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FINANCIAL ECONOMICS | RESEARCH ARTICLE

Portfolio design and management through state- 
based analytics: A probabilistic approach
Matthew W. Burkett1*, William T. Scherer2 and Andrew Todd2

Abstract:  This paper presents an innovative new approach to investment portfolio 
design, which applies a discrete, state-based methodology to defining market states 
and making asset allocation decisions with respect to both current and future state 
membership. State membership is based on attributes taken from traditional 
finance and portfolio theory namely expected growth, and covariance. The transi-
tional dynamics of the derived states are modeled as a Markovian process. Asset 
weighting and portfolio allocation decisions are made through an optimization- 
based approach coupled with heuristics that account for the probability of state 
membership and the quality of the state in terms of information provided.

Subjects: Economics and Development; Economics; Finance;  

Keywords: Portfolio management; states; regimes; Markov; finance; investment 
management; optimization; mean-variance; Markowitz

1. Motivation
The key factors in portfolio performance for investors are asset allocation choices – the amount to 
invest in each security from the universe of investible assets. Many studies assume performance 
models having an underlying linear process with stable state variables and parameters that do not 
vary over time. However, this generally accepted approach to modeling asset returns is changing 
with a growing amount of empirical evidence that asset returns exhibit the behavior of a complex 
process with multiple “states,” or “regimes,” each with unique characteristics (Guidolin & 
Timmermann, 2007). Many researchers have investigated discrete state-based approaches in 
financial markets and have published their findings. Hamilton (1989) presented evidence of regime 
business cycles (Hamilton, 1989), and Ang and Bekaert (2002) examine regimes in international 
equity markets and advocate for international diversification in spite of identifying a high-volatility 
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bear state (Ang & Bekaert, 2002). Lunde and Timmerman (2004) examined the duration charac-
teristics of bull and bear regimes (Lunde & Timmermann, 2004), and Guidolin & Timmermann 
(2007) analyzed asset allocation decisions using a regime-switching model framework. M. Burkett 
et al. (2020) examine the overarching use of states in finance in a survey of the field.

This paper presents an innovative approach that applies optimization to a state-based modeling 
framework for making asset allocation decisions in the design of investment portfolios by expand-
ing on the process outlined in M. W. Burkett et al. (2019). This approach differentiates itself from 
the existing body of research in this space by marrying portfolio design techniques from traditional 
finance with unsupervised machine learning techniques and Markovian probability theory to create 
an approach for making asset allocation decisions based on a discrete-state framework. States 
should be designed with an intended purpose and application in mind. As the objective of this 
research is to aid portfolio design through improved asset allocation decisions, states are defined 
using attributes from traditional portfolio theory. More specifically this research incorporates the 
seminal research of Markowitz (1952) from his work, Portfolio Selection, and uses the features 
presented in this paper – expected growth rate and covariance matrix—as the foundation for 
making state membership decisions. The performance of investment portfolios is commonly 
evaluated by how the tradeoff between risk (volatility) and reward (returns) is balanced. The 
covariance among assets in a portfolio affects the volatility and risk, and the expected returns 
determine the reward and returns of the overall portfolio (Markowitz, 1952).

The feature set is used to cluster observations and determine similar behavioral groups, which 
serve as the basis for market states or regimes. Unlike much of the existing work in this area, 
states are not designed with a preconception of what state behavior or characteristics should be, 
such as a “bull” or “bear” state. Rather, the data is subdivided into clusters in which similar 
observations are grouped through the use of unsupervised machine learning clustering algorithms. 
Once observations are assigned to states, the transitional dynamics among states can be deter-
mined. The transitions between states are analyzed as a Markov chain, which predicts the prob-
ability of future membership in a state given the state of present membership.

Each state is evaluated as a separate entity, and asset allocation decisions are made specific to each 
state. An optimization-based approach is used to assign asset weights to create unique portfolios for 
each state. While each state is evaluated separately, a new approach is presented that considers how 
transitions between states occur and incorporate these dynamics into the asset allocation process. 
The selection of assets for inclusion in the portfolio investment universe is an important decision. 
Assets with low market capitalization or those which are sparely traded represent poor candidates for 
the inclusion in the portfolio investment universe because large allocation decisions of this method 
could impact the price of the asset thereby reducing or eliminating the potential benefits by becoming 
the market for an asset. Impacts at the macroeconomic level associated with this approach for 
portfolio management are not expected because such impacts would require widespread adoption 
of this technique using the same parameter values and instruments.

2. Overview of state-based methodology
A principle that lies at the heart of portfolio management is balancing the tradeoff between risk 
and return. Since the objective of this state-based application is to support decision-making in 
investment management, the feature set used to create the market states through clustering are 
variables that determine the return and risk of an investment portfolio. Once the market states are 
defined, the distance from an observation to the center of a state can be determined, and based 
on the relative distance between an observation and each state, the probability of membership 
can be calculated. This clustering approach is based on the research from M. W. Burkett et al. 
(2019). It is extremely important to train across a robust feature set and training period that 
captures a wide range of market conditions. Failure to train and thereby define states in such 
a robust fashion creates a situation where observations cannot be properly assigned to a state 
because similar conditions were not seen during the definition phase. Since such conditions were 
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not observed in the defining phase, the behavior of assets under such conditions is also not known, 
and such an observation cannot be accurately modeled using this method. Changing market 
dynamics or shocks to the global financial markets resulting in a “contagion effects” can introduce 
new state behavior unseen in the defining phase. Gkillas et al. (2019) examines the contagion 
effect in international markets when using regime-switching models (Gkillas et al., 2019).

2.1. Features
Investment portfolio decisions rely on empirical data to calculate future returns and risks. The 
return component of a portfolio, rport, is expressed in terms of “expected return” and is calculated 
as the product of the weight, w, allocated to each asset in the portfolio, and the expected return of 
each asset, ras shown in Equation (1) (Luenberger et al., 1997) 

rport ¼ wr (1) 

Asset allocation decisions have not been made at this point so the weight vector, w, has yet to be 
created. As such, the expected asset return vector acts as the basis for the return feature. It 
measures the expected aggregate return or growth, of all assets in the investment universe over n 
periods and represents the return in the vector, r. The vector is condensed into a single number 
using the sum-squared distance equation in Equation (2), which represents the magnitude of all 
returns in the universe. The one-by-n vector needed to be reduced to a single number so that it 
could be used as an input in the clustering algorithm to define the market states. 

mðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1ri2

q

(2) 

The magnitude measure, m, does not indicate whether the assets are increasing or decreasing in 
value, which leads to the inclusion of a directional component, d, which captures the overall directional 
trend of asset returns in r. The mean of returns in r is calculated and used to assign the directional flag. 
Equation (3) shows that the variable d indicates whether the prevailing market direction, i.e., the mean 
return of r, is positive or negative by assuming a value of 1 or −1, respectively. 

dðrÞ ¼ 1 if 1
n ∑n

i¼1ri>0
0 otherwise

�

(3) 

The product of mðrÞ and dðrÞ produces a feature, gðrÞ, which reflects both the magnitude and 
a directional orientation of the returns from the vector of assets in the signal set, r, as shown in 
Equation (4). 

gðrÞ ¼ dðrÞ �mðrÞ (4) 

The next point of interest is in grouping observations by risk and the manner in which that risk can 
be measured. Investment risk is often expressed as uncertainty in the future outcome of returns in 
terms of volatility, more specifically standard deviation, σ. The expected standard deviation of an 
investment portfolio is a function of covariance, �, between assets in the investment universe and 
the asset allocation weight, w, described in Equation (1). 

σport ¼ wT�w (5) 

Since the weights w are the independent variables, and the determining factor in making the asset 
allocation decisions, the parameter by which the risk must be defined is the covariance matrix �. 
Similar to the return vector previously discussed, the n-by-n covariance matrix must be reduced to 
a single number in order to be included as an input in the clustering algorithm in the state creation 
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process. One approach, presented by Forstner, performs a decomposition of the matrix and 
examines the resulting eigenvalues as a surrogate for the co-movement of assets. 

dFðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1ln2λiðA;BÞ

q

(6) 

where λiðA;BÞ is the joint eigenvalue of the matrices.

2.2. States by clustering
The two risk and return features described in the previous section have reduced multi-dimensional 
data structures into scalar values. Those values provide a measure of risk and a measure of return for 
any discrete point in time using a n-period look-back window. Those observations are then computed 
and provided to the clustering algorithm as input. Note that failure to normalize the features prior to 
clustering would give disproportionately more weight to features with the larger values.

This research employs an approach that normalizes observations in terms of the standard score or 
z-score, which is the number of standard deviations an observation lies from the sample mean. 
Normalizing observations in this manner is a commonly used technique to quantify observations relative 
to other observations in a sample and is used in the calculation of statistical confidence intervals (Dean 
et al., 1999). This technique is well suited for this application because the absolute value of the measures 
for the return magnitude vector and covariance is of no consequence to the analysis. But, what is of 
importance is how an observation’s features compare relatively to the feature values of its peers. The 
normalization calculation is shown in Equation (7) and is applied independently to each feature. The 
sample mean, �x, and sample standard deviation, sx, is derived using data from the training set and used 
to transform each observation, x, into the normalized observation, x�. The sample mean and sample 
standard deviation values for each feature are used to normalize observations from the testing set in 
order to maintain an element of consistency and uniformity in the calculations. 

x� ¼
x � �x

sx
(7) 

where �x and sx are the sample mean and standard deviation, respectively, of the population of the 
feature x.

Once the feature set has been normalized, it can be used by a clustering algorithm to place 
observations into clusters, which represent the basis for financial states in this research. The 
clustering algorithms used are unsupervised machine learning algorithms, such as the commonly 
used algorithm k-means. The algorithm bases the cluster assignment on data from the training set 
so each training observation is a member of a single state. A measure of central tendency for each 
state is made by calculating the mean of each feature for the members of a state. This value, 
known as a centroid, can be used to describe and characterize states.

2.3. Probabilistic membership in test set
While each observation in the training set is a member of a single state and contributes to the 
centroid values of its respective state, the observations from the testing, or evaluation, set does 
not belong to any specific state absolutely but are members of every state with varying probability. 
Probabilistic membership to a state is a function of the relative similarity between an observation 
and each state. The similarities between an observation and the state k are expressed as the 
distance to k, dk, as shown in Equation (2), which represents the l2 Euclidean distance between 
each normalized observation, x�, and the centroid for the state k, x�ðkÞ. The equation is presented 
in a general format in which nj features could be used; however, in the case of this research only 
two features are considered in the set, e.g., nj ¼ 2. 
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dkðx�; x�ðkÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑nj
j¼0ðx

�
j � x�ðkÞj Þ

2
r

(8) 

where j is the feature, and nj is the total number of features used to describe the state.

The greater the distance between an observation and the centroid of a state, the greater the 
differences between the two points; therefore, the probability of membership in a state for any 
observation is inversely related to the distance between it and the centroid of the state. The 
probability that a state is a member of the state k is expressed proportionally to the inverse 
distance to the centroid for the state k, d� 1

k , as shown in Equation (8). The probabilities calculated 
for membership in each state are exhaustive such that all possibilities are considered. Additionally, 
each observation exists to some degree of probability in each state unless it lies an infinite 
distance from a centroid, which in the context of this research is not possible. 

pk ¼
d� 1

k
∑n

i¼0d� 1
i

(9) 

3. Portfolio design

3.1. Data
The methodology discussed within this article is applicable to any set of price data regardless of 
the frequency, e.g., daily, weekly, or monthly; however, the lookback period n should be adjusted 
accordingly based on the reporting frequency of the data and the preferences of the user. The 
examples presented in this article incorporate adjusted daily closing price data1 for from the 
31 December2004 to 28 February 2019 that were extracted from Yahoo! Finance.

Data is segmented into two categories: a signal set and a portfolio set. Signal set price data are 
used to create the feature sets, assign observations to clusters thereby defining the states and 
make probabilistic assessments of observations in the holdout test set. Since signals used to make 
inferences into state membership are derived from this data, the set is referred to as the signal set.

This set is comprised of six assets representing entire markets or international classes of assets. It 
consists of three US equity indexes, one US bond index ETF, and two international ETFs.2 It is referred 
to as the macro signal set due to the broad-market, macroeconomic perspective of the components.

A separate data set, designated as the investment set, may be incorporated into the analysis 
with regard to the portfolio design and asset allocation decisions. While the signal set may also act 
as the investment set, this methodology offers the flexibility to evaluate the financial environment 
using one set of financial instruments and then invests in another set. The investment set used in 
the illustrative examples for this research is the macro-signal variables described in the previous 
section. Detailed information specifying how the investment set is used to make portfolio design 
decisions are included in section Local Optimization.

3.2. Probability of state membership
The process presented in this research assigns observation to a finite, discrete state, which when 
applied to all observations from the training dataset results in a sequence of states describing how 
a financial system transition between various states through time. Given the information provided by 
these sequential state memberships, the system can be modeled as a stochastic process using 
a Markov chain such that the probability pij of a random variable X, which would represent the 
state of the financial system, being in a state j at the time tþ 1 depends on only the state i in which it 
had been in at t. The process would be memoryless and thereby not consider state membership prior 
to time t. This version of a Markov chain is known as a first-order model such that 
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pij ¼ PðXðtþ 1Þ ¼ jjXð0Þ ¼ i0; . . . ;Xðt � 1Þ ¼ it� 1;XðtÞ ¼ iÞ
¼ PðXðtþ 1Þ ¼ jjXðtÞ ¼ iÞ (10) 

The transition probability formula is shown in Equation (10) describes the state transitional 
dynamics of the process. The transition probabilities do not evolve with time and reflect the 
state transitional dynamics observed within the training period. All N2 transition probabilities 
from the N-state system are summarized in the matrix. Modeling the state transitions of the 
system as a Markov chain enables probabilistic estimates to be made of the state in which the 
system will be n periods in the future such that 

pðnÞij ¼ PXðtþ nÞ ¼ j; Xðtþ n � 1Þ ¼ jtþN� 1; . . . ; Xðtþ 1Þ ¼ jtþ1jXðtÞ ¼ i
¼ PðXðtþ nÞ ¼ jjXðtÞ ¼ iÞ

(11) 

Raising the single-step matrix described in Equation (10) to the nth power can derive the asso-
ciated n–step transition probability matrix shown in Equation (11).

Distribution of initial probabilities can be incorporated into the analysis describing the initial 
starting states. For this analysis, the distribution of initial starting conditions is represented as the 
probability of state membership pk described in Equation (9). Given that pk is used in the transition 
probability calculation shown in Equation (12) as the initial state distribution, the notation for this 
value is changed to a convention commonly used in the domain of Markov chain analysis. 

Therefore, the initial probability that the system is in the state k is written as pðkÞ0 . Combining the 
probability of state membership from Equation (9) with the n-step transition matrix from Equation 
(11) results in the equation 

pðkÞ0 �n (12) 

which provides a probabilistic estimate of the state in which the system is in n-periods given the 
probability distribution of current state membership.

A more complex model of the system can be created using a second-order Markov chain such 
that the probability pij of being in a state j at time t + 1 depends on the states it and it� 1 in which it 
had been in at t and t � 1, respectively, such that 

p0 it it� 1 j ¼ PðXðtþ 1Þ ¼ jjXð0Þ ¼ i0; . . . ; Xðt � 1Þ ¼ it � 1; XðtÞ ¼ iÞ
¼ PðXðtþ 1Þ ¼ jjXðtÞ ¼ iÞ (13) 

The choice to use a second-order Markov chain to model the system enables more information to 
be captured; however, the information captured may not offer additional insights if the first-order 
model is memoryless, and the state at a time t � 1 does not affect the transitions. Another concern 
is that by introducing another dimension, the state at time t-1 increases the number of pairwise 
transition probabilities. In a N-state system, the number of transition probabilities increases by 
a factor N going from N2 probabilities in a first-order model to N3 in a second-order model. 
Depending on the amount of data available from which to derive the transition matrix, many 
transition probability matrices may be sparsely populated. Considerations should be given to the 
underlying data prior to using a higher-order model and should only be applied to system models 
with a small number of states N in order to avoid this problem.

3.3. Local optimization
The primary motivation for the development of the state definition methodology described in this 
research is that it could support the decision-making when selecting assets to incorporate into an 
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investment portfolio. More specifically, an investment framework is needed that indicates the 
asset allocation of a portfolio dependent on the market state.

This research incorporates the seminal work of Markowitz in several ways. First, in terms of the 
feature selection, using attributes utilized by Markowitz in research that became known as Modern 
Portfolio Theory (MPT) to quantify aspects of portfolio risk and return and cluster observations into 
market states. Second, the principle Markowitz used to define investment frontiers are employed to 
make the asset allocation decisions have given membership in each state. The mean-variance 
optimization (MVO) approach serves as the basis for making these asset allocation selections in 
what is referred to as the local optimization approach. This approach is referred to as local because 
the asset allocation decisions for each state are made considering only the characteristics of 
observations belonging to the particular state. Considerations for the probability of state membership 
and state transitional dynamics are made after the determining the optimal portfolio for each state.

One of the key concepts presented by Markowitz was the efficient frontier, which presents 
a Pareto optimal frontier of the optimal expected investment portfolios. The frontier is created 
using an optimization approach that determines the combination of assets delivering the highest 
level of expected return for various levels of expected risk assumed. Conversely, the frontier could 
be constructed by minimizing the level of risk assumed for every level of expected risk current. This 
research utilizes this method of portfolio design; however, the universe of observations on which 
the frontier is created has been limited to only members of each state. This approach creates 
state-specific frontiers characterized by unique asset allocations and risk-return characteristics.

The state-specific frontier provides multiple “optimal” portfolios from which investors may select. 
However, each point on the frontier represents the greatest level of expected return per level of risk 
that an investor can expect to receive. Any rational investor would select a point falling on the 
frontier. However, the making the decision between points falling on the frontier is a problem for the 
rational investor. Therefore, a method is needed to select between points on the frontier. This 
research considers the optimal portfolio on the investment frontier to be the point with the greatest 
Sharpe Ratio. This ratio is a measure of excess returns achieved per unit of risk assumed.

This point also corresponds to a point known as the Tangency Portfolio, which refers to the point at 
which a tangent line is formed between the risk-free rate of return and the frontier as shown in Figure 1.

For each of the kn states created in the schema, a one-by-wn vector of weights is created 
indicating the “optimal” allocation to each of the wn assets in the investment universe when an 
investment has transitioned into a state k. The allocations specific to each state are combined into 

Figure 1. Tangency portfolio 
point, P, determined by tangent 
line from risk-free asset, rf , and 
efficient frontier. Source: CFA 
Institute.
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a kn-by-wn matrix, w�local, which summarizes the state-specific asset allocations. The Portfolio 
Design Section details a strategy for creating a portfolio using this weight matrix.

3.4. Portfolio design

3.4.1. Creating a Portfolio through local optimization
The two key questions when approaching asset allocation from a state-based perspective are: 1) In 
which state is the system? and 2) How should a portfolio be allocated when in each state? Answers 
to both of these pivotal questions have been provided above and are combined to create a solution 
to the overall asset allocation question.

Using the test data set, distribution of state membership probabilities can be calculated for any 
observation based on its relative distance to the center of each market state, i.e., the centroid, which 
can be combined with the n–step transition probability matrix �n as shown in Equation (12) to make 
a probabilistic estimation of the states in a which the system will find itself n periods in the future. The 
estimation takes into account the current probabilities of being in each state and the transitional 
dynamics of the system. Values for n, the number of transition steps into the future, can take any 
value from the range 0, inf . A step size of 0 considers only the probability of being in the current state 
and dismisses any state transition dynamics. An infinite step size would reach a steady-state 
distribution, assuming the transition matrix is not periodic in nature, making the initial probabilities 
obsolete because the probabilities of being in any state would be the same regardless of the starting 
state. Regardless of the value selected as the step size parameter, the resulting output from the 
calculation is a vector of probability indicating membership in a state at some point of interest.

Equation (14) describes how the probability vector pðkÞ0 and n-step transition probability matrix �n is 
combined with the state-specific asset allocation matrix w�local based on local optimization to calcu-
late the portfolio allocation weights. The weight vector calculated represents a weighted-average of 
each state-specific portfolio included in the allocation matrix w�local in which each allocation scheme is 
weighed by the dynamic probability of being in a given state at each point in time. 

W�local ¼ pðkÞ0 �nw�local (14) 

The returns achieved by managing the portfolio in this manner are shown using Equation (15). The 
calculation combines the portfolio weights from Equation (14) with the matrix of returns R for all assets 
in the investment universe. The result rlocal is a vector of portfolio returns for each period of observation. 

rlocal ¼ pðkÞ0 �nW�
localR (15) 

where R is the return of each asset in the investment universe during each period.

3.4.2. Global optimization
A second optimization approach to derive the optimal set of state-specific asset allocation weights 
takes into consideration the probability of state membership, transitional dynamics, expected 
return, and expected risk in the optimization equation. Since this approach considers all states, 
and the transitions between them when assigning the optimal allocations, it is referred to as the 
global optimization approach, and the optimization output is, like the local optimization, a kn-by 
-wn matrix designated as w�global.

The objective function for the global optimization is the Sharpe Ratio calculated in terms of 
annualized values, which the optimization algorithm seeks to maximize using the training data set. 
The practice of using the Sharpe Ratio as a metric of interest in both optimizations is consistent 
and reinforces the premium placed on a risk-adjusted investment portfolio; however, the 
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optimization for the local approach occurs at the state and frontier level while the optimization for 
the global occurs at the portfolio level.

This approach can be adapted for use on data series with various levels of granularity, e.g., daily, 
weekly, or monthly prices.3 Accounting for varying types of data granularity is made by adjusting 
the number of periods per year when making the conversion to annual values. As previously 
discussed, the Sharpe Ratio is the ratio of excess-expected returns per unit of risk. More specifi-
cally, it is the expected return less the risk-free rate of return divided by the standard deviation. 
The formulas used to convert returns and standard deviation require two inputs—r, the returns for 
each period, and nper, the number of periods occurring annually for the level of data granularity.

The return vector r is derived by weighing the state-specific asset allocation by the probability of 
being in each state and then multiplying the period return vector by the asset allocation weight 
vector as shown in Equation (16). 

rglob ¼ pðkÞ0 �nW�globalR (16) 

where R is the return of each asset in the investment universe during each period.

The formula to derive the annual return for a series of periodic returns is: 

Rann ¼ ð1þ �rÞnper � 1 (17) 

where �r is the sample average of portfolio returns.

The formula for converting standard deviation is more computationally involved than that of 
that ones for returns as shown below. 

Sann ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2 þ ð1þ �rÞ2Þ
nper
� ð1þ �rÞð2�nperÞ

q

(18) 

where s is the sample standard deviation.

It is a common practice in the investment industry to convert to annual standard deviation using 
the linear transformation Sann ¼

ffiffiffiffiffiffiffiffinper
p

� s; however, this methodology does not properly account for 
the nature of cumulative returns in an investment product, which expand and contract in accordance 
with a geometric series. The linear transformation introduces a bias into the annualized figure.

The combination of the two conversion equations plus the risk-free rate of return value results in 
the objective function for the annual Sharpe Ratio such that 

SRann ¼
ðRann � rf Þ

Sann

¼
ðð1þ�rÞnper � 1Þ� rfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2þð1þ�rÞ2Þ
nper
� ð1þ�rÞð2�nper Þ

p
(19) 

3.4.3. Portfolio adjustments—Market risk level
The objective function used in an optimization-based portfolio design strategy is of critical impor-
tance. It clearly defines what is the goal of designing a portfolio and drives the asset allocation 
process in pursuit to that end. For this research, the risk-adjusted performance is of paramount 
importance. Specifically, the goal is to optimize the Sharpe Ratio. This is accomplished in two 
ways: 1) finding the tangent line to each of the efficient frontiers in the local optimization-based 
approach or by optimizing weights to maximize the Sharpe Ratio of the overall portfolio as applied 
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in the global optimization-based approach. However, the ideal results achieved through optimiza-
tion may not meet the realistic expectations and goals of an investor in practice and needs to be 
augmented by the use of a heuristic overlay.

One instance in which this can be applied in the context of this research is the observation that 
the maximization of Sharpe Ratio may result in a conservatively allocated portfolio that does not 
result in a sufficient level of returns may not be achieved because too little risk is assumed. There 
are several approaches that could be used to remedy this shortcoming. One would be to apply 
additional constraints to the optimization establishing a minimum return requirements or redefin-
ing the objective function to achieve another risk-adjusted measure of return. Yet another 
approach, which is presented in this research, is to apply a leverage to the portfolio. Leveraged 
is applied such that the standard deviation of per period portfolio returns, i.e., daily or weekly, is 
equal to the standard deviation of the market returns during the training period. The leverage 
factor, l, that achieves this level of portfolio risk is the ratio of market risk to initial portfolio risk 
such that 

l ¼
σmkt

σport
(20) 

The leverage factor l is multiplied by the return vector r4 to create the leveraged portfolio 
returns rlev 

rlev ¼ l � r (21) 

In situations where the σmkt is greater than σport, portfolio exposure to the market needs to be 
reduced by proportionally reducing allocations in all positions. In practice, this would be accom-
plished by selling a portion of the assets and investing the proceeds in cash.

3.5. Selecting the number of clusters,k
The selection of the number of states k to include in the model is an important decision. This 
choice is a classic one in statistical modeling in which the level of model detail and complexity 
must be balanced against the level of performance improvement gain through the addition of 
model complexity. As the level of model complexity and detail increases so does the possibility of 
overfitting the model and creating a model that is specific to the training set on which it was built 
and not transferable. The goal is to create a state model that is robust and applicable to a wide 
range of financial market environments. However, a sufficient number of states must be included 
in the model to identify the subpopulations within the greater overall population in order to 
identify the unique behaviors of the subgroups and capitalize upon them by making more informed 
asset allocation decisions.

A model with fewer states offers more transparency into and understanding of the nature of the 
state, the meaning of being in a given state, and the rational for asset allocation decisions when 
a financial market is in a given state. As the level of granularity increases with the number of 
states, it becomes more difficult to understand what it means to be in a given state. For this reason 
the selection process of choosing k must balance the primary metric employed in this research, 
risk-adjusted performance as measured by the Sharp Ratio, with other metrics of portfolio perfor-
mance, such as overall portfolio returns. Both of these metrics must be weighed against the level 
of complexity and detail in the model, i.e., the value of k, in addition to model robustness, which 
can be seen in how the model performs when applied to the holdout data.

A more detailed discussion of the selection process of the case presented in the Results section 
with specific samples used to examine the trade-offs between risk-adjusted performance, actual 
performance, and the level of model complexity.
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4. Results

4.1. A case study
The following section includes an evaluation of the methodology presented. The state-based 
modeling approach is compared against the market5 as well as a one-state model representing 
a Modern Portfolio Theory Markowitz portfolio. The period on which to train the model should 
include both global market advances and declines so as to capture a wide range of market 
nuisances, price movements, and market interdependencies. The model was trained, and thereby 
states were determined and characteristics were calculated (state transition dynamics and state- 
specific portfolio allocations), using weekly total return data from 31 December2004 to 
31 December 2014 for the “macro” set of ETFs representing international and domestic equity 
and fixed income markets. The models are evaluated on a holdout sample of data from 
31 December2014 to 28 February2019.

Sharpe Ratios result during the holdout period for each model are plotted and compared for 
both the local and global asset allocation approaches. All of the state-based portfolios showed 
ratios greater than that of the market, and several exhibited superior performance to Markowitz’s 
portfolio. More specifically, the two-state portfolios yielded the highest Sharpe Ratios for both local 
and global optimizations followed by the four-state variant. See Figure 2. The global optimization 
method out-performed the local method in all versions except the eight-state model in which the 
rations were comparable.

Table 1: Portfolio allocations in a 2 and 4 state examples for Local and Global optimization 
approaches.

By looking at the asset allocation in the two-state model, State 0 is a bullish period associated 
with advancing market prices. This can be seen in the local variant with allocations to international 
equity markets (EFA, EEM) and to domestic technology (IXIC, a.k.a NASDAQ Composite) in addition 
to the aggregate bond index (AGG).

Similarly, the portfolio derived through global optimization is bullish but takes equity exposure 
through technology (IXIC) instead of emerging market equities as the local portfolio does. 

Figure 2. Performance of port-
folios created using models 
with states k = 1 (Markowitz) to 
k = 9.
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Conversely, State 0 is exclusively allocated to the bond fund, which is the most conservative and 
least-volatile asset in the universe of potential investment options making it the best option in 
periods of broad-based market declines. The global allocation identified State 0 as a bearish state 
associated with market declines and invested exclusively in bonds as well. The deductions about 
the nature of the states made by examining the asset allocations of the model portfolios are 
supported by description graphs shown in Figure 3. The figure shows that the market baseline (S&P 
500) exhibited positive growth during periods in State 0 as compared to periods in State 1 when it 
experienced negative returns. This supports the allocation results from Table 1.

The four-state model also offered superior Sharpe Ratio performance to both market and the 
single-state Markowitz portfolio. The Local optimization variant allocated exclusively to bonds 
(AGG) for States 1 and 3 while making allocations to equities when in States 0 and 2 as shown 
in Table 1. This decision is consistent with the information in Figure 4, which shows that the S&P 

Table 1. Summarizes the asset allocation decisions made for the two and four-state portfolios. 
Results for both the Local and Global optimization approaches are included

Two State Four State
Local Global Local Global

Asset 0 1 0 1 0 1 2 3 0 1 2 3

EFA 0.07 0.03 0.03

EEM 0.02 0.08 0.01

AGG 0.68 1.00 0.76 1.00 0.74 1.00 0.64 1.00 0.49 1.00 1.00 1.00

RUT

IXIC 0.22 0.24 0.12 0.32 0.51

GSPC 0.04

Total 
Allo 
cation

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Figure 3. Generalized perfor-
mance of States 0 and 1 from 
two-state model. Assumption 
of normality solely for purposes 
of illustration based on mean 
and standard deviation.
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500 experienced negative performance in the States 1 and 3. States 0 and 2 exhibited positive 
baseline performance supporting the case for assuming risk during such periods.

The Global optimization results were also allocated solely to AGG when in States 1 and 3; 
however, it also allocated to bonds in State 2 differing from the allocation guidance from the 
Local optimization method. Examining Figure 4 it can be seen that while State 2 has a comparable 
positive-expected return it also has a larger standard deviation in return thereby increasing the 
uncertainty in outcomes. This uncertainty in expected returns for assets in this state impacted the 
asset allocation under the Global methodology. Since the two optimization methodologies employ 
different objective functions, different allocation solutions are determined as optimal, which can 
be illustrated by the allocation to the conservative bond asset in State 2.

Figures 5 and Figures 6 illustrate the portfolio performance figures summarized in Figure 4. 
Portfolios generated by the two and four-state models have similar performance characteristics. 
Given that the objective of the optimization was to minimize the Sharpe Ratio, the resulting portfolios 
placed a premium on low-volatility allocation. Low-volatility performance came at the expense of 
higher returns. The tradeoff between risk and returns is illustrated in Figure 4. All of the state-based 
portfolios have higher Sharpe Ratios than the market but have lower annualized returns. In order to 
address the issue of underperformance relative to the market, the level of portfolio risk is increased 
through leverage using Equation (20). When this leverage factor is applied to portfolio performance, 
all state-based portfolios produce returns greater than the market while maintaining market-level 
risk. Additionally, both of the multi-state portfolios produced higher returns than the single-state 
Markowitz portfolio while also achieving a better risk-return profile with higher Sharpe Ratios. Table 2 
summarizes the performance of each model variation.

4.2. French-Fama considerations
The performance of the state-based portfolios was investigated further using the principles from 
the seminal factor6 investing research conducted by French and Fama (1992). The French-Fama 
model is designed to describe portfolio returns using three factors: (1) market risk, (2) outperfor-
mance of small companies compared to big ones (SMB), and (3) outperformance of high book 
value companies relative to low book value companies. 

Figure 4. Generalized perfor-
mance of States 0 and 1 from 
four-state model. Assumption 
of normality solely for purposes 
of illustration based on mean 
and standard deviation.
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rport ¼ Rf þ β �Mktþ βs � SMBþ βv � HMLþ α (22) 

Analyzing portfolio returns using Equation (22) identifies that the two factors – market returns and 
HML (high value versus low)—were significant factors as indicated in Table 3. Market performance 
and the discrepancy in the performance of high and low-value companies were the most influential 
factors in the performance of the two-state local model portfolio. Company size as captured by the 
SMB feature did not influence returns as much as the other two factors as indicated by the p-value of 
0.430 and was not considered statistically significant. The French-Fama model had an F-statistic of 
56.01 and R2 value of 0.45, which only explained 45% of the variability in returns. By comparison, 

Figure 5. Performance- 
leveraged and non-leveraged 
portfolio of Local, two-state 
model.

Figure 6. Performance- 
leveraged and non-leveraged 
portfolio of Local, four-state 
model.
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French and Fama published that the three-factor model explained more than 90% of the returns for 
a well-diversified portfolio (Fama & French, 1992). The discrepancies between model R2 values 
indicate that the state model is considering factors not captured by the French-Fama factors.

5. Conclusions & future work
This article presents a new approach for designing investment portfolios using a discrete state- 
based framework for classifying periods of time in the financial markets. State membership 
decisions are made using unsupervised machine learning algorithms, which make assignments 
based on a two-dimensional feature set consisting of expected growth and covariance values. 
States are created by grouping observations with similar features.

The article goes on to introduce two new approaches for designing portfolios through optimiza-
tion using the underlying analytical framework of transitional dynamics of discrete states. After 
defining states and designing state-specific portfolios using data from a training period, the 
models were applied to a separate holdout dataset for testing. The results showed that the multi- 
state portfolios created using this method produced higher Sharpe Ratios than both market and 
single-state Markowitz portfolios. It also demonstrated that applying leverage to the portfolios 
resulted in returns superior to the market and Markowitz while only assuming only market-level 
risk.

The portfolio performance observed as part of this research demonstrated the promise of this 
innovative new approach to portfolio design and the need for future research in this domain. 
Traditional investment management strives to outperform the S&P 500 and the critically 
acclaimed work of Markowitz established the first systemic approach to portfolio design. This 

Table 3. Summary of Linear Model to Predicting Portfolio Results using French-Fama Factors
Feature Coefficient Std. Error p-value
Intercept 0.0002103 0.0002661 0.430

Mkt 0.0015103 0.0001455 2e-16

SMB −0.0003004 0.0002382 0.209

HML −0.0015440 0.0002175 2.11e-11

Table 2. Summary of portfolio performance attributes during the holdout period
Sharpe Annualized Ann. Lev.

Portfolio Ratio Return Leverage Return

Market 0.593 0.085 — —

Markowitz 
(k = 1)

Global 0.913 0.029 4.473 0.136

Local 0.883 0.029 4.265 0.126

Two-States 
(k = 2)

Global 1.042 0.034 4.383 0.155

Local 0.968 0.035 3.963 0.141

Four-States 
(k = 4)

Global 1.002 0.034 4.394 0.151

Local 0.946 0.035 3.960 0.139
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research demonstrated that a state-based approach can produce portfolios that are capable of 
outperforming market and Markowitz portfolios on a risk-adjusted basis.

State-based techniques, such as this one, are not without shortcomings. Specifically, the 
state definitions are sensitive to the training periods on which the states are built. If the 
training period does not observe market behavior similar to that in the testing period then it 
cannot adequately respond to such conditions. For this reason, it is imperative that a robust 
training period be used in the state definition phase. This approach can be sensitive to the 
changes in asset performance relative to the markets. Further to the sensitivity to asset 
selection, consideration should be given to imposing constraints on the percentage of assets 
that can be allocated to an asset.

This research effort demonstrated the potential of applying a state-based methodology to portfolio 
design; however, a great deal of research in this space remains. Future research could build on the 
foundation of work presented in this article in several areas. First, perform an extensive study into the 
selection criteria of the number of states, k. This research has focussed on Sharpe Ratio and returns, but 
what other factors could offer value in the evaluation of portfolio performance. Further consideration 
should be made into the tradeoff between portfolio efficacy measures. Second, conduct a study into an 
expanded feature set. Inspiration was taken from the underlying parameters of MPT in this research – 
expected growth and covariance—and used to define states. Potential features for examination include 
technical market indicators, such as moving averages, relative strength index (RSI), and sentiment; 
economic indicators, such as OECD leading indicators; and interest rate information, such as yield curves. 
Lastly, research other methods for creating portfolios for each state. This research applied optimization in 
an effort to maximize the Sharpe Ratio of a portfolio. Additional research should examine whether the 
portfolios would benefit from using other objective functions to determine asset allocations.
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Notes
1. The adjusted closing price, denoted in Yahoo! 

Finance as “Adjusted Close” accounts for splits and 
dividends. Data is adjusted using dividend and split 
multipliers to reflect the total return of security, 
adhering to standards set by Center for Research in 
Security Prices (CRSP).

2. The macro signal set includes the following assets: US 
equity indices (S&P 500, NASDAQ, Russell 2000), US 
bond index (AGG—iShares Aggregate Bond), and 
international ETFs (EEM—iShares MSCI Emerging 
Markets, EFA—iShares MSCI EAFE).

3. The number of periods per level of data granularity 
is as follows. Note that the number of daily 
periods is an estimate of the number of 
annual trading days. Daily: 252, Weekly: 52, 
Monthly: 12.

4. The portfolio return variable r is a generic representa-
tion denoting either rlocal from Equation (15) or rglobal 

from Equation (16)
5. The “market”, as referenced in this article, is repre-

sented by the S&P 500 Total Return index.
6. Source for factor data used in comparison is Eugene 

French Data Library(Kenneth r. french data library, 2019)
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