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Abstract

This experiment explores whether individuals know that other people are biased. We

confirm that overestimation of abilities is a pervasive problem, but observe that most

people are not aware of it, i.e. they think others are unbiased. We investigate several

explanations for this result. As a first one, we discuss a possible unfamiliarity with the

task and the subjects’ inability to distinguish between random mistakes and a real bias.

Second, we show how the relation between a subject’s belief about others and his belief

about himself might be driven by a false consensus effect or self-correction mechanism.

Third, we identify a self-serving bias when comparing how a subject evaluates his own

and other people’s biases.
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1 Introduction

Biased individuals act differently from unbiased individuals. There are innumerable exam-

ples for this. For instance, having overly optimistic expectations about the future or the

environment results in acting against long odds when choosing an investment strategy, mak-

ing insurance choices, or entering a new market. One major reason for traffic accidents is

that people overestimate their driving abilities. CEOs, who overestimate their success prob-

ability, may agree too often to a merger. Overestimation of one’s (relative) abilities can lead

to wrong job application or search behavior in the labor market.

When interacting with other people, it thus is important to know whether they are biased to

react appropriately. Consider shareholders, who delegate to a manager the decision whether

or not to conduct a merger. If the manager overestimates the success probability of the

merger, his decision will be suboptimal for the shareholders and it might be better not to

delegate the decision to him. Also in strategic interactions between biased agents, a player’s

behavior depends on the knowledge about the bias of his opponents.1 Consider a manger’s

decision whether or not to enter a new market, where the success of entry depends on the

(relative) quality of his good and the number of competitors in the market. Excess entry

can be driven by two forces: managers overestimate the (relative) quality of their own good

and/or they do not know that their opponents are overconfident. These two forces are, how-

ever, hard to disentangle and it might not be clear what drives excess entry. Thus, in this

experiment, we want to abstract from all kinds of strategic interactions and ask in a simple

decision problem whether people know that others are biased.

Our baseline experiment considers in the simplest possible setting the question whether peo-

ple know about the bias of others. In a first treatment, subjects answered several difficult –

but not tricky – multiple-choice questions and estimated how many questions they have cor-

rect. In a second treatment, we then informed subjects about the first experiment, showed

them the questions, told them the others’ average guess about the number of correct answers

and “asked”2 whether they think the true number is roughly equal, higher or lower.

While we observe in the first treatment that subjects overestimate their ability, subjects in

the second treatment are not aware of this. As overconfidence is such a prominent phe-

nomenon in the real world, this result is surprising. The aim of our extensions is to further

examine this result and understand the driving forces behind it. One possible explanation

for it is that people have no real life experience with the task and that this causes their un-

awareness of overconfidence. In a first extension, we cause this familiarity by letting subjects

answer the questions and estimate their own number of correct answers before assessing the

1Theoretical models typically assume that an agent knows that (a proportion of) his opponents are biased.
2We should mention here that we never asked subjects directly, nor did we use words like bias, or

overestimation, but implemented simple decision problems to elicit beliefs.
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others. While now more subjects recognize that others are overconfident, still the majority

thinks that they are unbiased. In a second extension, we try to further increase the subjects’

familiarity – by writing the instructions in a non-neutral way using words like over- and un-

derestimation. Our result shows that this helps to make subjects recognize that others are

biased, but not that they are overconfident. Lastly, we let subjects evaluate other subjects

who answered tricky questions. Before the evaluation, we showed them the correct answers.

This strong signal finally helped to make subjects recognize that others are overconfident,

however, they still do not recognize the full extent of the overconfidence bias.

These observations indicate that people are not fully aware that others are on average over-

confident. What do they think about single subjects? Do they think an individual makes

mistakes when evaluating her number of correct answers? Do they think these mistakes are

just random or that they mirror a real bias? For this we ask subjects about a single other

subject. And indeed, they notice that a single subject’s self-assessment can be wrong. We

show that “wrong” for them means that the other subject makes a random mistake, but

has no bias. Thus, they think not only the average of subjects is unbiased, but also single

subjects are.

As in all these extension subjects answer the questions and evaluate themselves, they provide

us furthermore with the opportunity to examine how the belief about others is shaped by

the subjects’ beliefs about themselves. First, we find evidence for a false consensus effect,

i.e. subjects adjust their belief about others in the direction of their own belief. Moreover,

subjects think that others, who are more similar to them, are more likely to be correct.

Second, we observe a self-correction mechanism: For example, those subjects, who recognize

that others are overconfident, are underconfident themselves. It is likely that – being aware

of the overconfidence problem – they adjust their belief about themselves too heavily – which

results in own underconfidence.

The aim of our last extension is to deepen the understanding what people know about biases.

When overconfident agents interact with each other, it is not only important that they know

about the bias of their opponent, but also about the relation between their own bias and the

one of their opponent. To examine this, we let subjects (in all mentioned extensions) make

an additional choice that reveals their beliefs about the relation of their own bias/mistake

and the average bias of the others. Concerning these relative biases, the largest group of

subjects thinks that they are themselves more likely to judge their ability correctly than is

the average population. The result is consistent with a self-serving bias. Still it is surprising

because “the others” represent an average: If one believes that people are unbiased, mis-

takes should cancel out on average, but not for a single subject. Thus, while subjects are

aware that others make mistakes, they seem not to be aware that they can make mistakes

themselves.
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Much of the evidence for overconfidence comes from calibration studies by psychologists,

in which subjects make probability judgements. People’s confidence often exceeds their

actual accuracy (for a review of this literature see Yates, 1990). Besides being poorly cali-

brated, people also state confidence intervals that are too narrow. There are also experiments

by economists who confirm that individuals are overconfident (Camerer and Lovallo, 1999;

Hoelzl and Rustichini, 2005). In Camerer and Lovallo’s (1999) market entry game, people’s

behavior might not only be driven by their overconfidence, but also by their belief about the

bias of others – something which is, however, hard to disentangle in their experiment.

There are only few papers that deal with the knowledge about biases. One strand considers

time inconsistent preferences: People behave differently depending on whether they do or do

not know that they behave inconsistently over time (for theoretical models see e.g. Laibson

(1997), O’Donoghue and Rabin (1999), for a field study where time inconsistent preferences

matter see Della Vigna and Malmendier (2006)). Another strand examines the behavior of

individuals in so-called beauty contests (Bosch-Domenech et al., 2002; Ho et al., 1998). In

these games, the strategy of a player depends on how rational he thinks that his opponents

are, i.e. how many steps of iterated elimination of strictly dominated strategies they are able

to perform. Finally, several theoretical papers – that ask about the behavior of overconfident

agents in economic situations – assume that individuals know that others are biased. We

discuss these papers in Section 6.

The paper is structured as follows. In Section 2, we describe our baseline experiment, which

consists of two treatments (Treatment A and B). This baseline experiment answers our very

basic question whether people are aware that other people are biased. We then introduce

the three extensions of our baseline experiment: we make subjects more familiar with the

task (Treatments Q and W, which we describe in Section 3), we distinguish between random

mistakes and biases (Treatment S, described in Section 4), and finally, we ask what people

think about the relation between their own and other peoples’ bias (Section 5). In Section

6, we discuss how to deal with one possible drawback of our experiment (the selection of

questions), the procedure to measure the subjects’ biases, and applications of our results to

organizations and markets. In Section 7, we conclude.

2 Baseline Treatments: Do You Know That Others

Have a Bias?

We conducted the computerized experiment at the University of Bonn. We programmed the

experiment with the software z-Tree Fischbacher (1999) and recruited subjects via the inter-

net by using the software ORSEE (Online Recruitment System for Economic Experiments)

developed by Greiner (2004). A total of 116 subjects participated in six treatments (with
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17 to 20 participants each). Each subject participated in only one of the treatments. Before

the experiment started, we read out loudly the instructions3 and the subjects answered clar-

ifying questions to make sure that they understand the experimental procedure. We kept

the wording of all but one instructions (see later) neutral to avoid framing effects: We did

not use terms like self-assessment, ability, or overconfidence – although we use them in the

following to describe the design. Subjects earned Tokens during the experiment, where 210

Tokens = 1 Euro. Average hourly earnings were 8 Euros.

2.1 Experimental Design

To address our main question whether people know about the overconfidence bias of others,

we conducted two treatments, A and B. In Treatment A, 20 subjects (“A subject” or “she”)

answered multiple-choice questions and estimated their number of correct answers. In treat-

ment B, we asked 20 other subjects (“B subject” or “he”) whether they think that the A

subjects estimated their number of correct answers on average correctly or not. This means

that we define the bias of the A subjects as the average difference between their estimated

and true number of correct answers. In contrast, from observing that a single A subject’s

true and estimated number diverge, one cannot say whether she is really biased or makes a

random mistake.

2.1.1 Treatment A

Treatment A consists of two stages. In the first stage, 20 A subjects answer seven difficult

multiple-choice questions from different fields of general knowledge. Questions are such that

a subject should know the answer more or less for sure or not at all. We paid subjects 190

Tokens for each correct answer. In the second stage, an A subject estimates her number of

correctly answered questions without knowing her true number of them t ∈ {0, 1 . . . 7}. We

denote this estimate by q ∈ {0, 1 . . . 7}.
To achieve that a subject states her true belief about t, we paid her 525 tokens if q = t

and 30 else. Subjects infer these payoffs from Table 1. Like this we can elicit beliefs via

a neutral decision task without asking subjects directly “how many question do you think

you answered correctly” as such a question could influence their choice e.g. via self-esteem

protection channels.4

3Instructions are available upon request.
4The procedure ensures that subjects select the alternative on which they place the highest probability

(see the appendix.). In the following we just say “the A subject thinks she has x answers correct”, which

should read as “the A subject puts the highest probability on the event that she has x answers correct”.

As we later on take the average over all subjects this makes no difference: choosing x when one is roughly

indifferent between x and say x− 1 and x− 1 is true is an random mistake if subjects were unbiased, i.e. it

should cancel out on average.
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Correct Answers (t)

0 1 . . . 7

Action 0 525 . . . 30 30

Action 1 30 525 . . . 30

. . . . . . . . . . . . . . .

Action 7 30 30 . . . 525

Table 1: Payoff table to elicit belief about number of correct answers in Treatment A.

While this payoff structure has the disadvantage that larger deviations are not punished

more, it ensures truth telling under very mild behavioural assumptions (“more is better”)

as we show in the appendix. In contrast, to punish larger deviations and to ensure truth

telling, one had to assume risk neutrality which is likely to be violated even for small stakes

(see e.g. Holt and Laury, 2002; Rabin, 2001). Furthermore, we wanted to make sure that

subjects do not use a hedging strategy, like answering no question in the first stage to be

able to make the correct choice in the second stage. To circumvent this problem, we decided

to implement the following procedure: When answering the questions, an A subject knows

that she has to make a decision later on. She also knows that her payoff for this decision

depends on her number of correctly answered questions but does not know yet the exact task

and the relevant payoff table. This procedure is necessary as with the payoff structure itself,

we could not eliminate hedging concerns completely unless we rewarded subjects much more

for a correct answer than for a right decision. This would, however, not have mirrored the

importance of the tasks.

2.1.2 Treatment B

In Treatment B, 20 subjects (“B subject” or “he”) receive in their instructions detailed

information about Treatment A: the full procedure of the experiment, the multiple-choice

questions (without indication of correct answers), and the average belief about the number

of correct questions (rounded to one decimal place), which we denote by q̄ in the following.

Given this information, B subjects have to state whether they think that A subjects are over-

confident (meaning that q̄ exceed the average true number of correct questions (t̄) by more

than 0.5), underconfident (t̄ − q̄ > 0.5) or unbiased (|q̄ − t̄| ≤ 0.5). By adding/subtracting

0.5 we capture rounding effects and small mistakes which remain on, even though A subjects

are unbiased.

Furthermore, B subjects state their belief about the exact size of t̄ by choosing a number

z ∈ {0, 0.1, 0.2, . . . , 6.9, 7}. To avoid hedging possibilities, this choice has to be consistent

with the statement about the bias of the A subjects: e.g. z has to be larger than q̄ + 0.5 if a

B subject stated that the A subjects are underconfident.
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Action

left middle right

t̄ < q̄ − 0.5 315 315 1680

q̄ − 0.5 ≥ t̄ ≤ q̄ + 0.5 315 1680 315

t̄ > q̄ + 0.5 1680 315 315

Table 2: Payoff table to elicit the B subjects’ beliefs whether the A subjects are under- or

overconfident or unbiased.

The procedure to elicit these beliefs is analogue to the one described in Section 2.1.1 and

uses Table 2: B subjects receive a high payoff (1680 Tokens for the assessment about the A

subjects’ bias and 105 for the guess about t̄) if they make the correct choice and a low payoff

else.

2.2 Results Baseline Treatments

Treatment A confirms that subjects are overconfident. 60% of the A subjects overestimate

their number of correct answers and, moreover, they are overconfident on average (we mea-

sure the bias by t̄ − q̄): their bias is -1.1. According to a Wilcoxon signed-rank test, we

can reject the null-hypothesis that the difference between the individual values of q and t

has a median value of zero (p-value: 0.006) and thus say that they differ significantly. The

distribution of the values of t and q in Figure 1 illustrates this: the q-distribution is right

skewed, the t-distribution is left skewed.5

Do the B subjects know about this bias? The answer is no. Roughly 75% say that the A

subjects are correct and only 15% think that they are overconfident. Also the B subjects’

average belief about the true number of correct answers of the A subjects points only to

some awareness of overconfidence: They guess that t̄ is on average 0.2 units smaller than

q̄ (Mann-Whitney U test, p = 0.002, two-sided). This does not mirror the true degree of

overestimation. Both observations show that B subjects overestimate the accuracy of the A

subjects’ belief on average.

3 Extension I: Familiarity with the Task

Given that overconfidence is a phenomenon that is present in everyday’s life, the above

result is surprising. One possible explanation is that estimating the number of correct

questions is an unfamiliar task, in which B subjects have no further experience, and that

5Treatment A is not an outlier: In all other treatments, where subjects estimated their number of correct

answers, they overestimated it, where the percentage of subjects who overestimated it varies from 53 to 76

percent (for the difficult questions).
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Figure 1: Distribution of true and estimated number of correct answers in Treatment A.

this unfamiliarity causes the B subjects’ unawareness. To further investigate this issue, we

conduct several extensions of our baseline experiment. In these, we give B subjects small

pieces of information about the task: We let them answer the questions and estimate their

number of correct answers themselves, we use non-neutrally written instructions, or tricky

questions to which we show them the correct answers. Next to making B subjects more

familiar with the task, letting them answer the questions themselves, allows us to shed some

light on the reasons for their belief about others: Is there a relation between the own bias

and the belief about the bias of others?

3.1 Answer Questions Themselves: Treatment Q

The first extension is Treatment Q, which is a combination of Treatments A and B: 17

subjects (“Q subject” or “he”) first answer the same seven multiple-choice questions which

the A subjects answered and then estimate their number of correct answers. Afterwards, they

receive the same information about Treatment A as the B subjects did and state whether they

think that the A subjects are over-, underconfident, or unbiased. By answering the questions

himself, a Q subject might not only get a better feeling for the difficulty of the questions

and whether the A subjects’ average guess is realistic, but he might also start to reason

better about the problem at hand (compare e.g. Croson, 2000). Our results show that this

is indeed the case: Subjects now recognize more often that others are overconfident. 24% of

the subjects state that the A subjects overestimate their number of correct answers. While

this percentage is higher than the 15% in Treatment B, still the majority of 59% thinks that
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the A subjects are on average correct. Moreover, we cannot reject the hypothesis that there

is no relation between the number of subjects in Treatments B and Q, who think that the

A subjects are unbiased or biased, according to a Fisher’s exact test (p = 0.234, one-sided).

Thus, the greater familiarity makes subjects more often recognize that overconfidence is a

problem in the population, but still they are not fully aware of it.

By letting the Q subjects complete the task of the A subjects, we do not only increase their

familiarity with the task, but we can also analyze whether there is a relation between a

subject’s own bias and the belief about the bias of others. To investigate this issue, we plot

in Figure 2 three cumulative distribution functions of Q subjects’ biases – one function for Q

subjects who think that A subjects are unbiased/overconfident/underconfident. We see that

the cumulative distribution function of those subjects, who think that the A subjects are

on average correct, is always below the other two functions – indicating that they have less

extreme overconfidence biases.6 Q subjects who think that others are underconfident are in

fact most overconfident: They overestimate their number of correct answers by 3 on average.

A possible explanation behind this result is the presence of a self-correction mechanism:

Those Q subjects, who think others underestimate their number of correct answers may

also think that they themselves underestimate it – thus, adjusting their estimate about the

own number of correct answers, q, upwards – leading in fact to a greater overestimation.

In contrast, subjects who think that others overestimate it, adjust their belief downwards,

leading more often to correct/better choices. We do not observe in this treatment that

subjects, who think that others are overconfident, are more biased (underconfident) than

those, who think that others are unbiased – something we observe, however, in the treatment

described in the following section, where the familiarity with the task is further increased.

3.2 Answer Questions Themselves, Non-Neutral Wording, Tricky

Questions: Treatment W

We have seen in Section 3.1 that some familiarity with the task helps to recognize that

others are biased, but does not make subjects fully aware of it. In Treatment W, we increase

the subjects’ (“W subject” or “he”) familiarity with the task further by using non-neutral

wording in the instructions. We do so for two different types of questions and randomly

select which part is paid to avoid hedging.

6If we test the biases of those Q subjects, who think others are biased (either overconfident or under-

confident), against the biases of those, who think others are unbiased, a Mann-Whitney U test indicates a

significant difference (p=0.033).
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Figure 2: Q subject’s bias given belief about the bias in A subjects’ self-assessment. A

negative bias refers to overconfidence and a positive bias to underconfidence.

3.2.1 Difficult Questions

In the first stage of Treatment W, we repeat Treatment Q, but the instructions use a non-

neutral language. We explicitly asked the 19 W subjects “How many questions do you think

you have correct?”, “Do you think that others over-, underestimate their number of correct

questions or estimate it correctly?” and “How many questions do you think the others

answered on average correctly?” (i.e. the choice of the number, which we added compared

to Treatment Q).

Our first observation is that the greater familiarity increases the awareness about the bias of

others: In Treatment W, only 42% of subjects believe that the A subjects are unbiased, while

32% think that they are overconfident. Thus, the information that the non-neutral wording

of the instructions provides leads to the insight that the A subjects are biased. Compared

to Treatment B, a Fisher’s exact test (p=0.038, one-sided) indicates that the percentage

of subjects who think that others are biased (unbiased) increases (decreases). The wording

does not, however, lead to the insight that A subjects are necessarily overconfident as roughly

the same number of W subjects thinks that the A subjects are over- or underconfident (32%

versus 26% ). The words “overestimate” and “underestimate” pop up in the instructions in

the same proportion – making people think about problems of biased estimates. But reading

these words did not animate subjects to ponder whether over-, or understimation is more

likely a problem.

As in Section 3.1, we can analyze the relation between a subject’s own bias and the subject’s
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belief about the bias of others. Compared to the results in Treatment Q, a self-correction

mechanism now explains the results perfectly: Those subjects saying that the A subjects

underestimate their number of correct answers, overestimate their own number by 1.2 on

average. They adjust their belief too much upwards and end up being most heavily over-

confident. Those subjects saying that the A subjects are roughly correct, overestimate their

own number by 0.75 on average. They do not recognize the bias of others, do not adjust the

own belief, and therefore, end up being overconfident. And finally those, who say that the

A subjects are overconfident, are in fact underconfident with a bias of 0.5, they adjust their

own belief too much downwards.7

In addition to the relation between the own bias and the belief about the bias of others,

we can analyze the relation between the belief about one’s own number of correct answers

and the exact belief about the A subjects’ true number of correct answers (the guess z).

Figure 3 shows that W subjects with lower beliefs q (up to 3) guess on average that the

A subjects’ true number of correct answers is lower than q̄ = 3.4, whereas subjects with

higher beliefs (from 4 on) estimate that the A subjects’ true number of correct answers is

larger than 3.4. Thus, W subjects adjust their belief about the A subjects in the direction

of their own belief. The result is supported by the observation that the estimates q and z

are positively correlated (Spearman rank-order correlation coefficient 0.737, p = 0.0002). A

false consensus effect (Mullen et al., 1985) can explain the observed behavior. People who

are prone to a false consensus effect tend to overestimate the degree to which, for example,

their own behavior or beliefs are shared by other people. This effect implies that subjects

overestimate the frequency with which their own estimate q is present in the population.

Up to now, we have seen that subjects tend to overestimate the own number of correct an-

swers as well as the accuracy of other subjects’ beliefs. These observations raise the question

whether subjects have the same bias when evaluating themselves and when evaluating the A

subjects. In a study by Baker and Emery (1993), individuals have extremely optimistic ex-

pectations assessing the likelihood that they get divorced themselves while they know quite

accurately the likelihood of divorces in the population (about 50 percent of U.S. couples

who marry). This finding suggests that people may be better at detecting “biases” of other

people than biases of themselves since no self-image concerns are involved when evaluating

others. This is consistent with our data: On average, the own bias is about 0.26 larger in

absolute terms (it is more negative) than the bias in assessing the others’ average number

of correct answers t (Wilcoxon signed-rank test, p=0.015). Thus, a driving force behind

overconfidence can be a kind of self-impression motive.

7The estimate q of those subjects, who say that others are overconfident (underconfident), is significantly

smaller than the estimate q of those, who say that others are unbiased (according to Mann-Whitney U tests

p = 0.004 and p = 0.011, respectively).
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3.2.2 Tricky Questions

The second stage of Treatment W is analogue to the first, except that the W subjects answered

different multiple-choice questions. Therefore, we also confronted them with a different

reference treatment (Treatment AT) in this stage. In addition, we showed them the correct

answers to the questions after they answered them and assessed their own number of correct

answers, but before evaluating the AT subjects. Treatment AT is exactly like Treatment A,

but 20 new subjects answer tricky multiple-choice questions instead of difficult ones. These

questions look very simple (as one answer seems to be the correct one), but are in fact not.

Thus, subjects are quite certain that they choose the right answer, but actually select the

wrong one. Showing the correct answers to these questions, therefore should help subjects

to recognize that the others overestimate their number of correct answers.

Unsurprisingly, the tricky questions lead to more pronounced overestimation: The average

difference between the estimated and true number of correct answers is now 3.4 (Wilcoxon

signed-rank test, p=0.000).8 More importantly, W subjects now recognize this problem.

Almost all (91%) say that AT subjects overestimate their number of correct answers. They

still do, however, not fully recognize to which extent overestimation is a problem. They

think that the true number of correct answers t̄ of the AT subjects is around 2.9, whereas it

8We discuss the selection of questions and whether one can say that subjects are “more overconfident”

with tricky questions in Section 6.
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is indeed only 1.2 and the AT subjects believe it is 4.6.9 Moreover, their guess is not much

smaller than their guess for the A subjects – who answered the difficult and not the tricky

questions – which is 3.4.

4 Extension II: Facing a Single Subject (Treatment S)

So far, we investigated whether subjects know about the bias of the group of A subjects with

the result that a majority does not. We have seen that greater familiarity only alleviates

this ignorance. In real world situations, often not the bias of a group, but the one of a single

individual matters (e.g. the bias of one’s manager or of one’s opponent in a tournament).

In the following, we want to ask whether subjects know that a single A subject can make a

mistake when estimating her number of correct answers and whether they think that this

mistake is just random or caused by a bias.

4.1 Experimental Design

Treatment S is like Treatment Q, except that subjects (“S subjects”) now state beliefs about

a single A subject and not the complete group of A subjects. Subjects additionally choose the

number that mirrors their belief about another subject’s true number of correct answers t. To

elicit beliefs about a single A subject, we implemented the strategy method: 20 subjects state

for every possible estimate q ∈ {0, 1, . . . , 7} of an A subject whether they think she is under-,

overconfident or unbiased (strictly speaking: makes mistakes or not). For the numbers 0

and 7 on the boundary, subjects only choose between the two appropriate possibilities. In

case he thinks the respective A subject is under- or overconfident, he has to choose a number

z ∈ {0, 1, . . . 7}, z 6= q, that mirrors his belief about her true number of correct answers. A

subject in Treatment S was not paid for all his decisions, but for his decision when facing

the particular estimate q of a randomly selected A subject. When making their decisions, S

subjects did not know which decision is paid.

4.2 Results Treatment S

The results of Treatment S confirm that the S subjects are aware that single A subjects

make mistakes when estimating their number of correct answers: No S subject states for all

possible estimates q of an A subject that she makes the correct choice. For each value of an

A subject’s belief q, 50 – 95 percent of S subjects state that the A subject is wrong.

We cannot directly conclude from the above observations that S subjects think single A

subjects are biased or just make a random mistake. To investigate this issue, we compare the

9A binomial test indicates that the subjects’ guesses are significantly smaller than the AT subjects’ average

belief of 4.6 (p=0.00) and larger than the true average of 1.2 (p=0.00).
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Figure 4: Average value of the difference between the S subject’s belief z about an A subject’s

t for each possible belief q of an A subject.

average choice of subjects in Treatment S with the predicted choice that would be consistent

with S subjects thinking that an A subject is unbiased. For this, we have to specify which

values of t can be compatible with a specific estimate q of an A subject given the assumption

that she is unbiased. We assume that the distribution of the mistake an unbiased A subject

makes is symmetric around zero and uniform. This implies that e.g. an A subject, who states

q = 1 could actually have a t ∈ {1, 2, 3, 4}.10 In expectation, she thus has 2.5 correct – since

all four possibilities are equally likely. Since 2.5 is larger than her stated belief of 1, she

underestimates her number of correct answers. We plot the predicted choices of an S subject

for all possible beliefs of an A subject in Figure 4 (the dashed line). Figure 4 also shows the

average actual choices of the S subjects. One sees that the actual choices are close to the

ones predicted for unbiased A subjects (especially for low stated beliefs). Hence, S subjects

consider the mistakes they identify as random and do – as for the average of subjects – not

think that a single subject has a bias.

In Section 3.2, we already analyzed the relation between a subject’s own bias and his exact

belief about the average number of correct answers of a group of other subjects. Now, we

want to investigate the relation between a subject’s own bias and his belief about the number

of correct answers of a single other subject. For this we conduct a standard OLS regression.

10The drawback of this approach is that the precision of an A subject that states extreme beliefs q is higher

– for example, someone who says “I answered seven questions correctly” is always right. To circumvent this,

one can define unbiasedness such that the expected value of the mistake not for every single subject, but for

the population, is zero. The results we show differ, however, only slightly if we use this assumption instead.

13



We regress the estimates z on the own belief q, the own number of correct answers t, and

the belief qA an A subject has about herself, yielding (p-values are in brackets below the

coefficients, R2 = 0.3438):

ẑ = 0.161 q + 0.513 t + 0.633 qA + 0.633.

(0.044) (0.00) (0.00) (0.106)

Thus, all three variables have a significant and positive effect on the guess about other

subjects. Clearly, this guess is related to the belief of an A subject – as this is the information

an S subject receives. Yet, also the belief about himself influences his guess. As in Section

3.2, the latter hints at a false consensus effect. To further investigate this, we distinguish

between similar and non-similar individuals: A similar A subject has exactly the same belief

q about her number of correct answers than an S subject has about his number of correct

answers. We observe that the average distance between the estimate z for a similar subject

and this subject’s q is 0.75. But for non-similar subjects it is 1.87 (according to a Wilcoxon

signed-rank test the difference is significant, p < 0.02). Moreover, the belief of an S subject

about a similar A subject and this A subject’s own belief are positively correlated (Spearman

rank-order correlation coefficient: 0.59, p = 0.003). These observations together indicate

that a subject thinks that a similar subject is rather correct with her self-assessment. For

non-similar individuals, there is no correlation (Spearman rank-order correlation coefficient:

-0.089, p = 0.296).11 Thus, for a non-similar individual, the own belief is not crucial for

one’s estimate.

A second implication of these observations is that a similar subject is considered to be more

likely correct than are non-similar subjects: The “adjustment” of a similar A subject’s belief

about herself is smaller than of non-similar ones (see above), and there is no adjustment at

all for similar A subjects in 60 percent of the observations, whereas for non-similar subjects

this is only true for 22 percent. Even more remarkably, subjects also think that similar A

subjects are likely to be correct if these A subjects hold “extreme” beliefs, for which most

other subjects say that this extreme belief must be mistaken.12

5 Extension III: Relative Bias

In many strategic interactions, it is not only important to know whether other subjects are

biased, but also to know about the relation between the own bias and the bias of others:

Who is more likely to be correct or biased – the other subjects or oneself? We address this

issue in the third extension.

11Moreover, if we do the above regression again, but only for the non-similar individuals, the own belief is

no longer significant.
12For A subjects that are not similar and who have beliefs q ∈ {0, 4, 5, 6, 7}, the distances between q and

the estimate z of an S subject are significantly larger than they are for similar A subjects (p ≤ 0.02).
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Alternative I Alternative II

q = t and |q̄ − t̄| < 0.5 800 800

q = t and |q̄ − t̄| > 0.5 500 300

q 6= t and |q̄ − t̄| < 0.5 300 500

q 6= t and |q̄ − t̄| > 0.5 210 210

Table 3: Payoffs to elicit beliefs about relative biases.

q = t (q 6= t) refers to the self-assessment of a subject in Treatment Q or S, respectively,

while |q̄ − t̄| ≷ 0.5 refers to the average self-assessment of the A subjects. In Treatment S,

subjects evaluate a single A subjects and not the group average, thus, |q̄− t̄| ≷ 0.5 has to be

replaced by q = t and q 6= t, respectively.

5.1 Experimental Design

To examine the aforementioned question, we include an additional task in Treatments Q, S

and W. In Treatment W, we explicitly ask subjects whether they think that “I and others

made the correct choice” (or “both are wrong”, “others right and I am wrong”, “others

wrong and I am right”). If subjects are right with their statement, they receive 400 Tokens,

otherwise 50. Hence, we can see from a subject’s choice in Treatment W whether he thinks

that he is rather biased himself than are the others or whether he thinks both are equally

likely (un-)biased.

In order to elicit such beliefs in Treatments Q and S, subjects choose between two alternatives

(I and II), whose payoffs for the four possible events are shown in Table 3. Payoffs of the two

alternatives only differ for the event that a subject is correct himself, while the A subjects are

wrong (on average), or when the subject is wrong but the A subjects are correct (on average).

In case that both are correct or both are wrong the two alternatives lead to identical payoffs.

Combining the choice between these two alternatives with the statement whether a subject

thinks that A subjects are under-, overconfident or unbiased one can, nevertheless, conclude

whether he thinks that both make the right or wrong decision or only one is wrong while

the other one is right.

5.2 Results

Figure 5 shows the percentage of subjects in Treatments Q and W (for the difficult questions)

thinking that oneself does not make a mistake and the A subjects are biased, that oneself and

the A subjects are correct, that oneself makes a mistake while the A subjects are unbiased

or that both are wrong. In both treatments, it is the largest group of subjects that thinks

it is more likely that they do not make a mistake themselves, while the others are biased.

About two thirds of the subjects think that they and the others or only they themselves
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are unbiased. Thus, familiarity – the framing – does not make subjects recognize that

overestimation is a problem for themselves.

The result is striking in the following respect: If one thinks that the population is unbiased

on average, one should rather state that the others are correct because it is more likely that

oneself – as a single subject – is wrong than the whole population (as random mistakes cancel

out for the population but not for a single subject). As we have seen in Section 4, subjects

are aware that single subjects make random mistakes. Thus, subjects do not believe that

they – compared to others – make a mistake at all. This indicates a strong better-than-

average effect (or self-serving bias): Individuals do not only think that they have better

relative abilities (as psychologist observe), but also that they are better in judging their own

ability than are others in this task (even if for others random mistakes cancel out). This

strong self-serving bias can also be the driving force behind the observation that familiarity

does not help subjects to recognize that they are biased themselves: Subjects might simply

ignore the information included in the framing that indicated that they – and not only the

others – might be wrong.

When subjects face a single A subject in Treatment S, the result is similar: A majority of

subjects states that rather they are correct themselves than is a single A subject, i.e. they

choose Alternative I. We plot the percentages of S subjects’ choices of Alternatives I and II

for every single belief of an A subject in Figure 6. More striking in Treatment S, however,

is the observation that for low stated beliefs q of an A subject, S subjects tend even more to

Alternative I (indicating that they rather think they are correct themselves) than for high

beliefs of an A subject.13 Thus, S subjects are more confident in those subjects who appear

to be good types (i.e. who state a high belief about themselves).

Earlier, we analyzed the relation between a subject’s own bias and the belief about the bias

of others. We discussed, how a self-correction mechanism explains the results. Now, we can

look at the relation between a subject’s own bias and the belief about the relative bias. The

analysis of the relation provides again evidence that subjects try to correct their choices

if they are aware of biases: In Treatment Q, subjects who choose Alternative I – which

indicates that they think they are rather correct themselves – have a significantly stronger

bias than those choosing Alternative II (Mann-Whitney U test, p = 0.007). The pattern for

Treatment W is similar. Here, those who say that they are more likely correct than are the

A subjects have on average a higher bias.

13According to a Wilcoxon signed-rank test, the medians of the number of subjects choosing Alternative

I/Alternative II when q is lower than 4 or at least 4 differ significantly (p = 0.05, two-sided).
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6 Discussion

In the following, we discuss the selection of questions in our experiment, which is a possible

drawback, the procedure to measure the overconfidence bias, and applications of our results

to organizations and markets.

6.1 Choice of Questions

The issue that the type of questions matters for overconfidence has been intensively inves-

tigated in the literature with different results. A well-known result is the hard-easy effect.

Lichtenstein and Fischhoff (1977), for instance, show that with easy questions overconfi-

dence vanishes and even turns into underconfidence. Gigerenzer (1993) claims that the type

of questions does not matter, whereas it matters whether questions are randomly selected or

not. If they were selected randomly, overconfidence would vanish. Among others, Brenner

et al. (1996) show that this is not true.

What is the implication of this discussion for our experiment? As we have seen overestima-

tion is more pronounced with the tricky questions. Obviously, this is caused by the questions

and thus, one cannot claim that subjects have a stronger bias with the tricky questions. In

the text, we did not deepen this discussion as our focus is not whether subjects are more or

less overconfident with tricky questions. Instead, we use the tricky questions just as a means

to be able to provide subjects with a strong signal (by showing them the correct answers)

that others might be wrong with their assessment. Thus, in this respect the selection of

question discussion has no implication for our experiment.

From another perspective, however, the discussion matters. If Gigerenzer (1993) is right with

his critique, then the B, Q, W and S subjects’ beliefs about how we selected the questions

are important: Do they think we selected them in a special way or randomly? Thinking that

we randomly selected the questions could cause their belief that others are unbiased (being

aware that overconfidence vanishes in case of a random selection of questions). A study by

Frederick (2005) (which deals, however, with a different topic than ours) makes clear that

this can be an issue. In this study, subjects face questions that induce “intuitive mistakes”.

This means that the answer that comes first to ones mind is wrong. Those subjects, who

correctly answered the questions, recognized that the questions were not as easy as they

looked like. Hence, the latter subjects think more often that others are wrong than do those

who did not answer the questions correctly. However, such reasoning is harder with our

questions as they do not induce intuitive mistakes: As we have seen, there is no significant

difference between Treatments B and Q – showing that when subjects think longer about

the questions this does not make them significantly more often recognize that others are

biased. Moreover, the significant differences between Treatments B and W speak against the

explanation that the subjects’ beliefs about the rationality of others is shaped by their be-
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lief about how we selected the questions: If subjects believed that we selected the questions

randomly and this causes unbiasedness, we should see no difference between these treatments.

6.2 Overconfidence

The literature applies several definitions of overconfidence. On the one hand, one can define

overconfidence about own knowledge or ability or one can define it as being too optimistic

regarding the own performance (“optimistic overconfidence”), which does not necessarily

depend on own knowledge. On the other hand, overconfidence can refer to absolute abilities

as well as to relative abilities, i.e. people make assessments either regarding their own ability

or regarding their ability compared to other people’s abilities (like estimating their rank or

percentile in a distribution). In our experiment, we deal with overconfidence about the own

absolute ability. We choose this for the following two reasons. First, optimistic overconfi-

dence would have been harder to measure in the laboratory. Second, we choose absolute and

not relative abilities because if people were even not aware of this simple bias, the awareness

of other notions of overconfidence (like relative biases) is even less likely.

Besides several definitions of overconfidence, there are also different ways to measure over-

confidence. Much of the evidence for overconfidence comes from calibration studies by psy-

chologists, in which subjects make probability judgements, e.g., about their answer to a

question being correct. In contrast, we let people make a point estimation. First, we think

that this is easier to understand than a calibration task (especially for the subjects in Treat-

ments B, Q, W and S). Second, and more importantly, with this task, we can distinguish

between random mistakes and real biases.

6.3 Applications and Directions for Future Research

The finding by psychologists that people are overconfident inspired economists to include

such a bias also in their models: what is the optimal incentive contract for an overconfident

agent (de la Rosa, 2007; Santos-Pinto, 2007a), how do such agents behave in tournaments

(Santos-Pinto, 2007b) and team production (Gervais and Goldstein, 2004), or how do they

compete in an oligopolistic market (Eichberger et al., 2007; Englmaier, 2004). All these mod-

els involve strategic interactions – something we have not considered in our experiment. The

reason for this design is simple: Without strategic interaction, subjects’ decisions are fully

driven by their belief about the bias of others and not by strategic considerations. While

adding strategic interaction makes this impossible, it adds other interesting questions: Do

subjects exploit the bias of others strategically (given they know their opponents are biased),

or do they violate the “no agree to disagree assumption” (I think I am better than you, you

think you are better than me).
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Furthermore, our results gave quite pessimistic predictions regarding the knowledge about

other people’s (e.g. an opponents’) bias – an assumption that is, however, met in the theo-

retical models above. Thus, it seems an important direction for future research to examine

whether our results would be replicated in a strategic context.

In Section 3.1 and 3.2, we have seen the presence of a self-correction mechanism: e.g., those

subjects, who state that others are overconfident, are underconfident themselves. This indi-

cates that at least some people are to some extent aware that they have a bias – for which

they try to correct (as they might not know the size of their bias, they might overreact).

Our experimental design does not allow us to examine what people really know about their

own bias, which is, however, an interesting question for future research.

Finally, it seems important to examine further the implications of un-/awareness of other

people’s bias for organizations and markets. For example, in firms, overconfident managers

can have a positive (Goel and Thakor, 2005) or negative (Malmendier and Tate, 2005; 2006;

Malmendier et al., 2006) impact on the firm’s performance depending on the dimension one

considers. Thus, the question arises, whether managers are selected systematically with re-

spect to their overconfidence bias or whether shareholders are simply not aware of this bias

and its possible positive or negative implications for the firm.

Another area where the knowledge about other people’s bias matters are university admis-

sions or career centers. It is, for example, well-known that men are more overconfident than

women (see e.g. Barber and Odean, 2001). In many countries significantly less women hold

a university degree than men and overestimation of abilities can be one explanation for this

observation. Hence, an interesting issue is whether people responsible for university admis-

sions and teachers are aware of the fact that men are more overconfident and whether they

try to correct for it.

7 Conclusion

Overconfidence is an everyday life phenomenon: People overestimate their driving abili-

ties, students their scores in exams or their position in the distribution or ranking, couples

the likelihood of not getting divorced, and portfolio managers their prediction abilities. As

overconfidence is such a common characteristic of people’s behavior and is observed so fre-

quently in real life, one expects that people are also aware of this bias. While we confirm

that overestimation of the own ability is a prominent phenomenon, we nevertheless find that

a majority of subjects does not think or know that others have a bias. We examine some

explanations for this behavior: the lack of familiarity with the task, the distinction between

real biases and random mistakes, and the relation between the belief about one’s own ability
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and bias and the belief about other people’s biases. Concerning familiarity, we observe that

making individuals more familiar with the task increases the awareness, but still they do

not recognize the full extent of the overconfidence bias. A better explanation might thus be

that subjects are well aware that others make mistakes when evaluating their ability – they

think, however, that these mistakes cancel out on average, i.e. are random. Finally, we saw

that also the belief about oneself matters for the belief about others: We discussed how the

results are driven by a better-than-average effect (i.e. a self-serving bias), a self-correction

mechanism and a false consensus effect.
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Appendix

We show that the payoffs in our experiment induce a subject that maximizes some increasing

utility function u(·) to choose the alternative which he thinks is most likely to be correct. Be-

fore we show this, note that all decision problems in our experiment have the same structure:

A subject has the choice between several alternatives (J = {2, 3, 4, 8, 70}). For example, a

subject has eight alternatives for the statement how many questions she thinks she answered

correctly. If a subject makes the “right” choice (e.g., she states the right number of correctly

answered questions), she receives a high payoff and if her choice is not correct, she receives

a low payoff.

An individual might be uncertain which alternative is true, and hence forms beliefs about

the probabilities of the different alternatives being true. To show that a subject chooses the

alternative on which she puts the largest probability to be the correct one, we first define

beliefs and strategies of a subject. We let µj be the individual’s belief that alternative j is

true j ∈ {0, . . . J} with
∑J

j µj = 1. Given (with some abuse of notation) a pure strategy

j ∈ J = {0, . . . J} of an individual, a mixed strategy, σ : J → [0, 1], assigns to each pure

strategy j a probability σj ≥ 0 with which j is played where
∑

j σj = 1. Further, we denote

by c the high payoff (525, 1680, 105, 400, 500 Tokens) and by c−κ the low one (20, 30, 315,

50, 300 Tokens).14 We assume, without loss of generality, that µ1 ≥ µ2 ≥ . . . ≥ µJ .

Then, one can show the following:

Proposition 1 Unless µ1 = µ2, an individual plays a pure strategy. More precisely, the

individual sets σ1 = 1 if µ1 > µj ∀j 6= 1. If µ1 = . . . = µn > µn+1 ≥ . . . ≥ µJ with

J ≥ n ≥ 2, then any σ with σ1 + . . . + σn = 1 can be optimal.

This result implies that a mixed strategy is not optimal as long as an individual that is

uncertain about the right action attaches a higher probability to one possible action than to

all other actions.

Since all the decision problems in our experiment have this structure, we can apply this

proposition to all of them.

Proof.

The subjectively expected utility of an individual from strategy σ is

µ1[σ1u(c) + σ2u(c− κ) + . . . + σJu(c− κ)] + µ2[σ1u(c− κ) + σ2u(c) + . . . + σJu(c− κ)]

+ . . . + µJ [σ1u(c− κ) + σ2u(c− κ) . . . σJu(c)].

14So called “probability matching” (see e.g. Shanks et al., 2002) could occur in our decision problem.

Shanks et al. (2002) show that this anomaly occurs less often in case financial incentives are provided. Thus,

“probability matching” should not be a severe problem for our experiment.
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Rearranging yields

u(c)
∑

j

µjσj + u(c− κ)

σ1

∑
j 6=1

µj

 + σ2

∑
j 6=2

µj

 + . . . + σJ

∑
j 6=J

µj


︸ ︷︷ ︸

=
∑

j σj(
∑

i6=j µi)

. (1)

Suppose now that subjects never put the same probability on alternatives. Without loss of gener-

ality µ1 > µ2 > . . . > µJ . The expected utility under a strategy that sets σ1 = 1 would be

u(c)µ1 + u(c− κ)
∑
j 6=1

µj . (2)

Compare this to a strategy σ′ that puts some positive weight on other alternatives (i.e. σ′1 < 1).

This means, we subtract (1) from (2), where we, however, replace all σj by σ′j in the latter. This

yields

u(c)

(1− σ′1)µ1 −
∑
j 6=1

µjσ
′
j


︸ ︷︷ ︸

(A)

+u(c− κ)

∑
j 6=1

µj −
∑

j

σ′j(
∑
i6=j

µi)


︸ ︷︷ ︸

(B)

As long as this difference is positive, the strategy that sets σ1 = 1 is optimal. Consider term (A)

using that σ′2 = 1−
∑

j 6=2 σ′j :

(1−σ′1)µ1−
∑
j 6=1

µjσ
′
j = (1−σ′1)(µ1−µ2)+µ2

∑
j>2

σ′j

−
∑
j>2

µjσ
′
j = (1−σ′1)(µ1−µ2)+

∑
j>2

(µ2−µj)σ′j .

This is strictly larger than zero since µ1 > µ2 > . . . > µJ . The smallest value it can take is zero if

and only if µ1 = µ2 = . . . = µJ . Consider now term (B):

∑
j 6=1

µj −
∑

j

σ′j

∑
i6=j

µi

 = (1−σ′1)
∑
j 6=1

µj −
∑
j 6=1

σ′j

∑
i6=j

µi


︸ ︷︷ ︸

1−µj

= (1−σ′1)(µ2−µ1)+
∑
j>2

σ′j(µj −µ2).

This term is (strictly) negative (the term equals zero if µ1 = µ2 = . . . = µJ), but the absolute value

is the same for the term (A) and (B). Since the first is weighted by u(c) > u(c − κ), subjectively

expected utility from the strategy setting σ1 = 1 is larger than from σ′ and hence, this is the

optimal strategy.

It is easy to see that this result also holds true for µ1 > µ2 ≥ . . . ≥ µJ , since σ′1 < 1. If, however,

µ1 = . . . = µn > µn+1 ≥ . . . ≥ µJ with J ≥ n ≥ 2, then any σ with σ1 + . . . + σn = 1 can be

optimal. To see this, note that term (A) simplifies to∑
j>n

(µ2 − µj)σ′j

and (B) to ∑
j>n

σ′j(µj − µ2)
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as µ1 = µn. Consider a strategy σ′ that sets σ′j = 0 for all j > n (i.e. all j for which µ2 − µj > 0)

and
∑

j≤n σ′j = 1. Then term (A) and term (B) would be both equal to zero under this strategy

σ′. Hence, the strategy setting σ1 = 1 yields the same expected payoff than σ′. Thus, any strategy

that sets σ1 + . . . + σn = 1 can be optimal.
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