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Support Vector Machines (SVM) as a Technique for Solvency 
Analysis 

by 

 Laura Auria1 and Rouslan A. Moro2

 
 

Abstract 
 
This paper introduces a statistical technique, Support Vector Machines (SVM), which is considered by the 
Deutsche Bundesbank as an alternative for company rating. A special attention is paid to the features of 
the SVM which provide a higher accuracy of company classification into solvent and insolvent. The ad-
vantages and disadvantages of the method are discussed. The comparison of the SVM with more tradi-
tional approaches such as logistic regression (Logit) and discriminant analysis (DA) is made on the 
Deutsche Bundesbank data of annual income statements and balance sheets of German companies. The 
out-of-sample accuracy tests confirm that the SVM outperforms both DA and Logit on bootstrapped sam-
ples. 
 
Keywords: company rating, bankruptcy analysis, support vector machines 
JEL Classification: C13, G33, C45 
 
 
 
Acknowledgements: the work of R. Moro was supported by Deutsche Bank and its foundation Geld und 
Währung. Additionally R. Moro acknowledges the support of the Deutsche Forschungsgemeinschaft 
through the SFB 649 “Economic Risk”. All analysis was done on the premises of Deutsche Bank in Han-
nover and Frankfurt. 
 
 
 

1. Introduction 
 
There is a plenty of statistical techniques, which aim at solving binary classification tasks such as the as-
sessment of the credit standing of enterprises. The most popular techniques include traditional statistical 
methods like linear Discriminant Analysis (DA) and Logit or Probit Models and non-parametric statistical 
models like Neural Networks. SVMs are a new promising non-linear, non-parametric classification tech-
nique, which already showed good results in the medical diagnostics, optical character recognition, elec-
tric load forecasting and other fields. Applied to solvency analysis, the common objective of all these clas-
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sification techniques is to develop a function, which can accurately separate the space of solvent and in-
solvent companies, by benchmarking their score value. The score reduces the information contained in the 
balance sheet of a company to a one-dimensional summary indicator, which is a function of some predic-
tors, usually financial ratios. Another aim of solvency analysis is to match the different score values with 
the related probability of default (PD) within a certain period. This aspect is especially important in the 
Eurosystem, when credit scoring is performed with the target of classifying the eligibility of company 
credit liabilities as a collateral for central bank refinancing operations, since the concept of eligibility is 
related to a benchmark value in terms of the annual PD. 
 
The selection of a classification technique for credit scoring is a challenging problem, because an appro-
priate choice given the available data can significantly help improving the accuracy in credit scoring prac-
tice. On the other hand, this decision should not be seen as an “either / or” choice, since different classifi-
cation techniques can be integrated, thus enhancing the performance of a whole credit scoring system. In 
the following paper SVMs are presented as a possible classification technique for credit scoring. After a 
review of the basics of SVMs and of their advantages and disadvantages on a theoretical basis, the empiri-
cal results of an SVM model for credit scoring are presented. 
 
 
 

2. Basics of SVMs 
 
SVMs are a new technique suitable for binary classification tasks, which is related to and contains ele-
ments of non-parametric applied statistics, neural networks and machine learning. Like classical tech-
niques, SVMs also classify a company as solvent or insolvent according to its score value, which is a 
function of selected financial ratios. But this function is neither linear nor parametric. The formal basics of 
SVMs will be subsequently briefly explained. The case of a linear SVM, where the score function is still 
linear and parametric, will first be introduced, in order to clarify the concept of margin maximisation in a 
simplified context. Afterwards the SVM will be made non-linear and non-parametric by introducing a 
kernel. As explained further, it is this characteristic that makes SVMs a useful tool for credit scoring, in 
the case the distribution assumptions about available input data can not be made or their relation to the PD 
is non-monotone. 
 

Margin Maximization 
 
Assume, there is a new company j, which has to be classified as solvent or insolvent according to the 
SVM score. In the case of a linear SVM the score looks like a DA or Logit score, which is a linear com-
bination of relevant financial ratios xj = (xj1, xj2, …xjd), where xj is a vector with d financial ratios and xjk is 
the value of the financial ratio number k for company j, k=1,…,d. So zj , the score of company j, can be 
expressed as: 
 

bxwxwxwz jddjjj ++++= ...2211 .       (1) 
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In a compact form:  

bwxz T
jj +=

          (1’) 
where w is a vector which contains the weights of the d financial ratios and b is a constant. The compari-
son of the score with a benchmark value (which is equal to zero for a balanced sample) delivers the “fore-
cast” of the class – solvent or insolvent – for company j. 
 
In order to be able to use this decision rule for the classification of company j, the SVM has to learn the 
values of the score parameters w and b on a training sample. Assume this consists of a set of n companies 
i = 1, 2, …,n. From a geometric point of view, calculating the value of the parameters w and b means 
looking for a hyperplane that best separates solvent from insolvent companies according to some criterion. 
The criterion used by SVMs is based on margin maximization between the two data classes of solvent 
and insolvent companies. The margin is the distance between the hyperplanes bounding each class, where 
in the hypothetical perfectly separable case no observation may lie. By maximising the margin, we 
search for the classification function that can most safely separate the classes of solvent and insolvent 
companies. The graph below represents a binary space with two input variables. Here crosses represent the 
solvent companies of the training sample and circles the insolvent ones. The threshold separating solvent 
and insolvent companies is the line in the middle between the two margin boundaries, which are canoni-
cally represented as xTw+b=1 and xTw+b=-1. Then the margin is 2 / ||w||, where ||w|| is the norm of the 
vector w.  
 
In a non-perfectly separable case the margin is “soft”. This means that in-sample classification errors 
occur and also have to be minimized. Let ξi be a non-negative slack variable for in-sample misclassifica-
tions. In most cases ξi =0, that means companies are being correctly classified. In the case of a positive ξi 
the company i of the training sample is being misclassified. A further criterion used by SVMs for calculat-
ing w and b is that all misclassifications of the training sample have to be minimized. 
 
Let yi be an indicator of the state of the company, where in the case of solvency yi =-1 and in the case of 
insolvency yi =1. By imposing the constraint that no observation may lie within the margin except 
some classification errors, SVMs require that either xi

 Tw+b ≥ 1-ξi or xi
Tw+b ≤ -1+ξi, which can be 

summarized with: 
 

( ) .,...,1,1 nibwxy i
T

i i
=∀−≥+ ξ        (3) 
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Figure 1. Geometrical Representation of the SVM Margin 

             
 

Source: W. Härdle, R.A. Moro, D. Schäfer, March 2004, Rating Companies with Support Vector Ma-
chines, Discussion Paper Nr. 416, DIW Berlin. 

 
 
The optimization problem for the calculation of w and b can thus be expressed by:  
 

∑
=

+
n
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iw Cw
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2
1min ξ          (2) 

( ) ,1.. i
T

i bwxyts
i

ξ−≥+         (3) 

0≥iξ           (4) 

 
In the first part of (2) we maximise the margin 2 / ||w|| by minimizing ||w||2/ 2, where the square in the 
norm of w comes from the second term, which originally is the sum of in-sample misclassification errors  
ξi  / ||w|| times the parameter C. Thus SVMs maximize the margin width while minimizing errors. This 
problem is quadratic i.e. convex. 
 
C = “capacity” is a tuning parameter, which weights in-sample classification errors and thus controls the 
generalisation ability of an SVM. The higher is C, the higher is the weight given to in-sample misclassifi-
cations, the lower is the generalization of the machine. Low generalisation means that the machine may 
work well on the training set but would perform miserably on a new sample. Bad generalisation may be a 
result of overfitting on the training sample, for example, in the case that this sample shows some untypical 
and non-repeating data structure. By choosing a low C, the risk of overfitting an SVM on the training 
sample is reduced. It can be demonstrated that C is linked to the width of the margin. The smaller is C, the 
wider is the margin, the more and larger in-sample classification errors are permitted. 
 
Solving the above mentioned constrained optimization problem of calibrating an SVM means searching 
for the minimum of the following Lagrange function: 
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where α i ≥ 0 are the Lagrange multipliers for the inequality constraint (3) and νi ≥ 0 are the Lagrange mul-
tipliers for the condition (4). This is a convex optimization problem with inequality constraints, which is 
solved my means of classical non-linear programming tools and the application of the Kuhn-Tucker Suf-
ficiency Theorem. The solution of this optimisation problem is given by the saddle-point of the Lagran-
gian, minimised with respect to w, b, and ξ and maximised with respect to α and ν. The entire task can be 
reduced to a convex quadratic programming problem in αi. Thus, by calculating αi, we solve our classifier 
construction problem and are able to calculate the parameters of the linear SVM model according to the 
following formulas: 
 

i

n

i
ii xyw ∑

=

=
1

α          (6) 

( ) wxxb ⋅+= −+
T
1

T
12

1
         (7) 

 
As can be seen from (6), αi, which must be non-negative, weighs different companies of the training sam-
ple. The companies, whose αi are not equal to zero, are called support vectors and are the relevant ones 
for the calculation of w. Support vectors lie on the margin boundaries or, for non-perfectly separable data, 
within the margin. By this way, the complexity of calculations does not depend on the dimension of the 
input space but on the number of support vectors. Here x+1 and x-1 are any two support vectors belonging 
to different classes, which lie on the margin boundaries. 
 
By substituting (6) into the score (1’), we obtain the score zj as a function of the scalar product of the fi-
nancial ratios of the company to be classified and the financial ratios of the support vectors in the training 
sample, of αi, and of yi. By comparing  zj  with a benchmark value, we are able to estimate if a company 
has to be classified as solvent or insolvent. 
 

bxxyz ji
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i
iij +=⇒ ∑

=
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1

α         (8) 

 
 
Kernel-transformation 

 
In the case of a non-linear SVM, the score of a company is computed by substituting the scalar product 
of the financial ratios with a kernel function.  
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Kernels are symmetric, semi-positive definite functions satisfying the Mercer theorem. If this theorem is 
satisfied, this ensures that there exists a (possibly) non-linear map Φ from the input space into some fea-
ture space, such that its inner product equals the kernel. The non-linear transformation Φ is only implicitly 
defined through the use of a kernel, since it only appears as an inner product. 
 

)(),(),( jiji xxxxK ΦΦ= .        (9) 

 
This explains how non-linear SVMs solve the classification problem: the input space is transformed by Φ 
into a feature space of a higher dimension, where it is easier to find a separating hyperplane. Thus the ker-
nel can side-step the problem that data are non-linearly separable by implicitly mapping them into a fea-
ture space, in which the linear threshold can be used. Using a kernel is equivalent to solving a linear SVM 
in some new higher-dimensional feature space. The non-linear SVM score is thus a linear combination, 
but with new variables, which are derived through a kernel transformation of the prior financial ratios. The 
score function does not have a compact functional form, depending on the financial ratios but on some 
transformation of them, which we do not know, since it is only implicitly defined. It can be shown that the 
solution of the constrained optimisation problem for non-linear SVM is given by: 
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But, according to (7’) and (8’), we do not need to know the form of the function Φ,  in order to be able to 
calculate the score. Since for the calculation of the score (8) the input variables are used as a product, only 
the kernel function is needed in (8’). As a consequence,  Φ and w are not required for the solution of a 
non-linear SVM.  
 
One can choose among many types of kernel functions. In practice, many SVM models work with sta-
tionary Gaussian kernels with an anisotropic radial basis. The reason why is that they are very flexible 
and can build fast all possible relations between the financial ratios. For example linear transformations 
are a special case of Gaussian kernels.  
 
          (10) 2/)()( 12

),( ij
T

ij xxrxx
ji exxK −Σ−− −−

=
 
Here Σ  is the variance-covariance matrix of all financial ratios of the training set. This kernel first trans-
forms the “anisotropic” data to the same scale for all variables. This is the meaning of “isotropic”. So 
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there is no risk that financial ratios with greater numeric ranges dominate those with smaller ranges. The 
only parameter which has to be chosen when using Gaussian kernels is r, which controls the radial basis of 
the kernel. This reduces the complexity of model selection. The higher is r, the smoother is the threshold 
which separates solvent from insolvent companies.3

 
Gaussian kernels non-linearly map the data space into a higher dimensional space. Actually the definition 
of a Gaussian process by specifying the covariance function (depending on the distance of the company to 
be evaluated from each company of the training sample) avoids explicit definition of the function class 
of the transformation. There are many possible decompositions of this covariance and thus also many 
possible transformation functions of the input financial ratios. Moreover each company shows its own co-
variance function, depending on its relative position within the training sample. That is why the kernel op-
erates locally. The value of the kernel function depends on the distance between the financial ratios of the 
company j to be classified and respectively one company i of the training sample. This kernel is a normal 
density function up to a constant multiplier. xi is the center of this kernel, like the mean is the center of a 
normal density function. 
 
 
 

3. What Is the Point in Using SVMs as a Classification Technique? 
 
All classification techniques have advantages and disadvantages, which are more or less important accord-
ing to the data which are being analysed, and thus have a relative relevance. SVMs can be a useful tool for 
insolvency analysis, in the case of non-regularity in the data, for example when the data are not regularly 
distributed or have an unknown distribution. It can help evaluate information, i.e. financial ratios which 
should be transformed prior to entering the score of classical classification techniques. The advantages of 
the SVM technique can be summarised as follows:  
 
1. By introducing the kernel, SVMs gain flexibility in the choice of the form of the threshold separating 

solvent from insolvent companies, which needs not be linear and even needs not have the same func-
tional form for all data, since its function is non-parametric and operates locally. As a consequence they 
can work with financial ratios, which show a non-monotone relation to the score and to the probability 
of default, or which are non-linearly dependent, and this without needing any specific work on each 
non-monotone variable. 

2. Since the kernel implicitly contains a non-linear transformation, no assumptions about the functional 
form of the transformation, which makes data linearly separable, is necessary. The transformation oc-
curs implicitly on a robust theoretical basis and human expertise judgement beforehand is not needed.  

3. SVMs provide a good out-of-sample generalization, if the parameters C and r (in the case of a Gaussian 
kernel) are appropriately chosen. This means that, by choosing an appropriate generalization grade, 
SVMs can be robust, even when the training sample has some bias. 

                                                      
3 By choosing different r values for different input values, it is possible to rescale outliers. 
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4. SVMs deliver a unique solution, since the optimality problem is convex. This is an advantage compared 
to Neural Networks, which have multiple solutions associated with local minima and for this reason may 
not be robust over different samples. 

5. With the choice of an appropriate kernel, such as the Gaussian kernel, one can put more stress on the 
similarity between companies, because the more similar the financial structure of two companies is, the 
higher is the value of the kernel. Thus when classifying a new company, the values of its financial ratios 
are compared with the ones of the support vectors of the training sample which are more similar to this 
new company. This company is then classified according to with which group it has the greatest similar-
ity. 

 
Here are some examples where the SVM can help coping with non-linearity and non-monotonicity. One 
case is, when the coefficients of some financial ratios in equation (1), estimated with a linear parametric 
model, show a sign that does not correspond to the expected one according to theoretical economic rea-
soning. The reason for that may be that these financial ratios have a non-monotone relation to the PD and 
to the score. The unexpected sign of the coefficients depends on the fact, that data dominate or cover the 
part of the range, where the relation to the PD has the opposite sign. One of these financial ratios is typi-
cally the growth rate of a company, as pointed out by [10]. Also leverage may show non-monotonicity, 
since if a company primary works with its own capital, it may not exploit all its external financing oppor-
tunities properly. Another example may be the size of a company: small companies are expected to be 
more financially instable; but if a company has grown too fast or if it has become too static because of its 
dimension, the big size may become a disadvantage. Because of these characteristics, the above mentioned 
financial ratios are often sorted out, when selecting the risk assessment model according to a linear classi-
fication technique. Alternatively an appropriate evaluation of this information in linear techniques requires 
a transformation of the input variables, in order to make them monotone and linearly separable.4  
 
A common disadvantage of non-parametric techniques such as SVMs is the lack of transparency of re-
sults. SVMs cannot represent the score of all companies as a simple parametric function of the financial 
ratios, since its dimension may be very high. It is neither a linear combination of single financial ratios nor 
has it another simple functional form. The weights of the financial ratios are not constant. Thus the mar-
ginal contribution of each financial ratio to the score is variable. Using a Gaussian kernel each com-
pany has its own weights according to the difference between the value of their own financial ratios and 
those of the support vectors of the training data sample. 
 
Interpretation of results is however possible and can rely on graphical visualization, as well as on a local 
linear approximation of the score. The SVM threshold can be represented within a bi-dimensional graph 
for each pair of financial ratios. This visualization technique cuts and projects the multidimensional fea-
ture space as well as the multivariate threshold function separating solvent and insolvent companies on a 
bi-dimensional one, by fixing the values of the other financial ratios equal to the values of the company, 
which has to be classified. By this way, different companies will have different threshold projections. 

                                                      
4
 See [6] for an analysis of the univariate relation between the PD and single financial ratios as well as for possible transformations of input finan-

cial ratios in order to reach linearity.  
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However, an analysis of these graphs gives an important input about the direction towards which the fi-
nancial ratios of non-eligible companies should change, in order to reach eligibility.  
 
The PD can represent a third dimension of the graph, by means of isoquants and colour coding. The ap-
proach chosen for the estimation of the PD can be based on empirical estimates or on a theoretical model. 
Since the relation between score and PD is monotone, a local linearization of the PD can be calculated for 
single companies by estimating the tangent curve to the isoquant of the score. For single companies this 
can offer interesting information about the factors influencing their financial solidity. 
 
In the figure below the PD is estimated by means of a Gaussian kernel5 on data belonging to the trade sec-
tor and then smoothed and monotonized by means of a Pool Adjacent Violator algorithm.6 The pink curve 
represents the projection of the SVM threshold on a binary space with the two variables K21 (net income 
change) and K24 (net interest ratio), whereas all other variables are fixed at the level of company j. The 
blue curve represents the isoquant for the PD of company j, whose coordinates are marked by a triangle.  
 
Figure 2. Graphical Visualization of the SVM Threshold and of a Local Linearization of the Score 
Function: Example of a Projection on a Bi-dimensional Graph with PD Colour Coding 

 
 

                                                      
5
 This methodology is based on a non-parametric estimation of the PD and has the advantage that it delivers an individual PD for each company 

based on a continuous, smooth and monotonic function. This PD-function is computed on an empirical basis, so there is no need for a theoreti-
cal assumption about the form of a link function. 

6
 See [11].  
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The grey line corresponds to the linear approximation of the score or PD function projection for company 
j. One interesting result of this graphical analysis is that successful companies with a low PD often lie in a 
closed space. This implies that there exists an optimal combination area for the financial ratios being con-
sidered, outside of which the PD gets higher. If we consider the net income change, we notice that its in-
fluence on the PD is non-monotone. Both too low or too high growth rates imply a higher PD. This may 
indicate the existence of the optimal growth rate and suggest that above a certain rate a company may get 
into trouble; especially if the cost structure of the company is not optimal i.e. the net interest ratio is too 
high. But if a company lies in the optimal growth zone, it can also afford a higher net interest ratio. 
 
 
 

4. An Empirical SVM Model for Solvency Analysis 
 
In the following chapter, an empirical SVM model for solvency analysis on German data is being pre-
sented.7 The estimation of score functions and their validation are based on balance sheets of solvent and 
insolvent companies, whereas a company is classified as insolvent if it is the subject of failure judicial 
proceeding. The study is conducted over a long period, in order to construct durable scores that are resis-
tant, as far as possible, to cyclical fluctuations. So the original data set consists of about 150.000 firm-year 
observations, spanning the time period from 1999 to 2005. The forecast horizon is three and a half years. 
That is, in each period a company is considered insolvent, if it has been the subject of legal proceedings 
within the three and a half years since the observation date. Solvent companies are those that have not 
gone bankrupt within three and a half years after the observation date. With shorter term forecast horizons, 
such as one-year, data quality would be poor, since most companies do not file a balance sheet, if they are 
on the point of failure. Moreover, companies that go insolvent already show weakness three years before 
failure. In order to improve the accuracy of analysis, a different model was developed for each of the fol-
lowing three sectors: manufacturing, wholesale/retail trade and other companies. The three models for the 
different sectors were trained on data over the time period 1999-2001 and then validated out-of-time on 
data over the time period 2002-2005. 
 
Two important points for the selection of an accurate SVM model are the choice of the input variables, i.e. of the 
financial ratios, which are being considered in the score, as well as of the tuning parameters C and r (once a Gaus-
sian kernel has been chosen).  
 
Table 1. Training and Validation Data Set Size – Without Missing Values 
 
sector year total 
 1999 2000 2001 2002 2003 2004 2005 solv. ins. 
manufacturing 6015 5436 4661 5202 5066 4513 698 30899 692 
wholesale / retail 
trade 

12806 11230 9209 8867 8016 7103 996 57210 1017 

other 6596 6234 5252 5807 5646 5169 650 34643 711 

                                                      
7
 The database belongs to the balance sheet pool of the “Deutsche Bundesbank”. 
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The choice of the input variables has a decisive influence on the performance results and is not independ-
ent from the choice of the classification technique. These variables normally have to comply with the as-
sumptions of the applied classification technique. Since the SVM needs no restrictions on the quality of 
input variables, it is free to choose them only according to the model accuracy performance. The input 
variables selection methodology applied in this paper is based on the following empirical tools.  
 
The discriminative power of the models is measured on the basis of their accuracy ratio (AR) and percent-
age of correctly classified observations, which is a compact performance indicator, complementary to their 
error quotes. Since there is no assumption on the density distribution of the financial ratios, a robust com-
parison of these performance indicators has to be constructed on the basis of bootstrapping. The different 
SVM models are estimated 100 times on 100 randomly selected training samples, which include all insol-
vent companies of the data pool and the same number of randomly selected solvent ones. Afterwards they 
are validated on 100 similarly selected validation samples. The model, which delivers the best median re-
sults over all training and validation samples, is the one which is chosen for the final calibration. A similar 
methodology is used for choosing the optimal capacity C and the kernel-radius r of the SVM model. 
That combination of C and r values is chosen, which delivers the highest median AR on 100 randomly se-
lected training and validation samples. 
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Figure 3. Choice of the Financial Ratios of an SVM Model for the Manufacturing Sector: An Exam-
ple for the Choice of the Fifth Input Variable 
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Our analysis first started by estimating the three SVM models on the basis of four financial ratios, which 
are presently being used by the “Bundesbank” for DA and which are expected to comply with its assump-
tions on linearity and monotonicity. By integrating the model with further non-linearly separable variables 
a significant performance improvement in the SVM model was recorded. The new input variables were 
chosen out of a catalogue, which is summarized in Table 3, on the basis of a bootstrapping procedure by 
means of forward selection with an SVM model. Variables were added to the model sequentially until 
none of the remaining ones would improve the median AR of the model. Figure 3 shows the AR distribu-
tions of different SVM models with 5 variables. According to these graphical results one should choose 
K24 as the fifth variable. As a result of this selection procedure, the median AR peaked with ten input 
variables (10FR) and then fell gradually. 
 
 
Table 2. Final Choice of the Input Variables Forward Selection Procedure 
 
Sector 
Manufacturing Wholesale/Retail Trade Other 
K01: pre-tax profit margin K01: pre-tax profit margin K02: operating profit margin 
K03: cash flow ratio K04: capital recovery ratio, K05: debt cover 

K06: days receivable K06: days receivable K06: days receivable 

K07: days payable 

K09: equity ratio adj. K09: equity ratio adj. K08: equity ratio 
K11: net income ratio 

K15: liquidity 1  

K17: liquidity 3 (current assets to short debt) K12:guarantee a.o. obligation ratio (leverage 1) 

K18: short term debt ratio K18: short term debt ratio K18: short term debt ratio 
K21: net income change K19: inventories ratio K24: net interest ratio 
K24: net interest ratio K21: net income change 

K26: tangible asset growth K31: days of inventories K31: days of inventories 
KWKTA: working capital to total assets KL: leverage KL: leverage 

 
A univariate analysis of the relation between the single variables and the PD showed that most of these 
variables actually have a non-monotone relation to the PD, so that considering them in a linear score 
would require the aforementioned transformation. Especially growth variables as well as leverage and net 
interest ratio showed a typical non-monotone behaviour and were at the same time very helpful in enhanc-
ing the predictive power of the SVM. 
 
Figure 4 summarizes the predictive results of the three final models, according to the above mentioned 
bootstrap procedure. Based on the procedure outlined above, the following values of the kernel tuning pa-
rameters were selected: r = 4 for the manufacturing and trade sector and r = 2.5 for other companies. This 
suggests that this sector is less homogeneous than the other two. The capacity of the SVM model was cho-
sen as C = 10 for all the three sectors. It is interesting to notice, that the robustness of the results, measured 
by the spread of the ARs over different samples, became lower, when the number of financial ratios being 
considered grew. So there is a trade-off between the accuracy of the model and its robustness.  
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Table 3. The Catalogue of Financial Ratios – Univariate Summary Statistics and Relation to the PD8

 
Variable Name Aspect Q 0.01 median Q 0.99 IQR Relation to the 

PD 
K01 Pre-tax profit (income) margin profitability -57.1 2.3 140.1 6.5 - n.m. 
K02 Operating profit margin profitability -53 3.6 80.3 7.2 - 
K03 Cash flow ratio (net income ratio) liquidity -38.1 5.1 173.8 10 - 
K04 Capital recovery ratio liquidity -29.4 9.6 85.1 15 - 
K05 Debt cover  

(debt repayment capability) 
liquidity -42 16 584 33 - 

K06 Days receivable (accounts receiv-
able collection period) 

activity 0 29 222 34 + n.m. 

K07 Days payable (accounts payable 
collection period) 

activity 0 20 274 30 + n.m. 

K08 Equity (capital) ratio financing -57 16.4 95.4 27.7 - 
K09 Equity ratio adj. (own funds ratio) financing -55.8 20.7 96.3 31.1 - 
K11 Net income ratio profitability -57.1 2.3 133.3 6.4 +/- n.m. 
K12 guarantee a.o. obligation ratio 

(leverage 1) 
leverage 0 0 279.2 11 -/+ n.m. 

K13 Debt ratio liquidity -57.5 2.4 89.6 18.8 -/+ n.m. 
K14 Liquidity ratio liquidity 0 1.9 55.6 7.2 - 
K15 Liquidity 1 liquidity 0 3.9 316.7 16.7 - 
K16 Liquidity 2 liquidity 1 63.2 1200 65.8 - n.m. 
K17 Liquidity 3 liquidity 2.3 116.1 1400 74.9 - n.m. 
K18 Short term debt ratio financing 0.2 44.3 98.4 40.4 + 
K19 Inventories ratio investment 0 23.8 82.6 35.6 + 
K20 Fixed assets ownership ratio leverage -232.1 46.6 518.4 73.2 -/+ n.m. 
K21 Net income change growth -60 1 133 17 -/+/- n.m. 
K22 Own funds yield profitability -413.3 22.4 1578.6 55.2 +/- n.m. 
K23 Capital yield profitability -24.7 7.1 61.8 10.2 - 
K24 Net interest ratio cost. structure -11 1 50 1.9 + n.m. 
K25 Own funds/pension provision r. financing -56.6 20.3 96.1 32.4 - 
K26 Tangible assets growth growth -0.2 13.9 100 23 -/+ n.m. 
K27 Own funds/provisions ratio financing -53.6 27.3 98.8 36.9 - 
K28 Tangible asset retirement growth 0.1 19.3 98.7 18.7 -/+ n.m. 
K29 Interest coverage ratio cost structure -2364 149.5 39274.3 551.3 n.m. 
K30 Cash flow ratio liquidity -27.9 5.2 168 9.7 - 
K31 Days of inventories activity 0 41 376 59 + 
K32 Current liabilities ratio financing 0.2 59 96.9 47.1 + 
KL Leverage leverage 1.4 67.2 100 39.3 + n.m. 
KWKTA Working capital to total assets liquidity 565.9 255430 51845562.1 865913 +/- n.m. 
KROA Return on assets profitability -42.1 0 51.7 4.8 n.m. 
KCFTA Cash flow to total assets liquidity -26.4 9 67.6 13.6 - 
KGBVCC Accounting practice, cut  -2 0 1.6 0 n.m. 
KCBVCC Accounting practice  -2.4 0 1.6 0 n.m. 
KDEXP Result of fuzzy expert system, cut  -2 0.8 2 2.8 - 
KDELTA Result of fuzzy expert system   -7.9 0.8 8.8 3.5 - 
 
n.m.= non-monotone 
+ = positive relation     - = negative relation 
+ n.m.= non monotone relation, mostly positive   - n.m.= non monotone relation, mostly negative 
+/- n.m. = non-monotone relation, first positive then negative  -/+ n.m. = non-monotone relation, first negative then positive 
-/+/- n.m. = non-monotone relation, first negative, then positive then again negative 
                                                      
8
 K1-K32 as well as KGBVCC and KDEXP are financial ratios belonging to the catalogue of the “Deutsche Bundesbank”. See [4]. 
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Figure 4. Predictive Results: ARs of the Final SVM Model after Bootstrapping 

 
 
 
 

5. Conclusions 
 
SVMs can produce accurate and robust classification results on a sound theoretical basis, even when input 
data are non-monotone and non-linearly separable. So they can help to evaluate more relevant information 
in a convenient way. Since they linearize data on an implicit basis by means of kernel transformation, the 
accuracy of results does not rely on the quality of human expertise judgement for the optimal choice of the 
linearization function of non-linear input data. SVMs operate locally, so they are able to reflect in their 
score the features of single companies, comparing their input variables with the ones of companies in the 
training sample showing similar constellations of financial ratios. Although SVMs do not deliver a para-
metric score function, its local linear approximation can offer an important support for recognising the 
mechanisms linking different financial ratios with the final score of a company. For these reasons SVMs 
are regarded as a useful tool for effectively complementing the information gained from classical linear 
classification techniques. 
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