(1+λ))

}
(19a)

s.t. (1−L)Π(pC ) = K , (19b)

where K is a constant and we have omitted θ to reduce clutter. The interpretation of this

program is that if the concessionaire is to receive cash flow K in present value under the

optimal contract, then the most efficient price is pC .

The key to our result is that L is a function of pC in the constraint, since a higher user

fee shortens the concession. Thus, we use the constraint to get rid of L, and replacing in

the objective function, the optimal user fee must solve

max
pC

{
CS(pC )−H(p∗(1+λ))

Π(pC )

}
.

The FOC leads to

H(p∗(1+λ)) = CS(pC )− CSp (pC )

Πp (pC )
Π(pC )

which, as follows from (16), implies that pC = p∗(1+λ) is optimal.

It may seem surprising at first sight that pC = p∗(1+λ), because the planner values a

dollar in the concessionaire’s pocket atα< 1+λ. Nevertheless, as the constraint in program

(19a)-(19b) shows, the planner can recover the extra cash flow that the concessionaire re-
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ceives in a high demand state as a result of a higher pC because the concession is shorter.

This implies that at the margin the higher revenue generated by raising the user fee dur-

ing the concession substitutes for distortionary taxation after the concession ends. Hence,

pC = p∗(1+λ) is optimal.

In a low demand state the user fee must solve

max
{pC ,S}

{
H(p,α)− [(1+λ)(1+ζ)−α]S

}
s.t. Π(pC )+S = K

which, after using the constraint to get rid of S, reduces to

max
pC

{
CS(pC )+ (1+λ)(1+ζ)Π(pC )

}
.

It follows that pC = p∗((1+λ)(1+ ζ)) is optimal. In low demand states the planner can

recover any extra dollar of user fee revenue received by the concessionaire by lowering

subsidy S. Hence, at the margin the higher revenue generated by raising the user fee during

the concession substitutes for subsidies and it pays to distort the use of the project until the

Lerner margin reaches (1+λ)(1+ζ)−1
(1+λ)(1+ζ) × 1

ε
.

Finally, consider an intermediate demand state. On the one hand, in this state p∗((1+
λ)(1+ζ)) generates more cash flow than the cap m allows, and at that point user fee revenue

does not substitute for subsidies at the margin. Thus, setting pC = p∗((1+λ)(1+ζ)) would

reduce the use of the project by too much. On the other hand, p∗(1+λ) generates less

revenue than required by the revenue cap M . Hence, pC = p∗(1+λ) would lead to excessive

use of the facility. This is expressed formally by the following condition:

η−α
(1+λ)(1+ζ)−αu′(m − I ) = u′ (Π(p∗(η))− I

)= η−α
1+λ−αu′(M − I ). (20)

Finding m and M

In section 3 there existed a one-to-one relationship between demand states and user’s

willingness to pay for the project, allowing us to set v = θ. As mentioned above, when

demand responds to user fees there is no one-to-one relation between demand state’s, θ,

and user’s willingness to pay for the project, v . Nonetheless, demand uncertainty can be

conveniently summarized by the joint distribution of the flow of profits generated by the

project for two particular user fees, p∗(1+λ) and p∗((1+λ)(1+ ζ)), and this distribution
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can be used later to characterize the thresholds m and M that define intermediate demand

states.

We denote the joint density ofΠ(p∗(1+λ,θ),θ) andΠ(p∗((1+λ)(1+ζ),θ),θ) by

f (w1+λ, w(1+λ)(1+ζ)),

and the corresponding marginal c.d.f.s. by F1+λ(w1+λ) and F(1+λ)(1+ζ)(w(1+λ)(1+ζ)). Figure 2

depicts a partition of the (w1+λ, w(1+λ)(1+ζ))-space into high, intermediate and low demand

states, for given values of m and M . Since w(1+λ)(1+ζ) is always larger than w1+λ, the joint

density only has mass above the 45-degree line. The lower-left triangle depicts demand

states where user fees add up to less than m in present value and subsidies are handed out.

By contrast, user fee revenue in states in the upper-right triangle adds up to more than M

and the government obtains revenue in these states.

Figure 2: Partition of (w1+λ, w(1+λ)(1+ζ))-space into high, intermediate and low demand
states  
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This characterization of uncertainty can be used to find m and M for an intermediate
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demand project:

Proposition 10 For an intermediate demand project, m and M are characterized by the

concessionaire’s participation constraint:

F(1+λ)(1+ζ)(m)u(m−I ) + (1−F1+λ(M))u(M−I )

+
∫ M

0

∫ ∞

m
u

(
Π(w(1+λ)(1+ζ), w1+λ)− I

)
f (w(1+λ)(1+ζ), w1+λ)d w(1+λ)(1+ζ)d w1+λ = u(0), (21)

and

u′(m − I ) = (1+ ζ̄)u′(M − I ), (22)

where 1+ ζ̄ = [(1+λ)(1+ ζ)−α]/(1+λ−α) and Π(w1+λ, w(1+λ)(1+ζ)) is a shortcut for the

expectation ofΠ(p∗(η(θ),θ),θ) conditional onΠ(p∗(1+λ,θ),θ) = w1+λ andΠ(p∗((1+λ)(1+
ζ),θ),θ) = w(1+λ)(1+ζ).

Proof The first expression is obtained from (17a) and the fact that the optimal policy is of

the two-threshold type. The second expression follows from (18). Appendix D.5 includes

an alternative derivation of the second expression that provides additional insights.

Implementation

The optimal contract can be implemented with a competitive auction. In common with

the infinitely inelastic demand case, the planner does not need to know the up-front cost

of the project or the firms’ utility function. Firms bid on the lower and upper thresholds

m and M and the contract is adjudicated to the concessionaire that bids the highest value

of aggregate welfare. As before, aggregate welfare can be split up into the contribution of

high, intermediate and low demand states, leading to:56

W (M ,m) =Whigh +Wint +Wlow,

with

Whigh =
∫ ∞

M
[CS(w)+αM + (1+λ)(w −M)]dF1+λ(w),

Wint =
∫ M

0

∫ ∞

m
[CS(p∗(η(w(1+λ)(1+ζ), w1+λ)))+αΠ(η(w(1+λ)(1+ζ), w1+λ))] f (w(1+λ)(1+ζ), w1+λ)d w(1+λ)(1+ζ)d w1+λ,

Wlow =
∫ m

0
[CS(w)+αm + (1+λ)(1+ζ)(w −m)]dF(1+λ)(1+ζ)(w).

56See Appendix D.5 for the derivation of the expressions that follow.
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Even though more information on demand is needed to set up the auction than in the

case of inelastic demand, a good approximation to the optimal auction can be obtained if

the government provides the distribution of the present value of profits under two partic-

ular sets of user fees: those corresponding to the shadow cost of subsidies for the project,

p∗((1+λ)(1+ζ)), and those reflecting the shadow cost of funds elsewhere in the economy,

p∗(1+λ).

5.2 Moral hazard

In this section we allow for demand that depends on unobservable and costly effort by the

concessionaire. An additional motive to have the firm bear risk emerges in this case, as risk

now helps induce optimal levels of effort by the concessionaire. As before, two thresholds,

m and M , suffice to partition states into high, intermediate and low demand states. Even

though now total revenue collected by the concessionaire increases with v , subsidies are

paid out only in low demand states (v < m), while the government collects user-fees only

in high demand states (v > M).

The planner’s problem

We embed the model of section 3 in a simple moral hazard framework. The conces-

sionaire can exert costly effort, which affects the probability distribution of demand real-

izations. The density f (v |ε) summarizes uncertainty about the present discounted value

of user fee revenue, for an indefinite contract, when the concessionaire chooses effort level

ε.57 We assume the monotone likelihood ratio property (MLRP) holds, so that `(v,ε) ≡
∂ f
∂ε

(v |ε)/ f (v |ε) is increasing in v for all ε; i.e., effort increases the probability of higher real-

izations of demand. The utility of the concessionaire, U (y,ε) = u(y)−kε, k > 0, is separable

into net revenue and effort, where y denotes the present value of user fees collected by the

concessionaire and ε≥ 0 the concessionaire’s effort.

The planner chooses effort ε, and revenue and subsidy schedules R(v) and S(v), to solve

57In this section, effort is an action undertaken by the concessionaire during the construction phase that
affects demand for the infrastructure service both during and after the concession.
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the following program

min
{R(v),S(v),ε}

∫
{(1+λ−α)R(v)+ [(1+λ)(1+ζ)−α]S(v)− (1+λ)v} f (v |ε)d v (23a)

s.t.
∫

u(R(v)+S(v)− I ) f (v |ε)d v ≥ u(0)+kε, (23b)

ε= argmax
ε′

{∫
u(R(v)+S(v)− I ) f (v |ε′)d v −kε′

}
, (23c)

0 ≤ R(v) ≤ v, (23d)

S(v) ≥ 0. (23e)

Comparing program (6a)-(6d) with program (23a)-(23e) it can be seen that the term (1+λ)v

has been added because now effort affects the p.d.f. of users’ present discounted willing-

ness to pay. Constraint (23b) is the concessionaire’s participation constraint, and (23c) is

the incentive compatibility constraint.

Under standard assumptions,58 we can use the First Order Approach to examine the

properties of the solution. The concessionaire’s incentive compatibility constraint can be

replaced by ∫
u(R(v)+S(v)− I )`(v,ε) f (v |ε)d v = k. (24)

Denoting by µ> 0 the multiplier associated with (23b) and τ> 0 the multiplier associ-

ated with (24),59 we have that the Lagrangian of the problem is:

L =
∫

{(1+λ−α)R(v)+ [(1+λ)(1+ζ)−α]S(v)− (1+λ)v} f (v |ε)d v

−µ

[∫
u(R(v)+S(v)− I ) f (v |ε)d v −kε

]
− τ

∫
u(R(v)+S(v)− I )`(v,ε) f (v |ε)d v. (25)

The first order condition w.r.t. to ε, combined with (24), provides an expression for τ:

τ=
∫

{(1+λ−α)R(v)+ [(1+λ)(1+ζ)−α]S(v)− (1+λ)v}`(v,ε) f (v |ε)d v∫
u(R(v)+S(v)− I )∂

2 f
∂e2 (v,ε)d v

.

Optimal contract when ζ= 0

When ζ = 0, it follows from the Lagrangian (25) that the distinction between user fees

and subsidies is irrelevant, as before, and the optimal policy can be described exclusively

58E.g., strict concavity of the agent’s utility as a function of ε and the convexity of the distribution function
condition, see, e.g., Proposition 5.2 in Laffont and Martimort [2002].

59See Appendix E for formal proofs showing that µ> 0 and τ> 0.
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in terms of total revenue, T (v) ≡ R(v)+S(v). The irrelevance result also holds in this case,

and λ> 0 does not make the case for a PPP.

It is no longer optimal to grant full insurance to the concessionaire. Indeed, the FOC

with respect to T (v) leads to

u′(T (v)− I ) = 1+λ−α
µ+τ`(v,ε)

, (26)

and the MLRP implies that T (v) is strictly increasing in v . It also follows that, contrary to

the results obtained in section 3, the concessionaire’s average revenue is larger than I , both

because he bears risk and because he must be compensated for exerting costly effort.

In our framework outright privatization corresponds to T (v) = v −K , with K constant.

It follows from (26) that, generically, privatization is not optimal, since the utility and likeli-

hood ratio functions, u and `, are exogenous and there is no reason why the first order con-

dition above should hold. The intuitive explanation is that standard privatization assigns

residual demand risk to the firm in all states, while the first-order condition (26) suggests

a more subtle risk sharing arrangement, i.e., one that limits the risk borne by the firm in

some states.

To further characterize the optimal contract with moral hazard, we assume that G (v,ε) ≡
u′(v − I )[µ+ τ`(v,ε)] is strictly decreasing in v for all feasible ε, which we refer to as the

“single-crossing assumption” in what follows.60 This assumption implies that, given µ and

τ, there exists M such that

u′(M − I ) = 1+λ−α
µ+τ`(M ,ε)

. (27)

The optimal contract then falls into one of the three following cases:

Proposition 11 Assume ζ = 0, G (v,ε) ≡ u′(v − I )[µ+τ`(v,ε)] strictly decreasing in v for all

feasible ε, and define M as in (27). Then:

(i) If M < vmin: T (v) < v for all v ∈ [vmin, vmax].

(ii) If M > vmax: T (v) > v for all v ∈ [vmin, vmax].

(iii) If M ∈ [vmin, vmax]: T (v) < v for v ∈ [vmin, M) and T (v) > v for v ∈ (M , vmax].

60To derive this condition from first principles is not trivial, since µ and τ are multipliers that vary with
the problem’s parameters and, at least in principle, can take any positive value. Appendix E derives suffi-
cient conditions for ∂G/∂v < 0, in terms of the problem’s deep parameters, for the case of an exponential
distribution and constant absolute risk aversion. As discussed in that appendix, all we really need is a weaker
single-crossing condition.
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Proof See Appendix E.

The above proposition is a standard result in principal-agent theory: To induce socially

optimal effort, subject to the incentive compatibility constraint, the principal designs a

contract where the agent bears risk. The increase in demand compensates for the addi-

tional revenue required by the agent because he is not fully insured. Furthermore, the

MLRP ensures that total revenue is increasing in v , and there exists a threshold M such

that the firm is subsidized when v < M while the government shares in user fee revenue

when v > M . Depending on the value of M , the project may be high or low demand, but

there are no intermediate demand projects, i.e., those that, for a range of values of v , have

no effect on government finances. For these states to appear in the optimal contract, it is

necessary that ζ> 0. We turn to this case next.

Optimal contract when ζ> 0

Figure 3 depicts the optimal contract when ζ > 0. To derive this contract formally, we

first note that user-fees dominate subsidies as a source of revenue for the firm when ζ> 0.

Therefore subsidy financing only takes place when R(v) = v . It follows that the FOC with

respect to R(v) for a state v where the concession term is finite leads to:

u′(R(v)− I ) = 1+λ−α
µ+τ`(v,ε)

, (28)

while the FOC with respect to S(v) for a state where subsidies are paid out yields

u′(v +S(v)− I ) = (1+λ)(1+ζ)−α
µ+τ`(v,ε)

. (29)

Define M and m via:

u′(M − I ) = 1+λ−α
µ+τ`(M ,ε)

, (30a)

u′(m − I ) = (1+λ)(1+ζ)−α
µ+τ`(m,ε)

, (30b)

given µ, τ and ε. It then follows from u′′ < 0, (28), (29), and the assumption that G (v,ε) is

decreasing in v , that states with v ≥ M are high demand states, while states v ≤ m are low

demand states, in the sense that the government collects user fees in the former case and

pays subsidies in the latter.

Contrary to the optimal contract for the case with no moral hazard depicted in Figure 1,

the concessionaire’s revenue is not equal across all high demand states or all low demand
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Figure 3: Optimal contract with moral hazard and ζ> 0 
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states. But the gap between m and M emerges for precisely the same reason as before,

namely that subsidy finance is more expensive than user fee revenue at the margin. Moral

hazard does not change the basic structure of the optimal contract, even though now the

concessionaire’s total revenue is strictly increasing in v .

Figure 3 shows that for an intermediate demand project with ζ > 0 we have a range

of values of v where the contract lasts indefinitely and there are no subsidies. This range

of intermediate demand states (and intermediate demand projects) emerges only when

ζ> 0, leading to an increase in risk borne by the concessionaire beyond the level predicted

by the standard principal-agency model for the case ζ= 0. To make this statement precise,

we note that it follows from the MLRP and the definition of m and M that if vH denotes a

high demand state and vL a low demand state, then:

u′(vL − I ) = (1+ ζ̄)
µ+τ`(vH ,ε)

µ+τ`(vL ,ε)
u′(vH − I ). (31)

The need to induce effort would make revenue in state vH greater than that in state vL

even when ζ= 0. But because ζ> 0, (which is equivalent to ζ̄> 0), the difference in revenue

between states is amplified, since (31) implies

u′(m − I ) > (1+ ζ̄)u′(M − I ),

while without effort we have an equality (see (12)). For example, for CARA utility with co-

efficient of absolute risk aversion A:

M −m = 1

A

[
log(1+ ζ̄)+ log

(
µ+τ`(M ,ε)

µ+τ`(m,ε)

)]
,

which, because of the MLRP, is larger than the corresponding expression when effort does

not matter:

M −m = 1

A
log(1+ ζ̄).

It is time to take stock:

Proposition 12 Assume ζ > 0, G (v,ε) ≡ u′(v − I )[µ+τ`(v,ε)] strictly decreasing in v for all

feasible ε, and define M and m as in (30a)-(30b). Then T (v) is increasing in v and:

(i) If M < vmin: T (v) = R(v) < v for all v ∈ [vmin, vmax] and no subsidies are paid (high

demand project).

(ii) If m > vmax: T (v) > v for all v ∈ [vmin, vmax] and subsidies are paid in all states (low

demand project).
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(iii) If vmin < m < M < vmax:

• v > M corresponds to high demand states, with no subsidies and a finite contract

length.

• v < m corresponds to low demand states, with indefinite contracts and subsidies

• m < v < M corresponds to intermediate demand states, with indefinite contracts

and no implications for the government budget.

Application: Profit sharing and profit guarantees in the real world

In many PPP contracts the counterpart of minimum revenue guarantees has been a

revenue (and sometimes profit) sharing clause. We argue that these contracts are far from

optimal when effort matters.

The optimal contract involves both a state-dependent subsidy in low demand states

and a state-dependent revenue cap above which the government collects all revenues.

Moreover, the concession term is state contingent in high demand states, and the con-

cession lasts indefinitely when subsidies are paid out. Both characteristics are seldom, if

ever, observed in real world PPP contracts. Normally, the guarantee leads to a constant rev-

enue for the concessionaire in low demand states, and the term of the concession is fixed

and finite.

Note, moreover, that the choice between the incentive contract described above and

the contract for the case without moral hazard discussed earlier (sections 3 and 5.1) de-

pends on the extent to which demand is exogenous, or should it be endogenous, the extent

to which the concessionaire’s actions affecting demand are enforceable. When these con-

ditions hold—as in the case for highways, which account for more than half of the world’s

expenditures on PPPs61—the contract without moral hazard applies and profit sharing ar-

rangements are not justified. By contrast, when the optimal contract needs to be high

powered, then an incentive contract is desirable.

5.3 Liquidity constrained government

An often mentioned argument in favor of PPPs is that they allow governments to invest in

socially desirable projects during periods of severe credit constraints. A simple extension of

the framework developed in this paper can be used to analyze the validity of this assertion.

61See Hemming (2006).
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The liquidity argument in favor of PPPs can be captured within our framework, in re-

duced form, by allowing the marginal cost of public funds to change over time. More pre-

cisely, we assume that due to liquidity constraints, the current marginal cost of funds is

1+λ0, which is higher than the future cost of funds 1+λ1. This implies that when compar-

ing the option of providing an infrastructure project in the traditional way, i.e., via upfront

subsidies, versus provision by means of a PPP, the initial investment will have a higher cost

of funds for the government relative to the future revenues from user fees. In order to make

our point, we consider the case in which there is no inefficiency in government spending,

so ζ= 0.

The objective function (4) minimized by the social planner then becomes:∫
[(1+λ1 −α)R(v)+ (1+λ0 −α)S(v)] f (v)d v.

Thus, even though ζ̄= 0 in this case, the planner’s problem is analogous to the problem

she faces when the government is productively inefficient, with (1+λ0 −α)/(1+λ1 −α) in

place of 1+ ζ̄.

It follows that the irrelevance result does not hold when the government is credit con-

strained, since traditional procurement requires upfront spending, which is more expen-

sive than financing the project via future user fees under a PPP. Hence there is a presump-

tion in favor of PPPs as compared to the traditional provision of infrastructure. Further-

more, the results derived in sections 3 and 4 on the optimal PPP contract can be applied

to show that for intermediate demand projects a credit-constrained government will have

the firm bear additional risk in order to save on costly upfront subsidies.

Some caveats regarding this argument in favor of PPPs are in order. First, the argument

fails if the cost of public funds is high not only in the present but also in the foreseeable

future.62 In this case both λ0 and λ1 are high, and there is no a priori justification for as-

suming the latter is lower than the former. The irrelevance result continues holding and

liquidity constraints do not justify PPPs. Second, our framework does not include the tim-

ing of the project among the planner’s decision variables. Adding the option value of wait-

ing would not be difficult, and may lead to optimally postponing a project if the marginal

costs of funds is expected to fall in the future.

Finally, observe that the failure of the irrelevance result is due to an inability to commit

by the government: in principle, the government should be able to issue a bond (to finance

the project) whose repayments are tied to the revenue stream generated by user fees from

62Note that this may be the case of several Latin American countries, which cycle between periods of liq-
uidity constraints and liquidity abundance. It also seems appropriate for some African countries with poor
government policies, and which appear to be permanently credit constrained.
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the project. In that case, the liquidity constraint would have no effect on the choice be-

tween PPP or standard provision of infrastructure.63

6 Conclusion: Are PPPs public or private?

As the worldwide enthusiasm about privatizations waned, PPPs began to boom. One rea-

son governments like PPPs is that they provide a temporary transfer of most of the benefits

of ownership of the assets at stake to private firms, thus avoiding criticism from those who

oppose privatization. At the same time, because some ownership rights are transferred,

governments can also claim that private sector participation is being advanced.

This raises the question of whether PPPs should be viewed as temporary privatizations,

or simply as another option to procure public services. Some characteristics of PPPs clearly

resemble privatization. For example, Bennet and Iossa (2006) argue that in addition to

bundling, a PPP gives the concessionaire ownership rights over assets and control rights

over how to produce the service.64 Furthermore, our analysis has shown that the optimal

risk-sharing contract allocates all user fees to the concessionaire for as long as the conces-

sion lasts, as in the case of a privatized firm.

Yet this paper’s results can be used to argue that, as far as the risk profile of the govern-

ment’s budget is concerned, PPPs are much closer to public provision than to privatization.

Our starting point to derive this insight is that when thinking about the risk allocation im-

plied by PPPs, what matters is the intertemporal risk profile of cash flows, not the year-to-

year risk profile. This has interesting implications: for low and high demand projects, an

optimal PPP contract replicates the net cash flow streams of conventional (‘public’) pro-

vision, state by state (see Table 1, which assumes an additive risk premium). Essentially,

all residual risk is transferred to the government, and the concessionaire recovers I in all

states, as in the case of conventional provision.

For intermediate demand projects, our results show that a risk-sharing arrangement

is optimal. The extent to which the firm bears risk now depends on the extent to which

subsidies are a more costly source of financing than user fees, as captured by the parameter

ζ̄. When subsidy financing is very inefficient, it is too expensive to reduce the firm’s risk

63Sovereign governments, specially in developing countries, may still face this problem, since they cannot
guarantee that in the future they will not expropriate the revenue stream to solve other, more urgent needs.
In this they differ from the local authorities of developed countries, which are constrained by overarching
national legislation from diverting the revenue stream, and use these instruments to finance infrastructure
projects.

64Bennet and Iossa (2006) argue that bundling is not a sufficient condition to justify a PPP since the could
contract a bundled service, while still keeping ownership of the assets and user fees, as under conventional
provision.
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Table 1: Average discounted budget: public provision vs. PPPs

Public provision PPP Privatization

Upfront surplus: −I 0
∫

f (v)d v − I −Risk Premium

Discounted user fees:
∫

f (v)d v
∫

f (v)d v − I 0

Total:
∫

f (v)d v − I
∫

f (v)d v − I
∫

f (v)d v − I −Risk Premium

via subsidies, and it is best to have the firm bear most (sometimes all) of the risk. PPPs

resemble privatizations in this case. On the other hand, if subsidy financing is only slightly

less efficient than user-fee financing, the minimum income guarantee and the cap on user

fee revenues that characterize the optimal contract are very similar, and the government

bears most of the risk. As with high and low demand projects, risk sharing arrangements

resemble public provision in this case.

Under privatization, the project is sold for a one-time payment and all risk is transferred

to the firm. Moreover, the link between the project and the public budget is permanently

severed. This is not the case with a PPP, where at the margin cash flows from the project

always substitute for either taxes or subsidies. The conclusion, then, is that from a public

finance perspective there is a strong presumption that PPPs are analogous to conventional

provision—in essence, they remain public projects, and should be treated as such.
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Appendix

A When is a project socially valuable?

A.1 Model

We define producer surplus as

PS(v) = R(v)+S(v)− I .

Let βp ∈ [0,1] stand for the fraction of the private willingness to pay that can be collected
by charging user fees over the life of the infrastructure project (this is a generalization of
our assumption βp = 1 in the body of the paper) and let E denote the externality generated
by the project. The parameter βp is less than one, for example, when charging user fees
is politically unpopular, as is the case in a number of U.S. states with no toll roads.65,66

Consumer surplus then is:67

CS(v) =λ
[
βpv −R(v)

]+ [v −R(v)− (1+λ)(1+ζ)S(v)]+E .

Hence

CS(v)+αPS(v) =λ
[
βpv −R(v)

]+ [v −R(v)− (1+λ)(1+ζ)S(v)]+α(R(v)+S(v)− I )+E .

= [
λβp +1

]
v − (1+λ−α)R(v)− [(1+λ)(1+ζ)−α]S(v)−αI +E .

Let γv be the maximum fraction of consumer willingness to pay that can be transferred to
the concessionaire under a PPP.68 Clearly, γ≤βp. Let

{
R∗(v),S∗(v)

}
solve

max
{R(v),S(v)}

∫
[CS(v)+αPS(v)] f (v)d v

s.t.
∫

u(R(v)+S(v)− I ) f (v)d v ≥ u(0),

0 ≤ R(v) ≤ γv

S(v) ≥ 0.

65Alternatively, βp will be less than one in a toll road where the location of toll booths is suboptimal.
66The results that follow can be extended to the case where βp depends on whether the project is provided

publicly or privately. For example, βp is smaller under public provision when higher user fees can be charged
under private management. This extension can be used to analyze the case where government’s use PPPs to
commit to higher user fee collection.

67Note that the unpaid fraction (1−βp) remains as part of consumer surplus with or without the project.
68This parameter can be used to model a legally mandated maximum length of a PPP (e.g. 50 years in

Chile). βp, on the other hand, models the ability to appropriate user’s willingness to pay.
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The expected social value of the project is

SV ≡
∫ {[

λβp +1
]

v − (1+λ−α)R∗(v)− [(1+λ)(1+ζ)−α]S∗(v)−αI
}

f (v)d v +E . (32)

We can now use (32) to explore the conditions required for SV > 0.

A.2 The social value of a project

A high demand project In this case I ≤ γvmin, R∗(v) = I and S∗(v) = 0 for all v . Then a
high demand project is socially worthwhile if and only if

SV =
∫ {[

λβp +1
]

v − (1+λ)I
}

f (v)d v +E ≥ 0.

If, in addition βp = 1, then the condition simplifies to

SV =
∫

(1+λ) (v − I ) f (v)d v +E ≥ 0. (33)

Note that in the case of a high demand project, the social value does not depend on α.
Since λ> 0, the social value of the project increases with βp. Finally, when βp = 1, expres-
sion (33) has a simple interpretation: the social value of the project is the sum, over all
demand states, of private surplus v − I , augmented by the fact that this surplus allows the
government to reduce distortionary taxation, plus the value of the externality.

A low demand project In this case I > γvmax, S∗(v)+R∗(v) = I and R∗(v) = γv for all
states v . Hence, after some algebraic manipulation,

SV =
∫ {[

λβp +1
]

v − (1+λ)I − (1+λ)(1+ζ)(I −γv)
}

f (v)d v +E ≥ 0.

If, in addition, γ= 1 (which implies βp = 1), this condition becomes

SV =
∫ [

(1+λ)(v − I )− (1+λ)ζ(I −γv)
]

f (v)d v +E ≥ 0.

This expression is the same as (33), but for the fact that now the project must bear an addi-
tional cost in states where subsidies are paid: (1+λ)ζ(I −γv). Moreover, since

S∗(v) = I −R∗(v) = I −γv,

the social value of the project is (locally) increasing in γ when γ<βp.
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An intermediate demand project In this case, R∗(v) = M > I , and S∗(v) = 0 in high de-
mand states. Hence, social surplus in such a state s is

SV (s) = [
λβp +1

]
v + (1+λ−α)M −αI +E

In intermediate demand states R∗(v) = γv and S∗(v) = 0. Hence, social surplus is SV(s)
= [

λβp +1
]

v − (1+λ)γv +α(γv − I )+E

In low demand states R∗(v) = γv and γv +S∗(v) = m < I . Hence, social surplus is SV(s) =[
λβp +1

]
v − (1+λ)ζγν− (1+λ)(1+ζ)m +α(m − I )+E

This implies that the condition is

SV =
∫ {

λβpv + v −αI
}

f (v)d v − (1+λ−α)

[
M(1−F (M))+

∫ M

m
γv f (v)d v +mF (m)

]

− (1+λ)ζ
∫ m

vmin

(m −γv) f (v)d v + E ≥ 0.

B When is a PPP better than conventional unbundled pro-
vision?

B.1 Modeling the differences between conventional provision and PPPs

The literature has identified several reasons for the differences between PPPs and conven-
tional provision.

1. As we point out, government spending may be inefficient in general, in addition to
the costs created by distortionary taxation. This is captured by the parameter ζ in our
model.

2. Hart (2003) suggested that bundling may stimulate cost savings, because design is
adapted to lower operation costs. The point is that the procurement choice by itself
may affect costs. In our framework this can be modeled by assuming that under con-
ventional (unbundled) provision total costs are σI instead of I . If the public sector is
more efficient in building a particular project, then σ < 1, while σ > 1 if the private
sector is more efficient.

3. Hart (2003) has also pointed out that the private concessionaire may have incentives
to save at the expense of quality of service. I other projects, a private concessionaire
may responde better better to the needs of users. We may assume that user willing-
ness to pay is ηv with conventional provision and v with a private concessionaire.
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If the public sector is more effective in creating welfare for consumers, then η > 1,
while η< 1 if the private sector is more effective.

4. The capacity to charge users of the infrastructure may depend on the way the infras-
tructure is provided. We introduce a parameter βtr that captures the fraction of user’s
willingness to pay that can be effectively charged under conventional provision.

Assumption 1 βtr ≤βp.

It follows that with conventional provision, consumer surplus is

CS(v) = [
λβtr +η

]
v − (1+λ)(1+ζ)σI +E .

Social surplus is thus ∫ {[
λβtr +η

]
v − (1+λ)(1+ζ)σI

}
f (v)d v +E . (34)

B.2 PPPs vs. conventional provision

Substracting (34) from (32) above, yields that a PPP is better than conventional provision if∫ {
λ(βp −βtr)v − [

(1+λ−α)R∗(v)+ [(1+λ)(1+ζ)−α]S∗(v)
]}

f (v)d v

+
∫ {

(1−η)v + [(1+λ)(1+ζ)σ−α]I
}

f (v)d v ≥ 0. (35)

The first integral contains the terms that are central to our paper. λ(βp−βtr)v indicates that
one advantage of PPPs is that they substitute for distortionary taxation. If PPP’s enhance
the ability to charge users, this is a point in their favor over conventional provision. This
term disappears if βp =βtr = 1. The second term, (1+λ−α)R∗(v)+ [(1+λ)(1+ζ)−α]S∗(v),
explains the structure of the optimal contract. As a means of financing the project, sub-
sidies are more expensive than project revenues, which is captured by (1+λ)(1+ ζ)−α >
1+λ−α.

The second integral contains two terms identified in the literature (in particular, Hart
(2003)), as potential advantages or disadvantages of PPPs. The first term, (1−η)v , indicates
that gross consumer surplus may increase or decrease with a PPP, depending on the sign
of 1−η, i.e., on whether the concessionaire is better at providing the service to users. The
second term, [(1+λ)(1+ζ)σ−α]I , shows that PPP may reduce the costs of provision. One
possible reason is that subsidy spending is by itself wasteful; this is captured with ζ > 0.
The other reason is that a PPP structure by itself may alter incentives in such a way that the
direct cost of the project may be smaller, for example, because bundling stimulates better
design or by reducing total costs during the duration of the concession. This is captured by
the term σ> 1.

We can now develop specific expressions for each type of project.
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A high demand project In this case I ≤ γvmin, R∗(v) = I and S∗(v) = 0 for all v . Thus,
substituting into (35) and rearranging yields that a PPP is better if∫ [

λ(βp −βtr)v
]

f (v)d v +
∫ {

(1−η)v + (1+λ)[(1+ζ)σ−1]I
}

f (v)d v ≥ 0.

Result 1 With a high demand project it is irrelevant whether productive efficiencies are
achieved in ζ or σ. Moreover, whether a PPP beats conventional provision does not depend
on α.

A low demand project In this case I > γvmax, S∗(v)+R∗(v) = I and R∗(v) = γv for all
states v . Substituting into (35) and rearranging yields that a PPP is better if∫ [

λ(βp −βtr)v − (1+λ)ζ(I −γv)
]

f (v)d v +
∫ {

(1−η)v + (1+λ)[(1+ζ)σ−1]I
}

f (v)d v ≥ 0.

An intermediate demand project In this case, evaluation of (35) in the different cases
and rearranging yields that a PPP is preferable if∫ {

λ(βp −βtr)v + (1−η)v + [(1+λ)(1+ζ)σ−α]I
}

f (v)d v

− (1+λ−α)

[
M(1−F (M))+

∫ M

m
γv f (v)d v +mF (m)

]
− (1+λ)ζ

∫ m

vmin

(m −γv) f (v)d v ≥ 0.

C A microfoundation for ζ

In the text we distinguish between the social costs of taxation (efficiency on the revenue
side), which we capture with λ, and the relative efficiency with which the public sector
spends, which we capture with ζ (efficiency on the expenditure side).69 This distinction,
while necessary to explore the place of PPPs in the public budget, is unconventional, as
the literature typically models only the social cost of taxation. In this appendix we derive
λ and ζ as part of the optimization of the public sector, thus providing a microfoundation
for the value of ζ. We show that, at the margin, the product (1+λ)(1+ζ), which measures
the marginal cost of subsidizing the concessionaire, also equals the social benefit of spend-
ing one additional dollar in the marginal public project. Moreover, we also show that ζ is
specific to the agency or ministry responsible for the infrastructure project.

69We are aware that public spending may be inefficient due to failures of project selection. We do not
consider that problem here.
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C.1 Model

Consider a benevolent planner who must choose the aggregate tax burden, T , and then
allocate spending between government agencies i = 1,2, ...,n. What is the optimal size of
each government agency and of the public sector at large?

On the revenue side, let T +Λ(T ) ≥ T be the total cost to taxpayers of paying T in taxes.
We assume thatΛ : R+ →R+, withΛ′ ≡λ≥ 0 and λ′ > 0. As usual, 1+λ is the marginal cost
of public funds.

Consider now the spending side. The comparison between the traditional model and
PPPs is, at its root, a comparison of relative efficiency. For this reason, a useful benchmark
on the cost side is the private sector’s efficiency in spending.70

We model this by assuming that one dollar of private spending generates one dollar
of “useful” spending. By contrast, achieving Gi dollars of useful spending in government
agency i costs Gi +Zi (Gi ) dollars. We assume that Zi : R+ →R+, with Zi (0) = 0, Z ′

i ≡ ζi T 0

and ζ′i ≥ 0, with strict inequality if Gi ≥G i . Note that ζi is a measure of the relative marginal
efficiency of spending one dollar in government agency i . In principle, at a given level of
spending the government agency can be more, equally or less efficient than the private
sector. Eventually, the optimal size of government agency i must be bounded, because
ζ′i > 0.

The following cases are of particular interest. If ζi (Gi ) > 0 for all Gi ≥ 0, then the govern-
ment agency always spends more inefficiently than the private sector: it needs 1+ζi (Gi ) > 1
dollars to increase useful spending by one dollar. Next, if ζi = 0 and ζ′i = 0 for Gi ∈ (0,G i )

then Zi (Gi ) > 0 for Gi ∈ [0,G i ) and government agency i spends as efficiently as the private
sector. Finally, assume that 0 < 1+ζi (0) < 1 and ζ′i ≥ 0 for all Gi . Then there exists an inter-

val
[

0,G i

]
such that ζi (Gi ) < 0. In that interval the government agency is a better spender

than the private sector, as it needs less than one dollar of spending to achieve a dollar of
useful spending.

Consider now government agency i ’s portfolio of projects, which can be ordered from
highest to lowest return per dollar of useful spending. This portfolio can be characterized
by Si (Gi ), the surplus created if government agency i spends Gi dollars in its best projects.
We assume that Si : R+ →R+, with Si (0) = 0, S ′

i ≥ 0, limGi→0 S ′
i (Gi ) =∞ and S ′′

i < 0. Note
that S ′

i (Gi ) is the surplus created by the marginal project when Zi (Gi ) dollars have been
spent in government agency i .

To keep things simple, we are assuming that there exists a portfolio of projects that
attains a larger surplus if executed through the public sector—thus limGi→0 S ′

i (Gi ) = ∞.
Note that social surplus can be written as

Ni (Gi ) ≡Si (Gi )−Zi (Gi ),

thus directly subtracting from the government agency’s creation of value the net ineffi-
ciency of its spending. While this would simplify the presentation, it obscures the fact that

70Recall here that we have explicitly excluded the efficiency benefits due to productive bundling of con-
struction, operations and maintenance, which represent an additional motive for PPP’s.
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one advantage of PPPs is that the private sector may spend more efficiently than the min-
istry. Finally, we note that the government’s budget constraint is

T =∑n
i=1 Gi +Zi (Gi ). (36)

C.2 An optimal fiscal policy

The planner chooses T and (Gi )n
i=1 to maximize the following Lagrangian:

L =∑n
i=1 [Si (Gi )−Gi −Zi (Gi )]−Λ(T )−µ[∑n

i=1 Gi +Zi (Gi )−T
]

.

The first term is the net social surplus created by each government agency. The second
term is the net cost imposed on society by taxation. The last term is the government’s
budget constraint.

The first order conditions are

∂L

∂Gi
=S ′

i − (1+ζi )−µ(1+ζi ) = 0, (37)

and
∂L

∂Ti
=−λ+µ= 0. (38)

Condition (37) states the obvious result: at the margin, the shadow value of one dollar of
additional taxes equals the marginal cost of public funds. Next, substituting (38) into (37)
and rearranging yields that

S ′
i = (1+λ)(1+ζi ). (39)

at the optimum. That is, the marginal surplus created by one dollar of spending by gov-
ernment agency i equals the marginal cost of public funds times the relative efficiency of
spending money in government agency i .

Microfoundation for the equilibrium value of ζi Condition (39) provides a microfoun-
dation for the value of ζi . At the optimum, the shadow cost of subsidizing the PPP by one
additional dollar can be assessed from two different perspectives. On the one hand, one
could increase the aggregate tax burden by 1+ζi , which would cost society (1+λ)(1+ζi )
dollars in total. On the other hand, given the amount of government revenue from taxes
(at a marginal cost of 1+λ per dollar of revenue) government agency i could reduce its
spending by 1+ ζi dollars, which would cost society S ′

i in foregone social surplus. If the
government is running an optimal fiscal policy, S ′

i = (1+λ)(1+ ζi )—both quantities are
exactly the same.

PPPs and the optimal size of a government agency i The marginal cost of spending 1+ζi

determines the optimal size of the government agency i , as can be observed in Figure 4.
On the horizontal axis we measure useful spending Gi . On the vertical axis we measure the
marginal cost and benefits of spending in government agency i .
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Figure 4: Determination of the optimal size of a government agency
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Note that the optimal size of government agency i depends on Si , ζi and λ. If taxation
is non-distortionary (λ= 0) and ministry i spends as efficiently as the private sector, then
the total cost of spending Gi in government agency i equals Gi . Thus, the marginal-cost-
of-spending schedule is the 45◦ line, at the optimum S ′

i = 1 and total spending equals
Gi (1).

Because taxation is distortionary, however, even if ministry i is as efficient as the private
sector when spending, the cost of spending an additional dollar by government is 1+λ> 1,
because to do so the government must impose distortionary taxes. Thus, the marginal-
cost-of-spending schedule is above the 45◦ line. At the optimum S ′

i = 1+λ> 1 and Gi (1+
λ) <Gi (1).

Now introduce the government agency’s relative efficiency of spending into the picture
and assume ζi (Gi ) > 0 for all Gi ≥ 0. The marginal-cost-of-spending schedule is even fur-
ther above the 45◦ line. Consequently, at the optimum S ′

i = (1+λ)(1+ζi ) and Gi ((1+λ)(1+
ζi ) <Gi (1+λ) <Gi (1).

Consider, finally, the place of a small PPP in government agency i . If the PPP does not
require any public subsidy, then 1+λ is the proper shadow price of the foregone revenue
that the concessionaire receives. Thus, all projects such that S ′

i (Gi ) ∈ [1+λ, (1+λ)(1+ζi )]
in the government agency’s pecking order should be undertaken with a PPP, but not with
the traditional model.

On the other hand, if the PPP does require subsidies at the margin, the rule is to mini-
mize them. Revenues from the project should go to the concessionaire, and only the deficit
should come from subsidies. It follows that some projects such that S ′

i (Gi ) ∈ (1+λ, (1+
λ)(1+ζi )) will be undertaken using a PPP, but will not be undertaken using the traditional
model.

PPPs and the relative size of government agencies Finally, we can derive a rule for the
allocation of spending across government agencies. Note that at the optimum

S ′
i

1+ζi
= 1+λ=

S ′
j

1+ζ j
.

Thus the marginal surplus created by spending an additional dollar in government agency
i adjusted by i ’s relative marginal efficiency equals the value of spending one additional
dollar in government agency j adjusted by j ’s relative marginal efficiency.

Consider now a PPP that creates exactly the same surplus in any government agency.
Because ζi will in general differ across government agencies, some PPPs will be undertaken
if located in some government agencies, but not if they are located in others.71

71A similar analysis can be done with government agencies across countries: a project may be undertaken
via PPP’s by a given government agency in country A, but not by the analogous government agency in country
B, due to a different value of ζi , even if the cost of taxation is the same.
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D Proofs of Propositions

D.1 Proof of Proposition 1

Since u is concave, applying Jensen’s inequality to the concessionaire’s participation con-
straint leads to

u(
∫

[R(v)+S(v)] f (v)d v − I ) ≥
∫

u(R(v)+S(v)− I ) f (v)d v = u(0).

And since u is strictly increasing, the above inequality implies that

E[R]+E[S] ≥ I ,

where E[R] = ∫
R(v) f (v)d v denotes the expected revenue before demand is realized and

E[S] denotes expected government expenditure on subsidies.
It follows that if the solution to

min
R≥0,S≥0

(1+λ−α)E[R]+ [(1+λ)(1+ζ)−α]E[S] (40)

s.t. E[R]+E[S] ≥ I ,

satisfies (5b)–(5d), then it solves program (5a)-(5d) as well.
Hence, if ζ = 0, any combination of revenue and subsidy schedules that satisfies (5c),

(5d), and R(v)+S(v) = I for all v , solves the planner’s problem.

D.2 Proof of Proposition 4

Having established the form of the optimal contract, the planner’s problem is equivalent
to finding m and M that minimize

M(1−F (M))+
∫ M

0
v f (v)d v + (1+ ζ̄)F (m)

∫ m

0
(m − v) f (v)d v, (41)

subject to the concessionaire’s participation constraint (11). Noting that (11) implicitly de-
fines M as a function of m, we have that:

M ′(m) =− F (m)u′(m − I )

(1−F (M))u′(M − I )
. (42)

A similar calculation shows that the rate at which M and m have to change to keep the
objective function (41) unchanged is given by

M ′(m) =− (1+ ζ̄)F (m)

1−F (M)
. (43)
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Equating (42) and (43) for M ′(m) leads to (12) and completes the proof.72

D.3 Proof of Proposition 5

With the assumptions and notation introduced in the main text we prove that:

M ′(ζ) = (1+λ)F (m)

[(1+λ)(1+ζ)−α]F (m)CARA(M − I )+ (1+λ−α)(1−F (M))CARA(m − I )
,

m′(ζ) =− (1+λ)(1+λ−α)(1−F (M))

[(1+λ)(1+ζ)−α] {[(1+λ)(1+ζ)−α]F (m)CARA(M − I )+ (1+λ−α)(1−F (M))CARA(m − I )}
,

M ′(ζ)−m′(ζ) = (1+λ)[[(1+λ)(1+ζ)−α]F (m)+ (1+λ−α)(1−F (M))]

[(1+λ)(1+ζ)−α] {[(1+λ)(1+ζ)−α]F (m)CARA(M − I )+ (1+λ−α)(1−F (M))CARA(m − I )}
.

It follows that risk borne by the concessionaire increases with the social cost of subsi-
dies, 1+ ζ. Furthermore, [(1+λ)(1+ ζ)−α](M ′(ζ)−m′(ζ))/(1+λ) takes a value between
1/CARA(m − I ) and 1/CARA(M − I ).

We define C (I ) ≡ CARA(M − I )/CARA(m − I ) and also show that:

m′(I ) = 1 + (1+ ζ̄)C (I )
∫ M

m u′(v − I ) f (v)d v

[(1+ ζ̄)C (I )F (m)+1−F (M)]u′(m − I )
,

M ′(I ) = 1 +
∫ M

m u′(v − I ) f (v)d v

[ ¯(1+ζ)C (I )F (m)+1−F (M)]u′(M − I )
,

M ′(I )−m′(I ) = (1+ ζ̄)(1−C (I ))

∫ M
m u′(v − I ) f (v)d v

[(1+ ζ̄)C (I )F (m)+1−F (M)]u′(m − I )
.

It follows that m and M grow faster than I . Also, for a concessionaire with decreasing
absolute risk aversion, the wedge between M and m increases with I , while it does not
depend on I for a concessionaire with constant absolute risk aversion.

Proof Implicit differentiation of (12) with respect to ζ and a bit of algebra leads to:

M ′(ζ) = 1+λ
[(1+λ)(1+ζ)−α]CARA(M − I )

+ CARA(m − I )

CARA(M − I )
m′(ζ).

Implicitly differentiating (11) with respect to ζ̄ leads to:

M ′(ζ) =− [(1+λ)(1+ζ)−α]F (m)

(1+λ−α)(1−F (M)))
m′(ζ).

Both expressions above lead to the comparative statics results for ζ̄.
Implicit differentiation of (12) with respect to I leads to:

m′(I )−1

M ′(I )−1
= (1+ ζ̄)C (I ).

72The above proof assumes that F (m) > 0 and F (M) < 1. Footnote 40 outlines the proof when this is not the
case.
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Implicit differentiation of (11) with respect to I leads to:

F (m)u′(m − I )[m′(I )−1]+
∫ M

m
u′(v − I ) f (v)d v + (1−F (M))u′(M − I )[M ′(I )−1] = 0.

The three comparative statics expressions in I now follow easily.

D.4 Proof of Proposition 9

Proof Part (i) It follows immediately from the planner’s objective function that pG (θ) =
p∗(1+λ,θ) when γ< 1, that is, when the contract length is finite.

To derive the expressions for pC (θ), consider first the case where the contract length is
finite. We fix the concessionaire’s profits, and choose the price that maximizes the planner’s
welfare, that is, we solve:

max
p,γ

γH(p,α)+ (1−γ)H∗(1+λ)

s.t. γΠ(p) = K ,

where we have dropped θ from our notation, H∗(1+λ) ≡ H(p∗(1+λ)) and p stands for
pC . Using the constraint to get rid of γ in the objective function leads to the following
equivalent problem:

max
p

CS(p)−H∗(1+λ)

Π(p)
.

The corresponding first order condition leads to:

H∗(1+λ) = CS(p)− CS′(p)

Π′(p)
Π(p)

and it follows from (16) that p = p∗(1+λ) is optimal in this case.

Part (ii) Next we consider the case where S > 0 and maximize the planner’s objective
function over p and S, keeping fixed the concessionaire’s total profits:

max
p,S

H(p,α)− [(1+λ)(1+ζ)−α]S

s.t. Π(p)+S = K .

This time we use the constraint to get rid of S in the objective function, which leads to:

max
p

H(p,α)+ [(1+λ)(1+ζ)−α]Π(p),

which, by the definition of H , is equivalent to choosing the user fee that maximizes H(p, (1+
λ)(1+ζ)). It follows that pC = p∗((1+λ)(1+ζ)) in this case.
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Part (iii) We consider two intermediate demand states, θ1 and θ2, and find the optimal
price in each state subject to a fixed expected utility for the concessionaire. That is, we
solve:

max
p1,p2

H(p1,α,θ1) f (θ1)+H(p2,α,θ2) f (θ2)

s.t. u
(
Π(p1,θ)− I

)
f (θ1)+u

(
Π(p2,θ)− I

)
f (θ2) = K .

The Lagrangian for this problem is

L (p1, p2) = H(p1,α,θ1) f (θ1)+H(p2,α,θ2) f (θ2)+µ[u′
1 f (θ1)+u′

2 f (θ2)],

where u′
i = u(Π(pi , v)− I ), i = 1,2, and µ denotes the multiplier for the concessionaire’s

participation constraint.
Using the first order conditions in p1 and p2 to get rid of µ then leads to:

u′
1

u′
2

=
CSp (p1,θ)
Πp (p1,θ1) +α

CSp (p2,θ2)
Πp (p1,θ1) +α

.

Define η1 and η2 via p1 = p∗(η1,θ1) and p2 = p∗(η2,θ2). Since θ1 and θ2 are intermediate
demand states and Π(p∗(η),θ) is increasing in η, we have that ηi ∈ (1+λ, (1+λ)(1+ ζ)),
i = 1,2. The above expression combined with (16) implies that:

u′
1

u′
2

= η1 −α
η2 −α

.

A similar argument, with an intermediate and a low (high) demand state instead of two
intermediate states, leads to the second (third) equality in (20).

D.5 Proof of Proposition 10

We use Figure 2 to extend (41) and (42) to the more general setting considered here and in
this way prove (22). We show that the planner substitutes m and M at a rate:

M ′(m) =− (1+ ζ̄)F(1+λ)(1+ζ)(m)

1−F1+λ(M)
, (44)

while the rate at which m and M are substituted along the concessionaire’s participation
constraint satisfies:

M ′(m) =−F(1+λ)(1+ζ)(m)u′(m − I )

(1−F1+λ(M))u′(M − I )
. (45)

Equating both rates of substitution leads to (22).
Consider the impact on the concessionaire’s participation constraint of an increase of
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m by ∆m. Demand states than originally enjoyed a minimum revenue guarantee of m see
this guarantee increase by ∆m, thereby increasing the concessionaire’s expected utility by
F(1+λ)(1+ζ)(m)u′(m − I )∆m. We also have a small fraction of states—those with v(1+λ)(1+ζ) ∈
[m,m +∆m]—that now have a guarantee and did not have one before. And the user-fee
in these states is somewhat smaller once they have a minimum revenue guarantee. In any
case, the contribution of these marginal states to the concessionaire’s expected utility is of
second order in ∆m and can therefore be ignored.

A similar argument shows that a decrease of M by∆M leads to a decrease of the conces-
sionaire’s expected utility of (1−F1+λ(M)u′(M − I )∆M , where again we ignore higher order
terms in ∆M . Equating to zero the expected utility change associated with an increase in
m and a decrease of M leads to (45).

To derive (44) we first use our two-threshold characterization of the optimal contract to
simplify the planner’s objective function (17a). In high demand states we have γΠ(p∗(1+
λ)) = M and therefore

[αγ+ (1+λ)(1−γ)]Π= (1+λ)Π− (1+λ−α)M .

We use this expression to get rid of γ in the expression for welfare in high demand states:

Whigh = CS(p∗(1+λ)) + αM + (1+λ)(Π(p∗(1+λ))−M). (46)

In low demand states we have Π+ S = m, which allows us to get rid of S in the planner’s
welfare function for these states:

Wlow = CS(p∗((1+λ)(1+ζ))) + αm + (1+λ)(1+ζ)(Π(p∗((1+λ)(1+ζ)))−m) (47)

Finally, in intermediate demand states we have:

Wint = CS(p∗(η)) + αΠ(p∗(η)), (48)

with η ∈ (1+λ, (1+λ)(1+ζ)) determined from (20).
Consider next the effect on total welfare of an increase of ∆m in m and a decrease of

∆M in M . Comparing (46)–(48) it is clear that the change in welfare due to marginal firms—
those close to m or M—is second order, since η ≈ (1+λ)(1+ ζ) for firms with w(1+λ)(1+ζ)

close to m and η ≈ 1+λ for firms with w1+λ close to M . It follows that, as in the previous
case, the first order aggregate change in welfare is due to inframarginal low demand states
and inframarginal high demand states. The subsidy paid out in the former states increases
significantly, leading to a welfare reduction of [(1+λ)(1+ζ)−α]F(1+λ)(1+ζ)(m)∆m. And user
fees freed up by the decrease in M allow the government to reduce distortions elsewhere in
the economy, increasing welfare by (1+λ−α)(1−F1+λ(M))∆M . Equating to zero the total
change in welfare leads to (44) and completes the proof.
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E Moral hazard and a single-crossing property

Proof of Proposition 11

A straightforward adaptation of the proof of standard moral hazard results can be used
to prove that T (v) is strictly increasing. For example, following the argument in the proof
of Proposition 5.2 in Laffont and Martimort (2002) leads to

µ = (1+λ−α)E

[
1

u′(T (v)− I )

]
,

τ = 1+λ−α
k

Cov

(
1

u′(T (v)− I )
, u(T (v)− I )

)
.

>From u′ > 0 it then follows that µ > 0, while the fact that u and u′ covary in opposite
directions implies that τ> 0. The MLRP and (26) then imply that T (v) is strictly increasing
in v .

The fact that T is strictly increasing in v does not imply that it crosses the 45-degree
line only once and from above, thereby ensuring the existence of M such that states with
v < M are low demand (they require a subsidy) while state with v > M are high demand
(finite term). This requires that the function G (v,ε) satisfies a single-crossing property. We
consider this property below, working with the more general case where ζ> 0.

Problem Set Up

We partition demand states into three sets:

• H : outcomes where it is optimal to have a finite contract term and therefore no
subsidies,

• L : outcomes where subsidies are called for and therefore the contract lasts indefi-
nitely,

• I : outcomes where the contract lasts indefinitely but no subsidies are involved.

With the notation introduced in section 5.2, let:

G(v,ε) = u′(v − I )[µ+τ`(v,ε)]. (49)

The first order conditions (30a)-(30b) and u′′ < 0 imply that

H = {v : G (v,ε) < 1+λ−α},

I = {v : 1+λ−α≤G (v,ε) ≤ (1+λ)(1+ζ)−α},

L = {v : G (v,ε) > (1+λ)(1+ζ)−α},
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where ε is set equal to the value that maximizes the planner’s objective function, which is
assumed positive.

We want to show that there exist constants m and M , with m < M , such that H , I and
L are characterized by v > M , m ≤ v ≤ M and v < m, respectively.73 When ` ≡ 0 in (49),
this follows directly from u′′ < 0. Yet once effort matters, we must show that, for all feasible
values of ε, G (v,ε) crosses the horizontal lines (1+λ)(1+ ζ)−α and 1+λ−α only once
and from above (‘single-crossing property’). The problem is not trivial because µ and τ are
multipliers that vary with the problem’s parameters and, in principle, can take any positive
values.

A particular case

In what follows we assume that the distribution of users’ willingness to pay follows an
exponential distribution with mean θ that increases with effort ε. The concessionaire has
constant absolute risk aversion A. In the remainder of this appendix we find conditions on
θ, k and A so that the optimal contract derived in section 5.2 is of the two threshold type.

The distribution of discounted demand follows an exponential distribution with mean
θ(ε), with θ′(ε) > 0:

f (v |ε) = 1

θ
e−v/θ.

It follows that:

`(v,ε) = θ′

θ

[v

θ
−1

]
and therefore

∂`(v,ε)

∂v
= θ′

θ2
> 0.

and the MLRP holds.
Since the concessionaire has constant risk aversion, denoted by A in what follows, the

concessionaire’s participation and incentive compatibility constraints lead to:∫
u′(T (v)− I ) f (v |ε)d v = 1−k Aε, (50)∫

u′(T (v)− I )`(v,ε) f (v |ε)d v =−k A. (51)

A useful identity

The first order conditions (28) and (29) imply that for all v we have:

1+λ−α≤ u′(T (v)− I )[µ+τ`(v,ε)] ≤ (1+λ)(1+ζ)−α.

73Since we do not know the value of ε a priori, this must hold for all feasible values of ε.
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Integrating over v we then have:

µ

∫
u′(T (v)− I ) f (v |ε)d v +τ

∫
u′(T (v)− I )`(v,ε) f (v |ε)d v =C ,

with 1+λ−α≤C ≤ (1+λ)(1+ζ)−α. Substituting (50) and (51) in this expression leads to:

(1−k Aε)µ= τk A+C . (52)

Since µ, τ and C are positive, this expression implies that

ε< 1

k A
.

Thus, as expected, optimal effort is smaller when the concessionaire is more risk averse or
the cost of effort is higher. It also follows from (52) that:

µ

τ
= k A

1−k Aε
+ C

τ(1−k Aε)
,

and since k Aε< 1 and C > 0, this implies that:

µ

τ
> k A. (53)

Sufficient condition

A straightforward calculation shows that:

∂G

∂ε
(v,ε) =−e−A(v−I )

[
Aµ−τ θ

′

θ2
(1+ Aθ)+ Aτ

θ′

θ2
v

]
.

It follows that G (v,ε) is decreasing in v over the entire range of possible values if and only
if

Aµ> τ
θ′

θ2
(1+ Aθ),

that is, if and only if
µ

τ
> θ′

θ

(
1+ 1

Aθ

)
. (54)

From (53) and (54) it follows that

k A > θ′

θ

(
1+ 1

Aθ

)
(55)

is sufficient to ensure that the optimal policy is of the two-threshold type.
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