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1 Introduction

As is well-known Walrasian analysis is built upon the Hypothesis of Perfect

Competition, which can be taken as in Mas-Colell (1980) to state: “...that

prices are publicly quoted and are viewed by the economic agents as ex-

ogenously given”. Attempts to go beyond Walrasian analysis have in par-

ticular involved giving “a theoretical explanation of the Hypothesis itself”

(Mas-Colell (1980)). Among these the most remarkable are without doubt

the 19th century contributions of Bertrand, Cournot and Edgeworth (for an

overview, see Stigler (1965)). The Cournot approach was explored inten-

sively, in a general equilibrium framework, in the symposium issue entitled

“Non-cooperative Approaches to the Theory of Perfect Competition” (Jour-

nal of Economic Theory, Vol. 22 (1980)).

The features common to most of the symposium articles are:

(a) The strategies employed by the agents are of the Cournot type, i.e.,

consist in quoting quantities.

(b) The (insignificant) size of any agent relative to the market is the key

explanatory variable for the tendency of strategic behavior to approx-

imate perfect competition and, in its wake, to lead to Walrasian out-

comes (Mas-Colell (1980), p.122).

The extension of pure quantity strategies from Cournot’s partial equilib-

rium model of oligopoly to a general equilibrium framework, however, does

raise questions. Underlying the Cournot model is a demand curve for the

particular market under consideration which enables the suppliers to relate

quantities, via prices, to expected receipts. If such a close relationship is not

provided by the market, then it seems more natural to us that an agent will

no longer confine himself to quoting quantities, i.e., to pure buy-or-sell mar-

ket orders. To protect himself against “market uncertainty - or illiquidity,

or manipulation by other agents” (Mertens (2003)), he will also quote prices

limiting the execution of those orders, consenting to sell q units of commodity

j only if its price is p or more, or buy q̃ units only if its price is p̃ or less.

By sending multiple orders of this kind an agent can approximate any mono-

tone demand or supply curve in a market by a step function, as was done in
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Dubey (1982, 1994). Here we go further and give each agent full manoeu-

vrability. He places a continuum of infinitesimal limit-price orders, which in

effect enables him to send any monotone, continuous demand or supply curve

for each commodity1. The upshot is a striking result: provided only that all

commodity markets are “active” (i.e. there is positive trade in them), and

no matter how thin they are, strategic (Nash) equilibria (SE) coincide – in

outcome space – with competitive (Walras) equilibria (CE). Our result thus

provides a rationale, based on strategic competition, for Walrasian outcomes

even in the case of a bilateral monopoly. This brings it in sharp contrast to

Dubey (1982, 1994), where it was necessary to allow for price wars via com-

petition on both sides of each market (in the sense of there being at least two

active buyers and two active sellers for each commodity) in order to conclude

that SE are CE 2. The key point of our paper is that continuous trading is

a substitute for price wars and yields perfect competition. A monopolist may

be in sole command of his own resource, but nevertheless he will be reduced

to behaving as if he had cut-throat rivals, once continuous trading sets in. 3

We present our result in two different models. In Section 2, our focus is

first on an oligopoly in which each trader conjectures he can exert monopoly

power. Thus a seller may be (or else feel to be) in sole control of commodity

j. Given an (inverse) price-quantity demand curve Dj(q) for j, he will try

to appropriate the entire consumer surplus under the demand curve Dj by

perfect price discrimination; i.e., selling first to the highest-priced buyer of j,

then to the next highest, and so on. Similarly, a buyer of commodity j, who

feels himself to be in a monopolistic position facing several sellers, will first

take the cheapest offer of j, then the next cheapest, etc., in order to appropri-

1It must be emphasized that our model is based on decentralized markets, and is there-
fore an order-of-magnitude simpler than that of Mertens (2003), where cross-market limit
orders are permitted. SE form a large superset of CE in Mertens’ model – for instance,
the SE of Shapley’s windows model (see Sahi and Yao (1989)) are also SE there.

2Indeed, in Dubey’s model, the coincidence of SE and CE fails drastically if there is a
monopolistic agent in any market. In particular, in a bilateral monopoly, every individually
rational and strategically feasible allocation is sustained by SE !

3A related phenomenon was analyzed in Coase (1972) . There, too, a monopolist was
shown to forfeit his power, but this happened in the setting of durable goods which could
be sold sequentially over time to infinitely patient customers. In our model the monopolist
loses power even with perishable goods which are traded at one instant of time.
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ate the entire producer surplus in market j. Indeed, in the extreme case of a

bilateral monopoly, perfect price discrimination of this kind is to be expected.

Our equilibrium point (EP) captures what happens when agents make such

optimistic conjectures of wielding monopoly power (Section 2.1). In Section

2.2 we then show that, under the additional assumption that strategies are

smooth (C1), the same result also holds under ”realistic expectations” . The

notion of EP is akin to Walrasian equilibrium, with the important difference

that prices are not fixed from the outside by an imaginary auctioneer, but

are set by the agents themselves, each of whom realizes and exerts his ability

to influence prices. Therefore we think that EP is an interesting concept in

its own right.

In the second model (Section 3) we turn to a standard market game,

as in Dubey (1982) and Dubey (1994). The market functions like a stock

exchange, with all higher bid (or, lower ask) prices serviced before a new

purchase (or, sale) order is taken up. To accommodate economies in which

CE consumptions could occur on the boundary, it becomes needful here to

introduce a “market maker” who has infinitesimal inventories of every good,

and stands ready to provide them if sellers renege on their promises of deliv-

ery. It turns out that, at our SE, the market maker is never active. But it

is important for agents to imagine his presence when they think about what

they could get were they to unilaterally deviate. 4

Though the two models are built on quite different behaviorial hypotheses,

we find their equilibria (the EP and the SE) lead to the same outcomes,

namely Walrasian.

2 Walrasian Outcomes via Equilibrium Points

2.1 Optimistic Expectations

In this version of our model no attempt is made to construct a full-fledged

game. Since agents are optimistic and conjecture that they can exert perfect

price discrimination and appropriate the entire surplus in every market, it is

4If we restrict attention to interior economies, the market maker can be dispensed with.
See Remark in Section 3.5 .
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infeasible to assign outcomes, i.e. trades and prices, to arbitrary collections

of strategies. Indeed agents’ strategies become jointly compatible precisely

at an equilibrium point (see below), and it is only then that outcomes are

defined. But joint compatibility of the conjectures forces a single effective

price to form at each market. Furthermore – and this is a more subtle point

– the smoothness of the conjectures imply that the ensuing trades will in fact

be Walrasian.

Our analysis is in the tradition of a Walrasian tâtonnement process, i.e.,

no outcomes are defined outside equilibrium (see e.g. Malinvaud (1974)).

We are aware that this is an unsatisfactory shortcut from the view point

of providing a game-theoretic foundation of the Walras model (a matter to

which we shall turn in Section 3). Nevertheless it meets the Walras model

on its own terms and goes beyond it in some important ways:

(a) Prices are not quoted from the outside by some “fictitious auctioneer”,

but set by the agents themselves. In particular, the “law of one price”

per market is not postulated: it is derived out of the continuum of prices

that agents can strategically set for each commodity, in the course of

competing against one another.

(b) It is not assumed that the economic agents face perfectly elastic supply

and demand curves. On the contrary, they face the curves that are

strategically set by their competitors and these always display elasticity

as trades exceed certain threshold.

(c) Strategies of the individuals (i.e. supply and demand curves submitted

to the market) need not be based on their true characteristics (prefer-

ences and endowments) – indeed, in equilibrium, they never are !

In addition, as shown in Section 2.3, equilibrium points are stable w.r.t.

unilateral deviations; i.e., have the same property as a strategic (Nash) equi-

librium.

The economic message of our model is that smooth trading leads to per-

fect competition. From the work of Aumann (1964) we know that a contin-

uum of agents is needed to obtain perfect competition in a cooperative game

context. Here, in a noncooperative context, what is required is a continuum
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of strategies that enables agents to trade infinitesimal amounts at smoothly

varying prices. Continuous trade of this form by just two (or more) agents

generates perfect competition in our model. This is a similar effect as in the

Black-Scholes (1973) model, where continuous trade in only two commodities

spans a continuum of contingent claims.

We now turn to a precise description of our model:

Let N = {1, . . . , n} be the set of agents who trade in k commodities.

Each agent i ∈ N has an initial endowment ei ∈ IRk
+ \ {0} and a preference

relation
>∼i on IRk

+ that is convex, continuous and monotonic (in the sense

that x ≥ y, x 6= y implies x Âi y). We assume that
∑
i∈N

ei À 0, i.e. every

named commodity is present in the aggregate.

An agent may enter a market either as a buyer or a seller, but not both

(although he may switch roles), and submit to each of the k commodity

markets a marginal (inverse) demand or supply curve. Formally, let

M+ = {f : IR+ → IR++| f is continuous and non-decreasing}
M− = {f : IR+ → IR++| f is continuous and non-increasing}.

Then a strategic choice σi of agent i is given by

σi = (σi
1, . . . , σ

i
k |σi

j = di
j ∈ M− or σi

j = si
j ∈ M+, for j = 1, . . . , k)

In the interpretation di
j(q

i
j) is the price at which agent i is willing to buy

an infinitesimal, incremental unit of commodity j, once his level of purchases

has reached qi
j. The supply curve has an analogous meaning. Denote σ ≡

(σ1, . . . , σn) and let Sσ
j , Dσ

j be the aggregate5 supply, demand curves.

We suppose that agent i acts under the optimistic conjecture that he

can exert perfect price discrimination, i.e., that he can sell (buy) starting

5The aggregation is horizontal. In other words, taking price to be the independent
variable, each si

j is a non-decreasing correspondence; and so Sj can be viewed to be the
sum (over i) of these correspondences, which is also non-decreasing. Reverting to quantity
as the independent variable, Sj is a non-decreasing function. Dj is similarly defined as a
non-increasing function.
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at the highest (lowest) prices quoted by the buyers (sellers). This means

that agent i calculates his receipts (or expenditures) on the market j as the

integral, starting from 0, under the curve Dσ
j (or Sσ

j ). The generally non-

convex budget set Bi(σ) is then obtained by the requirement that (perceived)

expenditures do not exceed (perceived) receipts, i.e.,

Bi(σ) = {ei + t | t ∈ IRk, ei + t ∈ IRk
+,

k∑
j=1

Eσ
j (tj) ≤

k∑
j=1

Rσ
j (tj)}

where

Eσ
j (tj) =

tj∫

0

Sσ
j (q)dq if tj > 0, 0 otherwise,

Rσ
j (tj) =

|tj |∫

0

Dσ
j (q)dq if tj < 0, 0 otherwise.

(Note that tij > 0 (tij < 0) means that i buys (sells) j . In the sequel we will

drop the integration variable dq .)

The collection of strategic choices σ will be called an equilibrium point

(EP) if there exist trade vectors t1, . . . , tn in IRk such that

(i) ei + ti is
>∼i -optimal on Bi(σ) for i = 1, . . . , n

(ii)
n∑

i=1

tij = 0 for j = 1, . . . , k

(iii)
∑

i:tij>o

tij = sup{qj | Sσ
j (qj) ≤ Dσ

j (qj)} for j = 1, . . . , k

Conditions (i) and (ii) require that agents optimize and that markets

clear. Condition (iii) says that no trade can be enforced, i.e., it stops when

the (marginal) supply price for the first time exceeds the demand price; and,

at the same time, in equilibrium all trades compatible with the submitted
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strategies are actually carried out.

An EP will be called active if there is positive trade in each market.

First let us establish that at an active EP all trade Tj :=
∑

i : tij>0

tij in

any commodity j takes place at one price, pj.

Lemma 1. The curves Sσ
j and Dσ

j coincide and are constant on [0, Tj] at

any EP .

Proof. For any j, let Gj := {i : tij > 0}, Hj := {i : tij < 0} . Then

∑
i∈Hj

Rσ
j (tij) =

∑
i∈Hj

|tij |∫

0

Dσ
j(1)

≥
Tj∫

0

Dσ
j

≥ Dσ
j (Tj) · Tj

≥ Sσ
j (Tj) · Tj

≥
Tj∫

0

Sσ
j

≥
∑
i∈Gj

tij∫

0

Sσ
j

=
∑
i∈Gj

Eσ
j (tij).

The third inequality follows from (iii); the other four follow from the fact

that supply (demand) functions are non-decreasing (non-increasing).

Hence

(2)
n∑

i=1

Rσ
j (tij) ≥

n∑
i=1

Eσ
j (tij) for j = 1, . . . , k.
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From the monotonicity of preferences, and the fact that each agent has op-

timized, we have

(3)
k∑

j=1

Rσ
j (tij) =

k∑
j=1

Eσ
j (tij) for i = 1, . . . , n.

(2) and (3) together imply:

(4)
n∑

i=1

Rσ
j (tij) =

n∑
i=1

Eσ
j (tij) for j = 1, . . . , k.

From (4) it follows that all the inequalities in (1) must, in fact, be equalities.

Therefore

(5) Sσ
j (Tj) = Dσ

j (Tj) =: pj

and

(6)

Tj∫

0

Dσ
j = pjTj =

Tj∫

0

Sσ
j .

Since by (iii), Dσ
j ≥ Sσ

j on [0, Tj] we get, from (6), and the monotonicity of

D and S

(7) Dσ
j = Sσ

j on [0, Tj].

In view of Lemma 1 we can talk not only of the allocation but also the prices

produced at an active EP . These are the constant values of Sσ
j , Dσ

j on [0, Tj]

for j = 1, . . . , k. Note that these prices are positive by assumption.

Proposition 1. The prices and allocation at an active equilibrium point are

Walrasian.

9



Proof. Let σ be an EP with trades t1, . . . , tn and prices p . We need to show

that, for each i , ei + ti is
>∼i -optimal on the set

Bi(p) := {ei + t : t ∈ IRk, ei + t ∈ IRk
+, p · t = 0}.

W.l.o.g. fix i = 1, put

J1 := {j : t1j > 0}
J2 := {j : t1j < 0}
J3 := {j : t1j = 0}
Tj :=

∑

i:tij>0

tij

δj := min[|t1j |, Tl : j ∈ J1 ∪ J2, l ∈ J3]

Nj := {α ∈ IR : |t1j − α| < δj}
Fj := Ej −Rj

(Since the EP is active, δj > 0). Now we claim, for j = 1, . . . , k:

Fj is continuously differentiable and strictly increasing on Nj(8)

and its derivative at t1j is pj.

This follows from the continuity and strict positivity of Sj and Dj, and from

Lemma 1 which implies:

(9) Fj(q) coincides with Ej(q) = pjq if j ∈ J1, 0 ≤ q ≤ t1j

(10) Fj(q) coincides with −Rj(q) = pjq if j ∈ J2, t1j ≤ q ≤ 0

(11) Fj(q) = pjq if j ∈ J3, q ∈ Nj.

W.l.o.g. fix commodity j = 1. Since F1, . . . , Fk are all strictly increasing

and
k∑

j=1

Fj(t
1
j) = 0, and F ′

1(t
1
1) = p1 > 0, it follows from the implicit func-

tion theorem that there is a neighborhood V of (t12, . . . , t
1
k) in N2 × . . .×Nk
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such that if (t2, . . . , tk) ∈ V then there is a unique t1 which satisfies the

equation F1(t1) + . . . + Fk(tk) = 0. Thus we have an implicit function

G(t2, . . . , tk) = F−1
1 (−F2(t2) − . . . − Fk(tk)) defined on V which is clearly

continuously differentiable. Finally the point t1 = (t11, . . . , t
1
k) belongs by

construction to the smooth hypersurface M = {(G(t2, . . . , tk), t2, . . . , tk) :

(t2, . . . , tk) ∈ V } ⊂ B1(σ) and, by (8), the tangent plane H to M at this

point has normal p .

Since we are at an EP, e1 + t1 is
>∼1-optimal on (e1 + M)∩ IRk

+. Suppose

that there is some x ∈ H+ := (e1 + t1 + H) ∩ IRk
+ such that x Â1 e1 + t1.

By continuity of
Â∼1 we can find a neighborhood Z of x (in IRk

+) with the

property: y ∈ Z ⇒ y Â1 e1 + t1. But since M is a smooth surface there exists

a point y∗ in Z, such that the line segment between y∗ and e1 + t1 pierces

e1 +M at some point z∗ ∈ (e1 +M)∩ IRk
+ (see Fig.1). By convexity of

>∼1, we

have z∗ Â1 e1 +t1, contradicting that e1 +t1 is
>∼1-optimal on (e1 +M)∩IRk

+ .

We conclude that e1 +t1 is
>∼1-optimal on H+ . But we have e1 ∈ H+ (simply

set trades to be zero, i.e., pick −t1 in H). Therefore, in fact, H+ = B1(p).

Since the choice of i = 1 was arbitrary, the proposition follows.

................. Insert Figure 1 here!.................

Proposition 2. If the trades t1, . . . , tn and prices p À 0 are Walrasian, then

they can be achieved at an EP .

Proof. For any i let

J i
1 ={j : tij > 0}

J i
2 ={j : tij < 0}

J i
3 ={j : tij = 0}

f i
j = any strictly decreasing function with f i

j(t
i
j) = pj

gi
j = any strictly increasing function with gi

j(t
i
j) = pj

and consider, for a suitably small δ > 0, the strategies

si
j(x) =

{
pj + δ if j ∈ J i

1 ∪ J i
3

max{pj, g
i
j(x)} if j ∈ J i

2
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di
j(x) =

{
pj − δ if j ∈ J i

2 ∪ J i
3

min{pj, f
i
j(x)} if j ∈ J i

1

Then it is readily checked that these strategies constitute an EP and produce

the trades t1, . . . , tn at prices p.

2.2 Realistic Expectations

The expectation of each agent that he can exert perfect price discrimination

may appear unduly optimistic, especially when there are several rivals on

every market. But our results on equilibrium points in Section 2.1 remain

intact also under the assumption of “realistic expectations”. In contrast to

Section 2.1, each agent here is realistic and realizes that the prices he will get

are apropos his own quotations, not the best going; and thus he calculates his

expenditure (or, revenue) as the integral under his own demand (or, supply)

curve. Furthermore he is aware that he will only be served if his demand

(supply) curve lies above (below) the intersection of the market supply and

demand curves.

Strategies are defined as before, but now we require that they are contin-

uously differentiable (C1). Define

Qσ
j ≡ sup{q : Dσ

j (q) ≥ Sσ
j (q)}

(with Qσ
j = 0 if either Dσ

j = φ, or Sσ
j = φ, or Sσ

j is strictly above Dσ
j ).

Let each agent i think that he can buy tj units of commodity j, where

0 ≤ tj ≤ Qσ
j , for the expected expenditure Êσ

j (tj) =
tj∫
0

di
j(q)dq so long as

di
j(q) ≥ Dσ

j (Qσ
j ). To buy more than Qσ

j , he would need to ”enhance” his di
j

to d̃i
j by some ∆ > 0, i.e., set d̃i

j(q) = di
j(q) + ∆ for all q. Since Sσ

j ∈ C1,

the extra quantity bought varies smoothly with ∆, and so does the integral

Êσ
j (tj) . Similarly, if he is a seller of commodity j, he can sell 0 ≤ |tj| ≤ Qσ

j

for the expected receipt R̂σ
j (tj) =

|tj |∫
0

si
j(q)dq so long as si

j(q) ≤ Sσ
j (Qσ

j ), and

to sell more than Qσ
j lower his si

j by some ∆ > 0 , i.e., set s̃i
j(q) = si

j(q)−∆

for all q. (Remember: tj ≤ 0 if it represents a sale).
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Now define the (realistic) budget set B̂i(σ) just like Bi(σ) with Eσ
j (tj)

and Rσ
j (tj) replaced by Êσ

j (tj) and R̂σ
j (tj) . After this define EP exactly as

before.

We submit that Propositions 1 and 2 still hold. To see this first note that

(see footnote 5)

∑
i∈Hj

|tij |∫

0

si
j =

|Tj |∫

0

Sσ
j , and

∑
i∈Gj

tij∫

0

di
j =

Tj∫

0

Dσ
j ,

and then verify Lemma 1 by rereading the proof with Êσ
j , R̂σ

j in place of

Rσ
j , Eσ

j (reversing the chain of inequalities). Then the proof of Proposition 1

remains unchanged, except that condition (8) now follows from the smooth-

ness of Sj and Dj. Clearly, the strategies in the proof of Proposition 2 can

also be chosen to be in C1.

2.3 Stability of Equilibrium Points

We can now show that at an EP of both versions of our model no agent can

improve by unilateral deviation of his strategy.

Proposition 3. Active EPs are stable w.r.t. unilateral deviations.

Proof. Let σ = (σi)i∈N be an active EP with price p = (pj)j∈K and net trades

(tij)i∈N,j∈K . Define Qσ
j as before. If 0 ≤ tij < Qσ

j , agent i can buy more (or,

less if tij > 0) of commodity j at price pj . But if tij = Qσ
j he can only buy

more of j by raising his demand function di
j in order to increase Qσ

j , thus

increasing the average price he has to pay above pj . But the same is true

under optimistic expectations. There he imagines that he can buy more at

prices Sσ
j > pj, thus also raising the average price above pj. Similarly, if

−Qσ
j < tij ≤ 0, agent i can sell more (or, less if tij < 0) of commodity j at

price pj . But in case of tij = −Qσ
j he has to lower his supply function si

j

below pj, thus lowering his average price for his sales.

For any strategy choice σ̃i of agent i denote by (σ|σ̃i) the n-tuple

(σ1, . . . , σi−1, σ̃i, σi+1, . . . , σn) and consider the budget set Bi(σ|σ̃i) defined as

before with σ replaced by (σ|σ̃i). Since preferences are monotone, for the EP
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σ = (σ|σi), for each i, total expenditures Ei equal total receipts Ri . Thus, for

any deviation (σ|σ̃i) and net trade t̃i ∈ Bi(σ|σ̃i), any increase of t̃ij > tij, i.e.,

buying more or selling less of commodity j, has to be compensated by some

decrease in t̃ik < tik (selling more or buying less of commodity k) in order to

stay within the budget set Bi(σ|σ̃i). But as we have seen before, such changes

in the demand/supply schedule and net trades can only be obtained at prices

which are less favorable than the equilibrium prices pj resp. pk. Thus the

budget set Bi(σ|σ̃i) of agent i’s feasible deviations (σ|σ̃i) from (σ|σi) is a

subset of Bi(p) of Walrasian trades, since in Bi(p) he can trade freely at

fixed prices p, which are at least as favorable as those associated with (σ|σ̃i).

But ti is ºi-optimal in the set Bi(p) (since the EP is a CE). Hence ti is also

ºi-optimal in the set Bi(σ|σ̃i) ⊂ Bi(p).

3 Strategic Market Game: Implementing Wal-

ras Equilibria with an Infinitesimal Market

Maker

The foregoing analysis can be recast in terms of a full-fledged strategic market

game. We shall adopt the perspective of the mechanism design literature.

The aim is to prescribe a market mechanism which Nash-implements the

Walras correspondence. Of course Maskin’s well known results (see Maskin

(1999)) imply that this is impossible unless the domain of economies is re-

stricted so as to ensure that the final Walrasian consumption is strictly in the

interior of IRk
+ for each agent. But we shall place no such restrictions here.

Instead we shall imagine a “market maker” who has inventory of εj > 0

units of each commodity j ∈ K ≡ {1, ..., k} and who is ready to bring them

to market if any seller reneges on his promise to deliver, thereby giving the

buyers something to look forward to. We show that no matter how small

ε = (ε1, ..., εk) is, so long as it is positive, CE are implemented as SE. Our

analysis thus sheds some light on Maskin’s result. It shows that the break-

down of the desired mechanism is not drastic, but of the size of an arbitrarily

small ε. Moreover, given the leeway of ε, we do not have to imagine eso-

teric mechanisms (such as those which entail the strategic announcement of
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unboundedly large integers – see, again, Maskin (1999)) : the simple double

auction, in its smooth incarnation, will do the job.

The point of our analysis in Section 3 is not only that Maskin’s result

on the impossibility of Nash-implementation of non-interior CE can be over-

come with an infinitesimal market maker. Nor is it to add to the list of ab-

stract mechanisms which implement the Walras correspondence. Many such

have already been presented (see, e.g., Hurwicz (1979), Hurwicz, Maskin,

and Postlewaite (1980), Postlewaite (1985), Schmeidler (1980), Giraud and

Stahn (2003) – all of which, incidentally, require at least three agents, in

addition to interior CE, and bypass the case of a bilateral monopoly). We

are instead inspired by the fact that the double auction has a long and rich

history, not only in academia, but in real market processes (see Friedman

and Rust (1993) for an excellent survey). Indeed, our analysis reveals that a

“smoothened” version of the double auction will make for efficiency and help

to break monopoly power. It thereby implies that, if the “price-jumps” per-

mitted in bidders’ strategies are reduced by mandate of the auction-designer,

every such reduction will come with efficiency gains. To that extent, we hope

that our analysis below will also be of some interest to applied economists

who are concerned with the general properties of double auctions.

Prior to the formalities, it might help to point out an essential feature of

anonymity in our market game. Agents submit supply and demand curves

as before. In addition, each seller is required to put up collateral to cover

his sales. The decision of how much of his endowment to reveal, by way

of collateral, is left to the seller as a strategic option. Next, the inventories

ε = (εj)j∈K of the infinitesimal market maker are fixed invariant of the initial

endowments (ei)i∈N in the economy. The quantity εj is made available when

the collateral of any seller fails to cover his imputed sales on market j – these

sales being determined, in turn, solely from the (supply and demand) curves

submitted to the market. Thus the market mechanism does not know – or

need to know – agents’ private characteristics. It operates on only the curves

and collaterals that agents send to the market of their own strategic volition.

Let us turn to a precise description of our game.
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3.1 The Subeconomy EJ

It will be useful to define subeconomies EJ of the whole economy

E = (ei,ºi)i∈N for any subset J ⊂ K ≡ {1, ..., k} of commodities. For a

vector y ∈ IRK , denote yJ ≡ (yj)j∈J ∈ IRJ . Then the set of agents in EJ is

{i ∈ N : ei
J 6= 0} , with endowments ei

J and preferences ºi,J on IRJ
+ given by

the rule: z ºi,J y iff (z, ei
K\J ºi (y, ei

K\J).

3.2 Strategy Sets

There is a market for each commodity, as before. An agent must enter each

market either as a buyer or as a seller (and, for simplicity, not both). If i en-

ters as a buyer for commodity j, he must submit a strategic demand function

di
j : IR+ −→ IR++ which is non-increasing, and smooth (i.e., continuously dif-

ferentiable)6. The interpretation is that i is willing to pay
∫ t

0
di

j(q)dq units

of “fiat money” in order to purchase t units of commodity j.

In the same vein, if i enters market j as a seller he must submit a strategic

supply function si
j : IR+ −→ IR++ which is non-decreasing, smooth and (only

for ease of presentation) satisfies lim
q→∞

si
j(q) = ∞. In addition, i must put up

θ̃i
j > 0 (with θ̃i

j ≤ ei
j) as “collateral” for his intention to sell j. Finally we

stipulate that each agent must enter at least one market as a seller. Thus

the strategy set
∑i of agent i is given by

∑i = {(di
j, s

i
j, θ̃

i
j)j∈K : one, and only one,

of di
j, s

i
j is φ for every j; si

j 6= φ for at

least one j; 0 < θ̃i
j ≤ ei

j if si
j 6= φ;

θ̃i
j = 0 if si

j = φ}
where the functions di

j, s
i
j satisfy the conditions mentioned.

6If i does not enter market j as a buyer (or, seller), we write di
j = φ (or, si

j = φ ). The
symbol φ means that the curve referred to is missing.
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3.3 Outcomes

The market does a sequence of computations based on the N -tuple

σ ≡ (σi)i∈N ∈ X
i∈N

∑i

of submitted strategies, in order to impute commodity trades and monetary

payments to the agents. The idea is simple. Trade is allowed up to the

intersection of the aggregate demand and supply curves, with priority ac-

corded to the higher (lower) priced buyer (seller). But two kinds of default

can occur. An agent may be unable or unwilling to deliver the goods he is

called upon to. Or else he may go into a budget deficit when his purchases

exceed the proceeds of his sales. We require that either kind of default be

severely punished. One may think here of the obvious stipulation that the

entire initial endowment of any defaulter is confiscated (as in, e.g., Peck,

Shell, and Spear (1992), or Weyers (1999) or Giraud and Stahn (2003)); or

that (as in Shubik and Wilson (1977)) sufficient disutility is inflicted on him

by extraneous (unmodeled) means . This does make for a very swift descrip-

tion of the mechanism. But it presupposes that the market has knowledge

of agents’ private characteristics. In contrast, as already pointed out, the

market is blind to them in our scenario: it merely confiscates the entire col-

lateral of any agent who defaults (either on delivery or on budget balance)

and prevents him from trading. The confiscated goods are, of course, made

available to buyers. The only subtlety is that default on delivery must be

dealt with first, since this affects what buyers purchase, and thereby budget

balances. We spell the process out precisely:

Step 1 Compute the aggregate demand Dσ
j and aggregate supply Sσ

j for

each j ∈ K as before. (Those curves which are missing are naturally ignored

in the aggregation. If si
j = φ for all i , then the aggregate supply Sσ

j is also

deemed missing and we write Sσ
j = φ. Similarly Dσ

j = φ if di
j = φ for all i .)

Step 2 Compute the set J ⊂ K of markets in which Dσ
j and Sσ

j intersect7

(at, necessarily, a unique price pj - see Figure 2).

7At markets j ∈ K\J , the intersection fails to occur either because Sj lies above Dj ,
or because one of the curves Sj or Dj is missing.
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Step 3 In each market j ∈ J , compute sales by agents until the price

pj, rationing proportionately quantities offered for sale at the margin price

pj in the event that there is excess supply at pj (see Figure 2). Denote these

sales (θi
j)i∈N . (Some θi

j could be zero, provided si
j = φ or si

j(0) > pj.)

If θi
j > θ̃i

j for some j ∈ J (i.e., i’s collateral fails to cover his imputed sale

θi
j at some market), then i is declared a “defaulter” and forbidden to trade

across all markets, and his collateral is confiscated at every market that he

submitted them to.

Step 4 At each j ∈ J , define

Qσ
j =





∑
i∈N

θi
j, if there is no seller-default at j

εj +
∑
i∈N

min
{

θi
j, θ̃

i
j

}
otherwise

(Note that the infinitesimal inventory εj is made available precisely when col-

laterals fail to cover sales of commodity j). The market maker now allocates

Qσ
j to buyers on Dσ

j , starting at the highest price Dσ
j (0) in Dσ

j and rationing

proportionately the demand at the margin price Dσ
j (Qj) if necessary (i.e.,

if there is excess demand at this price). Denote these purchases (ϕi
j)i∈N . If

i is already a defaulter in Step 3, he is ignored; otherwise his net debt is

computed:

∆i =
∑
j∈J

∫ ϕi
j

0

di
j(q)dq −

∑
j∈J

∫ θi
j

0

si
j(q)dq

(For di
j = φ or si

j = φ, the integral is taken to be zero.) If ∆i > 0, then

again i is declared a “defaulter” and dealt with as before, i.e., his collateral

is confiscated at every market in which he put them up and he is forbidden

from trading.

Remark : Our confiscation scheme can equivalently be described as

follows. Each seller of good j is required to put up any strictly positive

quantity of j by way of collateral and, if the market calls upon him to deliver

more, he must do so out of his remaining endowment of j or else forfeit his

collateral. On the other hand, if his collateral exceeds the delivery he has to

make, the excess collateral is returned to him. We rolled the two steps into

one for brevity of exposition.
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................. Insert Figure 2 here!.................

3.4 Payoffs

Agents i ∈ N who are not defaulters (as in Step 3 or in Step 4) buy ϕi
j and

sell θi
j in markets j ∈ J . They obtain payoff ui(xi) where

xi
j =

{
ei

j + ϕi
j − θi

j if j ∈ J

ei
j if j ∈ K\J

Defaulting agents i obtain payoff ui(yi) where

yi
j = ei

j − θ̃i
j for j ∈ K.

This well defines a game Γ in strategic form on the player set N . By SE

we shall mean a strategic (Nash) equilibrium in pure strategies of the game

Γ.

3.5 Active SE are Walrasian

Define a market to be active in an SE if there is positive trade at that market.

Proposition 4. At any SE with active markets J , all trade in j ∈ J takes

place at one price pj . Moreover these prices and the final allocation constitute

a CE of the economy EJ .

Proof. We will prove the proposition for the case J = K. (The same argument

holds for any J ⊂ K and the corresponding economy EJ .)

First observe that by lowering di
j to d̃i

j so that d̃i
j(0) < Sj(0) and by

raising si
j to s̃i

j so that s̃i
j(0) > Dj(0), any agent i can ensure that he does

not trade and so end up consuming his initial endowment ei. But if i defaults,

his utility is less than that of ei, since he loses his collateral in at least one

market and purchases nowhere. We conclude that there is no default in an

SE.
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Next we assert that (at an SE) in each market j all trade must be taking

place at the intersection price pj. The proof of this is similar to that of

Lemma 1. Indeed, no more than the money paid out by agent-buyers goes

to agent-sellers, implying
∑
i∈N

∆i ≥ 0. But no default also implies ∆i ≤ 0 for

all i ∈ N. We conclude that ∆i = 0 for all i ∈ N . Now if any purchase took

place above pj or any sale below pj in some market j, then (since purchases

[or, sales] occur at prices ≥ [or,≤] the intersection price at every market),

we would have: total money paid out by agents across all markets > total

money received by agents across all markets. This would imply ∆i < 0 for

some i, a contradiction, proving our assertion.

Consider the bundles that an agent i can obtain via unilateral deviation

from his own strategy at the SE. First suppose i is a buyer of commodity j

at the SE.

Case 1 There exists at least one other active buyer of j at the SE, or

else there is excess supply of j at the SE price pj.

In this case, i can buy slightly more of j at the price pj by simply de-

manding a slightly higher quantity at pj. The maneuver works for i even if he

is the sole buyer of j. This is because there is no default on seller deliveries

in SE - as we just saw - and, consequently, the total collateral put up by

sellers covers the total purchase of j prior to i’s deviation. But i’s deviation

is unilateral and sellers hold their collaterals fixed while i deviates. If there

was excess collateral in SE to begin with, i can buy more on account of the

excess; otherwise the inventory of εj comes into play (see the first display of

Step 4), still enabling i to buy more.

Case 2 Case 1 fails, i.e., i is the sole buyer of j and there is no excess

supply of j at the SE price pj.

In this case, i can demand a little more at a slightly higher price (i.e.,

raise the flat part of his demand curve, keeping it flat till it intersects Sj).

Since Sj is continuously differentiable, the extra quantity purchased by i as

well as his expenditure, will vary smoothly with the rise in the intersection
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price. (The fact that i can indeed buy a little more is once again assured by

the infinitesimal inventory of the market maker.)

By a similar argument, i can sell a little more of any commodity j′ that

he was selling at the SE, either at the same price or at a price that is slightly

lower and varies smoothly with the extra quantity sold.

Clearly i can reduce his sale and purchase and get the same price as at

the SE.

Thus it is feasible for i to enhance trade a little beyond his SE trade in a

smooth manner. More precisely, he can get consumption bundles on a smooth

ε-extension M(ε) of the flat part of his achievable set of bundles (where the

extension is computed using prices smoothly increasing/decreasing away from

pj in accordance with the Dj/Sj curves). The situation is depicted in Figure

1, with the curved bold line extended only slightly beyond the flat part, and

representing M(ε). But the argument in the proof of Proposition 1 applies,

no matter how small the smooth extension M(ε) may be: if x is not optimal

on i’s Walrasian budget set, then there exists a point z∗ on M(ε) which yields

more utility to i than x, contradicting that i has optimized.

Define an SE to be active if all markets are active in it. Then Proposition

3 implies

Proposition 5. The prices and allocations at an active SE are Walrasian .

Remark (Robustness of SE) : At our SE, an agent cannot profit by

a unilateral deviation to arbitrary piecewise-continuous monotonic demand

and supply curves (e.g., kinked curves, or, worse, step-functions as in Dubey

(1982)). This is so because, via such deviations, all he can accomplish is to

buy more (or sell more) at prices at least as high (or at least as low) as the

SE prices. But since the SE is a CE, he does not even have incentive to trade

more at the SE prices. Of course, the SE must first emerge from a game with

smooth strategies.

Remark (The Infinitesimal Market Maker) : It should be noted

that our infinitesimal market maker is not called upon to take any action at

the SE of our strategic game. He only lurks in the background. It is enough
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for every agent i to believe that the market maker would make available the

infinitesimal inventory ε, were i to unilaterally deviate from SE and thereby

trigger a situation in which some sellers of commodity j are unable to deliver

on their promises. The belief in the market maker ensures that he is never

called upon to prove his existence (see also Proposition 6 in Section 3.7). We

feel that this role of the market maker is not pure mathematical gimmickry,

but has counterparts in the real world. One need only think of a broker

who has a small inventory of company stocks from the past, and who is

willing to make them available to his buyer clients to mitigate seller default

on deliveries.

Remark (Interior Economies) : Define the economy E = (ei,ºi)i∈N

to be interior if, for all i ∈ N ,

{
x ∈ IRk

+ : x ºi ei
} ⊂ IRk

++ .

Such economies form a standard domain in the mechanism design litera-

ture (see, e.g., Maskin (1999)). Consider our game without the market maker,

take εj = 0 in Step 4; and with the stipulation that collaterals must strictly

cover sales (i.e. θi
j < θ̃i

j), otherwise agent i is deemed to have defaulted on

his delivery. Then Proposition 3 and 4 still hold by the same proofs, showing

standard Nash-implementation of the Walras correspondence on the domain

of interior economies. To check this, one need only note that in the unilateral

deviation, considered in the proof of Proposition 3, there will always be ex-

cess collateral prior to the deviation, obviating the need for the infinitesimal

market maker.

3.6 Walrasian outcomes are achieved at SE

Proposition 6. The prices and allocations at any CE can be achieved at an

SE.

Proof. Let zi denote the CE consumption of i and ti = xi − ei his net trade.

For j such that tij ≥ 0 , let i offer to buy from 0 till tij at the CE price pj

(and to buy more at smoothly and strictly declining prices); and, for j such
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that tij < 0 , let him offer to sell from 0 till |tij| at the CE price pj (and to

sell more at smoothly and strictly increasing prices). Finally let θ̃i
j ∈ [|tij|, ej]

when he is selling j. It is clear that these strategies reproduce the CE prices

and consumptions. They also constitute an SE : having optimized on his

Walrasian budget set, no agent wants to buy or sell more at the CE prices;

and, via unilateral deviation in strategy, he can only buy (sell) at prices

higher (lower) than CE prices - which is even worse for him.

3.7 Refined Nash Equilibria

The gap in our analysis pertains to SE which are not active. These fall

outside the purview of Proposition 4 and may well fail to be Walrasian.

Indeed suppose all agents take it into their heads to send crazy orders, with

sellers asking for exorbitantly high prices and buyers offering absurdly low

prices. This will clearly constitute an SE at which all markets are inactive.

To eliminate such spurious inactivity, we introduce an equilibrium refine-

ment (Proposition 7 below). In the process, we also embed the infinitesimal

market maker into the trembles of the refinement (Proposition 6 below).

Fix the economy (ei,ºi)i∈N and let Γε denote the strategic market game

when the market maker has inventories ε = (ε1, ...εk) ∈ IRk
++ of the various

commodities. Thus Γ0 is the game without the market maker.

We shall say that an SE σ of Γ0 is refined if there exist SE σ(ε) of Γε

such that σ(ε) −→ σ as ε −→ 0.

It is immediate that the market maker can be removed from the fore-

ground and put into the ε-trembles of the refinement process, so that Propo-

sition 4 may be reworded :

Proposition 7. Active, refined SE of Γ0 coincide in prices and allocations

with the CE of the underlying economy (ei,ºi)i∈N .

It may be useful to compare our refinement with that of other models,

which also invoke an ε-market maker (see, e.g., Dubey and Shubik (1978) and
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its variants). In those models, agents must think of ε-perturbed games Gε in

which the market maker is trading up to ε in all markets, not just off the SE

play but in SE. Typically Gε has multiple SE, all of which are different from

the candidate SE of the original game G0 . The agents must coordinate beliefs

on the same SE of Gε as an approximation of the candidate SE. In contrast,

in our model here, the supply and demand curves, and the collaterals, are

throughout given objectively by the candidate strategies. They constitute an

SE not only of the original game Γ0 without the market maker, but also of all

the perturbed games Γε. The ε-market maker need only be conjectured in Γε,

off the fixed SE play, by an agent when he unilaterally deviates. Furthermore

the conjecture is rudimentary: each agent i thinks – without varying the

candidate strategies of the others – that an extra supply εj will be available

at market j if collaterals fail to cover the sales. Thus, both at a conceptual

and interpretational level, and as a mathematical device, our refinement is

simplicity itself compared to that of Dubey and Shubik (1978)

We now strengthen the notion of refinement to allow for inactive markets.

Once again our notion is simpler in that no wholly new SE of the ε-perturbed

game Γε need be coordinated upon by the agents.

Imagine that, in our game Γε, the market maker further endeavors to

bolster trade by offering to buy (and, sell) up to ε̃j > 0 units of commodity j

at some common price p̃j and to buy (and, sell) more at smoothly decreasing

(and, increasing) prices. Treating the market maker as a strategic dummy,

and postulating that he creates the commodity and the money that the

mechanism calls upon him to deliver, the game is well-defined even after

some subset J ⊂ K of markets are ε̃j− p̃j – perturbed as described. We shall

say that an SE σ(ε) of Γε is “*-refined” if there exist ε̃j − p̃j – perturbations

of the inactive markets in σ(ε) that do not disturb the SE σ(ε). An SE σ

of Γ0 is strongly refined if there exist *-refined SE σ(ε) of Γε such that

lim σ(ε) −→ σ as ε −→ 0. Then we obtain (by an obvious proof):

Proposition 8. Strongly refined SE of Γ0 coincide in prices and allocations

with the CE of (ei,ºi)i∈N
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