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1. Introduction

The use of large datasets (i.e., “big data”) and machine learning for out-of-sample time-series

forecasting in macroeconomics and finance is burgeoning. Indeed, there is growing evidence

that the combination of large datasets and machine learning significantly improves out-of-

sample performance. Macroeconomic applications include forecasting inflation, output and

employment growth, the unemployment rate, unemployment insurance initial claims, and

recessions,1 while applications in finance often investigate stock return prediction.2 Large

datasets allow researchers to draw on a wealth of information, thereby increasing the capacity

of prediction models to incorporate relevant signals. Machine learning offers a variety of tools

for guarding against overfitting, which is vital for improving out-of-sample performance in

the presence of a large number of predictors.3 Some classes of machine-learning models—

such as random forests (Breiman 2001) and neural networks—accommodate general forms

of nonlinearities in predictive relations, further increasing the scope for improving out-of-

sample performance when nonlinerities are an important attribute of the data-generating

process (DGP).4

While researchers are certainly concerned with improving out-of-sample forecasting ac-

curacy, they are also keenly interested in interpreting fitted prediction models. For example,

especially with a large number of predictors, it is important to identify which predictors

1See, for example, Li and Chen (2014), Exterkate et al. (2016), Medeiros and Mendes (2016), Döpke,
Fritsche, and Pierdzioch (2017), Kim and Swanson (2018), Smeekes and Wijler (2018), Medeiros et al. (2021),
Vrontos, Galakis, and Vrontos (2021), Yousuf and Ng (2021), Borup and Schütte (2022), Goulet Coulombe
(2022), Goulet Coulombe et al. (2022), Borup, Rapach, and Schütte (forthcoming), and Hauzenberger,
Huber, and Klieber (forthcoming).

2See, for example, Chinco, Clark-Joseph, and Ye (2019), Rapach et al. (2019), Freyberger, Neuhierl, and
Weber (2020), Gu, Kelly, and Xiu (2020), Dong et al. (2022), Han et al. (2022), Avramov, Cheng, and
Metzker (forthcoming), and Chen, Pelger, and Zhu (forthcoming).

3Stock and Watson (2002a,b) spurred a literature that uses large datasets for macroeconomic forecasting
based on principal component regression (e.g., Stock and Watson 1999b; Bernanke and Boivin 2003; Banerjee
and Marcellino 2006). Studies that use large datasets and principal component regression to predict stock
returns include Ludvigson and Ng (2007), Neely et al. (2014), Çakmaklı and van Dijk (2016), and Dong
et al. (2022).

4Earlier studies that investigate nonlinear approaches to macroeconomic modeling and forecasting include
Lee, White, and Granger (1993), Kuan and White (1994), Swanson and White (1997), Stock and Watson
(1999a), Trapletti, Leisch, and Hornik (2000), Moshiri and Cameron (2000), Nakamura (2005), Medeiros,
Teräsvirta, and Rech (2006), and Marcellino (2008); see Teräsvirta (2006) for a survey of the earlier literature.
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are the most important for determining the forecasts generated by fitted models. It is also

valuable to know how the predictors contribute to out-of-sample forecasting accuracy. Such

knowledge helps users of forecasting models to wrap their minds around the models, so

that they are not simply black boxes that opaquely transform predictors into forecasts. By

identifying the most relevant predictors in fitted models that perform well out of sample,

researchers gain insight into empirically important economic mechanisms that can help guide

the assessment and development of theoretical models. In a similar vein, researchers involved

in policy need to be able to interpret forecasting models to provide more accessible advice

to policymakers.

An array of tools has been developed for interpreting fitted prediction models. Many of

the methods are model agnostic, so that they can be applied to any model. One set of tools

analyzes how individual predictors relate to the predictions generated by fitted models. Such

methods include partial dependence (PD) plots (Friedman 2001), Shapley values (Shapley

1953; Štrumbelj and Kononenko 2010, 2014; Lundberg and Lee 2017), individual conditional

expectation (ICE) plots (Goldstein et al. 2015), locally interpretable model-agnostic explana-

tions (LIME, Ribeiro, Singh, and Guestrin 2016), and accumulated local effects (ALE, Apley

and Zhu 2020). A related set of tools measures variable importance, namely, how impor-

tant individual predictors are in accounting for the predictions produced by fitted models.

Variable-importance metrics include those based on PD plots (Greenwell, Boehmke, and

McCarthy 2018), permutations (Fisher, Rudin, and Dominici 2019), and Shapley values

(Lundberg and Lee 2017; Casalicchio, Molnar, and Bischl 2018).

Tools for interpreting fitted forecasting models are typically applied in a manner that

is appropriate for cross-sectional data. Specifically, a researcher divides the total sample

of observations into training and test samples. The researcher then fits a prediction model

using data from the training sample and uses the fitted model to generate predictions for

the observations in the test sample. To interpret the model that generates the forecasts, the

researcher computes, for example, the variable importance for each predictor based on the
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fitted model and training data used to estimate the model. This conventional approach is

eminently reasonable, especially in a cross-sectional context.5 However, it is not necessarily

appropriate in a time-series setting. In such a setting, a researcher typically re-estimates

the prediction model each period using an expanding or rolling window of data, as they

generate a sequence of out-of-sample forecasts. Thus, instead of a single model, there is a

sequence of estimated models to interpret. The importance of the predictors in explaining the

sequence of out-of-sample forecasts is likely to be of interest. Moreover, because researchers

are concerned with out-of-sample performance, they will be interested in understanding how

the individual predictors contribute to out-of-sample forecasting accuracy.

In this paper, we propose metrics for interpreting time-series forecasting models. The

metrics are all based on Shapley values. Using insights from coalitional game theory, Shap-

ley values fairly allocate contributions among predictors and have attractive properties for

analyzing predictor relevance (as discussed in Section 2). The first metric is iShapley-VIp,

an in-sample variable-importance measure for predictor p. This is an aggregate measure

of an individual predictor’s importance across the entire set of fitted models that generate

the sequence of out-of-sample time-series forecasts. The next metric is oShapley-VIp, which

measures the importance of predictor p for the sequence of out-of-sample forecasts. The

final metric is the performance-based Shapley value (PBSVp), our main methodological con-

tribution. The iShapley-VIp and oShapley-VIp metrics are indifferent to the distance to the

realized target value; in contrast, PBSVp measures the contribution of predictor p to the

out-of-sample loss for the forecast evaluation period (although it can also be computed for

any subsample of the forecast evaluation period), thereby taking into account the realized

target value. In essence, PBSVp allows us to anatomize out-of-sample forecasting accuracy.

PBSVp applies to any loss function, including the popular mean squared error (MSE), root

mean squared error (RMSE), and mean absolute error (MAE) criteria. All of our metrics

are model agnostic, so that they can be applied to any forecasting model (linear or nonlin-

5For example, this approach is used on numerous occasions for the applications in the insightful textbook
by Molnar (2022).
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ear, parametric or nonparametric). In summary, our metrics provide an informative set of

tools for interpreting time-series forecasting models. To facilitate their implementation, we

develop computationally efficient algorithms for computing oShapley-VIp and PBSVp.

We illustrate the use of iShapley-VIp, oShapley-VIp, and PBSVp for analyzing a variety

of fitted models in an empirical application forecasting US inflation. Inflation forecasting

is the subject of a sizable literature and an important topic in many settings, including

for central banks when crafting monetary policy.6 A spate of recent studies finds that

nonlinear machine-learning models, including random forests and neural networks, signifi-

cantly improve inflation forecasts (e.g., Medeiros et al. 2021; Goulet Coulombe 2022; Goulet

Coulombe et al. 2022; Hauzenberger, Huber, and Klieber forthcoming). We generate inflation

forecasts using a set of more than 130 predictors—primarily from the FRED-MD database

(McCracken and Ng 2016)—and a variety of forecasting strategies—including principal com-

ponent regression, elastic net (ENet, Zou and Hastie 2005) estimation of a large-scale linear

model, random forests, and neural networks—as well as ensemble forecasts based on the

different strategies. Although the purpose of the application is not necessarily to generate

the “best” inflation forecasts, the different forecasting strategies often outperform a relevant

benchmark forecast by significant margins, so that the out-of-sample gains are substantial.

Applying our metrics to the fitted prediction models, we make two primary findings.

First, there is considerable overlap between the importance of the individual predictors based

on iShapley-VIp and oShapley-VIp. This is perhaps not surprising, as the fitted models used

in determining the importance of individual predictors for the in-sample and out-of-sample

predicted target values are the same. Second, there are often substantive discrepancies be-

tween the relevance of individual predictors according to the in-sample iShapley-VIp and

out-of-sample PBSVp. In a number of cases, predictors that are among the most important

according to iShapley-VIp contribute adversely to out-of-sample forecasting accuracy accord-

ing to PBSVp.
7 Differences in iShapley-VIp and PBSVp can arise due to overfitting and/or,

6See Faust and Wright (2013) for a survey of the inflation forecasting literature.
7Section A.3 of the Online Appendix reports results for another empirical application forecasting the US
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in a time-series context, changes in the DGP. The discrepancies between iShapley-VIp and

PBSVp in our empirical application serve as a warning: the in-sample importance of individ-

ual predictors in determining the predicted target values does not necessarily align with the

predictors’ roles in determining out-of-sample forecasting accuracy, even when a forecasting

strategy performs well.

Finally, we conduct simulations to glean insight into potential causes of the discrep-

ancies between iShapley-VIp and PBSVp, including overfitting, structural breaks in slope

coefficients, and evolving predictor volatilities. Based on sample sizes and DGPs that ac-

cord with the empirical application, we find that overfitting, structural breaks, and evolving

predictor volatilities all provide plausible explanations for differences in iShapley-VIp and

PBSVp. The DGPs can account for the differences in rankings of predictor relevance based

on iShapley-VIp and PBSVp that we find in the data. Of course, because we do not know

the actual DGP that generates inflation, we cannot definitively determine the causes of the

discrepancies. Nevertheless, the simulations shed light on plausible explanations for the

discrepancies between iShapley-VIp and PBSVp in the data.

The rest of the paper is organized as follows. Section 2 describes the iShapley-VIp,

oShapley-VIp, and PBSVp metrics for analyzing predictor relevance in a time-series context.

Section 3 presents our empirical application, while Section 4 reports simulation results for

analyzing potential reasons for differences in predictor relevance based on iShapley-VIp and

PBSVp. Section 5 concludes. We created the Python package anatomy to implement the

algorithms for computing oShapley-VIp and PBSVp.

2. Methodology

This section describes our methodology for measuring the relevance of individual predictors

in time-series forecasting models. We begin with a discussion of Shapley values (Shapley

equity premium; see Koijen and Van Nieuwerburgh (2011) and Rapach and Zhou (2013, 2022) for surveys
of the voluminous literature on equity premium predictability.
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1953), as they form the foundation for our approach. We then define in-sample and out-

of-sample variable-importance measures based on Shapley values. Finally, we propose the

PBSVp measure for analyzing the contributions of predictors to out-of-sample forecasting

accuracy.

We use the following notation in our time-series context. We index individual predictors

by p and collect the predictors in the index set S = {1, . . . , P}. The period-t P -dimensional

vector of predictor observations is denoted by xt = [ x1,t · · · xP,t ]′. The prediction model

is given by

yt+1:t+h = f(xt) + εt+1:t+h, (1)

where yt+1:t+h = (1/h)
∑h

k=1 yt+k is the target, h is the forecast horizon, f is the conditional

mean (i.e., prediction) function, and εt+1:t+h is a zero-mean disturbance term.8 We denote the

fitted prediction model by f̂ , while Wi = {ti,start, . . . , ti,end} denotes the set of observations

used to train the model based on window Wi. The fitted prediction model evaluated at xt

and trained using Wi for horizon h is denoted by f̂(xt ;Wi, h).

2.1. Shapley Values

Shapley values draw on coalitional game theory to utilize the analogy between the predictors

(or features) in a model and players in a cooperative game earning payoffs, where the payoff

corresponds to an individual predictor’s contribution to the model’s prediction. In a time-

series setting, the goal is to explain the prediction f̂(xt ;Wi, h) in terms of the marginal

contribution of each predictor xp,t for p ∈ S, given the presence of all of the other predictors

(S \ {p}). Viewed through the lens of coalitional game theory, Shapley values provide a

means for fairly allocating the contributions among predictors.

Adapting Štrumbelj and Kononenko (2010, 2014) to our time-series context, the Shapley

8It is straightforward to extend the notation to allow for the conditional mean function in Equation (1)
to include additional lags of xt.
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value for predictor p and instance xt for a model trained using window Wi for horizon h is

given by

ϕp(xt ;Wi, h) =
∑

Q⊆S\{p}

|Q|!(P − |Q| − 1)!

P !

[
ξQ∪{p}(xt ;Wi, h)− ξQ(xt ;Wi, h)

]
(2)

for p ∈ S and t ∈ Wi, where Q is a subset of predictors (i.e., a coalition), Q ⊆ S \ {p} is

the set of all possible coalitions of P − 1 predictors in S that exclude predictor p, |Q| is the

cardinality of Q, |Q|!(P − |Q| − 1)!/P ! is a combinatorial weight, and

ξQ(xt ;Wi, h) = E
[
f̂
∣∣Xj,t = xj,t ∀ j ∈ Q ;Wi, h

]
. (3)

The expression ξQ(xt ;Wi, h) in Equation (3) is the prediction of the fitted model condi-

tional on the predictors in coalition Q, so that ξQ∪{p}(xt ;Wi, h) − ξQ(xt ;Wi, h) in Equa-

tion (2) measures the change in the prediction, conditional on the predictors in coalition

Q, when the predictor p is included in the conditioning information set. The difference

ξQ∪{p}(xt ;Wi, h)− ξQ(xt ;Wi, h) is computed for all possible coalitions of P − 1 predictors

that exclude predictor p, with each quantity receiving the weight |Q|!(P − |Q| − 1)!/P ! in

the summation in Equation (2) (the weights sum to one). In essence, the Shapley value uses

coalitions to control for the other predictors when measuring the contribution of predictor p

to the prediction corresponding to instance xt.

The Shapley value in Equation (2) has a number of attractive properties, including the

following:

• Efficiency:
∑

p∈S ϕp(xt ;Wi, h) = f̂(xt ;Wi, h)− E
[
f̂ ;Wi, h

]
;

• Missingness: ∀R ⊆ S \ {p} : ξR∪{p}(xt ;Wi, h) = ξR(xt ;Wi, h) ⇒ ϕp(xt ;Wi, h) = 0;

• Symmetry: ∀R ⊆ S \ {p, q} : ξR∪{p}(xt ;Wi, h) = ξR∪{q}(xt ;Wi, h) ⇒ ϕp(xt ;Wi, h) =

ϕq(xt ;Wi, h);
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• Linearity: for any real numbers c1 and c2 and models f̂(xt ;Wi, h) and f̂ ′(xt ;Wi, h),

ϕp

(
c1

[
f̂(xt ;Wi, h) + c2f̂

′(xt ;Wi, h)
])

= c1ϕp

(
f̂(xt ;Wi, h)

)
+ c1c2ϕp

(
f̂ ′(xt ;Wi, h)

)
.

Efficiency, also known as local accuracy, says that we can exactly decompose the prediction

corresponding to instance xt (in terms of deviation from the average prediction) into the

sum of the Shapley values for the individual predictors for that instance. Missingness and

symmetry are intuitively appealing properties, while linearity is useful for computing Shapley

values for ensembles of prediction models.

It is practically infeasible to compute the exact Shapley value in Equation (2) for even a

moderate number of predictors, as the prediction function has to be evaluated for all possible

coalitions both with and without predictor p. Building on the sampling-based approach of

Castro, Gómez, and Tejada (2009), Štrumbelj and Kononenko (2014) develop an algorithm

for estimating ϕp(xt ;Wi, h). We use a refined version of their algorithm. We first express

Equation (2) in the equivalent form:

ϕp(xt ;Wi, h) =
1

P !

∑
O∈π(P )

[
ξPrep(O)∪{p}(xt ;Wi, h)− ξPrep(O)(xt ;Wi, h)

]
(4)

for p ∈ S and t ∈ Wi, where O is an ordered permutation for the predictor indices in S, π(P )

is the set of all ordered permutations for S, and Prep(O) is the set of indices that precede p

in O.

The algorithm is based on making a random draw with replacement for an ordered

permutation from π(P ), which we denote by Om. Using Om, we compute the following

measure:

θp,m(xt ;Wi, h) =
1

|Wi|
∑
s∈Wi

[
f̂(xj,t : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h)−

f̂(xj,t : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h)
] (5)

for p ∈ S and t ∈ Wi, where Postp(O) is the set of indices that follow p in O. Equation (5)

approximates the effect of removing predictors that are not in the coalition by replacing them
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with background data from the training sample (Štrumbelj and Kononenko 2014; Lundberg

and Lee 2017).9 The estimate of ϕp(xt ;Wi, h) in Equation (4) is then given by

ϕ̂p(xt ;Wi, h) =
1

2M

2M∑
m=1

θp,m(xt ;Wi, h) (6)

for p ∈ S and t ∈ Wi, where M is the number of random draws. To increase computational

efficiency, we follow Castro, Gómez, and Tejada (2009) and compute Shapley values for each

predictor p ∈ S for a randomly drawn ordered permutation from π(P ). In addition, we im-

plement antithetic sampling as a variance-reduction technique by computing θp,m(xt ;Wi, h)

in Equation (5) for the original order of a randomly drawn ordered permutation, as well as

when the order is reversed (Mitchell et al. 2022).10 Equation (6) retains the properties in

Section 2.1, including efficiency, so that

∑
p∈S

ϕ̂p(xt ;Wi, h) = f̂(xt ;Wi, h)− ¯̂
f(Wi, h)︸ ︷︷ ︸
ϕ̂∅(Wi,h)

(7)

for t ∈ Wi, where
¯̂
f(Wi, h) = (1/|Wi|)

∑
t∈Wi

f̂(xt ;Wi, h) is the average in-sample prediction

for the model trained using sample Wi, which corresponds to the unconditional forecast (i.e.,

the forecast based on the empty coalition set, denoted by ϕ̂∅(Wi, h)).

Suppose that the prediction model is linear in the predictors: f(xt) = α +
∑P

p=1 βpxp,t;

the fitted prediction model is given by f̂(xt) = α̂ +
∑P

p=1 β̂pxp,t, where α̂, β̂1, . . . , β̂P are

estimates of α, β1, . . . , βP , respectively. In this case, the Shapley value in Equation (4) is

9“Background data” refer to the data that are used to integrate out the predictors that are not in the
coalition when estimating the conditional expectation in Equation (3). Equation (5) effectively samples
from the empirical marginal distribution based on the training sample for the predictors not in the coalition,
which implicitly assumes that the predictors not in the coalition are distributed independently of those in the
coalition. Because this assumption is not likely to hold in practice, Lundberg and Lee (2017) propose sampling
from the empirical conditional distribution for the predictors not in the coalition. However, using insights
from Pearl (2009), Janzing, Minorics, and Blöbaum (2020) argue that, to fairly allocate the contributions
across the individual predictors, it is more appropriate to use the empirical marginal distribution, as in
Equation (5).

10The algorithm in Equations (5) and (6) can be implemented with these enhancements in the Permutation
Explainer in the SHAP package in Python when max_samples is set to the number of instances in the training
sample.
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given by

ϕ̂p(xt ;Wi, h) = β̂p(xp,t − x̄p) (8)

for p ∈ S and t ∈ Wi, where x̄p is the sample mean of xp,t for the training sample. Because

there are no interactions for a linear model, it is straightforward to compute the Shapley

values via Equation (8).11

The Shapley value ϕ̂p(xt ;Wi, h) provides a local measure of the contribution of predictor

p to the prediction corresponding to instance xt in the training sample. A global measure of

the importance of predictor p can be computed by taking the average of the absolute values

of the Shapley values for predictor p across the training sample observations:

Shapley-VIp(Wi, h) =
1

|Wi|
∑
t∈Wi

∣∣∣ϕ̂p(xt ;Wi, h)
∣∣∣ (9)

for p ∈ S. The variable-importance measure in Equation (9) is a popular metric for assessing

predictor importance in machine-learning applications (e.g., Molnar 2022, Chapter 9.6).

Equation (9) is based on a single training sample. Tools for interpreting fitted models are

typically applied in this manner, which is appropriate for cross-sectional data (or time-

series data if a researcher only estimates the prediction model once). The following diagram

illustrates the conventional case for cross-sectional data indexed by i = 1, . . . , n, where the

first ntrain observations comprise the training sample.

i = 1 nntrain

Shapley-VIp

In a time-series context, however, researchers often re-estimate the model on a regular basis

11Similarly, suppose that the fitted prediction model is a general additive model (GAM): f(xt) =∑P
p=1 fp(xp,t); the fitted prediction model is given by f̂(xt) =

∑P
p=1 f̂p(xp,t). For a GAM, there are no

interactions between the predictors, but each predictor can affect the target in a nonlinear fashion. In the
case of a linear model or GAM, because there are no interactions, we can conveniently compute the Shapley
value by running the algorithm with only one iteration.
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over time as additional data become available, so that there are multiple training samples.

In Section 2.2, we develop variable-importance metrics that are more suited to this practice.

2.2. In-Sample and Out-of-Sample Shapley Values

When forecasting time-series variables in macroeconomics and finance, it is common to

regularly retrain the prediction model using data available at the time of forecast formation.

For example, if we are forecasting a monthly variable at horizon h, we re-estimate the

prediction model each month as additional data become available, which is typically done

using either an expanding or rolling window, where the estimation sample becomes longer

(remains the same size) for the former (latter). Suppose that there are t = 1, . . . , T total

observations available. The initial in-sample period ends in t = Tin, while the remaining

T − Tin = D observations constitute the out-of-sample period.

Mimicking the situation of a forecaster in real time, we proceed as follows. We first use

data from t = 1 through t = Tin to fit the prediction model and generate an out-of-sample

forecast of yTin+1:Tin+h. After accounting for the forecast horizon and lag in Equation (1),

there are Tin − (h− 1)− 1 usable observations for training the prediction model for the first

out-of-sample forecast. For an expanding (rolling) window, we then use data from t = 1

(t = 2) through Tin + 1 to fit the prediction model and generate a forecast of yTin+2:Tin+h+1.

Continuing in this manner, we generate a sequence of D − (h − 1) out-of-sample forecasts,

where, for the final forecast, we use data from the first period (period T − D − (h− 1))

through T − h for an expanding (rolling) window to fit the prediction model and generate a

forecast of yT−(h−1):T . Note that we only use data available at the time of forecast formation

to train the model, so that there is no look-ahead bias in the out-of-sample forecasts.

The Shapley-based variable importance in Equation (9) corresponds to a prediction model

trained once using the observations in Wi. To accommodate the sequence of D − (h − 1)

time-series forecasts for models regularly retrained with an expanding or rolling window, we

denote the set of training samples by W =
{
W1, . . . ,WD−(h−1)

}
. In this context, we define

11



the in-sample Shapley-based variable importance as

iShapley-VIp(W,h) =
1

|W |
∑
i∈W

Shapley-VIp(Wi, h) (10)

for p ∈ S, which is the average of the variable-importance measures for predictor p across all

of the training samples that are used to generate the sequence of time-series forecasts. To

help make the temporal dimension of Equation (10) clear, the following diagram shows how

iShapley-VIp(W,h) is computed in terms of the time-series observations for an expanding

window and h = 1.

t = 1 Tin Tin + 1 T − 1 T

iShapley-VIp(W1, 1)

iShapley-VIp(W2, 1)

iShapley-VIp(WD, 1)

iShapley-VIp(W, 1) =
1

D

D∑
i=1

iShapley-VIp(Wi, 1)

We are also interested in measuring variable importance for the sequence of out-of-sample

forecasts. We begin by defining the Shapley value for the fitted model and vector of predictors

used to generate an out-of-sample forecast, which corresponds to an out-of-sample version

of Equation (4):

ϕout
p

(
xTin+(i−1) ;Wi, h

)
=

1

P !

∑
O∈π(P )

[
ξPrep(O)∪{p}

(
xTin+(i−1) ;Wi, h

)
− ξPrep(O)

(
xTin+(i−1) ;Wi, h

)]
(11)

for p ∈ S and i = 1, . . . , D− (h− 1), where xTin+(i−1) is the vector of predictors plugged into

the fitted prediction model trained with Wi that is used to generate the ith out-of-sample

forecast given by ŷTin+i:Tin+h+(i−1) = f̂
(
xTin+(i−1) ;Wi, h

)
. To estimate Equation (11), we use
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a suitably modified version of the algorithm in Section 2.1. For a random draw of an ordered

permutation Om, we modify Equation (5) to

θ out
p,m

(
xTin+(i−1) ;Wi, h

)
=

1

|Wi|
∑
s∈Wi

[
f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)
−

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)]
,

(12)

while Equation (6) becomes

ϕ̂out
p

(
xTin+(i−1) ;Wi, h

)
=

1

2M

2M∑
m=1

θ out
p,m

(
xTin+(i−1) ;Wi, h

)
(13)

for p ∈ S and i = 1, . . . , D − (h− 1). Equation (12) continues to approximate the effect of

removing predictors that are not in the coalition by replacing them with background data

from Wi, as this is the sample that is used to train the prediction model that generates the

out-of-sample forecast; in this sense, we remain true to the model that we use for forecasting.12

The ϕ̂out
p

(
xTin+(i−1) ;Wi, h

)
estimate in Equation (13) continues to be characterized by

efficiency, so that we can decompose the out-of-sample forecast corresponding to xTin+(i−1)

as follows:

∑
p∈S

ϕ̂p

(
xTin+(i−1) ;Wi, h

)
= f̂

(
xTin+(i−1) ;Wi, h

)
− ϕ̂∅(Wi, h). (14)

For a model that is linear in the predictors, the Shapley value in Equation (11) is given by

ϕ̂out
p

(
xTin+(i−1) ;Wi, h

)
= β̂p

(
xp,Tin+(i−1) − x̄p

)
(15)

for p ∈ S and i = 1, . . . , D − (h− 1), where β̂p and x̄p are again the estimate of βp and

12“True to the model” means that we use parameter estimates from the fitted prediction model and
background data from the training sample that is used to fit the prediction model. In other words, we retain
the basic elements of the fitted model when estimating the Shapley value in Equation (13).
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sample mean of xp,t, respectively, based on the training sample.

Taking the absolute value of ϕ̂out
p

(
xTin+(i−1) ;Wi, h

)
in Equation (13) produces a Shapley-

based variable-importance measure for predictor p and a particular out-of-sample forecast.

To compute the variable importance for p for the entire sequence of out-of-sample forecasts,

we proceed analogously to the in-sample Shapley-based variable importance in Equation (10)

and define the out-of-sample Shapley-based variable importance by taking the average of the

absolute values of Equation (13) across the out-of-sample forecasts:

oShapley-VIp(W,h) =
1

|W |
∑
i∈W

∣∣∣ϕ̂out
p

(
xTin+(i−1) ;Wi, h

)∣∣∣ (16)

for p ∈ S. The following diagram depicts how the time-series observations are incorporated

into Equation (16) for an expanding window and h = 1.

t = 1 Tin Tin + 1 Tin + 2 T − 1 T

ϕ̂p
(
xTin

;W1, 1
)

ϕ̂p
(
xTin+1;W2, 1

)
ϕ̂p(xT−1;WD, 1)

ŷTin+1

ŷTin+2

ŷT

oShapley-VIp(W, 1) =
1

D

D∑
i=1

∣∣∣ϕ̂p

(
xTin+(i−1);Wi, 1

)∣∣∣

2.3. Performance-Based Shapley Values

Out-of-sample forecasts are typically assessed using a loss function. Accordingly, we propose

PBSVp to decompose the loss over the out-of-sample period into the components attributable

to the individual predictors p ∈ S.

The key insight for computing PBSVp is to wrap a loss function around the predictions
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in Equation (12). We denote a generic loss function by

L
(
yTin+i:Tin+h+(i−1), ŷTin+i:Tin+h+(i−1)︸ ︷︷ ︸

f̂(xTin+(i−1);Wi,h)

)
. (17)

To incorporate the loss function, we further modify the algorithm. For a random draw of an

ordered permutation Om, we adjust Equation (12) as follows:

θ out
p,m

(
xTin+(i−1) ;Wi, h, L

)
=

L

yTin+i:Tin+h+(i−1),
1

|Wi|
∑
s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)−

L

yTin+i:Tin+h+(i−1),
1

|Wi|
∑
s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)
(18)

for p ∈ S and i = 1, . . . , D − (h− 1). Equation (13) becomes

ϕ̂out
p

(
xTin+(i−1) ;Wi, h, L

)
=

1

2M

2M∑
m=1

θ out
p,m

(
xTin+(i−1) ;Wi, h, L

)
(19)

for p ∈ S and i = 1, . . . , D − (h− 1). The local PBSVp in Equation (19) measures the

contribution of predictor p to the loss incurred by the ith out-of-sample forecast. Like

Equation (12), Equation (18) approximates the effect of removing predictors that are not in

the coalition by replacing them with background data from the training sample Wi, so that

we continue to remain true to the model that generates the out-of-sample forecast. Based

on the logic of Shapley values, the local PBSVp in Equation (19) fairly allocates the loss

among the predictors for the ith out-of-sample forecast. Equation (19) is characterized by

efficiency:

∑
p∈S

ϕ̂out
p

(
xTin+(i−1) ;Wi, h, L

)
= L

(
yTin+i:Tin+h+(i−1), f̂

(
xTin+(i−1) ;Wi, h

))
− ϕ̂out

∅ (Wi, h, L) (20)

for i = 1, . . . , D − (h− 1), where ϕ̂out
∅ (Wi, h, L) corresponds to the loss for the prediction
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conditional on the empty coalition set.

Because the loss function can be nonlinear, for a prediction model that is linear in the

predictors, we do not have a simple expression analogous to Equation (8) or Equation (15)

for the local PBSVp. Nevertheless, in the special case of a linear model, we can derive an

analytical expression for the local PBSVp for a specific loss function. For example, consider

the squared error loss for the ith out-of-sample forecast:

L
(
yTin+i:Tin+h+(i−1), ŷTin+i:Tin+h+(i−1)

)
=
(
yTin+i:Tin+h+(i−1) − ŷTin+i:Tin+h+(i−1)

)2
. (21)

For a linear model and Equation (21), the local PBSVp can be expressed as

ϕ̂out
p

(
xTin+(i−1) ;Wi, h,SE

)
= β̂p

(
xp,Tin+(i−1) − x̄p

)︸ ︷︷ ︸
ϕ̂out
p (xTin+(i−1);Wi,h)

[(
ŷTin+i:Tin+h+(i−1) − yTin+i:Tin+h+(i−1)

)

−
(
yTin+i:Tin+h+(i−1) − ϕ̂∅(Wi, h)

)]
,

(22)

where ϕ̂out
p

(
xTin+(i−1) ;Wi, h

)
= β̂p

(
xp,Tin+(i−1) − x̄p

)
is from Equation (15). We can view

ϕ̂∅(Wi, h) in Equation (22) as a näıve forecast that ignores the information in the predictors

and simply uses the sample mean of the target for the training sample as the prediction.

For the squared error loss, the local PBSVp measures the contribution of predictor p to the

squared error for the forecast that incorporates the information in the predictors relative

to the squared error for the näıve forecast that ignores the information. In the special case

of a linear model, Equation (22) says that ϕ̂out
p

(
xTin+(i−1) ;Wi, h, SE

)
is proportional to the

error for the forecast based on the set of predictors—after adjusting for the näıve forecast

error—where the factor of proportionality is given by β̂p

(
xp,Tin+(i−1) − x̄p

)
(i.e., the Shapley

value for predictor p and instance xTin+(i−1) for a linear model). Furthermore, the sign of

ϕ̂out
p

(
xTin+(i−1) ;Wi, h, SE

)
in Equation (22) depends on the signs of the term in brackets and

β̂p

(
xp,Tin+(i−1) − x̄p

)
.

To gain some intuition for Equation (22), suppose that the linear model forecast is perfect
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(ŷTin+i:Tin+h+(i−1) = yTin+i:Tin+h+(i−1)). In addition, assume that the realized target value is

greater than the näıve forecast (yTin+i:Tin+h+(i−1) > ϕ̂∅(Wi, h)), so that the term in brackets in

Equation (22) is negative. If β̂p

(
xp,Tin+(i−1) − x̄p

)
> 0, then ϕ̂out

p

(
xTin+(i−1) ;Wi, h, SE

)
< 0.

In this case, predictor p contributes to the forecast being higher than the näıve forecast—

since β̂p

(
xp,Tin+(i−1) − x̄p

)
> 0—which is in line with the realized target value being greater

than the näıve forecast; accordingly, the local PBSVp in Equation (22) deems that predictor

p contributes to lowering the squared error vis-à-vis the näıve forecast.13

We are primarily interested in the performance of the entire sequence of out-of-sample

forecasts, so that we also define a global PBSVp. To obtain the global PBSVp, we again

modify the algorithm. Specifically, we expand Equation (18) to reflect the average loss for

the out-of-sample period:

θ out
p,m(W,h,L) =

1

|W |
∑
i∈W

L

(
yTin+i:Tin+h+(i−1),

1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

))
−

1

|W |
∑
i∈W

L

(
yTin+i:Tin+h+(i−1),

1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

))
(23)

for p ∈ S. To remain true to the model, Equation (23) continues to approximate the effect

of removing predictors that are not in the coalition by replacing them with background data

from the training sample. Equation (19) is now given by

ϕ̂out
p (W,h, L) =

1

2M

2M∑
m=1

θ out
p,m(W,h, L) (24)

for p ∈ S. The global PBSVp in Equation (24) allows us to decompose the average loss for a

13Conversely, if β̂p

(
xp,Tin+(i−1) − x̄p

)
< 0, then ϕ̂out

p

(
xTin+(i−1) ;Wi, h,SE

)
> 0. In this case, although

the linear model forecast is perfect, the local PBSVp deems that predictor p increases the squared er-
ror vis-à-vis the näıve forecast, as p contributes to the forecast being below the näıve forecast, while
the realized target value is above the näıve forecast. A perfect forecast, yTin+i:Tin+h+(i−1) > ϕ̂∅(Wi, h),

and β̂p

(
xp,Tin+(i−1) − x̄p

)
< 0 imply that there are one or more other predictors q ̸= p for which

β̂q

(
xp,Tin+(i−1) − x̄p

)
> 0 and ϕ̂out

q

(
xTin+(i−1) ;Wi, h,SE

)
< 0, as the other predictors contribute to the

forecast being higher than the näıve forecast, ultimately producing the perfect forecast.
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sequence of out-of-sample forecasts into the contributions of each of the P predictors. In this

way, we anatomize out-of-sample performance by fairly assessing how the individual predic-

tors contribute to out-of-sample forecasting accuracy. Equation (24) is again characterized

by efficiency:

∑
p∈S

ϕ̂out
p (W,h,L) =

1

|W |
∑
i∈W

L
(
yTin+i:Tin+h+(i−1), f̂

(
xTin+(i−1);Wi, h

))
− ϕ̂out

∅ (W,h,L), (25)

where ϕ̂out
∅ (W,h, L) corresponds to the average loss for the sequence of forecasts based on the

empty coalition set. Section A.1 of the Online Appendix provides details for our algorithm for

computing PBSVp. The algorithm can be used to compute PBSVp for any fitted prediction

model (as well as ensembles of prediction models) and any loss function.14

Our PBSVp bears some resemblance to the Shapley feature importance (SFIMP) met-

ric in Casalicchio, Molnar, and Bischl (2018), in that both measures are computed using a

loss function for the out-of-sample observations. However, there are important differences

between PBSVp and SFIMP. SFIMP assumes that the prediction model is estimated only

once, which is more appropriate for cross-sectional data, while PBSVp is explicitly designed

for time-series data when the out-of-sample forecasts are generated by a sequence of fitted

models based on an expanding or rolling window. Furthermore, there are substantive dif-

ferences in the algorithms used to compute PBSVp and SFIMP (beyond the fact that the

former is based on a sequence of fitted models, while the latter is not). For example, SFIMP

uses background data from the test sample to control for predictors not in the coalition when

computing Shapley values; in contrast, Equation (23) always uses background data from the

training sample, so that we remain true to the fitted models that generate the out-of-sample

forecasts.15 In summary, PBSVp provides a means for fairly allocating the out-of-sample

loss for a sequence of time-series forecasts across the individual predictors, thereby shedding

14In addition to the entire out-of-sample period, PBSVp in Equation (24) can also be computed for any
subsample of interest for the forecast evaluation period (e.g., the Great Recession or COVID-19 pandemic).

15PBSVp has a different focus from the “Shapley regressions” proposed by Joseph (2021). Shapley re-
gressions relate the realized target values to Shapley values for the out-of-sample observations in a linear
regression framework.
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light on the anatomy of out-of-sample forecasting accuracy.

As an example of computing PBSVp for a specific loss function, consider the MSE crite-

rion:

MSE =
1

|W |
∑
i∈W

[
yTin+i:Tin+h+(i−1) − f̂

(
xTin+(i−1) ;Wi, h

)]2
. (26)

To obtain the global PBSVp for the MSE using the algorithm, we use the following version

of Equation (23):

θ out
p,m(W,h,MSE) =

1

|W |
∑
i∈W

[
yTin+i:Tin+h+(i−1) −

1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)]2
−

1

|W |
∑
i∈W

[
yTin+i:Tin+h+(i−1) −

1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)]2
(27)

for p ∈ S. Equation (24) is then given by

ϕ̂out
p (W,h,MSE) =

1

2M

2M∑
m=1

θ out
p,m(W,h,MSE) (28)

for p ∈ S. According to the efficiency property,

∑
p∈S

ϕ̂out
p (W,h,MSE) = MSE− ϕ̂out

∅ (W,h,MSE). (29)

Because it is expressed in the same units as the target, the RMSE (i.e., the square root

of the MSE) is often reported. For the RMSE, we straightforwardly modify Equation (27)
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as follows:

θ out
p,m(W,h,RMSE) = 1

|W |
∑
i∈W

[
yTin+i:Tin+h+(i−1) −

1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)]2
0.5

−

 1

|W |
∑
i∈W

[
yTin+i:Tin+h+(i−1) −

1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)]2
0.5

.

(30)

We have analogous versions of Equations (28) and (29):

ϕ̂out
p (W,h,RMSE) =

1

2M

2M∑
m=1

θ out
p,m(W,h,RMSE) (31)

and

∑
p∈S

ϕ̂out
p (W,h,RMSE) = RMSE− ϕ̂out

∅ (W,h,RMSE), (32)

respectively.16

3. Forecasting Inflation

In this section, we use the time-series metrics developed in Section 2 to analyze out-of-sample

forecasts of US inflation. Inflation forecasting is an important topic in macroeconomics,

including for policymakers. There is recent evidence that traditional inflation benchmark

forecasts can be outperformed by the use of big data in conjunction with machine-learning

methods, and the outperformance is largely attributable to nonlinearities (e.g., Medeiros

et al. 2021; Goulet Coulombe 2022; Goulet Coulombe et al. 2022; Hauzenberger, Huber, and

Klieber forthcoming). In addition to nonlinearities, forecasting inflation is an interesting

16We use M = 500 for the algorithms when computing iShapley-VIp, oShapley-VIp, and PBSVp for the
empirical application in Section 3.
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case study because there is evidence of structural breaks in inflation processes for numerous

countries, including the United States (e.g., Stock and Watson 1996, 2003; O’Reilly and

Whelan 2005; Bataa et al. 2013, 2014).

We begin with the following general prediction model for inflation:

πt+1:t+h = f
(
πAR

t−L:t,wt,w
MA(q)
t

)
+ εt+1:t+h, (33)

where πt+1:t+h = (1/h)
∑h

k=1 πt+k, πt = log(CPIt) − log(CPIt−1), CPIt is the month-t US

consumer price index (CPI), πAR
t−L:t = [ πt · · · πt−L ]′ captures the autoregressive (AR)

component in inflation, wt is a vector of predictors, and w
MA(q)
t = (1/q)

∑q
k=1wt−(k−1) is a

vector of MAs of order q for the predictors in wt. The inclusion of MAs of the predictors

is motivated by Goulet Coulombe et al. (2021), who find that MAs of predictors provide

substantive out-of-sample gains for forecasting macroeconomic variables. We set q = 3,

which allows predictors up to a quarter in the past to affect the prediction. In terms of the

AR component, we set L = 11, corresponding to twelve lags of inflation in Equation (33).

Based on Equation (33), the forecast of πt+1:t+h is given by

π̂t+1:t+h = f̂
(
πAR

t−L:t,wt,w
MA(q)
t

)
, (34)

where f̂ is the fitted prediction model based on data through t.

A natural starting point for generating an inflation forecast based on multiple predictors

is a linear predictive regression model:

πt+1:t+h = α + x′
t β︸ ︷︷ ︸

f(xt)

+ εt+1:t+h, (35)

where xt = [ πAR
t−L:t

′
w′

t w
MA(q) ′
t

]′, α is the intercept, and β = [ β1 · · · βP ]′ is a P -

dimensional vector of slope coefficients. It is straightforward to estimate Equation (35) via
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ordinary least squares (OLS), leading to the forecast:

π̂OLS
t+1:t+h = α̂OLS + x′

t β̂
OLS, (36)

where α̂OLS and β̂OLS are the OLS estimates of α and β, respectively, in Equation (35) based

on data through t. Although straightforward to compute, the forecast in Equation (36) tends

to perform poorly in practice. By construction, OLS maximizes the fit of the model over

the training sample, which can result in in-sample overfitting and thus poor out-of-sample

performance. Because inflation contains a sizable unpredictable component, the signal-to-

noise ratio is relatively small, so that the forecast in Equation (36) is likely to perform poorly,

especially when P is large and the predictors are correlated.

3.1. Forecasting Strategies

We consider four strategies for improving inflation forecasts. The first two are based on linear

specifications, while the last two allow for general nonlinearities in the prediction model. All

of the approaches employ a rolling estimation window. We also consider ensemble forecasts

that combine forecasts based on the different strategies.

3.1.1. Principal Component Regression

Our first forecasting approach is principal component regression (PCR). Beginning with

Stock and Watson (2002a,b), there is an ample literature that uses PCR to forecast macroe-

conomic variables, including inflation. Let zt = [ z1,t · · · zC,t ]′ denote the vector con-

taining the first C principal components corresponding to xt, where C ≪ P . The PCR

specification can be expressed as

πt+1:t+h = αz + z′
t βz + εt+1:t+h, (37)
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where βz = [ βz,1 · · · βz,C ]′ is a C-dimensional vector of slope coefficients. The forecast

corresponding to Equation (37) is given by

π̂PCR
t+1:t+h = α̂OLS

z + ẑ′
t β̂

OLS
z , (38)

where α̂OLS
z and β̂OLS

z are the OLS estimates of αz and βz, respectively, in Equation (37),

and ẑt is the C-dimensional vector of the first C principal components computed from xt,

all of which are based on data through t. Because the principal components are linear

combinations of the underlying predictors in xt, the PCR forecast is linear in the predictors.

Intuitively, we extract a limited set of principal components from xt to estimate the key

latent variables that underlie the comovements among the entire set of predictors, thereby

filtering much of the noise in the individual predictors to produce a more reliable signal;

the principal components then serve as predictors in a low-dimensional predictive regression

with uncorrelated explanatory variables.17 We select L in πAR
t−L:t and C by choosing the

combination that maximizes the adjusted R2 for the training sample (allowing for maximum

values of eleven and ten for L and C, respectively).18

3.1.2. Elastic Net

The second approach uses the ENet (Zou and Hastie 2005) to estimate Equation (35). The

ENet is a refinement of the least absolute shrinkage and selection operator (LASSO, Tibshi-

rani 1996), a popular machine-learning device for implementing shrinkage. The LASSO and

ENet employ penalized regression to shrink the estimated slope coefficients toward zero to

guard against overfitting, and there is evidence that penalized regression helps to improve

inflation forecasting (e.g., Li and Chen 2014; Medeiros and Mendes 2016; Smeekes and Wijler

2018). The LASSO relies on the ℓ1 norm in its penalty term, so that it can shrink slope

17The principal components are uncorrelated by construction. Following convention, we standardize the
predictors (using data through t) before computing the principal components.

18It is also possible to estimate an AR-augmented PCR regression, where the AR terms are estimated
separately. Doing so results in slightly worse out-of-sample performance.
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coefficients to exactly zero, thereby performing variable selection. A potential drawback to

the LASSO is that it tends to arbitrarily select a single predictor from a group of highly

correlated predictors. The ENet mitigates this tendency by including both ℓ1 and ℓ2 compo-

nents in its penalty term; the latter component is from ridge regression (Hoerl and Kennard

1970).

The objective function for ENet estimation of Equation (35) can be expressed as

argmin
α,β

1

2[t− (h− 1)− 1]


t−(h−1)−1∑

s=1

[πs+1:s+h − (α + x′
s β)]

2

+ λPδ(β), (39)

where

Pδ(β) = 0.5(1− δ)∥β∥22 + δ∥β∥1; (40)

λ ≥ 0 is a hyperparameter that governs the degree of shrinkage; ∥·∥1 and ∥·∥2 are the ℓ1

and ℓ2 norms, respectively; and 0 ≤ δ ≤ 1 is a hyperparameter for blending the ℓ1 and

ℓ2 components in the penalty term.19 We follow the recommendation of Hastie and Qian

(2016) and set δ = 0.5, which they point out results in a stronger tendency to select highly

correlated predictors as a group. To tune λ, we use a walk-forward cross-validation procedure

that is designed for a time-series context. The ENet forecast based on Equation (35) is given

by

π̂ENet
t+1:t+h = α̂ENet + x′

t β̂
ENet, (41)

where α̂ENet and β̂ENet are the ENet estimates of α and β, respectively, in Equation (35)

based on data through t.

19The ENet objective function in Equation (39) reduces to that for OLS when λ = 0. If δ = 1 (δ = 0),
then Equation (39) corresponds to the LASSO (ridge) objective function.
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3.1.3. Random Forest

Our next strategy employs the random forest (RF) estimator of Breiman (2001). RFs are

nonlinear machine-learning techniques that have a strong track record in macroeconomic

forecasting (e.g., Medeiros et al. 2021; Borup and Schütte 2022; Goulet Coulombe et al. 2022).

RFs build on regression trees, machine-learning devices for incorporating nonlinearities in

a flexibe manner via multi-way interactions and higher-order effects of the predictors. A

regression tree is constructed by sequentially splitting the predictor space into regions, with

the final set of regions referred to as terminal nodes or leaves. The prediction is the average

value of the target in a given leaf. We can express the forecast corresponding to a regression

tree with U leaves as

π̂RT
t+1:t+h =

U∑
u=1

π̄u1u(xt ;ηu), (42)

where the indicator function 1u(xt ;ηu) = 1 if xt ∈ Ru(ηu) for the uth region denoted by

Ru (which is determined by the parameter vector ηu) and 0 otherwise, and π̄u is the average

value of the target observations in Ru for the training sample based on data through t.

A large (or deep) regression tree is typically able to capture complex nonlinear relations

in the data. However, in light of the bias-variance trade-off, it is susceptible to overfitting

due to the high variance of the tree. The RF methodology reduces the variance by averaging

forecasts over many regression trees, where each tree is constructed based on a bootstrap

sample of the original data using a randomly selected subset of the predictors for each split.

By using a randomly selected subset of the predictors, we decorrelate the trees to further

reduce the variance. Indexing the bootstrap samples by b, the RF forecast is given by

π̂RF
t+1:t+h =

1

B

B∑
b=1

[
U∑

u=1

π̄(b)
u 1(b)

u (xt ;ηu)

]
, (43)

where B is the number of bootstrap samples, and π̄
(b)
u and 1

(b)
u (xt ;ηu) are the counterparts
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to π̄u and 1u(xt ;ηu), respectively, in Equation (42) for the bth bootstrap sample. We set

B = 500 and let each tree grow fully deep. The proportion of predictors randomly selected

for each split is tuned via a walk-forward cross-validation procedure.

3.1.4. Neural Network

The final strategy that we consider for forecasting inflation employs feedforward neural

networks (NNs). NNs are machine-learning devices that permit nonlinearities and have

proven useful for forecasting macroeconomic variables (e.g., Borup, Rapach, and Schütte

forthcoming; Hauzenberger, Huber, and Klieber forthcoming). An NN contains multiple

layers. The first is the input layer, which is comprised of the set of predictors, followed by

L ≥ 1 hidden layers. Each hidden layer l contains Pl neurons, where each neuron takes

signals from the neurons in the previous layer to generate a subsequent signal:

h(l)
m = g

(
ω
(l)
m,0 +

Pl−1∑
j=1

ω
(l)
m,jh

(l−1)
j

)
(44)

for m = 1, . . . , Pl and l = 1, . . . , L, where h
(l)
m is the signal corresponding to the mth neuron

in the lth hidden layer;20 ω
(l)
m,0, ω

(l)
m,1, . . . , ω

(l)
m,Pl−1

are weights; and g(·) is a nonlinear activation

function. The output layer is the final layer. It takes the signals from the last hidden layer

and converts them into a prediction:

π̂NN
t+1:t+h = ω

(L+1)
0 +

PL∑
j=1

ω
(L+1)
j h

(L)
j . (45)

For the activation function, we use the popular rectified linear unit (ReLU) function: g(x) =

max{x, 0}.

To illustrate the basic structure of a feedforward NN, the following diagram shows a net-

work consisting of five inputs and two hidden layers with four and two neurons, respectively,

20For the first hidden layer, h
(0)
j = xj,t for j = 1, . . . , P .
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where ŷ generically denotes the forecast of the target:

x1

x2

x3

x4

x5

Input

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden(1)

h
(2)
1

h
(2)
2

Hidden(2)

ŷ

Output

The interactions in the network and activation function permit complex nonlinearities as the

inputs feed through to the hidden layers and finally to the output layer. Theoretically, a single

hidden layer is sufficient for approximating any smooth function (Cybenko 1989; Funahashi

1989; Hornik, Stinchcombe, and White 1989; Hornik 1991; Barron 1994). However, there

are potential advantages to including multiple hidden layers in NNs (Goodfellow, Bengio,

and Courville 2016; Rolnick and Tegmark 2018), so that NNs with multiple hidden layers

are commonly used.

Determining the NN architecture—that is, the number of hidden layers and number of

neurons in each layer—for a given application largely remains an empirical matter, and

we cannot know that the optimal architecture has been selected (Goodfellow, Bengio, and

Courville 2016). Accordingly, we choose an equal-weighted ensemble of two different NN

architectures: a shallow NN with one hidden layer and a deep NN with three hidden layers.21

We follow a conventional geometric pyramid rule (Masters 1993) in setting the number of

neurons in the hidden layers, so that the shallow NN has ⌈
√
P ⌉ neurons in its hidden payer,

while the deep neural network has ⌈P 3/4⌉, ⌈P 2/4⌉, and ⌈P 1/4⌉ in its first, second, and third

hidden layers, respectively.

Fitting an NN necessitates estimating the weights, which is typically done using a stochas-

21An NN with one or two (three or more) hidden layers is typically called a shallow (deep) NN.
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tic gradient descent (SGD) algorithm. We fit the NNs by minimizing the training sample

MSE using the Adam SGD algorithm (Kingma and Ba 2015). To reduce the influence of the

random number generator in the initialization of the weights when estimating the NNs, we fit

each model 200 times with a different seed each time and use the median of the predictions.22

3.1.5. Ensembles

We also consider ensembles of prediction models, which are popular in the machine-learning

literature. An ensemble forecast can be straightforwardly computed as a simple average of

the forecasts generated by the models in the ensemble.23 We construct three ensembles:

• Ensemble-linear: average of the linear PCR and ENet forecasts in Sections 3.1.1

and 3.1.2, respectively;

• Ensemble-nonlinear: average of the nonlinear RF and NN forecasts in Sections 3.1.3

and 3.1.4, respectively;

• Ensemble-all: average of all of the individual forecasts in Sections 3.1.1 to 3.1.4.

3.2. Data

We measure inflation based on the US CPI. CPI data are from the FRED database at the

Federal Reserve Bank of St. Louis (ticker CPIAUCSL). The predictors are from three data

sources. First, we use a set of 121 predictors from the FRED-MD database (McCracken

and Ng 2016), which is employed by a number of recent macroeconomic forecasting studies

(e.g., Kotchoni, Leroux, and Stevanovic 2019; Medeiros et al. 2021; Borup and Schütte 2022;

22Although the Adam SGD algorithm is a powerful optimizer, it is our experience that NNs at times get
stuck near local minima. Using the median of 200 fitted NNs substantially reduces the influence of local
minima in computing the prediction. We fit the NNs using the scikit-learn package in Python. We
implement a degree of regularization by augmenting the objective function with an ℓ2 penalty term; we set
the hyperparameter for the ℓ2 penalty term to 0.0001 in the MPLregressor function. The batch size and
number of epochs are set to 32 and 1,000, respectively.

23The algorithm for computing the PBSVp in Equation (24) straightforwardly accommodates ensemble
forecasts, including those that use data-driven methods to select the combining weights (e.g., Gospodinov
and Maasoumi 2021).
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Goulet Coulombe et al. 2022; Hauzenberger, Huber, and Klieber forthcoming). Second, we

include seven predictors from the Institute for Supply Management: Manufacturing Inven-

tories Index, Manufacturing Production Index, Manufacturing New Orders Index, Manufac-

turing Employment Index, Manufacturing Prices Index, Manufacturing Supplier Deliveries

Index, and PMI Composite Index. Finally, we consider three predictors from the Univer-

sity of Michigan Survey of Consumers: Index of Consumer Sentiment, Index of Consumer

Expectations, and Index of Current Economic Conditions.

Section A.2 of the Online Appendix provides a complete list of the inflation predictors.

The sample period covers 1960:01 to 2022:01. We specify 1960:01 to 1999:12 as the initial

in-sample period and compute out-of-sample forecasts for 2000:01 to 2022:01. Because we

use a rolling estimation window, as we move through time, we include an additional monthly

observation at the end of the training sample and drop the first monthly observation from

the previous training sample.

3.3. Results

An AR model of order k serves as the benchmark, where we determine k recursively using the

Bayesian information criterion (BIC, Schwarz 1978), considering a maximum value of twelve

(so that the general prediction model in Equation (33) nests the benchmark). Like the models

in Sections 3.1.1 to 3.1.4, we estimate the AR benchmark model via a rolling window. The

AR model is a standard benchmark in the macroeconomic forecasting literature, including

for inflation (e.g., Kotchoni, Leroux, and Stevanovic 2019; Medeiros et al. 2021), and is

designed to account for the evident persistence in inflation.

We evaluate the inflation forecasts using the RMSE criterion. Table 1 reports results for

the accuracy of the inflation forecasts for horizons of one, three, six, and twelve months. The

table provides the RMSE for the AR benchmark forecast, as well as the RMSE ratio for each

competing forecast vis-à-vis the AR benchmark. We use the Diebold and Mariano (1995)

and West (1996) statistic to test the null hypothesis that the MSE (in population) for the
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Table 1: Out-of-Sample Forecasting Results for Inflation

The table reports the root mean squared error (RMSE) for an autoregressive (AR) benchmark
forecast and RSME ratio for the competing forecast in the first column vis-à-vis the AR benchmark
forecast for inflation for 2000:01 to 2022:01 and the forecast horizon (h) in the column heading.
The forecasts are generated using a rolling estimation window; the initial window spans 1960:01
to 1999:12. Brackets report the p-value for the Diebold and Mariano (1995) and West (1996)
statistic for testing the null hypothesis that the benchmark forecast MSE is less than or equal to
the competing forecast MSE against the (one-sided, upper tail) alternative hypothesis that the
benchmark forecast MSE is greater than the competing forecast MSE.

(1) (2) (3) (4) (5)

Forecast h = 1 h = 3 h = 6 h = 12

AR RMSE 0.29% 0.26% 0.21% 0.17%

Principal component regression 1.098 0.980 0.977 0.961

[0.930] [0.311] [0.352] [0.284]

Elastic net 0.958 0.951 0.979 1.003

[0.021] [0.060] [0.354] [0.529]

Random forest 1.010 0.971 0.980 0.738

[0.631] [0.274] [0.100] [0.010]

Neural network 0.973 0.894 0.855 0.730

[0.184] [0.022] [0.055] [0.008]

Ensemble-linear 1.000 0.947 0.958 0.939

[0.505] [0.052] [0.231] [0.118]

Ensemble-nonlinear 0.973 0.908 0.858 0.720

[0.160] [0.032] [0.046] [0.006]

Ensemble-all 0.965 0.909 0.878 0.763

[0.077] [0.016] [0.048] [0.006]

AR benchmark forecast is less than or equal to that for the competing forecast against the

(one-sided, upper-tail) alternative that the AR forecast MSE is greater than the competing

forecast MSE.24

The RMSE for the AR benchmark forecast decreases monotonically with the horizon from

0.29% (h = 1) to 0.17% (h = 12) in Table 1. For the one-month horizon, the RMSE ratios

24We use a robust standard error (Newey and West 1987) to compute the Diebold and Mariano (1995)
and West (1996) statistic, which accounts for the autocorrelation induced by overlapping observations when
h > 1.
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in the second column are less than one for four of the seven competing forecasts, so that

the competing forecasts produce a lower RMSE than the AR benchmark for the majority

of cases. Specifically, the linear ENet and nonlinear NN forecasts, as well as the Ensemble-

nonlinear and Ensemble-all forecasts, outperform the benchmark. The improvement in MSE

is statistically significant at the 5% (10%) level for the linear ENet (Ensemble-all) forecast.

The ENet forecast is the most accurate for the one-month horizon, lowering the RMSE by

4.2% compared to the AR benchmark, followed by Ensemble-all, with an RMSE reduction

of 3.5%.

The accuracy of the competing forecasts relative to the AR benchmark typically improves

as the horizon increases. All of the competing forecasts outperform the AR benchmark for

the three- and six-month horizons in the third and fourth columns, respectively, of Table 1,

and the majority of the decreases in MSE vis-à-vis the AR benchmark are significant at

the 5% or 10% level. For the three-month horizon, the NN forecast is the most accurate,

with a reduction in RMSE of 10.6% relative to the AR benchmark. The Ensemble-nonlinear

and Ensemble-all forecasts also perform well, with RMSE reductions of 9.2% and 9.1%,

respectively. For the six-month horizon, the NN forecast lowers the RMSE by 14.5% relative

to the AR benchmark, again making it the most accurate forecast. The Ensemble-nonlinear

and Ensemble-all forecasts again perform well, reducing the RMSE by 14.2% and 12.2%,

respectively.

For the twelve-month horizon in the last column of Table 1, six of the seven competing

forecasts outperform the AR benchmark in terms of RMSE (the exception is the linear ENet,

with an RMSE ratio slightly above one). The improvements in MSE vis-à-vis the AR bench-

mark are significant at the 1% level for the RF, NN, Ensemble-nonlinear, and Ensemble-all

forecasts. The nonlinear RF and NN forecasts produce sizable RMSE reductions of 26.2%

and 27%, respectively, while the Ensemble-nonlinear forecast performs the best, reducing

the RMSE by 28%. The Ensemble-all approach also performs well, delivering an RMSE re-
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duction of 23.7%.25 Consistent with the recent literature, Table 1 indicates that big data in

conjunction with machine learning is an effective strategy for forecasting inflation and that

nonlinear machine-learning devices are especially useful for forecasting inflation at longer

horizons.

Figure 1 shows the iShapley-VIp and oShapley-VIp measures in Equations (10) and (16),

respectively, as well as the global PBSVp in Equation (31) based on the RMSE, for the NN

forecast. Using the methodology in Section 2.3, the PBSVp measures in Figure 1 decompose

the RMSEs for the NN forecasts in Table 1 into components attributable to the individual

predictors. The different panels in Figure 1 display results for the different horizons. The

predictors on the horizontal axis in each panel are ordered according to iShapley-VIp. The

red bars and black lines correspond to iShapley-VIp and oShapley-VIp, respectively, while the

green bars correspond to ϕ̂out
p (W,h,RMSE) in Equation (31).26 To conserve space, the hori-

zontal axis contains the 25 most important and five least important predictors in descending

order based on iShapley-VIp. The numbers associated with the green bars are rankings for

the contributions of the predictors to out-of-sample forecasting accuracy, where predictors

with a positive (negative) ranking contribute negatively (positively) to RMSE over the out-

of-sample period; for example, a ranking of 1 (−1) signifies the predictor that contributes

the most in a positive (negative) sense to out-of-sample forecasting accuracy.27

Comparing the red bars with the black lines, there is a reasonably close correspondence

between in-sample and out-of-sample variable importance according to iShapley-VIp and

oShapley-VIp, respectively. This is perhaps not surprising, as the in-sample and out-of-

sample predicted target values are based on the same fitted models when determining the

importance of individual predictors. Comparing the red to the green bars, we also see consid-

erable accord across the in-sample iShapley-VIp and out-of-sample PBSVp. This is especially

25As expected, the OLS forecast in Equation (36) substantially underperforms the AR benchmark at all
horizons.

26In Figures 1 to 4, we sum the Shapley values for each predictor and its MA(q). We also sum the Shapley
values for the twelve lags of inflation.

27By a positive (negative) contribution to out-of-sample forecasting accuracy, we mean an improvement
(deterioration) in accuracy.
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Figure 1. Variable importance and PBSV for NN inflation forecast. The figure shows iShapley-VI
(left axis), oShapley-VI (left axis), and PBSV (right axis) measures for the neural network (NN) inflation
forecast for the 2000:01 to 2022:01 out-of-sample period. The forecast is generated using a rolling estimation
window; the initial window spans 1960:01 to 1999:12. iShapley-VI (oShapley-VI) is the predictor’s importance
for all of the in-sample predictions over all of the rolling estimation windows (out-of-sample forecasts); PBSV
is the predictor’s contribution to the RMSE over the out-of-sample period. The predictors on the horizontal
axis are the top 25 and bottom five predictors ordered according to their importance based on iShapley-
VI. The numbers associated with the green bars are rankings of predictors according to PBSV; a positive
(negative) ranking indicates predictors that improve (decrease) out-of-sample forecasting accuracy.

evident for the AR component (ar), which is the most relevant predictor according to both

iShapley-VIp and PBSVp for horizons of one, three, and twelve months; for the six-month

horizon, ar is the first (second) most relevant predictor based on iShapley-VIp (PBSVp).
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Other predictors that appear relatively important based on both iShapley-VIp and PBSVp

for the different horizons include various interest rate spreads (baaffm, aaafm, t5yffm),

Average Weekly Hours: Manufacturing (awhman), CPI: Medical Care (cpimedsl), Average

Weekly Hours: Goods-Producing (ces0600000007), and Manufacturing Prices Index (man_-

prices).

However, there are also major points of discord between the in-sample iShapley-VIp

and out-of-sample PBSVp in Figure 1. These often involve predictors related to housing.

For example, Housing Starts: South (housts) is the predictor that contributes the most

to increasing the out-of-sample loss for all horizons, while it is always among the 25 most

important predictors based on the in-sample iShapley-VIp. Although it appears among the

top 25 predictors on an in-sample basis for the one- and three-month horizons, Housing

Starts: Northeast (houstne) contributes the second most to increasing the out-of-sample

loss for these horizons. The Index of Consumer Expectations (soc_ice) is the fourth most

important predictor for the one-month horizon and second most important predictor for the

remaining horizons on an in-sample basis, but it is among the predictors that contribute

the most to out-of-sample loss for the four horizons. The Index of Consumer Sentiment

(soc_ics) and Manufacturing Employment Index (man_empl) evince similar discrepancies

between their in-sample importance and contributions to out-of-sample forecasting accuracy.

Figure 2 depicts results for the Ensemble-nonlinear forecast. Overall, the results are

similar to those for the NN forecast in Figure 1. We see that numerous predictors are im-

portant in Figure 2 according to the in-sample iShapley-VIp and also contribute positively

to forecasting accuracy according to the out-of-sample PBSVp. These predictors again in-

clude ar, cpimedsl, various interest rate spreads, man_prices, and awhman. However, like

Figure 1, there are also notable discrepancies between iShapley-VIp and PBSVp in Figure 2.

The predictor housts again appears among the top predictors in terms of in-sample variable

importance, while it contributes the most to increasing out-of-sample loss. Discrepancies

between iShapley-VIp and PBSVp are also evident for Housing Permits: South (permits)
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Figure 2. Variable importance and PBSV for Ensemble-nonlinear inflation forecast. See the
notes for Figure 2 with Ensemble-nonlinear replacing the neural network forecast.

for the one-month horizon; soc_ice, soc_ics, and man_empl for all reported horizons; and

houstne for the three-month horizon.

For the Ensemble-linear forecast in Figure 3, there are generally fewer discrepancies

between iShapley-VIp and PBSVp. Predictors that rank highly in terms of both their

in-sample importance and contributions to improvements in out-of-sample forecasting ac-

curacy across the reported horizons include ar, Average Hourly Earnings: Manufacturing

(ces3000000008), baaffm, Personal Consumption Expenditures: Durable Goods
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Figure 3. Variable importance and PBSV for Ensemble-linear inflation forecast. See the notes
for Figure 2 with Ensemble-linear replacing the neural network forecast.

(ddurrg3m086sbea), and CPI: Durables (cusr0000sad). There are still some notable dis-

crepancies between iShapley-VIp and PBSVp, including for soc_ice for all reported horizons,

Total Reserves of Depository Institutions (totresns) for the one-month horizon, Housing

Permits: West (permitw) for the three-month horizon, and Unfilled Orders for Durable

Goods (amdmuox) for the six- and twelve-month horizons.

Overall, the results in Figures 1 to 3 indicate the following. While there is often agreement

between a predictor’s in-sample variable importance and its contribution to improvements

36



in out-of-sample forecasting accuracy, this is not necessarily the case. We find a number

of instances where a variable that is deemed relatively important on an in-sample basis

contributes to out-of-sample performance in a manner that decreases forecasting accuracy.28
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Figure 4. Cumulative difference in squared errors for NN inflation forecasts. The figure shows
the cumulative difference in squared errors for the autoregressive (AR) benchmark forecast vis-à-vis the
neural network (NN) forecast for the 2000:01 to 2022:01 out-of-sample period. Shifts to the right (left)
imply an improvement (deterioration) in forecasting performance relative to the AR benchmark. The figure
also shows the two top (bottom) contributors to the improvement (deterioration) in forecasting performance
for non-overlapping 24-month subsamples in the out-of-sample period; a green (red) color for the predictor
indicates that the 24-month subsample is associated with an improvement (deterioration) in performance.
Horizontal gray bars indicate 24-month subsamples that contain an NBER-dated recession.

To get a sense of out-of-sample forecasting performance over time, Figure 4 plots the cu-

mulative difference in squared errors (CDSE, Goyal and Welch 2008) between the benchmark

28Section A.3 of the Online Appendix reports results for an empirical application forecasting the US
equity premium using 28 predictors from Neely et al. (2014). We also find important discrepancies between
iShapley-VIp and PBSVp for equity premium forecasts.
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and a competing forecast. To conserve space, we focus on the NN forecast, as it generally

performs well in Table 1, and report results for horizons of one, six, and twelve months.

The CDSE provides a convenient and informative graphical device for ascertaining whether

a competing forecast is more accurate than the benchmark for any subsample of the out-of-

sample period. In terms of Figure 4, we compare the CDSE at the beginning and end of the

interval corresponding to a subsample. If the curve lies more to the right (left) at the end of

the interval relative to the beginning, then the NN (AR) forecast is more accurate in terms

of MSE for the subsample. We also use our procedure in Section 2.3 to compute PBSVp

measures for the NN forecast for non-overlapping 24-month rolling subsamples. Figure 4

shows the two predictors that contribute the most to positive performance during a subsam-

ple, as well as the two that contribute the most to negative performance. Predictors in green

(red) to the right (left) of the curve indicate that the NN forecast delivers a lower (higher)

MSE than the AR benchmark for the subsample. The variables in green (red) help us to

identify the predictors that are most responsible for the outperformance (underperformance)

of the NN forecast vis-à-vis the AR benchmark for the subsample. The horizontal gray bars

indicate 24-month subsamples that contain an NBER-dated recession.

The CDSE plots in Figure 4 are consistently positively sloped (when viewed from top

to bottom), so that the NN forecasts outperform the AR benchmark on a consistent basis

over time. The plots are relatively steeply sloped during the Global Financial Crisis and

concomitant Great Recession in the late 2000s, so that the information in the set of predictors

is especially useful for forecasting inflation during that period.

For the one-month horizon in the left panel of Figure 4, there are three 24-month periods

for which the price of oil (oilpricex) is the predictor most responsible for the outperfor-

mance of the NN forecast relative to the AR benchmark, including during the recent reces-

sion corresponding to the advent of COVID-19. This is not surprising, given the important

influence of oil prices—and energy prices more generally—on short-run CPI fluctuations.

But oil prices are far from the complete story. Among the other predictors, awhman and
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ces0600000007 are primarily responsible for the outperformance of the NN forecast for a

number of periods during the 2010s. Consistent with the top panel of Figure 1, housts is

the predictor most responsible for the relatively poor performance of the NN forecast for

four of the six 24-month periods when the NN forecast fails to beat the AR benchmark in

the left panel of Figure 4.

For the six-month horizon in the middle panel of Figure 4, awhman and ces0600000007

play even more important roles in accounting for the outperformace of the NN forecast vis-

à-vis the AR benchmark starting in 2010, as awhman (ces0600000007) is selected among

the top two predictors for seven (six) of the 24-month periods. The importance of awhman

for forecasting inflation accords with Clark et al. (2022) and Goulet Coulombe (2022), who

find that awhman is a leading inflation predictor based on nonparametric Bayesian methods

and hemispheric neural networks, respectively. Indeed, Goulet Coulombe (2022) finds that

awhman (in combination with other predictors) is particularly pertinent for measuring eco-

nomic “slack” in a deep learning-based Phillips Curve. Together with our PBSVp results,

this suggests that the average number of hours worked in manufacturing is a more potent

forcing variable than unemployment in Phillips curve and NN-based inflation forecasting

models.

The right panel of Figure 4 shows results for the twelve-month horizon. In addition to the

importance of ces0600000007, Housing Starts: Midwest (houstmw) and cpimedsl emerge

as leading predictors in accounting for the outperformance of the NN forecast compared to

the AR benchmark. With respect to cpimedsl, it is the leading predictor for three of the

24-month periods starting in 2014. Medical care inflation is considerably more stable than

volatile CPI components like food and energy price inflation. In fact, Bils and Klenow (2004)

and Bryan and Meyer (2010) rank medical care among the stickiest components of the CPI

(in terms of its low frequency of price adjustment), and it is an important component in

the Federal Reserve Bank of Atlanta’s Sticky-Price CPI. Accordingly, cpimedsl (or some

nonlinear transformation of it) likely captures slowly evolving inflation expectations that

39
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can be important for forecasting inflation at longer horizons (Bryan and Meyer 2010).

4. Simulations

Section 3 provides evidence that the out-of-sample PBSVp in Equation (24) can rank pre-

dictors quite differently from the in-sample iShapley-VIp in Equation (10) (as well as the

out-of-sample oShapley-VIp in Equation (16)). To understand potential reasons for such dif-

ferences, we use Monte Carlo simulations to highlight situations where there can be a wedge

between the rankings of predictors according to iShapley-VIp and PBSVp. We evaluate

differences in rankings using the mean squared deviation in rankings (MSDR):

MSDR =
1

P

P∑
p=1

[
ranking

(
ϕ̂out
p (W,h, L)

)
− ranking

(
iShapley-VIp(W,h)

)]2
, (46)

where ϕ̂out
p (W,h, L) is the global PBSVp in Equation (24). Of course, we do not know the

true DGP for the empirical applications in Section 3, so that we cannot know the actual

reasons for the differences in rankings. The simulations are intended to shed light on the

relevance of plausible explanations for the divergence in rankings. We consider three poten-

tial explanations: overfitting, structural breaks in slope coefficients, and evolving predictor

volatilities.

We incorporate nonlinearities in the simulations via a modification of the oft-used “Fried-

man DGP” (e.g., Friedman, Grosse, and Stuetzle 1983; Friedman 1991):

πt+1 =
28∑
i=1

z̃i,t + εt+1, (47)

z̃i,t = β1,iz1,i,t + β2,i sin(πz1,i,tz2,i,t) + β3,i(z3,i,t − 0.5)2 + β4,iz4,i,t + β5,iz5,i,t (48)

for i = 1, . . . , 28. We collect the complete set of predictors in the vector zt = [ z′
1,t · · · z′

28,t
]′,

where zi,t = [ z1,i,t · · · z5,i,t ]′ for i = 1, . . . , 28. In essence, we sum many low-dimensional
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Friedman DGPs to construct a large-scale DGP with P = 28×5 = 140 predictors. Collecting

the slope coefficients in β = [ β′
1 · · · β′

28
]′, where βi = [ β1,i · · · β5,i ]

′ for i = 1, . . . , 28,

for each iteration, we draw the each slope coefficient independently from the uniform dis-

tribution U(−P/2, P/2).29 For the predictors, we assume that zt ∼ N (0,Σz), where Σz is

based on the predictor data in Section 3. For the disturbance term in Equation (47), we

assume that εt ∼ N (0, σ2). To ensure that the R2 statistic is at the desired level for the

DGP, we set

σ2 = var

(
28∑
i=1

z̃i,t

)/[
−R2/

(
R2 − 1

)]︸ ︷︷ ︸
STN

, (49)

where STN is the signal-to-noise ratio. In addition, we center and scale the right-hand-side

of Equation (47) so that the generated data for πt have the same mean and variance as

actual inflation over the out-of-sample period in Section 3. The sizes of the initial in-sample

and out-of-sample periods match those for the application in Section 3. For each iteration of

generated time-series observations (and using 1,000 iterations), as in Section 3, we compute

the linear PCR and ENet forecasts in Sections 3.1.1 and 3.1.2, respectively, and nonlinear RF

and NN forecasts in Sections 3.1.3 and 3.1.4, respectively, using a rolling estimation window,

as well as the ensemble forecasts in Section 3.1.5. For the various forecasts, we compute pre-

dictor rankings based on iShapley-VIp and ϕ̂out
p (W,h,RMSE) and the standardized MSDR.30

Finally, we take the average of simulated standardized MSDRs across the iterations.

To investigate the potential role of overfitting, the top panel of Figure 5 shows the relation

between the standardized MSDR and signal strength as measured by the R2 statistic. Results

are reported for the nonlinear RF and NN forecasts, as well as the Ensemble-linear and

Ensemble-nonlinear forecasts. The horizontal dashed line at 50% corresponds to a baseline

case in which the rankings are random, so that there is no link between iShapley-VIp and

29We introduce some sparsity by setting the seven slope coefficients with the smallest magnitudes to zero.
30We standardize the MSDR by dividing the MSDR in Equation (46) by the maximum MSDR between

two rankings (i.e., the MSDR for rankings {1, 2, . . . , P − 1, P} and {P, P − 1, . . . , 2, 1}), which is given by(
P 2 − 1

)
/3.
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Figure 5. Standardized MSDR for DGPs based on the empirical application. The figure shows
the standardized mean squared deviation in rankings (MSDR) for data-generating processes (DGPs) based
on the empirical application in Section 3.

PBSVp.
31 The figure also includes horizontal dotted lines corresponding to standardized

MSDRs based on the actual data for h = 1 for the application in Section 3. The MSDR

curves in the top panel of Figure 5 are negatively sloped (and monotonically so), so that, as

31The expected MSDR for two permutations is
(
P 2 − 1

)
/6, so that the standardized MSDR for the random

baseline is
[(
P 2 − 1

)
/6
]
/
[(
P 2 − 1

)
/3
]
= 0.5.
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expected, differences in predictor rankings based on iShapley-VIp and PBSVp decrease as the

signal strength increases. This is consistent with the intuitive notion that overfitting creates

greater discrepancies between iShapley-VIp and PBSVp as the signal strength weakens. The

horizontal dotted lines intersect the corresponding MSDR curves at about 20%, 25%, 35%,

and 65% for the Ensemble-linear, RF, Ensemble-nonlinear, and NN forecasts, respectively; in

other words, these values for the R2 statistics in the DGP are consistent with the differences

in predictor rankings in Section 3.

We next consider structural breaks in slope coefficients as a source of differences in

predictor rankings. Structural breaks are a natural candidate for explaining divergences

in iShapley-VIp and PBSVp, as they create changes in the DGP over time. We introduce

structural breaks using the same DGP, except that we fix the R2 statistic at 75% and generate

the slope coefficients as follows. For each iteration, we draw three vectors of slope coefficients

via the uniform distribution. Each period, with some probability, the DGP can change from

the current vector of slope coefficients to one of the other two vectors.32

The middle panel of Figure 5 depicts how the standardized MSDR varies with the proba-

bility of a structural break in the slope coefficients. The MSDR curves are nearly uniformly

positively sloped, so that differences in predictor rankings increase as structural breaks in

the slope coefficients occur more frequently, indicating that structural breaks provide a plau-

sible explanation for discrepancies between predictor rankings based on iShapley-VIp and

PBSVp. According to the intersections of the horizontal dotted lines and MSDR curves, the

simulations suggest that structural break probabilities of approximately 0.03%, 0.08%, 0.2%,

and 0.3% for the NN, Ensemble-nonlinear, Ensemble-linear, and RF forecasts, respectively,

are in line with the results for the application in Section 3.

We consider evolving predictor volatilities as a final potential reason for differences in

predictor rankings. Similarly to structural breaks in slope coefficients, evolving volatilities

are a natural candidate for explaining differences in rankings, since they constitute changes

32When a change occurs, the DGP moves to one of the other two vectors of slope coefficients with equal
probability.
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in the DGP over time, such as a predictor taking on more extreme values during a crisis.

In terms of the DGP, we again generate the slope coefficients via the uniform distribution,

hold the slope coefficients constant over time, and again set the R2 statistic to 75%. To

incorporate evolving volatilities, each period, with some probability, the magnitude of one

of the predictors increases by a factor of ten. The predictor experiencing the increase in its

magnitude is selected randomly, and the increase in magnitude lasts for twelve periods.

The bottom panel of Figure 5 examines the effects of evolving predictor volatilities on the

differences in predictor rankings. The MSDR curves are nearly uniformly positively sloped, so

that, as anticipated, differences in predictor rankings become greater as the probability of an

increase in the magnitude of a predictor increases. The intersections of the horizontal dotted

lines with the MSDR curves suggest that magnitude change probabilities of around 0.5%,

2%, 2.5%, and 3.5% for the NN, Ensemble-nonlinear, Ensemble-linear, and RF forecasts,

respectively, are consistent with the results in Section 3.

In summary, Figure 5 indicates that a weaker signal strength, greater probability of a

structural break in slope coefficients, and greater probability of an increase in the magnitude

of a predictor lead to larger differences in predictor rankings based on iShapley-VIp and

PBSVp. These patters appear quite plausible and provide insight into potential reasons for

the discrepancies between predictor rankings for the application in Section 3.

5. Conclusion

As large datasets and machine learning become more popular in macroeconomics and finance,

researchers are increasingly concerned with interpreting forecasting models fitted with time-

series data. While the literature provides a variety of informative tools for interpreting

fitted prediction models, existing tools are typically more appropriate for models estimated

with cross-sectional data. In this paper, we develop metrics based on Shapley values for

interpreting time-series forecasting models. The metrics recognize that forecasting models
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are re-estimated on a regular basis as additional data become available over time. The

iShapley-VIp and oShapley-VIp metrics measure the importance of a predictor for explaining

the in- and out-of-sample predicted target values, respectively. Our primary methodological

contribution is the PBSVp, which measures the contribution of a predictor to the out-of-

sample loss. By computing PBSVp for the set of predictors that are used to compute a

sequence of time-series forecasts, we anatomize the model’s out-of-sample forecasting accu-

racy. Our metrics are flexible: they are model agnostic, so that they can be applied to any

prediction model (as well as ensembles of models), and PBSVp can be applied to any loss

function.

We use our metrics to interpret fitted models that employ large datasets and machine

learning to forecast US inflation. In line with the recent literature, we find that large datasets

in conjunction with machine learning generate significant out-of-sample gains for forecasting

inflation. When it comes to model interpretation, the iShapley-VIp and oShapley-VIp metrics

generally paint the same picture in terms of the importance of individual predictors for the

in- and out-of-sample predicted target values produced by the fitted models. In contrast,

we detect a number of substantial differences in the rankings of predictors according to

the in-sample iShapley-VIp and out-of-sample PBSVp. This finding makes an important

cautionary point: when researchers interpret time-series forecasting models, predictors that

are important for determining a model’s predicted values are not necessarily those that are

primarily responsible for the model’s out-of-sample forecasting accuracy. Via simulations,

we explore potential causes of the discrepancies between iShapley-VIp and PBSVp, including

overfitting relating to the signal-to-noise ratio, structural breaks in slope coefficients, and

evolving predictor volatilities. The simulations suggest that all three factors provide plausible

explanations for the differences between iShapley-VIp and PBSVp that we find in the data.
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