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FINANCIAL ECONOMICS | REVIEW ARTICLE

Measurement of extreme market risk: Insights 
from a comprehensive literature review
Gourab Chakraborty1*, G. R. Chandrashekhar2 and G. Balasubramanian1

Abstract:  The experience of past financial market turmoil suggests that in addition 
to eroding investor wealth, the severe consequences of rare extreme market events 
can spillover and impair the broader real economies. In this context, this paper is an 
evaluation of the methodological and empirical advances in the measurement of 
the extreme market risk. This paper argues that a major reason for the origin of 
such risks post 1980s has been the unintended consequence of asymmetric 
monetary policy to sustain the rise of financial markets. Thereafter, this review 
identified the value at risk (VaR) and VaR-based alternative expected shortfall (ES) 
as the principal measures of extreme market risk. The deficiencies in the standard 
modelling approaches for VaR-ES measures have led to several advanced estima-
tion methodologies. However, the lack of identification of optimal methodology, in 
the internal models approach (IMA) regime where financial institutions (FI’s) can 
choose suitable VaR-ES modelling technique incentivizes regulatory arbitrage and 
other inconsistencies. Therefore, this paper investigates the theoretical and 
empirical research literature on VaR and ES estimation for financial asset market 
prices. This paper finds that the extreme value theory (EVT) followed closely by the 
filtered historical simulation (FHS) are highly accurate methodologies. In addition, 
Mixture distributions, asymmetric and non-linear versions of the conditional quan-
tile (CQ) approach, (volatility) asymmetry and long memory conditional volatility 
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1. Introduction
In this paper, we review the literature on the measurement of extreme (financial) market risk, in 
particular for the estimation of Value at risk (VaR) and Expected Shortfall (ES). Mishkin (2009) and 
Orlowski (2012) suggest that extreme market events are unforeseen or rare, i.e. low frequency but 
high severity (LFHS) and refer to its risk as “tail risk”. From a statistical standpoint, LFHS market 
crises are tail events, i.e. outliers that lie in the tails of the distribution. While Kemp (2011) limits 
tails to the lower 10% quantile and beyond the upper 90% of a returns’ distribution, Smith (1987) 
offers a much stronger and narrower definition with tighter bounds—beyond 2.6 times standard 
deviation of asset returns away from the mean. The term “tail risk” concerns the “chances” ₋ 
measured by the probability (estimated by empirical and theoretical probability distributions) and 
“consequences” ₋ Value at Risk (VaR) and Expected Shortfall (ES) estimates of adverse returns in 
the tails of the returns distribution (Tolikas, 2008, 2014). Kemp (2011) suggest that the tail risk 
stems from fat tails, which is statistically referred to as (left skewed) leptokurtosis. Fat tails is an 
empirical regularity when asset prices have lower levels of volatility during ordinary market periods 
and considerably elevated volatility levels during market turmoil.

This paper aims to present a researcher in the field of extreme (market) risk measurement with 
a wide spectrum of methodologies to accurately measure and determine VaR and ES estimates; 
and acquaint him(er) with the contours of the maximum progress made in this area.

It is unsurprising that academic literature that proposes new VaR-ES models and backtesting 
methodologies with a prima facie aim to improve extant ones and compare the alternative VaR-ES 
estimation methods and backtesting techniques has expanded rapidly in the last two decade. This 
forms the primary motivation for this paper.

In the following sections, the review has tried to identify four broad themes that direct the 
research on measurement of extreme market risk and align the survey along these broad themes. 
These broad themes are ₋ the origin of market tail risk1 as perceived in the literature, the 
measurement frameworks of tail risk from the past, the weaknesses in the traditional tail risk 
measurement approaches in the past and the consequent evolution of newer models, and lastly, 
the impact of this evolution of tail risk measurement on the empirical literature. Figure 1 offers 
a schematic progression of this literature review.

The evolution of newer models and the impact on the empirical literature occur simultaneously. 
Hence, the studies aligned to these two latter themes have been consolidated. Accordingly, this 
review of literature can be aligned into three strands: antecedent, evolution of extreme risk 
measures and the consequent strand. This alignment guides the organization of the paper. 
Section 2 reviews the antecedent strand of literature on the critical nature of extreme market 
risks and highlights its importance of its measurement. Section 3 outlines the second strand of 
literature on the historical evolution of alternative extreme market risk measures. Section 4 
reviews the consequent seminal and empirical literature on the alternative VaR and ES estimation 
methodologies. The conclusions are presented in section 5.
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This paper argues, respectively, in section 2 that the increasingly frequent occurrence of 
extreme financial market events with debilitating consequences for the real economy since the 
1980s and further argues in section 4.2 that the glaring weaknesses of the traditional tail risk 
estimation methodologies and the lack of identification of the optimal tail risk estimation 
methodology in the Basel guidelines are the principal drivers of research in tail risk 
measurement.

The key contributions of this paper are threefold. First, this paper argues that the origins of tail 
risk, especially post 1980s, can be attributed to the financialization. Second, it provides 
a comprehensive review that combines the origins of tail risk with the range of extreme market 
risk measures and estimation methodologies. Finally, it reviews a vast body of empirical literature 

Figure 1. Alignment of the lit-
erature review along four broad 
themes.

Note: While the FHS is an 
improvement over the HS (a 
non-parametric) approach, FHS 
framework per se is a semi- 
parametric technique. 

Source: Adapted from studies 
reviewed in section 4.2 
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on the extreme market risk and categorically identifies the extreme value theory (EVT) as the most 
accurate methodology for extreme tails.

2. The origins of the extreme market risk, the high severity of rare extreme market events 
—need for its accurate measurement
In this section, this paper tries to trace the origins of tail risk ₋ the first broad research driver ₋ in the 
enormous and wide influence of financial markets on the real economy, especially economic policy 
making. This nexus is argued to encourage asset price bubbles, which subsequently bursts upon 
arrival of aggravating market information.

The March 2020 crash provides a relevant context to appreciate the importance of extreme financial 
market risk measurement. Studies such as Zhang, Hu and Ji (2020) and Wojcik and Ioannou (2020) 
which have evaluated the rapid asset price declines during COVID19 pandemic in mature financial 
markets and in China, indicate that while the unconventional monetary policy (UMP) appears to be 

Figure 2. Performance of select 
post-Colonial equity indices 
during COVID19.

Source: Authors’ estimation 
from market prices of indices 
and exchange rates available 
in Yahoo Finance and in. 
investing.com 
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favoured response of central banks to mitigate the adverse economic impact of the pandemic, the 
undesirable consequences of the UMP are rather likely to aggravate the financial market risks.

This suggestion with regard to the monetary policy is consistent with the contention of Lian et al. 
(2018) and Cieslak et al. (2019) that UMP incentivizes destabilizing speculation in financial markets 
that may trigger unsustainable asset price inflation for 15 to 40 months (Gottesman & Leobrock, 
2017), which culminates in extreme market events.

To elaborate, Figure 2 exhibits the 21 day rolling average value of a notional 1$ investment in USA 
and 8 select emerging and frontier markets with that in the USA during COVID19 induced crash.

This figure suggests that investments stand to lose a substantial portion of their value during 
extreme market events and the time to recovery can be long. In fact, while the zoonotic origin of 
extreme markets is novel, nevertheless, the occurrence of rare yet extreme financial market events 
and the destruction of wealth in the aftermath, in the pre-COVID era, are extensively chronicled in 
financial history since the Dutch Tulip crisis in 1636.

A scrutiny of financial market history suggests that the steep financial asset price deflation in 
extreme market events, which affect multiple financial markets and asset classes are rare before 
the 1980s. This survey argues that a major driver of research into extreme market risk stems from 
the fact that while the post-1980s market disasters are rare such events are increasingly frequent.

To explain, the 1700s witnessed just 2 events ₋ the South Street Sea bubble in 1720 and the 
crash from the end of “Seven Years War” in 1763. Thereto, the 1800s saw 4 extreme events ₋ from 
the sovereign bond defaults during 1825–26 across Europe and Latin America through to the Panic 
of 1873 in the US, Austria and Germany. The 20th century prior to the 1980s saw only 3 extreme 
market episodes induced by the banking crisis ₋ the panics of 1907 and 1929 (triggering the “Great 
Depression”) and the Spanish leg of the “Big Five Crises” in 1977. The reader may refer to Table A1 
in the appendix for a chronological account of extreme market events till Covid19 induced 
March 2020 financial market crash.

To sum up, the financial markets worldwide have witnessed 10 extreme market events since 
1600. However, the post 1980s era experienced 13 extreme markets events from the Latin 
American Debt Crisis of the 1980’s through East Asian financial crisis, Dot Com Bubble, global 
financial crisis, the Eurozone crisis and the COVID19 induced March 2020 Crash. (Cieslak et al., 
2019; Coombs & Van Der Heide, 2020; Nageswaran & Natarajan, 2019).

An enquiry into the drivers of high incidence of extreme market risk since the 1980s highlights the 
exposure of broad stakeholders in an economy to financial markets is pervasive in an era of 
financialization of the physical economy. Tomaskov-Devey and Lin (2011) point out that since the 
1980s, financialization has led to the substitution of active income from labor income with passive 
income from financial asset prices as the dominant component of national wealth. In fact, Cieslak 
et al. (2019) illustrate that while the unemployment in the US falls less when equity indices rise, it rises 
much more when market indices decline. Corporations and governments prefer to borrow via financial 
markets rather than banks. Financial Intermediaries (FI) earn greater share of their profits from trade 
of financial securities (securitized) loans, and market-linked products than from extending credit and 
other intermediation. Thus, financialization is characterized by substitution of credit risk with market 
risk. Karwowski et al. (2017) contend that as the financial markets rise to replace banking as the 
dominant source of funds, the need to implement asymmetric or unconventional monetary policy 
(UMP) via financial markets and sustain financial asset price inflation becomes a tacit policy objective.

In the asymmetric monetary policy, central banks use (inter-bank) overnight rate rather than the 
money supply rate as the monetary policy instrument, and monetary policy is highly sensitive to 
financial asset price deflation. Central banks write real (monetary) put options by lowering overnight 
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rates to push up falling asset prices and write real (monetary) call options when reluctant to raise the 
overnight rates to arrest asset price inflation. In fact, overnight rates have lost efficacy at near zero 
levels. Therefore, central banks have been lately targeting (often lowering) the interest rates along the 
yield curve by dealing in (often buying) government and pseudo-government securities, as in quanti-
tative easing (QE). A downward shift in the yield curve has contributed to corporate bond price inflation.

However, an accommodative monetary policy, especially UMP, signals that the central banks are 
implicitly underwriting the price inflation of liquid financial securities with higher ex-ante returns (ex. 
equities and bonds). Accordingly, the long-run capital investments which are illiquid and cumbersome 
appear less attractive against liquid financial securities. Also, the lower rate of interest signals less 
scarcity of goods and services in the future. Hence, the long-run investment may not return the 
expected profitability. In addition, an implicit central bank underwriting of risky securities in a lower 
interest rate regime lowers the the opportunity cost of not investing in safer investments and induces 
savers to invest in more risky marked-linked investment products. Therefore, these works argue that 
the asymmetric and unconventional monetary policies tend to cause more destabilizing speculation 
rather than long-term physical investments and that the monetary policy can be argued to be 
a major compounder of financial market fragilities leading to extreme market events.

An exploratory data analysis of the daily logarithmic returns during these extreme market 
episodes highlight that financial asset price deflation was usually greater than 3 standard devia-
tions fall from the mean and the subsequent periods of recovery were protracted. Therefore, the 
fallout of these extreme market episodes can spillover into broader real economy and cripple it, 
especially the households.

The pervasive nature of financial market exposure and the severity of losses during extreme 
market events demonstrate that financial intermediaries (FI’s) need to assign sufficient risk capital 
to protect themselves and the financial system against rare market catastrophes, and the ele-
mentary objective of the national and supra-national financial regulators and supervisory autho-
rities is to improve the early identification of extreme market risk and mitigate the fallouts. 
Therefore, measurement of extreme market risk is an elementary responsibility for the former 
and of acute concern for the latter. Supranational consortium of financial regulators, such as the 
Basel Committee of Banking Supervision (BCBS), Bank of International Settlements (BIS) mandate 
the FI’s to estimate VaR and lately ES (BCBS, 2019) derived market risk capital buffers; which are 
aimed set aside to absorb losses during future extreme market events.

3. Extreme market risk measures—Evolution, attractions and limitations
In this section, this paper tries to partly address the second and third broad themes of research on 
extreme market risk measurement. To be specific, this section reviews the strand of literature 
(Alexander, 2008; Aragones et al., 2001; Berk & DeMarzo, 2012; Clare et al., 2013; Dowd, 2005; Ellis, 
2017) that examines the evolution of extreme market risk measures over the years. The review 
along this broad theme finds that the extreme market risk measures have improved over the past 
three decades from the traditional standard deviation (SD) of asset price returns through to the 
recent alternatives of value at risk (VaR) and expected shortfall (ES).

Over time, the limitations in the naïve SD estimator were supplemented with stop loss limits 
during market trades. In addition, gap analysis examines the difference in net income due to asset 
and liability sensitivity towards interest rates. Moreover, sensitivity metrics consists of the first 
and second order mathematical derivatives of asset prices with changes in risk factors. These 
include “beta” for equities, “duration” and “convexity” for bonds, and “greeks” for options. Further, 
capital buffers such as Margin Amount and Risk Capital represent extreme market risk in terms of 
capital amount. These tools are devised to absorb the extreme market losses and protect the 
integrity of financial markets and banks, respectively.
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This review finds that several of these extreme risk measures also serve as the tools to absorb 
and mitigate the fallout of extreme market risks. Importantly, no single estimator is perfect and 
every alternative has its attractions and limitations. Nonetheless, all of these discussed measures 
represent mostly the consequences of loss and do explicitly summarize the chances (precisely the 
probability distribution) of loss.

This major limitation was overcome by Value at Risk (VaR) and the Expected Shortfall (ES), which 
are probabilistic statements of extreme losses. The VaR is a tail quantile that represents the 
probability boundary for extreme market losses. The ES measures the average of losses greater 
than VaR. The ES is also referred to as expected tail loss (ETL) and the Conditional VaR (CVaR).

A review of extreme market risk measures (as Dowd, 2005; Jorion, 2010) is likely to project the 
Value at Risk (VaR) as a highly popular metric and the Expected Shortfall (ES) as a superior 

alternative. However, the recent literature (Kou & Peng, 2014; Kellner & Rösch, 2016) is not 

Figure 3. Hierarchical schema 
into the classification of VaR 
and ES models.

Source: Adapted from studies 
reviewed in section 4.2 
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categorical and has argued to replace the ES with median shortfall (MS). The median shortfall (MS) 
estimates the median of losses worse than VaR; similar to ES which is the mean of the losses. MS 
for a particular confidence level (CV) can be estimated as the VaR at confidence level CV 

’ = 0.5*(1+ CV). On balance, this section views VaR and ES as the most widespread (not necessarily 
sufficient) extreme risk measurement frameworks.

That said, the review of studies cited in this section and the ones discussed in the subsequent 
section indicate that while the VaR and ES despite are simple in theory, these measures are non- 
trivial to estimate in practice. In addition, the BCBS guidelines do not suggest any specific estima-
tion methodology for VaR and ES estimations, rather advise the FI’s to employ their “internal 
models”; subject to the qualification of the internal (VaR-ES) risk model in the backtesting of the 
VaR estimates. Against, this backdrop, the primary aim of the following section is to evaluate the 
alternative VaR and ES methodologies.

4. An evaluation of VaR and ES estimation approaches
In this section, the paper has tried to align the remaining sections of the literature review along 
the second and third broad theme of research and address the fourth theme that evaluates the 
effect of the tail risk estimation frameworks’ progression on the empirical literature. This section 
suggests that three fundamental estimation methodologies of VaR and ES, the analytical proce-
dures based on Gaussian distribution, non-parametric Historical Simulation (HS), and semi- 
parametric Monte-Carlo Simulation (MCS) (Best, 1999; Choudhry, 2013, page 32) suffer from 
major weaknesses that have spawned development and application of alternative estimation 
techniques over the past two decades.

4.1. Deficiencies in the three elementary VaR-ES estimation techniques and the need for 
advanced VaR-ES estimation methodologies
Overwhelming fraction of the consequent strand of literature highlights that the normal distribu-
tion fails to account for “fat tails” and other empirical regularities. The data imply that Gaussian 
distribution assigns unreasonably negligible probabilities to the tail events. For instance, the 
magnitude of the extreme price deviations during the 19 October 1987 flash crash and the East 
Asian financial crisis of 1998, and the LTCM crisis was 20 SDs away from mean returns; cannot 
occur according to Gaussian distribution. To sum up, the Gaussian VaR-ES framework has been 
documented to severely underestimate extreme market risk. This underestimation is profound for 
non-linear instruments with discontinuous payoffs like derivatives.

In addition, studies such as Hendricks (1996), Jackson et al. (1997), and Vlaar (2000) that applied 
the historical simulation (HS) approach, have found the HS derived VaR estimates found to out-
perform those from Gaussian approaches. These studies highlight the possible strengths of the HS 
technique. First, the empirical distribution accommodates fat tails. Second, no distributional 
assumption lends the theoretical flexibility to be applied to derivatives. Third, HS is intuitive and 
conceptually simple. Fourth, it is easy to produce confidence intervals for (non-parametric) VaR 
and ES estimates; and lastly, it is easy to implement and communicate the results. In addition, 
Huang and Tseng (2009) find the HS VaR to be marginally more accurate than the MCS VaR. This 
superior accuracy of the HS estimates can be attributed to higher matching of tail probabilities.

However, HS estimator is non-precise, i.e. estimates have high standard error, particularly for high 
confidence levels that represent the tails (rare events). Therefore, HS estimates are difficult to verify.

While MCS VaR estimates outperform Gaussian VaR estimates in backtesting (Pritsker, 1997; Bao, 
Lee, and Saltoglu, 2006), it is found to produce relatively inaccurate estimates compared to HS, 
Kernel smoothing, and CaViaR approaches (Huan, Lin, Chien, and Lin, 2004; Bao et al., 2006). Abad 
et al. (2014) too observed that it performs poorly than HS and (parametric) student t approaches. 
These studies document that the extreme value theory (EVT) approach is far more accurate and 
conservative than the MCS method.
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The lacunae in the traditional approaches and the need to accurately characterize the extreme 
market risk have motivated the development of alternative VaR-ES estimation methodologies. 
A review of the studies examining the conventional approaches and ones applying the alternative 
techniques strongly suggest that the accurate measurement of extreme market risk acquires 
higher importance since it is often difficult to model unforeseen phenomena that usually lie 
outside the domain of available observations.

4.2. An evaluation of alternative VaR-ES estimation methodologies
This subsection critiques the best 64 known alternative methodologies for the VaR and ES estima-
tion, based on different statistical (distribution) and econometric (volatility) methods. However, 
such a large number of approaches and methods complicate the selection of the methodology to 
measure VaR and ES. A systematic classification and comparison of different methods for risk 
measures will simplify the optimal selection. Figure 3 attempts to simplify this classification and 
comparison.

In the univariate risk metric estimation, the extreme risk model can be perceived to consist of 3 
kinds of statistical models: risk factor mapping, the data generation process (DGP) and the risk 
resolution model. To explain, the estimation of VaR-ES measures for all assets (including non-linear 
/exotic) in a complex large portfolio can be a computational ordeal. Risk factor mapping replaces 
the current/market value of assets with exposures in a set of fundamental risk factors (equity 
market indices, yield curve, commodities, currency foreign exchange rates) by applying partial 
derivatives on an analytical pricing function (ex. Black Scholes formula) or by regression (ex. CAPM). 
In many instances, a working linear relationship is approximated between a (possibly non-linear) 
asset’s market value and the primitive risk factors while risk mapping.

The data generation process (DGP) step augments the fitting of returns distribution with volatility 
clustering effects to better describe the evolution of returns series over time. It essentially states 
that conditional on assuming the evolution of the returns process, i.e. the conditional volatility 
model, the theoretical distribution is assumed for returns. The returns distribution is assumed to be 
parametric (in figure 1.2) or left as empirical. The parametric distribution can be fitted to the entire 
return distribution or in the tails. If the volatility clustering effects are not estimated then the risk 
model is referred to as “unconditional”.

The interaction of the risk mapping and data generation process lends itself to 3 broad risk 
resolution models: non-parametric, parametric and semi-parametric. The choice between these 
three components is intertwined. For instance, if returns distribution is empirical then the risk 
resolution model cannot be analytic but non-parametric or EVT for the tails. By contrast, if the 
returns are assumed to be independent and identical distributed (IID) then an unconditional risk 
resolution model is used.

4.2.1. Improvements over the standard Historical Simulation (HS) technique
A review suggests that Hill (1975) and Pickands (1975) type estimators are notable alternative 
non-parametric improvements over HS techniques. However, the Hill (1975) and Pickands (1975) 
type estimators estimate tail fatness of extreme returns filtered by the peaks over threshold (POT) 
approach from the returns distribution. It is noteworthy that the POT method is a constituent 
method to identify extreme returns also it also leads to parametric modeling of the extreme 
returns by the generalized pareto (GP) distribution. Moreoever, the HS technique has been sig-
nificantly improved by the non-parametric age weighting (Boudoukh et al., 1998) and the kernel 
smoothing (Huang and Tseng, 2007) and semi-parametric volatility weighting (Hull and White 
(HW), 1998a, 1998b) and the filtered historical simulation (FHS) approaches.

Empirical studies such as Barone-Adesi et al. (2002), Angelidis and Degiannakis (2005). Alexander & 
Sheedy (2008), and I. Roy (2011) find that the FHS approach is a highly accurate estimation approach 
with forecast accuracy comparable to that of extreme value theory (EVT) approach.
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4.2.2. Parametric advances over the analytical approach based on Gaussian distribution
The insights from empirical studies on parametric improvements to Gaussian VaR-ES estimation 
can be classified into 3 broad buckets. The first strand searches for a suitable conditional (time- 
varying) volatility model, preferably with volatility asymmetry and long memory. The second 
direction tries fitting a skewed and fat-tailed parametric distribution that best explains the 
empirical returns distribution. The third strand aims to improve the Gaussian distribution by 
incorporating higher-order conditional moments ₋ Skewness and Kurtosis.

As regards the first strand, the conditional volatility modelling can be compartmentalized into 3 
categories:

● GARCH type models (Gonzalez-Rivera, Lee, and Mishra, 2004; Chen, Gerlach, Lin, and Lee, 2012; 
Sener, Baronyan., and Menguturk, 2012; Abad et al., 2014);

● Stochastic volatility (SV) family models (Lehar, Scheicher, and Schittenkopf, 2002; Fleming and 
Kirby, 2003; Clements, Galvao, and Kim, 2008; Gonzalez-Rivera et al., 2004; Chen et al., 2012);

● Realized volatility (RV) family models (Clements et al., 2008; Asai, McAleer, and Medeiros, 
2012).

The following inferences are gathered with respect to the performance of parametric VaR and ES 
estimates with the performance of VaR and ES estimates based on conditional volatility models.

● First, the empirical works namely Asai et al. (2012), Chen et al. (2012) and Abad et al. (2014) 
suggest that the parametric distribution fitting of return distributions dominates over the 
conditional volatility model in the accuracy of VaR-ES estimates.

● Second, the exponentially weighted moving average (EWMA) process is inaccurate (Chen et al., 
2012; Abad et al., 2014) for VaR-ES estimation.

● Overall, with minor departures (Gonzalez Riveria et al, 2004), the empirical findings suggest 
that the forecast accuracy of the VaR estimates based on the stochastic volatility (SV) family 
models and the GARCH family models are similar. There is no significant improvement in 
migrating from GARCH framework to SV approach (Chen et al., 2012).

● In general, the conditional volatility models with leverage effect and long memory such as 
fractionally integrated—asymmetric power ARCH (FIAPARCH) and Asai et al. (2012) realized 
volatility (RV) models are seen to provide highly accurate forecast estimates of VaR and ES. 
Giot and Laurent (2003) and Brownlees and Gallo (2011) observe that, although under a Gaussian 
distribution, an RV model is found to yield more accurate VaR estimates than a GARCH family 
model, regardless, under a skewed and leptokurtic distribution, such as the skewed (S)-t distribu-
tion, both competing frameworks produce similar levels of VaR forecast accuracy.

The second strand suggests that when asymmetric and fat-tailed distributions are considered, the 
accuracy of the VaR and ES estimates improve considerably:

● To elaborate, symmetric fat tailed distribution like the student t distribution fits the data better 
in the tails than the Gaussian distribution but is restricted by the symmetry assumption. 
Therefore, it can underestimate probability mass in the left tails and consequently offer 
inaccurate VaR and ES (Brooks and Persand, 2003). In addition, the t distribution has no 
constraints on the maximum losses and can produce misleadingly high-risk estimates at 
higher confidence levels. Thus, tail risk estimates derived from t-distribution are unreliable. 
Moreover, the t-distribution is not stable and therefore the VaR estimates cannot be fore-
casted over longer horizons (Jorion, 2010).

● A group of studies have performed comparative evaluation of the statistical accuracy of the VaR 
estimates from the student t-distribution with those from the generalized error distribution (GED), 
skewed(S) version of GED (S-GED), skewed t-distribution (STD), and the skewed generalized t (SGT) 
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distribution. Notable studies include Angelidis et al. (2004), Huang et al. (2004), and Lin and Shen 
(2006), Maghyereh and Awartani (2012), and Assaf (2015). These studies find that while modeling 
the empirical returns distribution with the GED, S-GED, and the STD provide more accurate tail risk 
estimates over the t distribution, nonetheless the SGT distribution offers the most accurate 
results. In fact, these studies attribute the notable improvement of the latter three distributions 
over the t distribution to the distributional asymmetry. In addition, further insights obtained from 
this strand of literature are as follows:

(i) Fan et al. (2008) find that the GARCH-GED process is superior to the GARCH-N model and the 
HS-(ARMIA forecast) for VaR estimation. In addition, Bali and Theodossiou (2007) note that 
the VaR measures derived from the GARCH-GED model are more accurate than the general-
ized t derived VaR estimates whereas the GARCH-SGED model outperforms those from the 
GARCH-GED model and GARCH-skewed t model in statistical backtesting. Nonetheless, the 
GARCH-SGT model outperforms the GARCH-SGED model in VaR and ES estimation. Lee et al. 
(2008) notes that the GARCH-SGED model is superior to the GARCH-GED model for extreme 
market risk estimation. However, in a study on real estate markets, Zhou and Anderson (2012) 
suggest that the VaR estimates obtained upon assuming that the extreme values of GARCH 
process filtered residuals follow the GP distribution and the FHS implied VaR estimates are not 
more accurate than the estimates from GARCH type GED process.

(ii) In contrast, Angelidis et al. (2004) finds that the GARCH, exponential (E)-GARCH and threshold 
(T)-GARCH models with t-distributed innovations perform superiorly in backtesting than their 
counterparts with GED innovations. Leverage effect or volatility asymmetry can be enhanced 
by EGARCH-t and AP-ARCH-t models instead of GARCH-t model. Su and Knowles (2006) exhibit 
that the improvement of GED and SGED over the student t distribution vis-a-vis the accuracy 
of VaR and ES estimates is marginal. In fact, Bali et al. (2008) find that the GED VaR can 
underestimate extreme market risk.

● This review has gained the following additional insights with regard to the Skewed “t” 
distribution:

(i) Studies with favourable assessment: Giot and Laurent (2003) find that the VaR and ES 
forecasts from the skewed t distribution are more accurate than the estimates with the 
gaussian and student-t distribution assumptions. In addition, Altun et al. (2018) suggest 
that the skewed t distribution provides more accurate VaR forecasts than the skewed 
N distribution. It also indicates that the backtesting performance of the skewed t VaR-ES 
models is similar to those corresponding to the GED and the SGED.

(ii) Studies with not a favourable assessment: Angelidis and Degiannakis (2005) highlight that 
capturing leverage effect or volatility asymmetry rather than the return distribution is more 
important for the accuracy of conditional VaR estimates. Moreover, Corlu et al. (2016) argue that 
generalized lambda (GL) distribution is a more suitable candidate than the skewed-t distribution.

This paper has received the following insights while reviewing studies which have investigated the 
skewed generalized t distribution in extreme market risk measurement:

(i) Features: the SGT distribution is a skewed extension of the generalized t distribution 
(McDonald & Newey, 1988). The SGT nests several well-known distributions such as the 
generalized t (GT), the skewed t (ST) of Hansen (1994), the SGED of Theodossiou (2000), and 
the normal, Laplace, uniform, GED, and Student t distributions.

(ii) Advantages: Hence, it can cater to highly diverse levels of kurtosis and skewness. Therefore, it 
can model the return distribution of a wide variety of assets. [Source: Harris et al. (2004), Bali 
and Theodossiou (2007), Bali et al. (2008), Cheng and Hung (2011), and Lin et al. (2014).] In 
fact, Lin et al. (2014) suggest that the accuracy of the SGT VaR models improves considerably 
if the tail fatness is estimated by the modified Hill estimator; the latter was proposed by 
Huisman et al. (2001).
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(iii) Disadvantages: By contrast, Polanski and Stoja (2010) and BenSaïda and Slim (2016) find 
other parametric approaches outperform SGT models. The former observes that Gram and 
Charlier (GC) (24) expansion VaR and other GC expansion VaRs outperform SGT VaR at 
moderately high and extremely high tails. The latter, finds that, in equity indices, the 
Generalized Hyperbolic (GH) distribution explains the physical returns better than the SGT 
distribution. However, in exchange rates, the SGT distribution is a superior alternative.

This survey notes that the mixture distributions offer reasonably accurate VaR and ES estimates. To 
elaborate, the insights specific to the mixture distributions are as follows:

● Studies such as Venkataraman (1997), Hull and White (1998), and Alexander and Lazar (2006) 
report that the VaR and ES estimations obtained from models involving a mixture of distribu-
tions [normal (MN) and Student t (Mt)] are generally quite accurate. In particular, Su and 
Knowles (2006) observe that the accuracy of VaR models from GARCH-MN is comparable to 
that of Markov Switching (MS) model. In addition, GARCH-MN VaR model outperforms the VaR 
estimates from GARCH-N and GARCH-t models (Lee & Lee, 2011; Xu & Wirjanto, 2010). The 
accuracy is increased in the skewed and fat tailed mixture distribution VaR models (Alexander 
& Lazar, 2006; Miftahurrohmah et al., 2017) and in non-linear GARCH-mixture distribution VaR 
models (Nikolaev et al., 2013).

The third strand of literature examines the parametric adjustments that aim to augment the 
performance of the Gaussian approach with higher conditional moments (ex. skewness and 
kurtosis). These improvements are Cornish Fisher (CF) expansion, Gram Charlier (GC) expansion, 
and Saddle Point Approximation (SPA) on the one hand, and Johnson SU (distribution) and Fourier 
transformation:

● Early research from studies like Pitchler and Selitsch (1999) and Mina and Ulmer (1999) 
suggest that (uncorrected) Cornish-Fisher (CF) expansion is a highly fast technique that is 
less robust than MCS. These studies also highlight that GC expansion, Johnson’s transforma-
tion and SPA have similar forecast accuracy performance with respect to CF technique. Fuss 
et al. (2007) suggest that CF expansion is a significant improvement over GARCH-N

● The CF VaR is found to deflate the artificially superior risk-adjusted returns by hedge funds/ 
institutional investments (by S.D., Sharpe ratio, Semi-deviation, Gaussian VaR). Studies that 
share this finding are Favre and Galeano (2002); Amenc et al. (2003), Gueyié and Amvella 
(2006), Gueyié and Amvella (2006), Liang and Park (2010), and Boudt et al. (2013).

● Empirical studies like Tesfalidet, Desmond, Hailu, and Singh (2014) note that uncorrected CF 
VaR and ES estimates can be non-monotonous, i.e. extreme tails may provide lower values. 
A mathematical and simulation-based line of research originating with Jaschke (2002) inves-
tigates into the causes of non-monotonicity. Christoffersen (2003) and Giamourdis and Ntoula 
(2009) highlight that the CF VaR is monotonic and well-behaved when skewness and kurtosis 
parameters in the CF expansion formula have within their narrow domains of validity (DVs); for 
the skewness coefficient the domain of validity (DV) of is between -/+ 1.2.

● However, statistical improvements have been developed to overcome the (non-monotonic) 
deficiencies and obtain highly accurate risk estimates. To specify, Chernozhukov, Fernandez- 
Val, and Galichon (2010) proposes an increasing rearrangement formula to overcome the 
narrowness of the DV for the CF formula. Later, Maillard (2012) points out that the skewness 
and kurtosis parameters in the CF expansion are not the same as the corresponding empirical 
statistics and that most researcher confuse between the two pairs. It proposes a methodology 
to extract the formula coefficients (that satisfy the DV from sample estimates. Further, 
Amedee-Menasme, Fabric, and Maillard (2019) improve upon this extraction by providing 
analytical expressions for a range of empirical Skewness and Kurtosis values. The analytical 
formulae are derived using response surface methodology (RSM) polynomial regressions.
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4.2.3. Insights from a review of advanced semi-parametric VaR-ES estimation techniques
In the semi-parametric framework, the improvements to the MCS technique have been methodo-
logical to improve its accuracy. These include the following:

● Delta-Gamma expansion (use full repricing in options which raises computational time) 
(Pritsker, 1997);

● Importance Sampling (IS), Stratified Sampling (SS) and improvements (Glasserman et al., 
2000a, 2000b, 2001, 2002);

● Bootstrapped Algorithm (Siegl & West, 2001);
● Principal Component Analysis (PCA) (Antonelli & Iovino, 2002);
● Fourier Transform (FT) (Jin & Zhang, 2006);
● Convex Conservative Approximation (CCA) (Hong et al., 2014).

These seminal studies have also backtested the model generated VaR and ES estimates and 
demonstrated significant improvement in statistical accuracy. However, this review failed to notice 
any empirical study that examines the comparative performance of these improvements with 
competing VaR-ES models.

In addition to these improvements, the Filtered Historical Simulation (FHS) method, the condi-
tional quantile (CQ) approach [also known as the Conditional Autoregressive VaR (CAViaR)] and the 
extreme value theory (EVT) framework standout as the preeminent semi-parametric 
improvements.

The conditional quantile (CQ) approach is based on directly modelling the quantiles of returns 
distribution rather than modelling the entire distribution. Given that the VaR and ES measures are 
tightly linked to the standard deviation of returns distribution that exhibits clustering, the CQ 
approach uses a conditional autoregressive specification to formalize VaR and ES clustering; 
volatility clustering often translates to autocorrelated distribution.

This literature review was able to find only a limited literature on CQ/CaViaR technique. For 
instance, Bao et al. (2006) and Polanski and Stoja (2010) observe that while the VaR-ES forecasts 
from the standard symmetric absolute value (SAV) version of the CQ approach are accurate in 
quieter markets/phases, the accuracy drops during market turbulence. However, the forecast 
accuracy increases substantially during market turmoil, especially at extreme confidence levels 
when asymmetric extensions of the CQ method that capture the leverage effect and other non- 
linearities of returns are applied. Notable asymmetric versions which lead to greater accuracy in 
VaR and ES estimates are the asymmetric slope (AS), Indirect GARCH (1,1) (IG), combination of 
T-GARCH and Wong and Li (2001)’s Mixture ARCH model (Yu Li, and Jin, 2010) and the non-linear 
dynamic quantile (NLDQ)-AS extension (Gerlach, Chen, and Chan, 2011; Sener et al., 2012).

Finally, the extreme value theory (EVT) is a credible methodology in the field of probability theory 
that can be used to describe and forecast low frequency high severity events (LFHS). In the area of risk 
measurement, the EVT framework has been applied in the insurance industry, portfolio optimization, 
and in the measurement of operational risk (Wong, 2013). A major attraction of the EVT is that it 
characterizes the tails of the returns distribution and does not interfere with the modeling of the 
entire distribution. The true distribution of the returns is unknown and can be estimated only from 
empirical distribution, parametric density and semi-parametric approaches. To elaborate, if suitable 
assumptions are satisfied, then the tools in EVT can be used to characterize the extreme realizations 
of a given random process or distribution. The principles of EVT were founded by Fisher and Tippett 
(1928) who showed that the asymptotic distribution of the adequately scaled extreme realizations 
within a random sample from majority of the distributions can and usually do converge to one out of 
three extreme value distributions: generalized extreme value (GEV), generalized logistic (GL) and the 
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generalized pareto (GP) distributions. This powerful result allows the disregard of the exact form of 
the entire distribution of returns to estimate the extreme quantiles ₋ VaR and ES measures. This 
characterization of few massive losses rather than a sequence of medium-sized losses is argued to 
mitigate the underestimation of VaR and ES. The former is of greater concern to protect investment 
values. This flexibility is further increased as the EVT can independently characterize the right and left 
tails of the asset returns distributions. Several of the reviewed studies in the EVT strand of literature 
cite Embrechts et al. (1997) and McNeil et al. (2005) as detailed and systematic reference materials 
for the EVT and its application in finance.

These works and the studies reviewed also highlight the limitations of EVT. For instance, basic 
EVT assumes that extreme values are realized from IID samples. Empirical returns are usually 
serially correlated. While the challenges to EVT modelling from this stylized fact can be overcome 
by few adjustments, there remains no agreement to the most suitable technique. In addition, 
a salient feature of EVT is the inevitable trade-off between the availability of a limited sample and 
the need to have vast numbers of realizations. The former is often realized as the EVT’s domain of 
interest is extreme occurrences, which by definition should be rare. The latter is attributed to the 
requirement of asymptotic nature from theory. Therefore, the selection of the sample data can be 
a critical step in applying the EVT. Moreover, the scale parameter and to a greater extent the 
location or the threshold parameter of the theoretical EVT distribution are sensitive to the cut-off 
choice during the preparation of the sub-sample of extreme values. A lower value can induce bias 
while a higher value can induce standard error. Furthermore, multivariate EVT is more complex and 
can encounter far more computational impediments than the univariate EVT.

Koedijk et al. (1990) are an early application of the EVT that examines the fat-tailed nature of 8 
European currency exchange rates against the dollar. This study examined the fat-tailed nature of 
financial returns especially initially applying the non-gaussian stable distributions with infinite var-
iance and later using the student t-distribution and its extensions. Its findings suggest that the 
empirical distributions can be better described by the stable laws distribution than the t-distribution.

In a pioneering research, Longin (1996) defined an extreme return as the greatest or lowest 
return of an asset over a period. This definition stands out as what qualifies as extreme in financial 
markets is different from that in physical phenomena. Hence, the occurrence of extreme event is 
not contingent on any exogenous event. It implies that rational expectations may not hold and 
extreme returns may be realized without any major news.

The empirical literature on the use of EVT to study extreme market risk is quite extensive. In fact, 
this study could review a total of 52 empirical papers on EVT VaR and ES estimation. Therefore, we 
have classified the papers into four broad categories to render the comparative evaluation of EVT 
literature more organized and insightful.

(a) Comparison of performance of EVT models with alternative estimation methodologies: -

Select empirical Studies reviewed in this sub-strand are Ponwall and Koedijk (1999), Longin (2000), 
Bali (2003), and Da Silva and De Mendes (2003), Gencay and Selcuk (2004), Bekiros and Georgoukos 
(2005), Kuester et al. (2006), Tolikas et al. (2007), and Tolikas (2008), Marimoutou, Raggad, and 
Trabelsi (2009), Dimitrakopoulos et al. (2010), Kourouma et al. (2011), Chavez-Demoulin et al. 
(2014), Allen et al. (2015), Paul and Sharma (2017), and Fuentes et al. (2018).

These studies argue that the EVT framework is a strong modelling alternative over the Gaussian, 
student t, GED, S-GED, HS, and MCS frameworks; especially at extremely high tails (greater than 
99% confidence level). Standalone, the GEV and GP distributions fit well with the returns distribu-
tion and in VaR backtesting. The FHS VaR comes close to the EVT VaR in forecast accuracy.
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A narrow cohort of studies have tested and compared the performance the conditional EVT 
models with unconditional EVT models. These include Danielsson and De Vries (2000), Bystrom 
(2004), Kuester et al. (2006), and Samuel (2008), Marimoutou, Raggad, and Trabelsi (2009), and 
Zikovic and Filer (2013). Most of these studies support the hypothesis that conditional GEV and 
GPD-derived VaR and ES estimates are superior to those for unconditional GEV and GPD in terms of 
forecasting accuracy. However, Bystrom (2004) suggests that the improvement in the conditional 
estimates is marginal. In particular, Samuel (2008) infers that Markov Switching (MS) ARCH process 
can significantly improve statistical backtesting performance. Moreover, Zikovic and Filer (2013) 
find that GPD derived VaR estimates marginally outperform those estimated with the FHS 
approach.

(a) Fitting the EVT distributions to empirical distribution of extreme returns:₋

Empirical studies that have tried to explain the empirical distribution of extreme returns with the 
theoretical returns report that:

(i)
In the developed markets, the GP distribution was found to fit the empirical returns distribu-
tion better than the Frechet distribution (a particular form of the GEV distribution) (Jondeau & 
Rockinger, 1999). In a similar finding, the GP distribution was found to be more accurate than 
the GEV distribution when fitted with the empirical returns (Walls and Zheng, 2006).

(ii)
For the past two decades, a new research agenda has emerged wherein the empirical works 
such as Gettinby, Sinclair, Power, and Brown (2004), Gettinby et al. (2006), Tolikas (2008), 
Tolikas and Gettinby (2009), and Tolikas and Fifield (2011), and Tolikas (2014) have modelled 
the extreme returns distribution with the theoretical GL distribution. Studies find that the GL 
distribution explains the physical distributions better than the GEV distribution.

(a) Modelling the extreme returns distribution with the peaks over threshold (POT) approach:₋

The strand of EVT literature which identifies the extreme returns with the POT approach can be 
categorized into two sub-strands. The former sub-strand tries to describe the empirical distribution 
of extreme returns with the theoretical generalized pareto (GP) distribution whereas the latter uses 
non-parametric estimators of the tail-fatness index.

Select empirical studies that belong to the first sub-strand include Bali and Neftci (2003), Brooks 
et al. (2004), and Chan and Gray (2006), Ozun et al. (2010), Ren and Giles (2010), Karmakar (2013), 
Chou and Wang (2014), Wijeyakulasuriya and Wickremasinghe (2015), Dahlen et al. (2015), and 
Youssef et al. (2015), Kellner and Rösch (2016), Muela et al. (2017), Gkillas and Katsiampa (2018), 
and Liu et al. (2018). Unlike majority of these studies, Ren and Giles (2010) and Dahlen et al. (2015) 
did not employ the usual Hill scatterplots and the mean excess function to identify the threshold 
for extreme returns. The former introduced the media excess function (MEF) while the latter used 
average conditional exceedance rate (ACER) to identify the threshold.

These studies suggest that the GP is a robust candidate distribution to describe the extreme 
returns distribution and the (POT)—GP distribution framework is a superior alternative over the HS, 
MC, EWMA and skewed GARCH approaches to model the VaR and ES measures.

Additional insights that are obtained from reviewing this sub-strand include:

(i) Youssef et al. (2015) found that long memory and volatility asymmetry process (ex. FI- 
APARCH) considerably improves the accuracy of the VaR and ES estimates.
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(ii) In addition to volatility asymmetry, the incorporation of asset price seasonality (ex. in 
commodities) and jumps in the conditional volatility models leads to more accurate and conser-
vative VaR and ES estimates. Chan and Gray (2006) advocate the use of seasonality while Ze-To 
(2008) and Liu et al. (2018) support the adjustment for jumps.

(iii) Kellner and Rosch (2016) determined that the ES measure carries more “Model Risk” than 
VaR, and measured the relatively greater model risk of ES over VaR.

(iv) Muela et al. (2017) observed that the GPD VaR is more conservative and accurate than 
uncorrected CF VaR in forecasts.

The second sub-strand of the EVT-POT literature that models extreme returns distribution with 
the non-parametric Hill Estimator of tail fatness index and its extensions, consists of studies such 
as Ponwall and Koedijk (1999), Huisman, Koedijk, Kool, and Palm (2001), Odening and Hinrichs 
(2003), Gencay and Selcuk (2004), Bao, Lee, and Saltoglu (2006), Walls and Zhang (2006), 
Bhattacharyya and Ritolia (2008), and Straetmans et al. (2008). The two common findings across 
the studies in this line of research are the following: ₋

(i) These studies suggest that while the tail (fatness) index estimates from the POT-Hill type 
estimators are more stable than the tail index estimates for the POT-GP distribution, nonetheless 
the GP distribution derived VaR estimates are more accurate than the Hill-derived VaR estimates.

(ii) In addition, Hill and modified Hill estimates’ derived VaR and ES measures have more forecast 
accuracy than the naïve HS VaR estimates.

In addition, few salient insights gained from individual studies are as follows: ₋

(i) The Huisman et al. (2001) modification of the Hill (1975) tail fatness index estimator reduces 
the small sample size bias of rare extreme market events.

(ii) Bao et al. (2006) observed that while the Conditional Quantile (CQ) or the Conditional 
Autoregressive VaR (CaViaR) approach is a close modeling alternative, the Hill estimate 
approach, GPD and GEV distribution-based method perform exceptionally well in providing 
accurate VaR and ES estimates during market stress periods.

(iii) In an empirical study, on the US equity market, after 2001, Streatmens et al. (2008) found 
that pure new sectors (example PC’s, Biotech, Internet) have greater extreme market risk and 
correlated market risk than new-old sectors (Utilities, Bank, Insurance, Pharma).

The reviewed empirical literature on EVT comes across as heavily devoted to evaluating the left 
tails of returns distribution or equivalently the right tail of the loss distribution. In fact, this 
literature review could identify only 3 empirical works viz Gencay and Selcuk (2004), and 
Karmakar (2013), which have compared the left and right tail risks. The findings suggest that the 
left and right tail risks are statistically asymmetric. From a financial economics perspective, the 
findings indicate that the upside extreme rewards for a long position asset holder are lower than 
the downside extreme market risk. Equivalently put, the extreme market risks of a long investor 
appear to be higher than those for a short investor.

Moreover, an evaluation of the EVT literature suggest a nuanced common acknowledgement 
that while the EVT is a reliable and highly accurate (extreme market risk) estimation framework, 
the accuracy of the EVT-based risk estimates is likely to be comparable to that of risk measures 
from competing methodologies, especially at moderate tails. Actually, the EVT estimates may not 
be highly accurate for confidence levels lower than 99% (usually at 95%) and in few assets may be 
even perform worse than alternative models. However, the accuracy and reliability of the EVT 
quantile (i.e. VaR and ES) estimates improve as one moves farther into the tails, at higher 
confidence levels (ex. at 99% and beyond), where the estimates significantly outperform those 
of alternative approaches. In fact, Kuester et al. (2006) suggest that this observation is highly 
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relevant for conditional rather than for unconditional EVT models. Nonetheless, the results of the 
empirical EVT literature argue in favour of the estimation of VaR and ES measures in the condi-
tional EVT framework. In this context, Bystrom (2004) argues that the unconditional VaR and ES 
measures are of greater relevance to long-run investment whereas the short-run traders need to 
pay attention to small-horizon risks measured by conditional estimates.

5. Conclusions
This article has argued that since the 1980s, financial markets have risen rapidly to acquire deep 
and widespread influence not just on financial intermediaries (FI’s) but on the broader real 
economy: corporations, ordinary citizens, and quite interestingly on monetary policy. Therefore, 
in addition to dislodging financial markets and eroding investor wealth, the systemic risks of severe 
consequences of rare extreme market events can spillover and impair the wider economies, 
globally. The experience of past extreme financial markets supports this contention.

A review of literature leads to an understanding that overwhelming majority of the empirical 
research has measured extreme market risk with quantile estimators; predominantly with Value at 
Risk (VaR), and in recent past with Expected Shortfall (ES). This paper finds that the stark defi-
ciencies in the three fundamental models, i.e. Gaussian, Historical Simulation and Monte Carlo 
Simulation, has spawned the development of several considerably improved alternative VaR-ES 
measurement frameworks, especially after the global financial crisis of 2008. However, the liberty 
of FI’s in the internal models approach (IMA) of the Basel norms to use any statistically accurate 
VaR-ES methodology within an array of multiple approaches for risk measurement, and subse-
quent monitoring, control and reporting is strongly anticipated to promote regulatory arbitrage. 
Hence, the identification of the most suitable/accurate VaR-ES estimation model is the principal 
aim of this review, which presents the crucial insights gained from examining a wide range of VaR- 
ES models. It discusses the relative strengths and weaknesses of the modelling alternatives. 
Specifically, it finds that extreme value theory (EVT) is a highly accurate candidate framework to 
model the tails of the returns distribution where extreme market events are realized. The EVT 
methodology is followed closely by the filtered historical simulation (FHS). In addition, the non- 
parametric Hill (1975) and Pickands (1975) family extensions of tail fatness index estimators and 
the asymmetric and non-linear extensions of the semi-parametric Conditional Quantile (CQ) 
approach yield quite accurate estimates. Moreover, in the parametric framework, conditional 
volatility models that assume skewed and leptokurtic distributions ₋ Skewed Generalized t (SGT), 
followed by the skewed generalized error and skewed t distributions ₋ which can accommodate 
volatility asymmetry and long memory, provide superior VaR forecasts. This is best observed in the 
realized volatility (RV) models, followed by the FIAPARCH models in the GARCH family. In fact, few 
empirical works like Asai et al. (2012), Chen et al (2012) and Abad and Benito (2013) suggest that 
the choice of the theoretical return distribution dominates over the choice of the conditional 
volatility model in the accuracy of VaR-ES estimates. Lastly, the corrected Cornish Fisher (CF) 
approach can offer reasonably accurate VaR-ES estimates.
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Note
1. In this paper, the terms “tail risk” and “extreme mar-

ket risk” have been used synonymously.
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Appendix

Table A1. A non-exhaustive chronology of few extreme market events

Timeline Extreme Market 
Event

Source/Classification Markets

1636 Dutch Tulip Crisis Asset (Price) Bubbles Europe

1720 South Street Sea Bubble Speculation Europe

1763 End of Seven Years War Asset Bubbles Amsterdam

1825 Crisis of 1825–1826 Sovereign Bond Default Europe, Latin America

1837 Crisis of 1836–1839 Cotton Prices England, United States

1857 Hamburg Crisis of 1857 Credit Expansion Hamburg, Sweden

1873 Panic of 1873 International Contagion U.S., Austria, Germany

1907 Panic of 1907 Banking Crisis across assets/markets

1929 Great Depression Banking Crisis U.S., Europe

1977 “Big Five” Crisis Real Estate Bubble, 
Banking Crisis

Spain

1980’s Debt Crisis of the 1980’s Sovereign Bond Default, 
Currency Crash

US

1987 “Big Five” Crisis Real Estate Bubble/ 
Banking Crisis

Norway

1990’s “Big Five” Crisis Real Estate Bubble/ 
Banking Crisis

Finland, Sweden, Japan

1994 Mexican Debt Crisis Currency/Banking Crisis Mexico

1997 East Asian Financial Crisis Currency Crash Asia

1998 Long-Term Capital Mgt. Ruble, Money Market US

1990’s Latin American Crisis Sovereign Bond Default Latin America

2000 Dot-Com Tech Bubble Asset Bubble US, World Wide

2008 Global Financial Crisis 
(GFC)

Asset Bubble, Credit 
Expansion

US, World Wide

2009 Dubai’s “Debt Standstill” GFC, Real Estate Bubble 
Burst, Credit Expansion

US, most currencies other 
than US$/¥,

2010 European Debt Crisis 
(EDC)

Real Estate Bubble, 
Banking Crises, Sovereign 
Debt

European bond markets

2011 “August 2011 Stock 
markets fall”

EDC of 2010 US, Europe, Middle East, 
rest of Asia

2015–16 Chinese Equity Market 
Crash

Asset Bubbles China, US

2018 Global Equity Market 
Downturn

Asset Bubbles US

2020 March 2020 Crash Zoonotic Multiple

Source: Cieslak et al. (2019), Nageswaran and Natarajan (2019), and Coombs and Van Der Heide (2020). 
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