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GENERAL & APPLIED ECONOMICS | RESEARCH ARTICLE

Robust tests for ARCH in the presence of a 
misspecified conditional mean: A comparison of 
nonparametric approaches
Daiki Maki1* and Yasushi Ota2

Abstract:  This study compares the size and power of autoregressive conditional 
heteroskedasticity (ARCH) tests that are robust to the presence of a misspecified 
conditional mean. The approaches employed are based on two nonparametric 
regressions for the conditional mean: an ARCH test with a Nadaraya-Watson kernel 
regression and an ARCH test using a polynomial approximation regression. The two 
approaches do not require the specification of a conditional mean and can adapt to 
various nonlinear models, which are unknown a priori. The results reveal that the 
ARCH tests are robust to the misspecfied conditional mean models. The simulation 
results show that the ARCH tests based on the polynomial approximation regression 
approach have better properties of the size and power than those using the 
Nadaraya-Watson kernel regression approach for various nonlinear models.
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1. Introduction
The presence of heteroskedasticity significantly impacts estimations and inferences in a time 
series analysis. Becker and Hurn (2009) and Pavlidis et al. (2010), for example, demonstrate that 
the presence of heteroskedasticity frequently leads to over-rejections of the null hypothesis when 
testing the null for the linearity of a conditional mean model against the alternative hypothesis of 
nonlinear time series models. Pavlidis et al. (2013) show that causality tests on the conditional 
mean demonstrate spurious causality relationships in the presence of multivariate heteroskedas
ticity. These facts indicate that tests for heteroskedasticity in data-generating processes (DGP) play 
an important role in time-series analyses.

The most representative model for heteroskedasticity is Engle’s (1982) autoregressive conditional 
heteroskedasticity (ARCH) model. ARCH is a simple and popular volatility model and continues to be 
widely used in the literature. When testing for heteroskedasticity, a regression model for the assumed 
conditional mean is first estimated. Next, ARCH is examined to use statistics such as the Lagrange 
multiplier (LM). If the conditional mean regression model is correctly specified, the ARCH test per
forms well. However, a misspecified conditional mean severely impedes the ARCH tests. Lumsdaine 
and Ng (1999) examine the properties of ARCH tests under a misspecified conditional mean. They 
show that the misspecification of the conditional mean over-rejects the null hypothesis for homo
skedasticity. Similarly, Balke and Kapetanios (2007) clarify the influence of the neglected nonlinearity 
of the conditional mean on ARCH tests. Their analysis evidences the over-rejection of no ARCH effects 
when the nonlinearity of the conditional mean regression model is neglected. Erroneous ARCH tests 
based on misspecified conditional mean models and the failure to obtain sufficient reliability for the 
derived results increasingly impede model constructions and statistical evaluation. To appropriately 
test for ARCH, it is necessary to avoid the misspecified model of the conditional mean. Thus, it is 
important to investigate which ARCH tests are robust to the misspecification of the conditional mean.

This study clarifies which ARCH tests that do not depend on the conditional mean model have better 
size and power. To this end, we first introduce ARCH tests using nonparametric regression approaches to 
avoid the misspecification of the conditional mean and next investigate the size and power of the 
introduced tests in various linear and nonlinear models with/without ARCH effects. The tests are 
applicable to various nonlinear conditional mean models and are robust to the misspecified conditional 
mean model. We employ two nonparametric approaches to avoid the misspecification of the conditional 
mean model. First is a regression using the Nadaraya-Watson kernel estimator, which is a representative 
nonparametric method. Nadaraya (1964) and Watson (1964) propose the method using a kernel density 
function in a regression analysis that does not depend on the model. McMillan (2001) and Exterkate et al. 
(2016) show that the Nadaraya-Watson estimator is useful under various nonlinear models. Second is 
the regression analysis using a polynomial approximation of a general unknown nonlinear model. Stone 
(1977) and Katkovnik (1979) propose the local polynomial estimator on the basis of a polynomial 
approximation. Balke and Kapetanios (2007) develop a method to approximate unknown models 
using a neural network. Péguin-Feissolle et al. (2013) introduce a causality test that is based on 
a Taylor approximation of a general nonlinear model and is applicable to various nonlinear models. 
These approaches are relevant from the viewpoint of a polynominal approximation.

In this study, we examine rejection frequencies under the null and alternative hypotheses for the 
introduced ARCH tests using Monte Carlo simulations. The simulation analyzes the influence of the 
lag length, the bandwidth selection for the Nadaraya-Watson estimator, and the approximation 
order for the polynominal approximation method on the results. The conditional mean models 
investigated in this study are linear autoregressive, threshold autoregressive, smooth transition 
autoregressive, Markov switching, and bi-linear models. These are popular nonlinear models used 
for empirical analysis and tend to cause spurious ARCH effects because as shown by Lumsdaine 
and Ng (1999), Van Dijk et al. (1999), and Balke and Kapetanios (2007), it is difficult to distinguish 
between nonlinear models with homoskedastic variance and linear models with an ARCH effect. 
The Monte Carlo simulation results evidence that ARCH tests that are based on the polynomial 
approximation regression approach have better size and power properties than those using the 

Maki & Ota, Cogent Economics & Finance (2021), 9: 1862445                                                                                                                                          
https://doi.org/10.1080/23322039.2020.1862445

Page 2 of 18



Nadaraya-Watson kernel regression approach when DGPs are various nonlinear models. Empirical 
applications to economic variables support the simulation results.

The remainder of this paper is organized as follows: Section 2 presents the influence of 
a misspecified conditional mean on the ARCH tests and proposes ARCH tests using nonparametric 
regression approaches for the conditional mean. Section 3 presents the size and power of the tests 
under nonlinear models. Section 4 illustrates empirical applications. Section 5 concludes the paper.

2. ARCH tests using nonparametric regression approaches for conditional mean
We consider the following DGP with lag order m: 

yt ¼ fðyt� 1; � � � ; yt� m; βÞ þ ut; t ¼ 1; � � � ; T (1) 

where fð�; �Þ is an unknown function and β is a parameter vector. ut is a disturbance term with 
mean zero and variance denoted by 

ut ¼ σt2t; σ2
t ¼ γ0 þ ∑

p

i¼1
γiu2

t� i; (2) 

where t are independently and identically distributed (iid) random variables with mean zero and 
variance equal to one. Although the conditional variance could have model misspecification similar to 
the conditional mean, standard heteroskedastic tests have the ability to find linear ARCH effects even if 
the true conditional variance is generalized ARCH (GARCH) with or without nonlinear parts.1 On the other 
hand, spurious ARCH effects tend to be observed when the conditional mean has model misspecifica
tions. The misspecification of the conditional mean has clear impacts on the inference of variance, as 
shown by Lumsdaine and Ng (1999) and Balke and Kapetanios (2007). Thus, we focus on investigating 
the influence that the model misspecification of the conditional mean has on ARCH effects.

The null hypothesis of homoskedasticity to test for the ARCH effect is denoted by 

H0 : γ1 ¼ � � � ¼ γp ¼ 0; (3) 

and the alternative hypothesis is 

H1 : at least one γi�0; i ¼ 1; � � � ; p: (4) 

Even if we assume a GARCH model to be heteroskedastic, the testing procedure is the same as that 
in by Lee (1991) and Gel and Chen (2012). Therefore, we focus only on the ARCH test. Engle’s 
(1982) standard ARCH test uses the auxiliary regression of squared residuals: 

û2
t ¼ γ0 þ γ1û2

t� 1 þ � � � þ γpû2
t� p þ ηt; (5) 

where ηt is an error term. The LM test statistics is given by 

LM ¼
Td̂0ŴðŴ0ŴÞ

� 1
Ŵ0d̂

d̂0d̂
; (6) 

where d̂ ¼ ðd̂1; � � � ; d̂TÞ, d̂t ¼ ðû2
t =σ̂u � 1Þ, σ̂2 ¼ ð1=TÞ∑T

t¼1û2
t , Ŵ ¼ ðŵ1; � � � ; ŵTÞ, and 

ŵt ¼ ð1; û2
t� 1; � � � ; û2

t� pÞ. The LM test statistic (6) is equivalent to TR2, where R2 is the coefficient 
for the determination of (5)2. Under the null hypothesis of no ARCH effects, the asymptotic 
distribution of (6) is χ2ðpÞ.
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When true DGP are denoted by (1), suppose that we estimate the following misspecified model: 

yt ¼ gðyt� 1; � � � ; yt� ~m; αÞ þ ut; (7) 

where gð�; �Þ is a misspecified function, ~m is the lag length, and α is a parameter vector for the 
misspecified model. Accordingly, the residual is denoted by 

ût ¼ ut þ fðyt� 1; � � � ; yt� m; βÞ � ĝðyt� 1; � � � ; yt� ~m; αÞ ¼ ut þ et; (8) 

where et ¼ fðyt� 1; � � � ; yt� m; βÞ � ĝðyt� 1; � � � ; yt� ~m; αÞ. The squared residual for ût is 

û2
t ¼ u2

t þ 2utet þ e2
t : (9) 

Equation (9) means that the ARCH test correctly performs when et � !
p

0, whereas the ARCH test is 

subject to a model misspecification and leads to unreliable results when et � !
p

0 does not hold. For 
example, when true DGP (1) are a threshold autoregressive (TAR) model and misspecified estima
tion model (7) is a linear AR model, et includes nonlinearity. As highlighted by Lumsdaine and Ng 
(1999) and Balke and Kapetanios (2007), such a misspecification results in a spurious ARCH effect. 
Therefore, a regression approach that does not depend on a specific model is necessary to avoid 
model misspecification and spurious ARCH effects.

The first approach that is robust to model misspecification is a nonparametric regression that is 
based on the Nadaraya-Watson kernel estimator. We consider the following conditional mean 
regression regression model: 

yt ¼ mðyt� 1; � � � ; yt� sÞ þ ut; t ¼ 1; � � � ; T; (10) 

where mð�Þ is the unknown regression function without any parametric form. The regression 
function for yt on Yt ¼ ðyt� 1; � � � ; yt� sÞ is 

zðyt� 1; � � � ; yt� sÞ ¼ EðytjYt ¼ yÞ: (11) 

The most representative method to estimate the function is the Nadaraya-Watson estimator. The 
estimator is denoted by 

ẑðyt� 1; � � � ; yt� sÞ ¼
∑T

t¼1KðYt� 1 � y1
h1

; � � � ;
Yt� s � ys

hs
Þyt

∑T
t¼1KðYt� 1 � y1

h1
; � � � ;

Yt� s � ys
hs
Þ

(12) 

where hs denotes the bandwidth to determine the smoothness of the kernel function. The kernel 
funcion KðyÞ satisfies the following: 

ð

KðyÞdy ¼ 1;
ð

yKðyÞdy ¼ 0;
ð

y2KðyÞdy>0: (13) 

This study uses the Gaussian kernel denoted by3: 

Kð�Þ ¼
1
ffiffiffiffiffiffi
2π
p expð�

y2

2
Þ: (14) 
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We use two bandwidth selections for hs that are derived by minimizing the integrated mean 
squared error (IMSE). First is Silverman’s (1986) plug-in method. The bandwidth obtained using 
the plug-in method is based on the following equation: 

hs ¼ c0T� 1=1þs; (15) 

where c0 is a constant that depends on the kernel function. The optimal bandwidth selection for 
the Gaussian kernel is denoted by 

hopt
s � 1:06σsT� 1=ðsþ4Þ; (16) 

where σs is the standard deviation for yt� s. The modified hopt
s that is robust to outliers is written as 

~hopt
s ¼ 1:06 minðσ̂s; Q̂s=1:34ÞT� 1=ðsþ4Þ; (17) 

where Q̂s is the estimate for the interquartile range of yt� s.4

Second is the cross-validation procedure developed by Rudemo (1982). When using the Gaussian 
kernel, we consider the following mean squared error called the cross-validation criterion: 

CVðhÞ ¼ 1
T

∑
T

i¼1
ðyi � ẑðY� iÞÞ

2
; (18) 

where h ¼ ðh1; � � � ;hsÞ and ẑðY� iÞ is a leave-one-out estimator that excludes ith observation. The 
optimal bandwidth h for the cross-validation procedure is determined by minimizing CVðhÞ. Stone 
(1984) shows that bandwidth h for the cross-validation can asymptotically select the optimal 
bandwidth from an IMSE viewpoint and has probability convergence to the bandwidth for the plug- 
in method. While bandwidth hs for the plug-in method depends on the assumed kernel density 
function, the cross-validation is not required to assume the kernel density function and can obtain 
a consistent estimator for the bandwidth that minimizes IMSE. It is possible that the residuals 
obtained using Nadaraya-Watson estimator (12) with bandwidth selection (17) or (18) have similar 
properties. Accordingly, the above-mentioned nonparametric regression approach is robust to the 
model misspecification of the conditional mean and thus, the ARCH test is correctly performed.5

The next approach adopted to avoid misspecification is a polynomial approximation of a general 
unknown nonlinear model. When we apply a kth-order Taylor approximation to true model (1), the 
regression model is denoted by 

yt ¼ β0 þ ∑
l

j¼1
βjyt� j þ ∑

l

j1¼1
∑

l

j2¼j1
βj1 j2 yt� j1 yt� j2 þ � � � þ ∑

l

j1¼1
∑

l

j2¼j1
� � � ∑

l

jk¼jk� 1

βj1 ���jk yt� j1 � � � yt� jk þ 2t; (19) 

where l is the lag length and t is an error term that includes the remainder term of the Taylor series 
approximation. We assume l � k as a simple notation. If the true model is a linear AR model, all βj1 j2 

and βj1���jk 
are zero. In contrast, if the true model is nonlinear, one βj1 j2 

or βj1���jk 
is not zero at least. We 

investigate this using a standard Wald test. For example, (19) with l ¼ 2 and k ¼ 2 can be written as 

yt ¼ β0 þ ∑
2

j¼1
βjyt� j þ ∑

2

j1¼1
∑
2

j2¼j1
βj1 j2 yt� j1 yt� j2 þ 2t: (20) 

The difference between the true model and the polynomial approximation regression model 
reduces because the polynomial regression can approximate various nonlinear models including 
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the TAR and Markov switching models. When testing for ARCH effects under an unknown (true) 
model, using residuals obtained from polynomial approximation regression (19) can be advanta
geous since it is possible that they show size and power properties similar to those of the true 
model. Therefore, the ARCH test using the residuals from the polynomial approximation regression 
does not appear to be influenced by model misspecification.

3. Size and power properties of ARCH tests using nonparametric regression models
This section examines the size and power of the ARCH tests using nonparametric regression 
models for the conditional mean presented in Section 2. We conduct Monte Carlo simulations to 
compare the rejection frequencies of the test statistics under various conditional mean models 
with and without ARCH effects. The simulations are based on 10,000 replications; a significance 
level of 5%; and sample sizes with T ¼ 100, 250, and 500.6 To avoid the effect of initial conditions, 
data with Tþ 100 are generated. We discard the initial 100 samples and use the data with sample 
size T. We compare ARCH tests (6) using the following regression models for the conditional mean: 
the AR model denoted ARðqÞ, polynomial approximation model (19) with second- and third-order 
Taylor approximation denoted as T2ðqÞ and T3ðqÞ, and nonparametric regression model (12) with 
plug-in method (17) and cross-validation method (18) denoted as NPplðqÞ and NPcvðqÞ. We set lag 
length q to q ¼ 1 or q ¼ 2.7 The AR model is used as a benchmark for comparison.

First, we consider the following AR processes to examine the influence of lag length on the tests’ 
performance. 

yt ¼ β0 þ β1yt� 1 þ β2yt� 2 þ ut; (21)  

ut ¼ σt2t; (22)  

σ2
t ¼ γ0 þ γ1u2

t� 1; (23) 

where ut,i:i:d:Nð0;1Þ. β0 is set to β0 ¼ 0. Table 1 presents the rejection frequencies for the ARCH 
tests obtained from each regression model for the conditional mean. We use the following DGP:

DGP1-1: yt ¼ 0:2yt� 1 þ ut,

DGP1-2: yt ¼ 0:7yt� 1 þ ut,

DGP1-3: yt ¼ 0:7yt� 1 � 0:2yt� 2 þ ut,

DGP1-4: yt ¼ 0:7yt� 1 � 0:5yt� 2 þ ut.

These DGP have homoskedastic errors with γ0 ¼ 1 and γ1 ¼ 0 for (23). The rejection frequencies 
presented in Table 1 indicate the empirical size of the ARCH tests on the basis of each regression model.

For DGP1-1 and DGP1-2, which have lag order one, most of the tests have a small under-rejection 
but reasonable size performance, except for NPplð2Þ and NPcvð2Þ. NPplð2Þ and NPcvð2Þ report over- 
rejections for DGP1-1 and DGP1-2. The rejection frequencies of NPplð2Þ for DGP1-1 with T ¼ 500 and of 
NPcvð2Þ for DGP1-2 with T ¼ 500 are 0.143 and 0.101. An additional lag for the nonparametric 
regression of the conditional mean using the Nadaraya-Watson estimator leads to size distortions 
in the ARCH tests. In contrast, ARð2Þ, T2ð2Þ, and T3ð2Þ do not report overrejections for DGP1-1 and 
DGP1-2. The results show that the additional lag for AR and polynomial approximation regression 
does not impact the size of the ARCH tests. However, a lower lag length clearly influences the 
empirical size of all the tests. We see that the ARCH tests based on ARð1Þ, T2ð1Þ, T3ð1Þ, NPplð1Þ, 

Maki & Ota, Cogent Economics & Finance (2021), 9: 1862445                                                                                                                                          
https://doi.org/10.1080/23322039.2020.1862445

Page 6 of 18



and NPcvð1Þ over-reject the null hypothesis of homoskedastic variance under DGP1-3 or DGP1-4, 
which have a lag order of two. For example, the rejection frequencies of ARð1Þ, T2ð1Þ, T3ð1Þ, NPplð1Þ, 
and NPcvð1Þ for DGP1-4 with T ¼ 250 are 0.127, 0.116, 0.097, 0.115, and 0.113, respectively. The size 
distortions in DGP1-4 are greater than those in DGP1-3. The influence of the lower lag length on the 
empirical size depends on the persistence parameter of DGP. Compared with the size distortions for 
the model with a lower lag length, those for the model with an additional lag length are smaller. The 
lower lag length tends to cause the size distortions because the conditional variance includes the 
influence of extra lags and leads to spurious ARCH effects. In contrast, when the conditional mean 
regression includes additional lags, they are not significant and the conditional variance does not 
include the influence of additional lag length. Accordingly, we present size and power properties for 
the models with two lags below.

We examine the empirical size of the ARCH tests under the following conditional mean gener
ated by the TAR models.

DGP2-1: yt ¼ ð0:7yt� 1 � 0:2yt� 2ÞIðyt� 1 � 0Þ þ ð0:1yt� 1 � 0:2yt� 2ÞIðyt� 1<0Þ þ ut,

DGP2-2: yt ¼ ð0:7yt� 1 � 0:2yt� 2ÞIðyt� 1 � 0Þ þ ð� 0:5yt� 1 � 0:2yt� 2ÞIðyt� 1<0Þ þ ut,

DGP2-3: yt ¼ ð0:7yt� 1 þ 0:2yt� 2ÞIðyt� 1 � 0Þ þ ð0:7yt� 1 � 0:7yt� 2ÞIðyt� 1<0Þ þ ut,

DGP2-4: yt ¼ ð0:7yt� 1 � 0:2yt� 2ÞIðΔyt� 1 � 0Þ þ ð0:1yt� 1 � 0:2yt� 2ÞIðΔyt� 1<0Þ þ ut,

DGP2-5: yt ¼ ð0:7yt� 1 � 0:2yt� 2ÞIðΔyt� 1 � 0Þ þ ð� 0:5yt� 1 � 0:2yt� 2ÞIðΔyt� 1<0Þ þ ut,

DGP2-6: yt ¼ ð0:7yt� 1 þ 0:2yt� 2ÞIðΔyt� 1 � 0Þ þ ð0:7yt� 1 � 0:7yt� 2ÞIðΔyt� 1<0Þ þ ut,

where Ið�Þ is an indicator function that takes the value of 1 if Ið�Þ is ture and 0 if Ið�Þ is not true. ut 

denotes a homoskedastic error similar to that from DGP1-1 to 1-4. While DGP2-1, 2-2, and 2-3 are 
standard TAR models whose indicator functions depend on yt� 1, DGP2-4, 2-5, and 2-6 are 

Table 1. Rejection frequencies under AR models
ARð1Þ ARð2Þ T2ð1Þ T2ð2Þ T3ð1Þ T3ð2Þ NPplð1Þ NPplð2Þ NPcvð1Þ NPcvð2Þ

DGP1-1

T ¼ 100 0.035 0.035 0.035 0.025 0.032 0.028 0.031 0.041 0.040 0.034

T ¼ 250 0.044 0.040 0.038 0.040 0.043 0.037 0.046 0.093 0.051 0.042

T ¼ 500 0.041 0.043 0.046 0.041 0.046 0.046 0.051 0.143 0.052 0.047

DGP1-2

T ¼ 100 0.036 0.032 0.035 0.029 0.029 0.034 0.034 0.026 0.030 0.031

T ¼ 250 0.039 0.040 0.038 0.038 0.041 0.043 0.037 0.025 0.039 0.066

T ¼ 500 0.042 0.045 0.041 0.039 0.042 0.044 0.041 0.029 0.044 0.101

DGP1-3

T ¼ 100 0.042 0.031 0.032 0.027 0.032 0.031 0.035 0.018 0.042 0.030

T ¼ 250 0.052 0.042 0.046 0.035 0.047 0.040 0.049 0.026 0.046 0.049

T ¼ 500 0.063 0.044 0.061 0.040 0.054 0.045 0.064 0.037 0.052 0.075

DGP1-4

T ¼ 100 0.063 0.034 0.060 0.026 0.048 0.028 0.051 0.019 0.072 0.029

T ¼ 250 0.127 0.043 0.116 0.037 0.097 0.038 0.115 0.027 0.113 0.048

T ¼ 500 0.213 0.041 0.201 0.042 0.189 0.040 0.208 0.032 0.181 0.069
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momentum threshold autoregressive (MTAR) models wherein the threshold is the difference Δyt� 1. 
These TAR models allow for asymmetric adjustments. In addtion, MTAR can capture the spiky 
properties of the process.

Figures 1 and 2 illustrate the sample path for DGP2-1 with homoskedastic errors and the ARCH 
effect γ0 ¼ 0:3 for (23). Figure 2 clearly shows the volatile behavior generated by the ARCH effect. 
However, Figure 3 illustrates that the sample path for DGP2-3 demonstrates a similar volatile 
movement even if the error is homoskedastic. As shown in Figures 2 and 3, it is generally difficult 
to distinguish between the nonlinear conditional mean model with the homoskedastic error and 
the linear AR model with ARCH effect. Such a similarlity between the TAR model with homoske
dastic errors and the linear AR model with ARCH effects may produce spurious size and power 
properties.

Table 2 tabulates the simulation results. ARð2Þ reports over-rejections for the null hypothesis of 
no ARCH effects. For DGP2-2 and DGP2-5, which have strong asymmetry, the size distortions of 
ARð2Þ are significantly large. These results indicate that the use of the AR model for the conditional 
mean leads to spurious ARCH effects when the true DGP are based on the TAR or MTAR model. In 
additon, the over-rejections increase with large sample size. Unlike the performance of ARð2Þ, the 
polynomial approximation regression models T2ð2Þ and T3ð2Þ and nonparametric regression 
models NPplð2Þ and NPcvð2Þ perform better. For example, the rejection frequencies of ARð2Þ, 
T2ð2Þ, T3ð2Þ, NPplð2Þ, and NPcvð2Þ for DGP2-2 with T ¼ 250 are 0.373, 0.040, 0.033, 0.042, and 
0.051, respectively. T3ð2Þ has a more reasonable size compared with those for T2ð2Þ, NPclð2Þ, and 
NPcvð2Þ. T2ð2Þ, NPclð2Þ, and NPcvð2Þ report size distortions in certain cases. The rejection frequencies 
of T2ð2Þ, NPclð2Þ, and NPcvð2Þ for DGP2-3 with T ¼ 500 are 0.096, 0.139, and 0.104, respectively. 
Thus, the polynomial approximation regression model T3ð2Þ is a more appropriate approach to test 
for ARCH than other approaches under the TAR or MTAR model.

Table 3 presents the rejection frequencies for each test under smooth transition autoregressive 
(STAR) models generated by the followings:

DGP3-1: yt ¼ 0:7yt� 1 � 0:2yt� 2 þ ð� 0:5yt� 1 � 0:2yt� 2Þð1 � expð� 0:1y2
t� 1ÞÞ þ ut,

Figure 1. Sample path for 
DGP1-1.
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DGP3-2: yt ¼ 0:7yt� 1 � 0:2yt� 2 þ ð� yt� 1 � 0:2yt� 2Þð1 � expð� 0:1y2
t� 1ÞÞ þ ut,

DGP3-3: yt ¼ 0:7yt� 1 � 0:2yt� 2 þ ð� yt� 1 � 0:2yt� 2Þð1 � expð� y2
t� 1ÞÞ þ ut,

DGP3-4: yt ¼ 0:7yt� 1 � 0:2yt� 2 þ ð� 0:5yt� 1 � 0:2yt� 2Þð1þ expð� 0:1yt� 1ÞÞ
� 1
þ ut,

DGP3-5: yt ¼ 0:7yt� 1 � 0:2yt� 2 þ ð� yt� 1 � 0:2yt� 2Þð1þ expð� 0:1yt� 1ÞÞ
� 1
þ ut,

DGP3-6: yt ¼ 0:7yt� 1 � 0:2yt� 2 þ ð� yt� 1 � 0:2yt� 2Þð1þ expð� yt� 1ÞÞ
� 1
þ ut,

Figure 2. Sample path for DGP1- 
1 with γ1 ¼ 0:3.

Figure 3. Sample path for 
DGP2-3.
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where ut denotes homoskedastic errors similar to those in Tables 1 and 2. STAR models have the 
time-varying properties of the conditional mean. DGP3-1, 3-2, and 3-3 impose symmetry con
straints on the time-varying properties, whereas DGP3-4, 3-5, and 3-6, which are logistic STAR 
models, allow asymmetry. DGP3-2 and 3-5 produce a smoother and more marginal change than 
DGP3-3 and 3-6. We observe that ARð2Þ, T2ð2Þ, and NPplð2Þ partially reject the null hypothesis of no 
ARCH effects. The rejection frequencies of ARð2Þ is higher than those of the other regression 
models for DGP3-2 and 3-6. T2ð2Þ shows size distortions for DGP3-2. NPplð2Þ reports a slight over- 
rejection with T ¼ 500: In contrast, the shape of the transition function does not have a clear 
impact on the empirical size of T3ð2Þ and NPcvð2Þ. T3ð2Þ and NPcvð2Þ can capture the properties of 
STAR models and allows the ARCH test to perform well.

In addition, we present the results of each test for the other nonlinear processes:

DGP4-1: yt ¼ ð0:7yt� 1 � 0:2yt� 2Þst þ ð0:3yt� 1 � 0:2yt� 2Þð1 � stÞ þ ut, p00 ¼ p11 ¼ 0:7,

DGP4-2: yt ¼ ð0:7yt� 1 � 0:2yt� 2Þst þ ð0:3yt� 1 � 0:2yt� 2Þð1 � stÞ þ ut, p00 ¼ p11 ¼ 0:98,

DGP4-3: yt ¼ ð0:7yt� 1 þ 0:2yt� 2Þst þ ð0:3yt� 1 � 0:2yt� 2Þð1 � stÞ þ ut, p00 ¼ p11 ¼ 0:98,

DGP4-4: yt ¼ 0:1yt� 1ut� 1 þ 0:1yt� 2ut� 2 þ ut,

DGP4-5: yt ¼ 0:3yt� 1ut� 1 þ 0:1yt� 2ut� 2 þ ut,

Table 2. Rejection frequencies under TAR models
ARð2Þ T2ð2Þ T3ð2Þ NPplð2Þ NPcvð2Þ

DGP2-1

T ¼ 100 0.049 0.029 0.029 0.028 0.030

T ¼ 250 0.080 0.036 0.040 0.051 0.041

T ¼ 500 0.116 0.046 0.041 0.081 0.071

DGP2-2

T ¼ 100 0.150 0.029 0.025 0.021 0.033

T ¼ 250 0.373 0.040 0.033 0.042 0.051

T ¼ 500 0.658 0.055 0.040 0.069 0.073

DGP2-3

T ¼ 100 0.083 0.038 0.026 0.104 0.026

T ¼ 250 0.144 0.064 0.040 0.132 0.065

T ¼ 500 0.224 0.096 0.058 0.139 0.104

DGP2-4

T ¼ 100 0.063 0.027 0.027 0.034 0.030

T ¼ 250 0.117 0.040 0.038 0.086 0.046

T ¼ 500 0.188 0.045 0.041 0.135 0.073

DGP2-5

T ¼ 100 0.359 0.039 0.026 0.027 0.053

T ¼ 250 0.748 0.083 0.051 0.059 0.076

T ¼ 500 0.962 0.150 0.090 0.094 0.144

DGP2-6

T ¼ 100 0.081 0.036 0.028 0.030 0.040

T ¼ 250 0.176 0.050 0.044 0.037 0.075

T ¼ 500 0.277 0.069 0.052 0.044 0.142
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DGP4-6: yt ¼ 0:1yt� 1ut� 1 � 0:1yt� 2ut� 2 þ ut,

where ut,i:i:d:Nð0;1Þ and st is a random variable that takes the value of 0 or 1. DGP4-1, 4-2, and 
4-3 are Markov switching processes and st determines the behavior. Whether st takes the value of 
0 or 1 depends on the transition probabilities p11 and p00. p11 ¼ Pðstþ1 ¼ 1jst ¼ 1Þ denotes the 
change probability from state st ¼ 1 to state stþ1 ¼ 1. Similarly, the transition probabilities are 
denoted by p00 ¼ Pðstþ1 ¼ 0jst ¼ 0Þ, p10 ¼ 1 � p00 ¼ Pðstþ1 ¼ 1jst ¼ 0Þ, and 
p01 ¼ 1 � p11 ¼ Pðstþ1 ¼ 0jst ¼ 1Þ, respectively. They are set to p11 ¼ p00 ¼ 0:7 for DGP4-1 and 
p11 ¼ p00 ¼ 0:98 for DGP4-2 and 4-3. While DGP4-1 has frequent switches in the AR parameters, 
DGP4-2 and 4-3 show persistent switches. DGP4-4, 4-5, and 4-6 are bilinear models that are used 
to model rare, volatile, or outburst processes.

ARð2Þ that neglects nonlinearity causes the spurious ARCH effect, which is similar to the results in 
Tables 2 and 3. The results for the nonparametric regression models using the Nadaraya-Watson 
estimator depend on the bandwidth selection. NPplð2Þ under-rejects the null hypothesis for DGP4-1, 
DGP4-2, and DGP4-5 and over-rejects that for DGP4-3, 4-4, and 4-6. NPcvð2Þ performs well for DGP4-2, 
DGP4-4, and DGP4-6 and over-rejects the null hypothesis for DGP4-1, 4-3, and 4-5. T2ð2Þ has relatively 
reasonable emirical sizes for T ¼ 100 and 200, but reports size distortions for DGP4-1, 4-2, 4-3, 4-5, 
and 4-6 with T ¼ 500. Here as well, we find that T3ð2Þ generally performs better.

The simulation results from Tables 1–4 evidence that the model misspecification of the condi
tional mean causes size distortions for the null hypothesis of no ARCH effects. The ARCH tests using 

Table 3. Rejection frequencies under STAR models
ARð2Þ T2ð2Þ T3ð2Þ NPplð2Þ NPcvð2Þ

DGP3-1

T ¼ 100 0.053 0.032 0.033 0.023 0.027

T ¼ 250 0.068 0.045 0.038 0.053 0.043

T ¼ 500 0.094 0.068 0.043 0.088 0.063

DGP3-2

T ¼ 100 0.088 0.043 0.029 0.028 0.028

T ¼ 250 0.184 0.107 0.038 0.061 0.042

T ¼ 500 0.303 0.238 0.044 0.088 0.054

DGP3-3

T ¼ 100 0.042 0.024 0.026 0.027 0.031

T ¼ 250 0.048 0.038 0.030 0.054 0.047

T ¼ 500 0.057 0.046 0.042 0.085 0.069

DGP3-4

T ¼ 100 0.035 0.030 0.031 0.027 0.031

T ¼ 250 0.044 0.034 0.040 0.055 0.043

T ¼ 500 0.045 0.040 0.043 0.082 0.049

DGP3-5

T ¼ 100 0.032 0.029 0.025 0.034 0.028

T ¼ 250 0.042 0.039 0.040 0.067 0.043

T ¼ 500 0.053 0.041 0.042 0.111 0.047

DGP3-6

T ¼ 100 0.109 0.029 0.029 0.028 0.032

T ¼ 250 0.273 0.042 0.037 0.049 0.042

T ¼ 500 0.483 0.048 0.042 0.073 0.055
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the AR regression model are sensitive to the presence of the nonlinear conditional mean and show 
high over-rejections. This can be attributed by neglected nonlinearity and difficulties in distinguish
ing between the nonlinearity of the conditional mean and the ARCH effects. While the nonpara
metric regression models using the Nadaraya-Watson estimator partially perform well, the 
rejection frequencies strongly depend on DGP and the bandwidth selection. By contrast, the size 
properties of T3ð2Þ outperform those of other models and are close to the nominal size at 5%. 
Therefore, T3ð2Þ can approximate the (unknown) linear and nonlinear conditional mean models 
well and produce reliable ARCH tests.

Tables 5 and 6 report the nominal power and size-corrected power properties for the ARCH tests. 
We use DGP1-3, DGP2-1, 2-4, 3-1, 3-4, 4-1, and 4-4 for power comparison. Each DGP has an ARCH 
effect denoted by 

ut ¼ σt2t; (24)  

σ2
t ¼ γ0 þ γ1u2

t� 1; (25)  

where γ0 and γ1 are set to γ0 ¼ 1 and γ1 ¼ ð0:1;0:3Þ. The powers of ARð2Þ are clearly higher than those of 
other models in Table 5. We have a relatively reasonable evaluation of the power for DGP1-3 because the 

Table 4. Rejection frequencies under MS and bilinear models
ARð2Þ T2ð2Þ T3ð2Þ NPplð2Þ NPcvð2Þ

DGP4-1

T ¼ 100 0.051 0.034 0.029 0.021 0.049

T ¼ 250 0.092 0.064 0.040 0.025 0.065

T ¼ 500 0.137 0.101 0.068 0.029 0.077

DGP4-2

T ¼ 100 0.047 0.029 0.026 0.023 0.040

T ¼ 250 0.076 0.053 0.037 0.026 0.051

T ¼ 500 0.108 0.084 0.055 0.034 0.057

DGP4-3

T ¼ 100 0.048 0.035 0.031 0.112 0.051

T ¼ 250 0.084 0.054 0.044 0.156 0.073

T ¼ 500 0.116 0.087 0.057 0.141 0.100

DGP4-4

T ¼ 100 0.066 0.026 0.028 0.034 0.049

T ¼ 250 0.112 0.036 0.038 0.076 0.051

T ¼ 500 0.170 0.043 0.044 0.129 0.052

DGP4-5

T ¼ 100 0.456 0.035 0.032 0.027 0.107

T ¼ 250 0.851 0.071 0.040 0.033 0.110

T ¼ 500 0.987 0.100 0.046 0.036 0.133

DGP4-6

T ¼ 100 0.053 0.029 0.030 0.037 0.040

T ¼ 250 0.090 0.040 0.039 0.078 0.051

T ¼ 500 0.134 0.040 0.046 0.133 0.056
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size properties of ARð2Þ and other tests are close to the nominal level 0.05 (Table 1). However, we cannot 
correctly evaluate the high nominal powers of ARð2Þ for other DGP. The higher powers of ARð2Þ are 
influenced by size distortions presented in tables from 2 to 4. The power properties of the nonparametric 
models are more appropriately interpreted because T2ð2Þ and T3ð3Þ do not overreject the null hypoth
esis for DGP in Table 5 and the size distortions of NPplð2Þ and NPcvð2Þ are smaller than those of ARð2Þ. In 
comparison, we observe that the polynomial approximation models T2ð2Þ and T3ð2Þ perform better 
than NPplð2Þ and NPcvð2Þ. Note that the powers of NPpl(2) are quite small when the ARCH effect is 
γ1 ¼ 0:1. For γ1 ¼ 0:3, the nonparametric regression models report sufficient power to identify the ARCH 
effects.

We compare the power properties among the models without the influences of size distortions. 
Table 6 demonstrates the size-corrected power. The powers of ARð2Þ in Table 6 are lower than 
those in Table 5 because the size distortions are corrected. ARð2Þ still performs well even if the size 
is corrected. The ability to detect ARCH effects in the nonlinear models for T2ð2Þ is high, similar to 
that of ARð2Þ. While the powers of T3ð2Þ is slightly smaller than those of T2ð2Þ because T3ð2Þ has 
additional regression parameters for the conditional mean, it has sufficient power to find the ARCH 

Table 5. Nominal power properties for ARCH tests
γ1 ¼ 0:1 γ1 ¼ 0:3

ARð2Þ T2ð2Þ T3ð2Þ NPplð2Þ NPcvð2Þ ARð2Þ T2ð2Þ T3ð2Þ NPplð2Þ NPcvð2Þ

DGP1-3

T ¼ 100 0.119 0.070 0.032 0.043 0.055 0.440 0.294 0.138 0.218 0.205

T ¼ 250 0.267 0.197 0.122 0.082 0.089 0.848 0.777 0.646 0.589 0.493

T ¼ 500 0.486 0.413 0.309 0.182 0.164 0.990 0.982 0.959 0.913 0.845

DGP2-1

T ¼ 100 0.146 0.065 0.032 0.027 0.065 0.444 0.290 0.143 0.159 0.243

T ¼ 250 0.364 0.213 0.119 0.046 0.102 0.868 0.787 0.673 0.484 0.552

T ¼ 500 0.624 0.429 0.325 0.108 0.192 0.991 0.980 0.963 0.877 0.879

DGP2-4

T ¼ 100 0.164 0.068 0.038 0.018 0.072 0.446 0.284 0.147 0.122 0.239

T ¼ 250 0.400 0.218 0.127 0.029 0.099 0.853 0.774 0.642 0.408 0.516

T ¼ 500 0.677 0.446 0.337 0.065 0.158 0.989 0.980 0.958 0.792 0.844

DGP3-1

T ¼ 100 0.164 0.081 0.029 0.027 0.057 0.474 0.315 0.150 0.142 0.245

T ¼ 250 0.363 0.275 0.119 0.047 0.111 0.879 0.817 0.647 0.477 0.609

T ¼ 500 0.617 0.540 0.320 0.105 0.224 0.992 0.986 0.964 0.858 0.917

DGP3-4

T ¼ 100 0.115 0.062 0.033 0.024 0.072 0.440 0.287 0.143 0.159 0.282

T ¼ 250 0.275 0.203 0.116 0.051 0.141 0.850 0.777 0.655 0.486 0.647

T ¼ 500 0.490 0.418 0.325 0.109 0.258 0.988 0.982 0.964 0.859 0.933

DGP4-1

T ¼ 100 0.154 0.083 0.038 0.034 0.113 0.456 0.297 0.143 0.178 0.323

T ¼ 250 0.379 0.294 0.180 0.086 0.235 0.863 0.797 0.662 0.532 0.696

T ¼ 500 0.654 0.586 0.466 0.213 0.431 0.990 0.985 0.973 0.891 0.948

DGP4-4

T ¼ 100 0.189 0.067 0.030 0.023 0.117 0.481 0.283 0.135 0.140 0.369

T ¼ 250 0.425 0.201 0.111 0.036 0.215 0.884 0.781 0.639 0.430 0.715

T ¼ 500 0.693 0.419 0.310 0.067 0.354 0.991 0.983 0.964 0.828 0.950
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effect. The rejection frequencies of NPplð2Þ and NPcvð2Þ for γ1 ¼ 0:1 are inferior to those of other 
models in Table 6. While they relatively perform well for γ1 ¼ 0:3 with T ¼ 100, other models have 
better power properties, particularly for T ¼ 250 and 500.

The comparison of the ARCH tests using each regression model for the conditional mean indicates 
that the presence of the nonlinear conditional mean has influences of size and power properties on the 
ARCH tests. The AR regression models have higher over-rejection of the null hypothesis of no ARCH 
effects for the nonlinear conditional mean models. The ARCH tests based on AR models for the nonlinear 
conditional mean are not effective from the viewpoints of size and power. This is because size-corrected 
tests are needed and the true model is generally unknown a priori. The nonparametric regression 
models using the Nadaraya-Watson estimator tend to have slight size distortions and low power. The 
polynomial approximation model T2ð2Þ shows slight over-rejection depending on the nonlinear condi
tional mean and sample size, although it has better power properties for the ARCH effect with the 
nonlinear conditional mean. T3ð2Þ has a reasonable size and power properties and yields reliable results 
for the ARCH tests irrespective of the conditional mean models.

Table 6. Size-corrected power properties for ARCH tests
γ1 ¼ 0:1 γ1 ¼ 0:3

ARð2Þ T2ð2Þ T3ð2Þ NPplð2Þ NPcvð2Þ ARð2Þ T2ð2Þ T3ð2Þ NPplð2Þ NPcvð2Þ

DGP1-3

T ¼ 100 0.145 0.088 0.047 0.075 0.081 0.479 0.325 0.165 0.280 0.235

T ¼ 250 0.285 0.235 0.127 0.114 0.092 0.862 0.808 0.665 0.644 0.494

T ¼ 500 0.501 0.429 0.321 0.191 0.127 0.990 0.982 0.967 0.919 0.807

DGP2-1

T ¼ 100 0.162 0.094 0.048 0.041 0.080 0.460 0.343 0.177 0.203 0.261

T ¼ 250 0.296 0.235 0.138 0.044 0.107 0.820 0.811 0.678 0.472 0.571

T ¼ 500 0.476 0.453 0.342 0.078 0.168 0.980 0.984 0.968 0.819 0.864

DGP2-4

T ¼ 100 0.148 0.089 0.058 0.028 0.086 0.417 0.331 0.185 0.133 0.271

T ¼ 250 0.279 0.240 0.149 0.020 0.088 0.763 0.786 0.669 0.348 0.500

T ¼ 500 0.412 0.457 0.352 0.032 0.120 0.951 0.979 0.966 0.719 0.803

DGP3-1

T ¼ 100 0.165 0.107 0.046 0.041 0.098 0.470 0.366 0.179 0.188 0.293

T ¼ 250 0.315 0.262 0.129 0.041 0.156 0.849 0.815 0.668 0.472 0.620

T ¼ 500 0.502 0.483 0.342 0.075 0.246 0.984 0.982 0.971 0.820 0.908

DGP3-4

T ¼ 100 0.193 0.106 0.044 0.043 0.098 0.477 0.346 0.176 0.192 0.315

T ¼ 250 0.387 0.295 0.132 0.046 0.150 0.865 0.808 0.674 0.475 0.674

T ¼ 500 0.625 0.545 0.327 0.080 0.259 0.988 0.984 0.966 0.819 0.936

DGP4-1

T ¼ 100 0.153 0.115 0.059 0.063 0.117 0.448 0.345 0.182 0.236 0.326

T ¼ 250 0.287 0.263 0.207 0.119 0.219 0.803 0.773 0.690 0.599 0.671

T ¼ 500 0.451 0.452 0.415 0.267 0.391 0.972 0.967 0.960 0.919 0.937

DGP4-4

T ¼ 100 0.151 0.086 0.043 0.028 0.124 0.440 0.332 0.166 0.152 0.371

T ¼ 250 0.287 0.227 0.133 0.025 0.211 0.793 0.804 0.673 0.383 0.724

T ¼ 500 0.457 0.431 0.327 0.032 0.341 0.961 0.983 0.967 0.733 0.947
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4. Empirical applications
In this section, we apply the tests to economic variables. We employ six economic data including 
those of Real Gross Domestic Product (GDP) for U.S., M2 for U.S., Federal Funds rate (FF), Producer 
Price Index (PPI) for U.S., Crude Oil Prices (COP) for West Texas Intermediate, and Global Price 
Index of all commodities (GPI). We use first difference of logarithm except FF. The data are 
obtained from Federal Reserve Bank of St. Louis. Each data consist of 294 (1Q 1947-2Q 2020), 
478 (November 1980–August 2020), 794 (July 1954–August 2020), 1291 (January 1913–July 2020), 
416 (January 1986–August 2020), and 343 (January 1992–July 2020) observations, respectively. 
The lag lengths of ARCH tests are selected by the Akaike information criterion (AIC).

Empirical results are presented in Table 7, which tabulates nominal p values of each test. The 
results support simulation evidence demonstrated in Section 3. For M2 and FF, the p values of all the 
tests are small. It is possible that the results are influenced by size distortions because Monte Carlo 
simulation in Section 3 demonstrates that when time series prosesses have nonlinear mean proper
ties, ARð2Þ has overrejections of the null hypothesis, and tends to lead spurious ARCH effects. T2ð2Þ
NPplð2Þ, and NPcvð2Þ also have overrejections depending on DGP. However, as shown in Section 3, 
T3ð2Þ has reasonable size properties regardless of DGP. The p values of T3ð2Þ are sufficient small. This 
indicates that M2 and FF have ARCH effects. While ARð2Þ, T2ð2Þ, T3ð2Þ, and NPcvð2Þ have small p 
values for GDP and PPI similar to those for M2 and FF, NPplð2Þ has large p values. The results may be 
due to poor power performance in the presence of small ARCH effects as shown in Table 5.

For COP and GPI, p values of ARð2Þ are small, whereas those of T3ð2Þ and NPplð2Þ are large. It is 
possible that this is because ARð2Þ has overrejection when DGP have nonlinear mean properties. 
T3ð2Þ has superior size properties for DGP with nonlinear mean properties. The results indicate that 
COP and GPI have nonlinear mean properties without ARCH effects. The empirical applications 
support our simulation results and show that T3ð2Þ can appropriately find ARCH effects, whereas 
there are cases in which other tests lead to unreliable results.

5. Summary and conclusion
This study compares the size and power of the ARCH tests that are robust to misspecified 
conditional mean models. ARCH tests are important for statistical modeling because the presence 
of ARCH affects the statistical inference of the conditional mean regression model and the analysis 
of volatility. However, it is difficult to determine the correct specified conditional mean model and 
possible to employ a misspecified conditonal mean model. This may lead to unreliable results. 
Therefore, it is neccesary to compare robust ARCH tests to various unknown conditional mean 
model and clarify their size and power properties. The approaches employed in this study are 
based on two nonparametric regressions: an ARCH test using the Nadaraya-Watson kernel regres
sion and an ARCH test with the polynomial approximation. The two approches can adapt to various 
nonlinear models. Since a true model is generally unknown a priori, they are robust to misspecfied 
models. The Monte Carlo simulations evidence that the ARCH tests based on the polynomial 
regression approach have a better size and power properties than those using the Nadaraya- 
Watson kernel regression approach for various nonlinear conditional mean models. In particular, 

Table 7. Empirical results
ARð2Þ T2ð2Þ T3ð2Þ NPplð2Þ NPcvð2Þ

GDP 0.012 0.016 0.027 0.906 0.015

M2 0.000 0.000 0.000 0.037 0.003

FF 0.059 0.045 0.011 0.000 0.002

PPI 0.000 0.000 0.000 0.934 0.000

COP 0.000 0.000 0.211 0.609 0.527

GPI 0.000 0.478 0.619 0.594 0.013
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the test using the regression approach based on the third-order Taylor approximation has 
a reasonable and acceptable size and sufficient power for any time series models. The simulation 
and empirical results further show that the ARCH test using the polynomial approximation 
approach is useful when testing if DGPs have an ARCH effect and for ARCH without model 
specifications when the conditional mean model is unknown a priori. Of course, if researchers 
know DGP a priori or the purpose of researchers is the specification of the conditional mean, 
nonparametric regressions employed in this study are not useful and parametric approaches are 
appropriate. However, when it is difficult to specify the parametric model a priori and the purpose 
of researchers is the test for heteroskedasticity, our analysis is more useful. Robust univariate and 
multivariate ARCH tests that do not depend on the model specification of the conditional variance 
in addition to the conditional mean are left for further study.
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Notes
1. Bühlmann and McNeil (2002) and Meister and Kreiẞ 

(2016) introduce nonparametric GARCH models. In 
addition, studies of nonlinear GARCH models include 
those of González-Rivera (1998), Pan et al. (2008), and 
Bauwens et al. (2010).

2. Catani and Ahlgren (2017) propose an LM test for 
ARCH using high-dimentional vector autoregressive 
models. In addition, Gel and Chen (2012) introduce 
bootstrap ARCH tests.

3. Other kernel functions include uniform, Epanechnikov, 
biweight, and triweight kernel functions. In general, 
while the type of kernel functions does not have 
a large impact on the estimation results, the selection 
of bandwidth significantly influences the estimation 
results.

4. Sheather and Jones (1991) propose another band
width selection that is based on the plug-in method. 
There are other bandwidth selection methods includ
ing those of Hart and Vieu (1990), Ziegler (2006), Li 
et al. (2013), Cheng et al. (2019), Jones et al. (1996), 
and Köhler et al. (2014) provide survey of bandwidth 
selection. The performance of the Nadaraya-Watson 
kernel regression strongly depends on the bandwidth 
selection. Since we only employ two bandwidth selec
tions, the results in this study are somewhat limited. 
The compasison of robust ARCH tests using the 
Nadaraya-Watson kernel regression using various 
bandwidth is left for further study.

5. Shimizu (2014) introduces the estimation of nonpara
metric AR(1)-ARCH(1) using wild bootstrap. Shin and 
Hwang (2015) apply stationary bootstrap to estimate 
nonparametric AR(1)-ARCH(1).

6. If you are interested in simulation results of other 
levels of significance, these results are available upon 

request. The results are similar to those of 5% level of 
siginificance.

7. Zambom and Kim (2017) propose lag selection in the 
nonparametric conditional heteroskedastic models. 
Compared to conventional methods, this method 
more appropriately selects lag length for various non
linear models. We fix lag length in this study to inves
tigate the statistical performance of the 
nonparametric regression models.
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