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Meta-analyses of partial correlations are biased: Detection and solutions

T. D. Stanley”, Hristos Doucouliagos”, and Tomas Havranek™™

Abstract

We demonstrate that all meta-analyses of partial correlations are biased, and yet hundreds of meta-
analyses of partial correlation coefficients (PCC) are conducted each year widely across
economics, business, education, psychology, and medical research. To address these biases, we
offer a new weighted average, UWLS+3. UWLS+3 is the unrestricted weighted least squares
weighted average that makes an adjustment to the degrees of freedom that are used to calculate
partial correlations and, by doing so, renders trivial any remaining meta-analysis bias. Our
simulations also reveal that these meta-analysis biases are small-sample biases (n < 200), and a
simple correction factor of (n-2)/(n-1) greatly reduces these small-sample biases. In many
applications where primary studies typically have hundreds or more observations, partial
correlations can be meta-analyzed in standard ways with only negligible bias. However, in other
fields in the social and the medical sciences that are dominated by small samples, these meta-
analysis biases are easily avoidable by our proposed methods.
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1. INTRODUCTION

Every year, hundreds of meta-analyses of partial correlation coefficients (PCC) are conducted
widely across economics, business, education, psychology, and medical research.! Some
researchers consider partial correlations to be the preferred effect size to summarize multiple
regressions. Others recommend using partial correlations as a last resort when different measures
of the dependent variable and/or the independent variable of interest are routinely employed in the
relevant area of research.? What is not widely recognized is that all meta-analyses of PCCs are
biased regardless of whether fixed effect (FE), random effects (RE), or the unrestricted weighted
least squares (UWLS) weighted average are employed and in the absence of any publication
selection bias." The purpose of this paper is to offer a simple and practical solution to these meta-

analysis biases.

2. PARTIAL CORRELATION COEFFICIENTS

Across many disciplines, multiple regressions are employed to evaluate the effect of a treatment,
condition, or variable upon some outcome of interest after controlling for other, potential

contaminating, effects or obscuring complexities. Multiple regression can be represented as:
Yi = BO+31X1i+ﬁZX2i+"'+ﬁiji+€i i = 1,2,...,7’1, (1)

where Y is the dependent variable or outcome of interest. Without loss of generalization, we take

X, as the primary variable of interest (perhaps a dichotomous variable representing treatment). The

i According to Google Scholar, 229 articles were published in 2022 that include all the following phrases: “partial
correlation”, “meta-analysis”, and “publication bias”. Because publication bias is discussed primarily in a meta-
analysis context, the last phrase is included to increase the probability that the corresponding study is a meta-analysis,
not a primary study citing a meta-analysis. In addition, Google Scholar lists 51 articles published in 2022 that are
classified as review articles, include the exact phrases “partial correlation” and “meta-analysis”, but exclude
“publication bias”. Because many meta-analyses are not classified as review articles in Google Scholar, we believe
that 250 is a lower bound for the number of meta-analyses of PCCs in the Google Scholar database. However, Google
Scholar will also list duplicates as theses and preprints may also be listed as published papers. Nonetheless, there are
probably at least 200 meta-analyses of partial correlations conducted per year.

i The unrestricted weighted least squares (UWLS) weighted average has been shown to have better statistical
properties than RE when there is publication selection bias or when heterogeneity is correlated with sample size (or
SE), which meta-research evidence finds in psychology.?**®* Recently, UWLS is shown to better represent medical
research than RE across over 67,000 meta-analyses of approximately 600,000 studies.*



other Xs are independent variables that are thought to affect the outcome. j is the total number of

independent variables, and ¢; represent sampling errors and other residuals.

Multiple regression is used with observational data, quasi-experiments, and other
experimental designs when additional experimental conditions or subject characteristics need to
be considered. For our purposes, the strength of the experimental design is not relevant as long as
the focus of the meta-analysis is upon the estimated multiple regression coefficient, 3;, across the
research literature. However, in some cases, observational multiple regressions can offer strong

research designs.®

The partial regression coefficient, £;, is not a standardized effect. It is measured in terms
of Y per unit increase in X;. Any change in the measure, metric, or scale of either X; or Y from one
study to the next will render different estimates of 5; uncomparable. PCCs solve this problem.
They have the same statistical properties and interpretation as simple bivariate correlations after
the effects of X, X5, ..., X; have been eliminated.* Simple bivariate Pearson correlations are often
employed as effect sizes in meta-analysis, and partial correlations come with the same advantages

and limitations.

Gustafson® mathematically derived a convenient formula that converts any partial

regression coefficient, 8;, into a partial correlation coefficient, Ty:

i /,/t2+df’ @

where t = S% is the conventional t-test for the statistical significance of X; in the explanation of
Y,and df =n —j — 1 are the degrees of freedom available to the multiple regression, eq. (1). 7,
can be interpreted as a standardized regression coefficient that estimates the number of standard
deviations that Y increases when X; increases by a one standard deviation, holding all other
variables constant, and rpz is the proportion of the variation in Y attributable to variation in X, after
eliminating the effects of X5, X5,..., X;. Because economics, business, and social sciences, in

general, often use different scales and measures of Y and/or X;, PCCs are frequently employed in

the meta-analysis of these fields.?%”



The variance of 7, is:
1-72)*

Olkin and Siotani®.}® However, the test of PCC’s statistical significance, Ho: p = 0, requires a

slightly different formula for the variance of 7,

522 _ (1 -1 )/df (4)

> These two formulae only differ in that the numerator of S2 is not squared, in contrast to the
numerator of S7. Since, by definition, -1< r,, < 1, it follows that S < 7 for all |r,,| # {0 or 1}.
Using S5 and r, reproduces the t-value and the p-value of the original estimated partial regression

coefficient, B;; S? does not.

Below we demonstrate that all meta-analyses of PCCs are biased (including FE, RE, and
UWLS) regardless of which formula of variance is used. Nevertheless, conventional meta-analyses
that use SZ cause the estimates of mean effect to be twice as biased as those which employ SZ. To
address these biases, we offer a simple modification to the transformation formula, eq. (2), and a
small-sample bias correction for degrees of freedom. First, however, we establish and discuss the
bias of the conventional meta-analysis of PCCs. It is only through understanding these biases that

a solution can be found.

3. META-ANALYSIS BIAS

3.1 Simulations

To investigate the statistical properties of the meta-analysis of partial correlations, we conduct
Monte Carlo simulations of RE and UWLS estimates of the mean PCC from randomly generated
data, which is used to estimate multiple regressions and transform each S, to a PCC. Simulations
offer an important advantage over other approaches in that we can set the ‘true’ population value

of the PCC, p, by forcing its value upon the data generating process.



To obtain estimated PCCs for the effect size corresponding to the variable, X;, we start with

the following multiple regression:

Yi = Bo+ P1Xyi + B2Xai t & i=12,...,n (5)

For simplicity, we set all betas to 1 and assume that X;;, X,;,and ¢; are independently and
identically distributed as N(0,1)." The variable, Y;, is generated by eq. (5) after random and
independent values are generated for X;;, X,;,and &;. As a next step, we estimate a multiple
regression for eq. (5) and calculate the t-value of the estimated regression coefficient 5;. We then

convert X;s t-value to a PCC via eq. (2).

Due to the clarity and simplicity of these data generating processes, the population variance
of Y; not attributed to the remaining independent variables, X,;, equals 2 because this variance can
be computed as the sum of the variances of X;; and ¢;, each of which is set to have variance 1.
Both X;; and ¢; are independently distributed with variance 1; hence, this total variance is the sum
of X;; and ¢; variances. Thus, the ratio of ¥;'s remaining variance explained by X;; is %2, leading

to p = v/% or 0.707107. This result also follows from Gustafson® where 77 is shown to be:
Alz/(g12 s 551 ) Recall that 3, is set to 1, SEZ1 = (o%/df - aﬁl ),% and both ¢2 and Gﬁi are
set to 1 by design; thus, again ©? = %. In other simulation experiments, we set p equal to a
‘medium’ effect size (o = sqrt(.1) =.3162) by dividing X;; s randomly generated N(0,1) by 3 and
a ‘small’ effect size (p = sqrt(1/82) = .1104) by dividing by 9. Doing so makes X;;s variance

equal to 1/9 and 1/81, respectively while leaving the error variance at 1—see Table 1.

For each study in our simulations, all the data in eq. (5) is randomly generated, the multiple
regression, eq. (5), and its coefficients are estimated, and 7, is calculated from eq. (2). S7 is then

calculated from eq. (3) and SZ from eq. (4), and all these calculations are repeated 50 times to

il We also simulate more complex multiple regression with 4, 6, and 10 independent variables. Results from these
more complex multiple regressions are practically equivalent and are reported below and in the Supplement.



represent one meta-analysis." For each meta-analysis of 50 estimated PCCs, the RE and the UWLS

weighted averages are calculated in two ways by using S? and Sz.

UWLS estimates the simple meta-regression coefficient, a;, from:

tk—ﬁl=a1<i>+uk k=1,2,...,50 (6)

" SE, SEj,

SE, is calculated as the square root of either S or SZ from their respective formulae above. Any
common statistical software automatically calculates UWLS, &, , its standard error, test statistic,
and confidence intervals. UWLS and the fixed effect (FE) must have identical point estimates, but
UWLS automatically adjusts its standard errors and confidence intervals for heterogeneity when
present.!12 Because the bias and the square root of the mean square error (RMSE) must be the
same for FE and UWLS, we report only UWLS below. Previous simulations have shown that
UWLS is statistically superior to RE if there is selection for statistical significance or if small
studies are more heterogeneous than larger studies.!® In other cases where RE’s model is
imposed upon the simulations, the differences between UWLS’ and RE’s statistical properties are
negligible. For each randomly generated meta-analysis, the bias, RMSE and confidence intervals
of RE and UWLS are calculated and then averaged across 10,000 replications of all these steps.

See the Supplement for the simulation code.

Table 1 reports the results of these simulations using both versions of PCC’s variance—
eq. (3) and eq. (4). S? consistently produces twice the bias as Sz (see also Stanley and
Doucouliagos** for details on this finding). Table 1 also shows that S? generates larger root mean
squared errors and worse coverage (i.e., coverage rates that are often much different than their
nominal 95% level) than SZ. In Section 3.2, below, we discuss the reason for these biases and why
SZ produces predictably larger biases. These results confirm Stanley and Doucouliagos’** finding
that the ‘correct’ variance, S2, eq. (3), is not useful in practice when conducting meta-analyses of

partial correlations.

V These biases are largely independent of the number of PCCs (k) in the meta-analysis. However, the sample size (n)
of the primary study used to calculate the PCC is a very important determinant of bias. We used other values of k and
found that meta-analyses of 10 or fewer studies consistently have slightly smaller biases while those with a larger
number of estimates (k = 200) have slightly larger biases.



3.2 Reducing meta-analysis bias to triviality

Looking closely at the biases identified through simulations reveals two additional lessons. First,
although these biases are of a notable magnitude for small samples (n < 50), all these biases are
mere rounding errors (i.e., .005) or smaller for large samples (i.e., n > 200 or n > 100 if S2 is used).
Second, biases consistently halve as n doubles. Figure 1 graphs RE’s and UWLS’ biases against
the inverse of degrees of freedom (1/df) when p = /%%, using 10,000 replications of each sample
size, n = {10, 20, 40, 80, 160, 320, 640, 1280 & 25, 50, 100, 200, 400, 800, 1600, 2500}. Figure 1
reveals that S7 approximately halves RE’s bias and that doubling the sample size of the original
study halves the bias of each again.

To be more precise, the biases of UWLS with inverse S2 weights are a near exact function

of the inverse of degrees of freedom (1/df):

Bias; = .000069 + .508 (ﬁ) (7)

t = (167) (505.8) © R2=.9999453

The inverse of degrees of freedom, (ﬁ) explains over 99.99% of the bias of UWLS (R? =

99.995%) leaving a 95% margin of error of .0003. Through numerical analysis, we know that the

bias of the meta-analysis of PCCs is a function of df, and that any remaining error is negligible.

A century ago, Fisher* observed that the: “sampling distribution of the partial correlation
obtained from n pairs of values, when one variable is eliminated, is the same as the random
sampling distribution of a total correlation derived from (n-1) pairs. By mere repetition of the
above reasoning it appears that when s variates are eliminated the effective size of the sample is
diminished to (n-s)” (p. 330). This suggests that fine-tuning the degrees of freedom in PCC’s
transformation formula may reduce or practically eliminate this bias. Further simulations confirm

that this is indeed the case.

Following Fisher’s observation, consider the simple bivariate correlation:

s
r=-2%

_ sy _IK-R-T) | g
| ST ST ©)




The sample covariance, S,,,, has degrees of freedom (n-2), because two parameters, u, and pu,,
must be first estimated from a sample of n pairs of observations. Each sample variance, S? and
SZ, has (n-1) has degrees of freedom; thus, the denominator is (n-1). This suggests that a correction
for degrees of freedom, (n-2)/(n-1), might reduce the small-sample bias of meta-analysis weighted
averages that is revealed in Table 1. When the small-sample bias is proportional to 1/df and df =
(n-1) multiplying by (n-2)/(n-1) would correct this small-sample bias. Table 2 reports the random-
effects, small-sample correction, REss, where each sample PCC is first multiplied by (n-2)/(n-1)
before the usual random-effects formulae are applied. REss greatly reduces the small-sample

biases—see Table 1.

These small-sample corrections of PCCs, however, should not be interpreted as estimates
of individual PCCs. It is widely known that individual correlation estimates, and PCCs, are biased
downward (e.g., Olkin and Pratt'®). Applying this small-sample adjustment would then only make
a small downward bias worse. We propose reporting this small-correction correction, (n-2)/(n-1),
only for meta-analysis weighted averages while ignoring this small-sample adjustment correction
of the individual PCCs.

Table 2 also reports the statistical properties of a new meta-analysis weighted average,
UWLS:.3, that reduces bias to scientific negligibility. UWLS.3 uses the same simulation design as
before but substituting degrees of freedom that are three larger than the multiple regression’s

degrees of freedom into PCC’s transformation formula, eq. (2). That is, we first calculate PCC as:

(AT ©

fordf,; = n —s + 1 with s as the number of independent variables in the multiple regression held
constant in the calculation of the partial correlation of interest (i.e., s = j — 1). As displayed in
Table 2, UWLS.:3 eliminates all biases to within < +.001, and its average absolute bias is only
.0002. Table 2 assumes that either there are two independent variables in the multiple regression
(j = 2) or four (i.e., j = 4). To ensure broader generalizability, Supplement Table S1 reports the
same simulation design as Table 2, except j = 6 &10. Induction suggests that if you can prove

trivial bias for one (i.e., s =1; Table 2) and trivial bias for some random s (e.g., s = 3), then trivial



biases generalize to any s (e.g., s = {5, 9}, Table S1). As a further corroboration of the effective
elimination of meta-analysis bias, Table S2 reports the same simulation design but with different

values of the population partial correlation coefficient, p ={.9487; .2425; 0}.

Now that we have found ways to reduce these biases to scientific triviality, what causes
these biases of the conventional meta-analysis of partial correlations? The simple answer is that
both formulas for the variance of PCCs are themselves a function of the PCC. Because the weights
of meta-analysis are a strictly increasing function of 7,7, it follows that for all n?# {0 or 1} positive
sampling errors are assigned more influence in pinning down the meta-analysis estimate compared
to negative sampling errors of the same magnitude. In all meta-analyses that use inverse variance
weights, based on either S or S2, an upwards bias in magnitude will arise: the absolute expected

value delivered by the meta-analysis will surpass | p | if the true correlation is not 0 or 1.

Let us assume, for instance, that o = 0.7 and examine how estimates with errors of the same
magnitude but different signs ( + 0.2) are weighted in meta-analysis. For Sz, an UWLS estimate
with a sampling error of +0.2 is assigned a weight proportional to 1/.19 = 5.26, in stark contrast to
1/.75 = 1.333 for a -0.2 sampling error. Here estimates with positive errors are assigned nearly 4
times more influence than estimates with negative errors but equal in size. Few sampling errors
will in practice be as large as + 0.2, but the aforementioned principle of asymmetric weighting as
the root of bias in conventional meta-analysis of partial correlations holds in general: for all sizes
of sampling errors and various meta-analysis estimators. Because RE’s weights are the inverse of
the sampling variance plus a constant (t?), this asymmetric weighting of sampling errors is
moderated, but not eliminated, by RE. Table 1 shows that RE’s biases are somewhat smaller than
UWLS’, just as we would expect, and these differences are especially clear for small samples when
S%is used. Asymmetric weighting of sampling errors biases weighted averages upwards in

magnitude. Table 1 confirms these biases.

For bivariate correlations, this issue that the variance is a function of the effect size and that
this may be problematic for meta-analysis is widely known. A solution is to convert correlations
to Fisher z’s, calculate the meta-analysis estimate of the mean and its related statistics, then convert
these terms of Fisher zs back to correlations for the purpose of interpretation.® As Fisher* noted,
what is true for correlations is true for partial correlations after degrees of freedom are adjusted for

the number of variables eliminated, s. Tables 2 and S1 also report the biases, RMSEs, and coverage

8



rates for random effect estimates of Fisher’s z that have been converted back to PCCs. Using
Fisher’s z eliminates most conventional meta-analysis bias. Its biases and MSEs are nearly the
same as the simple RE correction for small-sample bias, However, in all cases and by all criteria,
UWLS.3, has better statistical properties than either Fisher’s z or REss. Although Fisher’s z and
REss produce biases larger than rounding error only for small samples and medium or larger
correlations, UWLS+3’s bias is still ten times smaller, see Figure 2. Likewise, UWLS+3’s RMSESs
are smaller, and its coverage rates are closer to the nominal 95% than Fisher’s z or REss. In fact,
REss Cls are too narrow for large PCCs. Practically speaking, however, all three: Fisher’s z, REss,
and UWLS-+3 solve this problem of biased meta-analyses of partial correlations in the vast majority

of cases even though UWLS.s s slightly better.

3.3  Heterogeneity

Notable heterogeneity across studies within an area of research is common in all disciplines. In
psychology, for example, the observed variance from study-to-study is about 4 times larger than
what reported standard errors imply (i.e., median 1% = 74%).1" To ensure that partial correlation’s
biases are robust to heterogeneity, we have modified the same simulation design to produce
heterogeneity at levels seen in psychology. Tables 3 and 4 report the same simulations as Tables
1 and 2, except that random heterogeneity is added to each study’s estimated correlation in each
meta-analysis. We first convert each randomly generated estimated correlation to Cohen’s d, add
a random normal deviation with mean zero and standard deviation {.5, .3, .2d} as pis: {0.7071, O.
3162, 0.1104}, and, lastly, transform this back to a partial correlation. We transform to Cohen’s d
in this way to produce random heterogeneity consistent with the random-effect model and to
reproduce roughly the same distribution of heterogeneity as seen in psychology.” Table 3 shows
that the biases of the meta-analysis of correlations remain, while Table 4 confirms that Fisher’s z
and the small-sample corrections introduced here consistently reduce these biases to scientific

negligibility.

vV Generating heterogeneity though random variations to X;’s regression coefficient, $;=1 + N(0, .2) produces
approximately same overall results as Table 3 and Table 4.



4. DISCUSSION

Meta-analyses of partial correlation coefficients (PCC) are generally biased. We offer new
solutions: UWLS.+3 and the small-sample correction, REss. Although these biases are ubiquitous,
the good news is that they practically and scientifically disappear when the primary studies employ
larger samples (n > 200). Thus, these biases will typically not be a notable factor in the meta-
analysis of econometric studies in economics and finance, which often involve hundreds of
observations or more."" Nonetheless, for many areas of education, business, psychology, medicine

and health, meta-analysts need to use UWLS.3, REss, or Fisher’s z in the meta-analysis of PCCs.

An important limitation to our study is that the primary research literatures will typically
be much richer than what our simulations have assumed. We abstract from such complexities to
isolate and detect these biases and then to understand their underlying cause. However, many meta-
analyses will include some studies which may be sufficiently large to have negligible bias, which
will likely moderate the weighted averages of these biases. Thus, in most social science
applications, it is unlikely that the bias of the meta-analysis of partial correlation coefficients will

be as large as those revealed here in small samples.

Both UWLS+3and REss are easy to implement. To calculate UWLS+3, meta-analysts merely
need to add 3 to df in PCC’s transformation formula, eq. (2), and the formula that calculates PCC’s
variance, 57, eq. (4). UWLS.sis the simple regression coefficient, eq. (6), and it can be estimated
using any regression software. Note that UWLS’ regression does not have an intercept (or a
‘constant’). Aside from small improvements to bias, MSE, and coverage rates over Fisher’s z,

UWLS.3’s advantage lies in its computational simplicity and the clarity of its interpretation.

Unlike the meta-analysis of Fisher’s z, UWLS+3 is a partial correlation and can be
understood entirely as such. Neither UWLS+3 nor REss need to be transformed back to a correlation
to be interpretable. This is particularly helpful for multiple meta-regression analysis (MRA). In
economic applications, meta-analyses of PCCs are common and frequently involve a dozen or
more moderator variables. To understand the impact of important MRA coefficients, it is necessary

to interpret them in terms of the effect size studied, in this case partial correlation coefficients.

vi Across 358 economic meta-analyses about 2/3'® of 174,542 estimates are computed from sample sizes larger than
200.%°

10



When Fisher’s zs are the object of meta-analysis and MRA, it is easy to misinterpret MRA results

2:Z—-1
as correlations. With multiple MRA, the inverse Fisher’s z transformation, PCC = e[z-Z+1], would

need to be separately employed multiple times if Fisher’s zs are meta-analyzed.

Computational simplicity and clarity of interpretation are also advantages of REss. When
there is little or no heterogeneity, Table 2, UWLS+3 dominates both Fisher’s z and REss. However,
REss has a limitation not seen in either UWLS.3 or Fisher’s z. When the ‘true’ correlation is very
large, p = .9487, REss has notably larger biases than either UWLS.3 or Fisher’s z. However, we
have not seen average PCCs as large .7 in any economics meta-analysis,”" and no bivariate average
correlation (RE) is has an absolute value larger than .6 among the 108 Psychological Bulletin meta-

analyses.'’

V. CONCLUSION

We find that all meta-analyses of partial correlations are biased, and we offer simple remedies for
these biases, UWLS+3 and REss. Both make a simple adjustment to the degrees of freedom used to
calculate partial correlations and thereby render trivial any remaining bias. UWLS.3 outperforms
REss and the more cumbersome application of Fisher’s z, but all three reduce bias to trivial
magnitudes in the great majority of practical applications. Our simulations also reveal that all
biases are small-sample biases (n < 200). Thus, in applications where primary studies typically
have hundreds and even more observations, PCCs can be meta-analyzed in any of the above ways
without notable bias. However, for many fields in the social and the medical sciences where small-

sample studies dominate, these biases are easily avoidable by employing either UWLS.3 or REss.
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FIGURE 1: Biases of random-effects and the unrestricted weight least square. Each point

represents an average bias across 10,000 replications. RE1bias is random effects’ bias that use PCC
variance, SZ, from eq. (3). UWLS2bias is UWLS’ bias using S from eq. (4).
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FIGURE 2: Biases of the meta-analysis of Fisher’s z converted back to PCC (Z Bias), the
unrestricted weight least squares with 3 additional degrees of freedom (UWLS+3), and the
random-effect’s estimate of the mean, REss, using S%, from eq. (3) and the small-sample
adjustment (n-2)/(n-1) for p = /% and 10,000 replications. See Table 2 and its discussion.
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Table 1: The meta-analyses of PCCs (RE and UWLS) using different formulae for PCC’s variance

Design Bias RMSE Coverage

p n RE:1 | RE2 | UWLS: | UWLS: RE1 RE2 UWLS: | UWLS: RE1 RE2 UWLS: | UWLS:
7071 25 | .0455 | .0233 .0540 .0233 .0478 .0278 .0568 .0278 1428 8521 .0588 3787
7071 50 | .0223 | .0108 0254 .0108 .0245 .0149 0277 .0149 4103 9497 .2954 .5928
.7071 | 100 | .0111 | .0053 0125 .0053 0131 .0088 .0145 .0088 .6619 9796 5788 .7136
.7071 | 200 | .0055 | .0026 .0061 .0026 .0075 .0057 .0080 .0057 .8109 .9878 1714 1734
.7071 | 400 | .0028 | .0013 .0031 .0013 .0045 .0038 .0048 .0038 .8824 9911 .8585 .8025
3162 25 | .0347 | .0173 .0490 .0194 .0461 .0336 .0591 .0348 .7358 .8987 5843 .8312
3162 50 | .0179 | .0083 .0216 .0089 .0265 .0208 .0295 0211 .8327 9329 .7810 .8900
3162 | 100 | .0091 | .0042 0104 .0045 0161 .0138 .0170 .0139 .8892 9469 8714 9118
3162 | 200 | .0045 | .0020 .0050 .0022 .0102 .0093 .0105 .0093 .9246 9612 9127 .9278
3162 | 400 | .0022 | .0009 .0024 .0010 .0068 .0065 .0069 .0065 9424 .9599 .9339 .9349
1104 25 | .0134 | .0065 .0198 .0079 .0360 .0321 0412 .0328 9114 9413 8771 9234
1104 50 | .0073 | .0034 .0088 .0039 .0225 .0208 0234 .0210 9332 9517 .9246 9410
1104 | 100 | .0034 | .0015 .0040 .0017 .0150 0144 .0152 .0145 9431 .9532 .9362 .9430
1104 | 200 | .0017 | .0007 .0019 .0008 .0102 .0100 .0103 .0100 .9495 .9548 9424 .9468
1104 | 400 | .0009 | .0005 .0010 .0005 .0071 .0070 .0071 .0070 .9596 9623 .9533 .9535

Average .0122 | .0059 .0150 .0063 .0196 .0153 0221 .0155 .7953 .9482 7520 .8310

Notes: pis the ‘true’ population mean partial correlation coefficient (PCC). n is the sample size used in the primary study’s multiple regression. Bias is the difference between the meta-analysis estimate
and p calculated from 50 estimated partial correlation coefficients and averaged across 10,000 replications. RMSE is the square root of the mean squared error. Coverage is the proportion of 10,000
meta-analyses’ 95% confidence intervals that contain p. RE is the random-effect’s estimate of the mean, and UWLS is the unrestricted weighted least squares’ estimate of the mean. The subscripts (1
and 2) refer to the use of either the PCC variance, S2, from eq. (3) or S? from eq. (4) to calculate the RE and UWLS weighted averages.
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Table 2: REs, RE;, and UWLS.3 meta-analyses of partial correlations

2 IVs: Partial Correlation of Xy from Y; = Bo + 1 X1 + B2X5; + &

Design Bias RMSE Coverage

p n REss RE; UWLS.3 REss RE; UWLS:3 REss RE; UWLS.3
7071 25 | -.0070 | .0078 .0009 .0161 .0168 .0155 .9891 9281 9431
7071 50 | -.0037 | .0036 .0001 .0107 .0109 .0105 9914 .9460 9511
7071 100 | -.0019 | .0017 -.0001 .0075 .0073 .0072 .9923 .9530 9514
7071 200 | -.0010 | .0008 -.0001 .0051 .0051 .0051 .9938 9539 .9503
7071 400 | -.0004 | .0004 .0000 .0035 .0036 .0036 .9953 9551 .9480
3162 25 .0050 | .0067 .0008 .0281 .0284 0275 9516 .9492 .9408
.3162 50 .0017 | .0032 .0003 .0188 .0190 .0187 .9569 9519 .9458
3162 100 | .0008 | .0014 .0000 .0129 0131 .0130 .9626 .9553 .9460
3162 200 | .0005 | .0006 -.0002 .0091 .0091 .0091 .9646 .9567 .9482
3162 400 | .0002 | .0004 .0000 .0063 .0064 .0064 .9659 .9556 .9497
1104 25 .0016 | .0024 .0002 .0306 .0306 .0301 9478 .9545 .9368
1104 50 .0007 | .0011 .0000 .0208 .0206 .0203 .9496 .9593 9481
1104 100 | .0004 | .0007 .0001 .0143 .0143 .0142 9527 .9584 .9489
1104 200 | .0003 | .0002 -.0001 .0099 .0100 .0100 9573 .9569 .9485
1104 400 | .0001 | .0001 -.0001 .0069 .0071 .0070 .9609 .9564 .9495

Average .0017 | .0021 .00022 .0134 .0135 .0132 .9688 9527 9471

4 1Vs: Partial Correlation of X; from Y; = Bo + B1X1i + B2X2i + B3 X3 + BaX4i + &

7071 25 -.0048 | .0083 .0009 .0160 .0163 .0164 .9920 .9284 9424
7071 50 -.0032 | .0037 -.0001 .0108 .0107 .0106 .9930 9434 9447
7071 100 | -.0017 | .0018 -.0001 .0074 .0073 .0073 9929 9513 9512
7071 200 | -.0009 | .0008 -.0001 .0051 .0050 .0050 .9949 .9554 .9506
7071 400 | -.0004 | .0004 .0000 .0036 .0036 .0036 .9935 .9556 .9490
3162 25 .0064 | .0063 .0000 .0297 .0289 .0289 9491 .9520 .9380
3162 50 .0020 | .0029 -.0001 .0192 .0191 0191 9551 .9545 .9456
3162 100 .0008 | .0014 -.0001 .0131 .0129 .0130 .9606 .9588 9516
3162 200 .0005 | .0006 -.0001 .0090 .0091 .0092 .9658 .9592 9518
3162 400 .0002 | .0003 -.0001 .0064 .0063 .0065 .9642 9591 .9554
1104 25 .0025 | .0029 .0005 .0325 .0312 .0316 .9440 .9553 .9379
1104 50 .0010 | .0012 .0000 .0212 .0209 .0209 .9508 .9580 9463
1104 100 .0004 | .0007 .0001 .0145 .0144 .0145 .9548 .9553 9473
1104 200 .0001 | .0002 -.0001 .0102 .0100 .0101 .9508 .9562 9472
1104 400 | -.0001 | .0001 .0000 .0070 .0071 .0071 .9597 .9543 .9458

Average .0017% | .0021 .00022 .0137 .0138 .0135 .9681 9531 9470

Notes: pis the ‘true’ population mean partial correlation coefficient (PCC). n is the sample size used in the primary study’s multiple regression. Bias is
the difference between the meta-analysis estimate and p calculated from 50 estimated partial correlation coefficients and averaged across 10,000
replications. RMSE is the square root of the mean squared error. Coverage is the proportion of 10,000 meta-analysis 95% confidence intervals that
contain p. REss is the random-effect’s estimate of the mean using S2, from eq. (3) and the small-sample adjustment (n-2)/(n-1). UWLSs3 is the
unrestricted weighted least squares’ estimate of the mean using SZ from eq. (4) and df+3 as the degrees of freedom in PCC’s formula. RE; is the random-
effect’s estimate of Fisher’s z converted back to PCC. 2Average biases are averages across the absolute values of the biases. Biases reported as *.0000’

are < |+.00005|.
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Table 3: The meta-analyses of PCCs (RE and UWLS) using different formulae for PCC’s variance and with heterogeneity

Design Bias RMSE Coverage

p 12 RE1 RE> UWLS: | UWLS: RE1 RE> UWLS: | UWLS: RE: RE> UWLS: | UWLS2
7071 | .369 | .0385 | .0245 .0710 .0270 .0435 | .0317 0736 .0328 3931 7546 .0322 4151
7071 | 559 | .0124 | .0068 .0459 .0149 0214 | .0198 .0485 0216 771 8724 1362 .6138
7071 | 731 | -.0012 | -.0045 .0347 .0095 .0156 | .0168 0374 .0169 9018 9143 2611 .7180
.7071 | .848 | -.0086 | -.0105 .0292 .0069 0171 | .0184 .0320 .0149 .8657 8746 3571 .7586
7071 | .920 | -.0125 | -.0136 .0268 .0058 .0190 | .0198 .0296 .0140 .7970 8217 4035 7753
3162 | 404 | .0241 | .0105 .0601 .0209 0429 | .0355 0715 .0396 8424 9134 .5489 .8360
3162 | 516 | .0087 | .0011 .0343 .0109 0285 | .0266 .0445 .0287 .9099 .9354 7167 .8845
3162 | .668 | .0004 | -.0036 .0232 .0064 0225 | .0225 .0330 .0233 .9396 .9396 .8015 9116
3162 | .801 | -.0038 | -.0058 .0184 .0045 .0205 | .0209 0279 .0207 .9459 9404 .8370 9224
3162 | .890 | -.0061 | -.0071 .0159 .0034 0202 | .0205 0257 .0198 9312 9282 .8543 .9203
1104 | 319 | .0108 | .0049 0217 .0079 0378 | .0346 .0457 .0360 .9182 9334 .8641 9168
1104 | .363 | .0049 | .0015 .0108 .0037 0263 | .0251 .0293 .0257 .9332 .9398 9102 .9343
1104 | 498 | .0017 | -.0001 .0063 .0019 .0204 | .0200 0221 .0204 .9336 9352 .9242 .9342
1104 | .661 | .0001 | -.0008 .0044 .0012 .0170 | .0169 .0182 0172 9447 9448 .9344 9415
1104 | .795 | -.0010 | -.0015 .0032 .0006 0156 | .0156 0165 .0158 .9435 9410 .9369 9419

Average .0090% | .0065% 0271 .0084 0245 | .0230 .0370 .0232 .8651 9059 .6346 .8283

Notes: p is the ‘true’ population mean partial correlation coefficient (PCC). Sample sizes as the same as reported in Tables 1 and 2. 0 < 1< 1 is a relative measure of heterogeneity. Bias is the difference
between the meta-analysis estimate and p calculated from 50 estimated partial correlation coefficients and averaged across 10,000 replications. RMSE is the square root of the mean squared error.
Coverage is the proportion of 10,000 meta-analyses’ 95% confidence intervals that contain p. RE is the random-effect’s estimate of the mean, and UWLS is the unrestricted weighted least squares’
estimate of the mean. The subscripts (1 and 2) refer to the use of either the PCC variance, SZ, from eq. (3) or S2 from eq. (4) to calculate the RE and UWLS weighted averages. 2Average biases are averages
across the absolute values of the biases.
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Table 4: REs, RE;, and UWLS.; meta-analyses of partial correlations with heterogeneity

2 IVs: Partial Correlation of X; from Y; = Bo + B1X1i + B2X5i + &

Design Bias RMSE Coverage

o) 12 REss RE; UWLS.: | REss RE; UWLS:3 REss RE; UWLS:3

7071 | .369 | -.0058 | .0024 .0041 .0199 | .0199 .0203 9614 9404 9465
7071 | 559 | -.0068 | -.0016 .0043 .0192 | .0165 .0167 9110 9429 9378
7071 | .730 | -.0113 | -.0038 .0043 .0198 | .0152 .0149 8717 9392 9397
7071 | .848 | -.0140 | -.0046 .0045 .0205 | .0145 .0140 .8233 9340 9333
7071 | 919 | -.0154 | -.0053 .0044 .0210 | .0144 .0136 1897 9279 9317

3162 | .404 | -.0004 | .0037 .0020 .0333 | .0327 .0331 .9305 9421 .9388
3162 | 515 | -.0049 | .0001 .0018 .0265 | .0256 .0261 .9328 9470 .9456
3162 | .669 | -.0068 | -.0013 .0022 .0233 | .0222 .0226 9316 9427 9447
3162 | .800 | -.0075 | -.0022 .0022 .0215 | .0204 .0207 9274 .9398 9416
3162 | .890 | -.0077 | -.0025 .0023 .0204 | .0190 .0192 9270 9430 9461

1104 | .320 | .0012 .0018 .0003 .0326 | .0334 .0335 9413 9461 9373
1104 | .364 | -.0006 | .0005 .0003 .0245 | .0248 .0249 .9405 9427 9417
1104 | .,500 | -.0006 | .0001 .0004 .0193 | .0199 .0201 .9460 9415 .9440
1104 | .661 | -.0010 | -.0001 .0006 .0167 | .0170 0172 9449 9445 9482
1104 | .795 | -.0014 | -.0004 .0004 .0154 | .0154 .0155 .9450 .9460 .9506

Average .0057% | .0020° .0023 .0223 | .0207 .0208 9149 9413 9418

4 1Vs: Partial Correlation of X1 from Yi = BO + [31X1i + BZXZi + ﬁ3X3i + B4—X4-i + &E;

7071 | 349 | -.0031 | .0033 .0044 .0195 | .0206 .0209 9671 9372 9422
7071 | 549 | -.0062 | -.0016 .0042 .0191 | .0165 .0167 9183 .9459 .9430
7071 | 726 | -.0110 | -.0039 .0042 .0195 | .0152 .0148 .8738 9402 9421
7071 | 847 | -.0139 | -.0049 .0043 .0203 | .0147 .0140 .8284 9331 .9367
7071 | 919 | -.0152 | -.0050 .0048 .0208 | .0141 .0135 .71963 9325 .9326

3162 | .398 .0008 .0048 .0025 .0347 | .0338 .0342 9272 9461 .9386
3162 | 508 | -.0041 | .0005 .0021 .0267 | .0259 .0264 .9348 9440 .9433
3162 | 665 | -.0069 | -.0016 .0018 .0232 | .0222 .0225 9311 9425 9439
3162 | .800 | -.0073 | -.0019 .0025 .0213 | .0202 .0205 9323 9454 .9465
3162 | .889 | -.0081 | -.0023 .0026 .0207 | .0192 .0195 9262 9413 9433

1104 | .323 .0012 .0020 .0004 .0344 | .0346 .0346 .9392 9473 .9365
1104 | 358 | -.0001 | .0007 .0004 0247 | .0251 .0252 9410 9437 9421
1104 | 495 | -.0010 | .0005 .0009 .0199 | .0198 .0200 .9392 9446 .9462
1104 | 658 | -.0011 | -.0005 .0002 0167 | .0171 .0173 .9403 9390 9431
1104 | 794 | -.0014 | -.0004 .0005 .0153 | .0154 .0156 9451 9410 9457

Average .0054% | .0023% .0024 .0224 | .0209 .0210 .9160 9416 9417

Notes: pis the ‘true’ population mean partial correlation coefficient (PCC). The sample sizes of the primary study’s multiple regressions are the
same as reported in Tables 1 and 2. Bias is the difference between the meta-analysis estimate and p calculated from 50 estimated partial correlation
coefficients and averaged across 10,000 replications. RMSE is the square root of the mean squared error. Coverage is the proportion of 10,000
meta-analysis 95% confidence intervals that contain p. REss is the random-effect’s estimate of the mean using S%, from eq. (4) and the small-sample
adjustment (n-2)/(n-1). UWLS+3 is the unrestricted weighted least squares’ estimate of the mean using S2 from eq. (4) and df+3 as the degrees of
freedom in PCC’s formulae. RE; is the random-effect’s estimate of Fisher’s z converted back to PCC. 2Average biases are averages across the
absolute values of the biases. Biases reported as ¢.0000” are < |+.00005|.
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