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Abstract. We study the impact of bots on social learning in a social network setting.
Regular agents receive independent noisy signals about the true value of a variable and
then communicate in a network. They näıvely update beliefs by repeatedly taking weighted
averages of neighbors’ opinions. Bots are agents in the network that spread fake news by
disseminating biased information. Our main contributions are threefold. (1) We show that
the consensus of the network is a mapping of the interaction rate between the agents and
bots and is discontinuous at zero mass of bots. This implies that even a comparatively
“infinitesimal” small number of bots still has a sizeable impact on the consensus and hence
represents an obstruction to the “wisdom of crowds”. (2) We prove that the consensus
gap induced by the marginal presence of bots depends neither on the agent network or bot
layout nor on the assumed connection structure between agents and bots. (3) We show that
before the ultimate (and bot-infected) consensus is reached, the network passes through a
quasi-stationary phase which has the potential to mitigate the harmful impact of bots.

Keywords: Fake news, Misinformation, Social networks, Social Media, Wisdom of Crowds
JEL: D83; D85; Z13.
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1 Introduction

The last decade’s events have led to a growing scientific interest in understanding how people form
opinions and share information on social networks. In particular, the phenomenon of “fake news”
and the growing emergence of “bots” has led to public concern after several high-impact political
events, such as Brexit and the 2016 US presidential election. During the covid-19 pandemic, fake
news posed a massive global health threat and caused extreme socioeconomic damage.2 Fake
news is diffused to a significant part by (social media) bots. These are automated accounts,
steered by computer algorithms, that simulate human behavior on social networks and interact
with regular users. Subrahmanian et al. (2016) report that bots represent approximately 8.5%
of Twitter users, as disclosed by Twitter. The study by Varol et al. (2017) on social bots shows
that out of all English-speaking active users on Twitter, 9% to 15% exhibit bot-like behaviors.
While bots can have benign or neutral intentions, such as chatbots or bots automatically dissem-
inating news for news agencies3, there is an increasing concern about malicious bots which are
instrumentalized to deceive and manipulate public opinion. These attacks constitute organized
crimes that pose potential threats to public opinion, democracy, public health, the stock market,
and other disciplines.
The massive damaging effect of bots forms an interesting contrast to the phenomenon of the “wis-
dom of the crowds”. The argument made by popular general-audience books such as Surowiecki
(2004) states that large crowds are sometimes surprisingly good at aggregating individual partial
information and detecting the truth. He offers the example that if many people are guessing
independently, then the average of their guesses is often an excellent estimate of whatever they
are guessing about (perhaps the number of jelly beans in a jar or the weight of a bull in a fair).
Given that social media networks connect millions of people and establish not only large but
huge crowds, the question is why these networks are so prone to non-wisdom and why bots have
a damaging effect on such a large scale.
Surowiecki notes that the key to his argument about the “wisdom of the crowds” is that individu-
als each have private information (their signals), and they guess independently without knowing
what the others have guessed. In the social process of opinion formation, in contrast, individuals
are connected through a social network and keep forming new beliefs by repeatedly talking to
or reading the beliefs of connected agents. Here, agents are not independent anymore, as they
influence each other through the social network. This raises the question of which networks are
efficient in social information aggregation. In particular, which social network architectures lead
to “wisdom” such that the belief updating process leads to a consensus equal or close to the
truth? This is one of the main topics of the large body of works on social learning in networks.
Golub and Jackson (2010) discuss a simple learning setup, based on the seminal DeGroot (1974)
network model. Here, individuals use simple heuristics to update beliefs, such as repeatedly
taking weighted averages of neighbors’ opinions. Under some standard assumptions about the
network connectivity, the dynamic of the system reaches a consensus. Golub and Jackson (2010)
call the network wise if agents succeed to aggregate independent noisy signals about the true
value of a variable such that the society reaches consensus equal to the truth. Their main result
states that large societies are wise if and only if the most influential agent in the network vanishes
as the society grows. Does this mean that these networks are less affected by bots and hence
more resilient to misinformation? More generally, can we come up with a theory about how the
structure of social (media) networks and the network positions of the bots affect the degree of
misinformation?

2See e.g. Grinberg et al. (2019) and de Moura et al. (2021).
3For categorization of bots see e.g. Stieglitz et al. (2017).
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In this paper, we offer an analytical toolbox to tackle these questions. Our main contribution
relative to the existing literature is that our theory is not based on numerical exercise. Instead,
we offer analytical closed-form solutions to quantify the impact of bots in dynamic models of
opinion formation in which individuals are connected through a social network. Therefore, we
provide a tractable model that explains how the network topology determines the resilience to
deliberate manipulation of the social learning process. These attacks can stem from various
sources besides bots. Throughout the paper we use the term “bots” as a synonym for actual
bots infesting social media platforms, stubborn agents spreading fake news, or ideological groups
aiming to manipulate opinion formation in a social network.
For our analysis, we focus on two seminal benchmark models of social learning with bounded
rational agents. However, our results can be applied to a large class of social learning models,
as the benchmark models consist of formal components that are very common in this strand of
literature.
We start with analyzing the impact of bots in the seminal DeGroot (1974) model of näıve learn-
ing as a simple and natural starting point. The social structure of a society is described by a
weighted and possibly directed network. Bots form part of this network, such that there are two
types of nodes: agents and bots. At each point in time, agents communicate with “neighbors”
(humans and bots) in the social network and update their beliefs. The updating process is sim-
ple. An agent’s new belief is the (weighted) average of his or her neighbors’ beliefs from the
previous period. The learning process starts with each real agent’s initial belief, given by the
true state of nature plus some idiosyncratic zero-mean noise. The opinion dynamics converges
under some general standard conditions on network connectivity.
We first focus on the interaction rate between the set of agents and the set of bots. If this inter-
action rate is positive, the network will form a consensus influenced by bots. On the other hand,
by setting this rate to zero, the agent network reaches a consensus without any bot influence.

Our main results are:

(1) The consensus of the network is given by a mapping of the interaction rate between the
agents and bots. Most importantly, it is discontinuous at zero.

(2) The size of this wisdom loss, the consensus distance to the truth, depends neither on the
agent’s network layout nor on the assumed connection structure between agents and bots.

(3) We show that the layout of the agent network does affect the speed of convergence to
consensus.

Our findings are of societal impact. Result (1) shows that even a comparatively “infinitesimal”
small number of bots still has a sizeable impact on the consensus over the agents. Result (2) shows
that the “wisdom of crowds” phenomenon is lost immediately in the presence of bots. Indeed,
even for an arbitrarily large agent social network, having a structure known to be “wise”, the
relatively tiniest number of bots will have a sizeable impact on the consensus. Given that there
are typically bots (or stubborn or manipulative agents) present in social networks, results (1)
and (2) show that näıve learning fails for social networks. Fortunately, result (3) will show that
for a small interaction rate, the speed of convergence of the agents’ beliefs does depend on the
structure of the agent network. Indeed, we identify agent network topologies that are resilient to
bots in the following sense. Before the ultimate (and bot-infected) consensus is reached, belief
dynamics passes through a quasi-stationary phase, with agents reaching consensus as if all bots
were absent. We refer to these agent networks as short-term resilient. If, in addition, the agent
network without bots is wise, it implies that the short-term consensus approximates the truth.
We refer to these (agent) networks as short-term wise. Result (3) is hence tentatively optimistic,
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showing that a resilient and wise agent network will maintain wisdom, at least in the short run.
Our second benchmark model is an extension of the first benchmark DeGroot model. Here,
regular agents, as opposed to bots, receive informative private signals every period of time.
The idea is that individuals can obtain information about the true state of the world from
unbiased sources external to the network, such as scientific studies, unbiased news media, etc.
Agents update their beliefs by a convex combination of this private signal and the weighted
average of neighbors’ beliefs (the DeGroot model component). We discuss this setting for a very
common and intuitive weighting specification of this convex combination, to which we refer as
the universal learning rate. This rate assigns a weight to the current signal that ensures equal
weight to all signals observed so far, and hence decreases with time. Our main finding for our
second benchmark model is that consensus is reached (almost surely) and equals the truth in the
absence of bots. This implies that external informative signals ensure that the society is wise,
independent of the underlying agent networks. However, the main results (1)-(3) hold as in the
first benchmark model. That is, despite the fact that agents keep receiving informative external
signals at every point in time, the presence of bots has the same effect as in the first benchmark
model. Already an “infinitesimal” small number of bots has a sizeable impact on consensus and
obstructs “wisdom of crowds” immediately. However, similar to the first benchmark model, we
characterize agent network topologies that can postpone the influence of the bots for a very long
time by the emergence of quasi-stationary phase.

The paper is organized as follows. In Section 2 we introduce the two seminal benchmark
models of social learning of our study. The model of the integrated network of agents and bots
is introduced and analyzed in Section 3. The (instantaneous) wisdom loss as a measure of the
impact of an “infinitesimal” small amount of bots is introduced in Section 4 An analysis of the
speed of convergences towards its quasi-stationary consensus and how its dependence on the
network architecture is presented Section 5. Finally, Section 6 shows how our findings can be
applied to topics besides bots, such as information bubbles and media biases. We conclude with
directions of further research.

Related Literature

This paper contributes to the growing field of social learning with bounded rational agents
and misinformation in networks. This field is different to Bayesian learning models, in which
individuals process observed information, such as beliefs of neighbors, in a sophisticated manner.
While Bayesian updating has firm normative foundations, theories based on this learning soon
become infeasible even for small numbers of agents. Bayesian updating assumes that agents ad-
just correctly their weighting of neighbors’ belief for repetitions and dependencies in information
they hear multiple times. This is way too complex to serve as a realistic behavioral rule for
agents’ learning, the individual belief updating, respectively. Due to the complexity, such full
Bayesian learning is typically explored for very small networks, such as Gale and Kariv (2003)
who study three-link networks.
The key assumption of bounded rationality, in contrast, is based on a much more näıve, but
still natural, form of updating. In particular, it assumes that agents use simple heuristics such
as updating their belief by taking a weighted average of what they hear from neighbors. The
weights that agents place on other’s opinions are assumed to be constant and used at every single
time step4. Examples of social learning models in networks with bounded rational agents are
DeGroot (1974), Ellison and Fudenberg (1993),Ellison and Fudenberg (1995), Bala and Goyal

4The bounded rationality argument is discussed at length in DeMarzo et al. (2003)
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(1998), DeMarzo et al. (2003), and Golub and Jackson (2010). The results in Jadbabaie et al.
(2012) extend these models to allow a constant arrival of private external signals, similar to our
second benchmark model.
Perhaps closest to our work is Azzimonti and Fernandes (2022). The authors provide a simulation
study to analyze the network impact of (left and right wing) bots on misinformation and polar-
ization (segregation of the society). Similar to Jadbabaie et al. (2012) and our second benchmark
model, they extend the DeGroot network approach of bounded rational social learning to allow a
constant arrival of private unbiased signals. A shortcoming of their work, however, is the lack of
a theoretical and hence analytical characterization of the relationship between network topology
and degree of misinformation.

2 Benchmark Learning Models in Networks

Consider a set of agents in the society that represented by, N = {1, . . . , n}, n ≥ 1, interacting
as a social network. The interaction patterns are captured by a n × n row stochastic Markov
matrix, where Pij > 0 indicates that i pays attention to j. This refers to the weight or trust
that agent i places on the current opinion or belief of agent j when i is forming her new belief
for the next period.

There is a true state of nature, µ ∈ R, which we treat as fixed. Let the individual’s ”belief”

of agent i ∈ N at time t ≥ 0 be given by b
(t)
i , where belief represents the agents estimation of

the truth. Following DeMarzo et al. (2003) and Golub and Jackson (2010), we assume that at
t = 0, every agent i receives a noisy signal

b
(0)
i = µ+ ei, (1)

where ei is a white noise, i.e., ei has zero mean and homoscedastic finite variance.

Our first benchmark model is the seminal DeGroot model of opinion dynamics DeGroot
(1974). Here, each agent starts with initial belief (1) and updates by repeatedly taking weighted
averages of her neighbors’ beliefs. It is a closed updating system in the sense that the agents
don’t receive any additional external signals during the learning dynamics.

Definition 1 (DeGroot Updating). The DeGroot updating scheme is given by

b(t) = Pb(t−1) = P tb(0), t ≥ 1, (2)

with the initial belief b(0) as the initial signal.

Our second benchmark model is an extension of the above model such that agents keep
receiving individual unbiased signals at the beginning of each time period. To distinguish beliefs

from signals, we denote the signal agent i receives at time t by f
(t)
i . With a small abuse of

notation, we assume that b(0) = f (0). Simply, we assume that the signals f
(t)
i follow the same

distribution as the initial beliefs in all time periods. Similar to what we assumed in (1), the
signals are given by

f
(t)
i = µ+ e

(t)
i , (3)

where e
(t)
i is a white noise as discussed above, and e

(t)
i are mutually independent for 1 ≤ i ≤ n

and t ≥ 0.5 Agents update their belief by a convex combination of this private signal and the
weighted average of neighbor’s belief.

5This setup is more general than the simulation study of Azzimonti and Fernandes (2022), where the authors
discuss the special case of external signals to be drawn from a Bernoulli distribution centered around true state
of the nature.
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Definition 2 (Belief Updating with External Signals). The belief updating scheme with
external signals {f (t)}∞t=1 is given by

b(t) = (1− α(t))Pb(t−1) + α(t)f (t), t ≥ 1, (4)

for some weight sequence {α(t)}∞t=1, with α(t) ∈ [0, 1], for t ≥ 1.

An intuitive choice for α(t) is

α(t) =
1

t+ 1
(5)

to which we will refer as the universal learning rate, in short universal learning. This term is
also known from the literature on stochastic approximation, and we note that Delyon (2000)
mentions that Bru has traced back the first known description of this learning rate to 1890; see
Bru (1996). The universal learning rate (5) gives weight αt to the period t signal and due to
the rescaling of the accumulated beliefs by (1− α(t)) this implies assigning equal weight to all t
signals observed so far.

A fundamental question is under what conditions the heuristic rules of our two benchmark
models lead the society to have a common belief to which we refer as consensus, in particular
under which conditions the consensus is correct.

Definition 3. A belief updating scheme reaches a consensus if almost surely

lim
t→∞

b(t) = b

where b = β1, i.e., all entries of b are equal. Moreover, a belief updating scheme is ”wise” if
β = µ, where µ is the true state of nature.

We start with recalling some well-known results from Markov Chain theory, see Seneta (1981)
for details.

Theorem 1. For any finite Markov chain P a finite matrix Π exists such that

lim
t→∞

1

t

t∑
k=1

P k = Π.

If P is, in addition, aperiodic and irreducible6, then

lim
t→∞

P t = lim
t→∞

1

t

t∑
k=1

P k = Π.

Moreover, Πi,∗ = Πj,∗ for all i, j, equal π which represents the unique stationary distribution of
P .

The following result characterizes consensus and wisdom for our two benchmark models.

Theorem 2. Let be P be irreducible and aperiodic.

(i) The associated DeGroot updating scheme (2) converges to a consensus, given by

lim
t→∞

b(t) = Πb(0) and (Πb(0))i = πb(0), for all i ∈ N , (6)

where b(0) is the realization of the initial signal f (0). The expectation of the consensus is
therefore given by

πE[f (0)] = µ. (7)
6An equivalent conditions is for P to be a primitive matrix.
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(ii) The associated universal learning scheme (4) and (5) reaches a consensus and is wise.

Proof. The proof of (i) follows immediately from Theorem 1. As for (ii), note that (4) implies

b(t) =

t∑
k=0

(1− α(t))...(1− α(k+1))α(k)P t−kf (k) =

t∑
k=0

t∏
i=k+1

(1− α(i))α(k)P t−kf (k). (8)

With the universal rate (5), the products in the sum of (8) simplify considerably as follows

t∏
i=k+1

(1− α(i))α(k) =
t

t+ 1

t− 1

t
....

k + 2

k + 3

k + 1

k + 2
=

k + 1

t+ 1

1

k + 1
=

1

t+ 1
,

such that for (8) follows

b(t) =

t∑
k=0

1

t+ 1
P t−kf (k) =

1

t+ 1

t∑
k=0

P t−kf (k). (9)

From (9) follows for any large and fixed 0 ≪ T and T < t,

b(t) =
1

t+ 1

t∑
k=0

P t−kf (t) =
1

t+ 1

(
t∑

k=T+1

P t−kf (k) +

T∑
k=0

P t−kf (k)

)

=
1

t+ 1
P t−T

T∑
k=0

PT−kf (k)

︸ ︷︷ ︸
term 1

+
t− T

t+ 1

(
1

t− T

t∑
k=T+1

P t−kf (k)

)
︸ ︷︷ ︸

term 2

. (10)

We will complete the proof by discussing term 1 and 2 of (10) for t → ∞. Note that the sum in
term 1 is fixed for any fixed T > 0. Therefore, as t increases the factor 1

t+1 tends to 0 such that

lim
t→∞

1

t+ 1
P t−T

T∑
k=0

PT−kf (k) = 0.

On the other hand, for term 2, note that the factor t−T
t+1 tends to 1 as t increases. Furthermore,

Theorem 1 ensures that for 0 ≪ T ≪ t the term P t−T is approximately equal to Π and converges
to Π as t → ∞. This provides

lim
t→∞

term 2 = lim
t→∞

(
1

t− T

t∑
k=T+1

Πf (k)

)
= Π lim

t→∞

(
1

t− T

t∑
k=T+1

f (k)

)
. (11)

Since the signals f (k) are independent and identically distributed with E[f (k)] = E[f (0)] for
all 0 ≤ k, the Central Limit Theorem ensures that the term in brackets in (11) converges to
E[f (0)] = µ almost surely.

Theorem 2 (i) implies that consensus is a weighted average of the individual initial beliefs.
In particular, the relative weight πi is the weight that all agents assign to the initial belief of
agent i and is therefore a measure of influence of agent i on consensus. Recall that the initial
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beliefs are unbiased such that consensus is correct (equals the truth) in expectation as stated in
(7). The question, however, is for which networks the consensus beliefs are correct, not only in
expectation, but for sure. Golub and Jackson (2010) analyze this question in the context of the
DeGroot model (2). Their main result states that for networks increasing in size n to infinity,
the DeGroot updating scheme is wise almost surely if the influence πi of each individual agent i
tends to 0 as n grows illustrated in the following example.

Example 1 (Golub and Jackson (2010)). Consider a network P with uniform stationary distri-
bution such that the influence of any agent is given by πn = 1/n, for all i = 1, ..., n. Consensus
in the DeGroot model (6) is given by

π1b
(0)
1 + ....+ πnb

(0)
n =

1

n

n∑
i=1

b
(0)
i (12)

which is the average of all individual initial beliefs. Now consider the effect on (12) for increas-
ing size n of the network. Since all initial beliefs are iid, we conclude from the Central Limit
Theorem that (12) converges to µ almost surely.
On a more general note, let (P (n))

∞
n=1 denote a sequence of networks growing in size with re-

spective stationary distributions πP (n). If πP (n) approaches uniformity as n tends to ∞, then the

associated consensus πP (n)b
(0) approaches truth as n tends to ∞, see Golub and Jackson (2010).

After having defined and characterized “wisdom of the crowd” for our two benchmark models
(DeGroot learning and universal learning), the next section discusses how the emergence of bots
forms an obstacle to wisdom.

3 Network Approach of Social Learning with Bots

Bots are agents in the network that try to disguise themselves as regular agents. For this reason,
they do not typically start out with extreme views, but instead converge to them over time.
From a network perspective, they can be understood as stubborn agents with a high self link
trying to countervail the aggregation of unbiased individual information of regular agents. For
our analytical framework, however, we do not assume a specific architecture of how the bots are
embedded in the network. Instead, we distinguish between two kinds of agents - regular agents
and bots - and merely assume a weak coupling between these two types.

Consider the set of agents N = {1, . . . , n}. Without loss of generality we refer to the first
nA ≤ n nodes as the regular agents and the last nB as bots such that n = nA+nB . With respect
to a matrix representation of the network, we let matrix A of size nA ×nA represent the weights
that regular agents assign to each other. We assume that A is strongly connected and aperiodic.
Analogously, B represents the network among the population bots.7 Let the joint network of
agents and bots be given by the n× n Markov chain

P (ϵ, ρ) =

[
(1− ϵ)A ϵC

ρD (1− ρ)B

]
, (13)

where 1 > ϵ, ρ ≥ 0 are the parameters representing the coupling between regular agents and bots
and vice versa; and C and D present the weights that nodes assign to nodes of the other type

7One could argue, for example, that bots do not listen to each other which suggests setting B equal to the
identity matrix.
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such that Cij measures the weight that regular agent i assigns to bot j − nA, and Dij measures
the weight that bot i− nA assigns to agent j.

Note that for ρ = ϵ = 0, the chain (13) is reducible as there is no link between the agents and
bots. Moreover, small values of ϵ, ρ > 0 imply that the spectral radius of (1− ϵ)A and (1− ρ)B
are close to one. Markov chains, so that the diagonal blocks have eigenvalues close to one, are
called weakly decomposable or nearly reducible. Weak decomposability is a major source for slow
convergence of matrix powers, see Meyer (1989).

Example 2. Consider the simple example of two regular agents and one bot. Let the interaction
matrix among the agents be given by

A =

(
1
2

1
2

1
2

1
2

)
,

with stationary distribution πA = (1/2, 1/2) such that the two regular agents have equal influence
1/2 on the consensus. Now assume that both agents are coupled to one bot and put ρ = ϵ2. Then,

P (ϵ, ϵ2) =

 1−ϵ
2

1−ϵ
2 ϵ

1−ϵ
2

1−ϵ
2 ϵ

ϵ2

2
ϵ2

2 1− ϵ2

 , (14)

with stationary distribution

π(ϵ, ϵ2) =

(
ϵ

2(1 + ϵ)
,

ϵ

2(1 + ϵ)
,

1

1 + ϵ

)
. (15)

For the regular agents 1 and 2, the effect of introducing bots is hence an immediate influence loss
from 1/2 to ϵ/(2(1 + ϵ)) for any (arbitrarily small) ϵ > 0.

Example 2 shows that the effect of coupling to bots has a sizeable impact on the influence
of the regular agents on consensus. In the following, we will characterize the impact of influence
for more general settings. Our first result shows that the stationary distribution of (13) can be
characterized by a macro chain which models how the set of regular agents is coupled to the set
of bots. For ease of notation, we write i ∈ A, for 1 ≤ i ≤ nA, and i ∈ B, for nA + 1 ≤ i ≤ n.
We define a macro random walk Yt with state-space {a, b}, where

Yt =

{
a if and only if Xt ∈ A,
b if and only if Xt ∈ B.

(16)

Here, Yt is the Markov chain that only changes its state if Xt moves from A to B and vice versa.
From (13), the associated matrix representation of the Markov chain (16) is

PY (ϵ, ρ) =

[
(1− ϵ) ϵ

ρ (1− ρ)

]
, (17)

with stationary distribution

(νϵ,ρ(a), νϵ,ρ(b)) =

(
ρ

ϵ+ ρ
,

ϵ

ϵ+ ρ

)
. (18)

For ease of reference, we summarize the following assumptions of our main theorem:

(V1) P (ϵ, ρ) in (13) is aperiodic and irreducible for ϵ, ρ ∈ (0, 1).

8



(V2)’ A is a aperiodic and irreducible stochastic matrix with unique stationary distribution πA

on 1 ≤ i ≤ nA; and B is a stochastic matrix such that Bn converges element-wise to some
limiting matrix ΠB .

Note that conditions V(1) and V(2)’ are satisfied for A being an aperiodic and irreducible
stochastic matrix, and C,D being non-squared matrices and B being identity matrix of appro-
priate size. While the results developed in the following will hold in the general setting of V(2)’,
we will work for ease of presentation with the somewhat more restrictive condition

(V2) A,B are aperiodic and irreducible stochastic matrices with unique stationary distributions
πA, πB .

Under assumption (V1) and (V2) we can trace the impact of the stationary distribution for
the agents and bots on the overall stationary distribution.

Theorem 3. Assume (V1) and (V2) hold. For all i ∈ N and ϵ, ρ > 0 it holds

πi(ϵ, ρ) = νϵ,ρ(a)πA(i)1(i ∈ A) + νϵ,ρ(b)πB(i)1(i ∈ B), (19)

where νϵ,ρ denotes the stationary distribution of (16).

Proof. Let {Xt}∞t=1 be a P (ϵ, ρ) Markov chain, that is,Pij = E(Xt+1 = j|Xt = i). Provided that
P (ϵ, ρ) is aperiodic and irreducible, the unique stationary distribution of Xt, denoted by π(ϵ, ρ),
is related to Xt through

πi(ϵ, ρ) = lim
t→∞

1

t

t∑
k=1

1(Xt = i) (20)

with probability one.
At any point in time T ≥ 0, let ZA(T ) count the number of time epochs Xt was in A, and

let ZB(T ) count the number of time epochs Xt was in B; in formula

ZA(T ) =

T∑
t=1

1(Xt ∈ A) and ZB(T ) =

T∑
t=1

1(Xt ∈ B),

and it holds that T = ZA(T ) + ZB(T ).
Denote by

i(A, T ) = {t : 1 ≤ t ≤ T and Xk ∈ A}

the set of indices for which Xt is in A, and by

i(B, T ) = {t : 1 ≤ t ≤ T and Xt ∈ B};

where |i(A, T )| = ZA(T ) and |i(B, T )| = ZB(T ). For any ϵ > 0, Xt and Yt are ergodic. From
(20) follows for the stationary distribution of Xt

πi(ϵ, ρ) = lim
T→∞

1

T

T∑
t=1

(
1(Xt = i)1(Xt ∈ A) + 1(Xt = i)1(Xt ∈ B)

)
= lim

T→∞

1

T

T∑
t=1

(
1(Xt = i)1(Yt = a) + 1(Xt = i)1(Yt = b)

)

= lim
T→∞

1

T

 ∑
t∈i(A,T )

1(Xt = i)1(Yt = a) +
∑

t∈i(B,T )

1(Xt = i)1(Yt = b)
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noting that 1(Yt = a) = 1 for all t ∈ i(A, T ) and 1(Yt = b) = 1 for all t ∈ i(B, T ), we continue

= lim
T→∞

1

T

 ∑
t∈i(A,T )

1(Xt = i) + 1
∑

t∈i(B,T )

1(Xt = i)


= lim

T→∞

ZA(T )

T

1

ZA(T )

∑
t∈i(A,T )

1(Xt = i) + lim
T→∞

ZB(T )

T

1

ZB(T )

∑
t∈i(B,T )

1(Xt = i).

Note that for i ∈ A

πA(i) = lim
T→∞

1

ZA(T )

∑
t∈i(A,T )

1(Xt = i),

and, using T = ZA(T ) + ZB(T ),

ν(a) = lim
T→∞

ZA(T )

T
= lim

T→∞

1

T

T∑
t=1

1(Yt = a).

In the same way, for i ∈ B,

πB(i) = lim
T→∞

1

ZB(T )

∑
t∈i(B,T )

1(Xt = i)

and

ν(b) = lim
T→∞

ZB(T )

T
= lim

T→∞

1

T

T∑
t=1

1(Yt = b).

Inserting this in the above limit, we arrive at

πi(ϵ, ρ) = νϵ,ρ(a)πA(i)1(i ∈ A) + νϵ,ρ(b)πB(i)1(i ∈ B),

for all i.

Example 3 (Example 2 revisited). The setup (14) provides

πA = π(ϵ,ρ;A) =

(
1

2
,
1

2

)
, and πB = π(ϵ,ρ;B) = 1.

From (18) follows νϵ,ϵ2(a) =
(

ϵ
1+ϵ ,

1
1+ϵ

)
. Inserting into (19) of Theorem 3 provides

πi(ϵ, ϵ
2) = νϵ,ϵ2(a)πA(i) =

ϵ

1 + ϵ
· 1
2
, i = 1, 2,

and

π3(ϵ, ϵ
2) = νϵ,ϵ2(a)πB(1) =

1

1 + ϵ
· 1

which confirms our earlier finding (15).

Our model allows for diversifying the rate ϵ with which the bots influence the agents and the
rate ρ with which the bots adjust to the current beliefs of the agents in order to come across as
human. A case of particular interest is ϵ = ρ, so that (18) yields

lim
ϵ→0

νϵ,ϵ =

(
1

2
,
1

2

)
. (21)
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Note that in this case, PY (ϵ, ϵ) has a unique stationary distribution on {a, b}, which is given by
νϵ,ϵ = (1/2, 1/2) and is independent of ϵ.

We introduce the following assumption on the limit of νϵ,ρ

(V3) Assume that
lim

(ϵ,ρ)↓(0,0)
νϵ,ρ = (ν(a), ν(b)),

with v(a) + v(b) = 1.

We summarize our findings in the following result.

Theorem 4. Under (V1) - (V3), the limit of π(ϵ, ρ) is given by

π+(i) := lim
(ϵ,ρ)↓(0,0)

πi(ϵ, ρ) = ν(a)πA(i)1(i ∈ A) + ν(b)πB(i)1(i ∈ B). (22)

Proof. The proof follows from inserting the limit for νϵ,ρ in the representation of π(ϵ, ρ) by
Theorem 3.

The following section discusses how our results allows to introduce a measure of the damaging
impact of bots.

4 Measuring the Impact of Bots

In this section, we will apply our results to develop a measure of the impact of bots on the
collective learning process. The idea is to compare the result of the learning process of regular
agents without bots, ϵ = ρ = 0, with the setting with bots, ϵ, ρ > 0, for (ϵ, ρ) → (0, 0). We
refer to this expected distance as the instantaneous truth gap. From a conceptual point of view,
it is plausible to assume that ρ goes to zero faster than ϵ. The reason is that bots are pro-
grammed to be perceived as regular humans while bots only adjust to beliefs of regular users
for strategic reasons. We will come back to this setting as a special case of our analytical toolbox.

Recall that the initial beliefs of the regular agents are unbiased and independently drawn
with mean µ (representing the truth) given by (1). In contrast, we set the initial belief of bots
equal to w ∈ [0, 1], w ̸= µ. The same setting applies for the second benchmark model (4) for all
external signals. We summarize this setting for ease of reference:

(V4) {f (t) : t ≥ 0} is iid, so that f
(t)
i has mean µ and finite variance for all t and 1 ≤ i ≤ nA;

and f t
i = w for all t and nA + 1 ≤ i ≤ nA + nB .

This assumption aims to capture that bots try to disguise themselves as regular agents. Updating
according to (4) means that they follow partly the current prevalent beliefs, however, updating
with a biased signals allows a subtle draw of the collective belief dynamics towards the target w.

Definition 4. Let b(t)(ϵ, ρ) denote the t-th belief vector under P (ϵ, ρ). Then, for i, with 1 ≤ i ≤
nA,

ξ(i) = lim
t→∞

b
(t)
i (0, 0)− lim

(ϵ,ρ)↓(0,0)
lim
t→∞

b
(t)
i (ϵ, ρ) (23)

is the instantaneous truth gap for agent i, provided the limit exits.

Note that ξ(i) is well defined under condition (V1) and (V2). The instantaneous truth gap
expresses the impact of an arbitrarily small coupling of bots to agents on the limiting belief of the
regular agents. The next theorem shows that under our standard conditions the instantaneous
truth gap can be expressed in closed form.
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Theorem 5. Suppose that (V1) to (V4) hold. Then, the instantaneous truth gap ξ(i) is inde-
pendent of i and equals

• for DeGroot updating
nA∑
i=1

πA(i)f
(0)
i − π+f (0) (24)

and

• for the belief updating scheme with external signals (4) and learning rate α(t) as in (5)

(1− v(a))(µ− w). (25)

Moreover, (24) equals (25) in expectation.

Proof. For the DeGroot model we have by Theorem 2

lim
t→∞

b
(t)
i (0, 0) =

nA∑
i=1

πAf
(0)
i

and by Theorem 4 that

lim
(ϵ,ρ)↓(0,0)

lim
t→∞

b
(t)
i (ϵ, ρ) =

∑
i∈N

π+(i)f
(0)
i .

Writing the sum on the above right hand side as π+f0, proves (i).
We now turn to the proof of (ii). Following the same line of argument, we obtain for belief

updating with external signals by Theorem 2

lim
t→∞

b
(t)
i (0, 0) =

nA∑
i=1

πAE[f (0)
i ] =

nA∑
i=1

πAµ = µ a.s., (26)

and by Theorem 4

lim
(ϵ,ρ)↓(0,0)

lim
t→∞

b
(t)
i (ϵ, ρ) =

∑
i∈N

π+(i)E[f (0)
i ].

Using that the mean of f
(0)
i is either µ or w and using the explicit expression for π+ in Theorem 4

gives

∑
i∈N

π+(i)E[f (0)
i ] = ν(a)

nA∑
i=1

πA(i)µ+ (1− ν(a))

nB∑
i=1

πB(i)w

= µν(a) + w(1− ν(a)).

Thus, combing the above with (26) gives

ξ(i) = µ− µν(a)− w(1− ν(a)) = (µ− w)(1− ν(a)). (27)

Finally, applying (26) and (27) to the expectation of (24) concludes the proof.

The result put forward in Theorem 5 shows that the limiting belief as a mapping of (ϵ, ρ) is
discontinuous in (ϵ, ρ) = 0. This result is related to the theory of singular perturbation of Markov
processes, and we refer for more details Yin and Zhang (2012), Avrachenkov et al. (2002).

We now discuss the special setting of ρ going exponentially faster to zero than ϵ.
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Example 4 (Example 1 revisited). Consider a general version of Example 1 with nA agents
and one bot. In particular, set ρ = ϵ2. For the interaction matrix follows

P (ϵ, ϵ2) =


1−ϵ
nA

. . . 1−ϵ
nA

ϵ
...

...
...

...
1−ϵ
nA

. . . 1−ϵ
nA

ϵ
ϵ2

nA
. . . ϵ2

nA
1− ϵ2

 . (28)

From (18) follows

(νϵ,ϵ2(a), νϵ,ϵ2(b)) =

(
ϵ

1 + ϵ
,

1

1 + ϵ

)
and hence for (22)

π+(i) := lim
ϵ↓0

πi(ϵ, ϵ
2) = 0(i ∈ A) + 1(i ∈ B) (29)

We conclude for the truth gap (24)

(1/nA)

nA∑
i=1

f
(0)
i − w. (30)

The above example shows that there is no way of restoring wisdom in case of ρ going expo-
nentially faster to zero than ϵ, even if the number of bots nB is arbitrarily small. The reason is
that the macro coupling (17) generates a non-fading memory of the bots in the limit case. In
light of Theorem 5, the network is insensitive with respect to the bots if and only if

lim
(ϵ,ρ)→(0,0)

ρ

ϵ+ ρ
= νϵ,ρ(a) = 1.

The above relates to the case where, for example, ρ = f(ϵ) for f being some power function
f(x) = xα, for α < 1. It is worth noting that a power rate α < 1 models a network where
the bots assign significantly more weight to the agents than the agents to the bots, which is a
unrealistic setting (and in a way contradicts the very definition of a bot). Hence, we can conclude
that in practice networks are sensitive to the influence of bots.

Lemma 1. Under (V1) to (V4) and homoscedasticity, it holds for the DeGroot updating scheme
that

Var(ξ(i)) = (1− ν(a))σ2,

where σ2 denotes the variance of f
(0)
i for 1 ≤ i ≤ nA.

Proof. By Theorem 5 and (V4)

Var(ξ(i)) = Var

(
nA∑
i=1

πA(i)f
(0)
i − π+f (0)

)

= Var

 nA∑
i=1

(1− ν(a)πA(i)f
(0)
i +

nA+nB∑
j=nA+1

(1− ν(a))πB(i)f
(0)
j


= ((1− ν(a))σ2.
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The main takeaway from Theorem 5 is that the instantaneous truth gap is independent of the
network topology of the sub-matrices A,...D, and the size of the agent and bot network. Instead,
the instantaneous truth gap is entirely determined by the macro coupling (17).

In the next section we will bring some relativism to this negative result, as we show that the
speed of convergence does depend on the network (i) topology of the sub-matrices A,...D, and
(ii) the size of the agent and bot network. Moreover, we will show that for some structure of the
agent networks, a quasi-stationary belief behaviour can be reached that approximates the truth
well.

5 Characterization of Convergence and Resilience

Our analysis so far has focused on how the network position of bots impacts the long-run consen-
sus. In practice, however, we often observe disagreement, in contrast to consensus, even within
connected communities. We will provide an explanation of this phenomenon by analyzing how the
convergence behavior depends on network structure in presence of bots. In particular, we show
how the weak coupling between parts of the network fosters the emergence of quasi-stationary
states of the belief updating dynamics. These are states in which parts of the network seem to
have reached a local consensus which is stable for a very long time, while the overall convergence
behavior to the final consensus sets in much later. If, in addition, this local consensus is close to
the truth and stays in this state for a very long time, it would mitigate the damaging impact of
bots - at least in the short run.

A key insight in the theory of Markov chains is that the second-largest eigenvalue λ2(P ) <
λ1(P ) = 1 of a stochastic matrix P is related in magnitude to the convergence time of the iterated
process (see e.g. Seneta (1981)). The networks setting (13) we study in this paper means P (ϵ, ρ)
behaves for (ϵ, ρ) small as if agents of part A and B are only weakly interacting. In particular,
we are interested in characterizing network configurations with λ2(P (ϵ, ρ)) close to one while
λ2(A) is close to zero. The following theorem shows that this implies that there is a T >> 0 such
that the agent part behaves as if bots are absent. The agent’s beliefs converge quickly to a quasi
stationary state. This state is the consensus of the agent network A. According to Theorem 2,
this means that agents beliefs settle at πAf

(0) in the DeGroot model and at µ for the second
benchmark model with external signals.

Theorem 6. Suppose (V1) to (V4) hold and λ2(A) << 1. Provided that (ϵ, ρ) is sufficiently

small, there exists a T >> 0 such that b
(t)
A , the agent part of the belief vector, approaches for

t ≤ T the consensus characterized by Theorem 2 with agent network A.

Proof. For the network (13) it holds that lim(ϵ,ρ)↓(0,0) λ2(P (ϵ, ρ)) = 1 such that λ2(P (ϵ, ρ)) ≈ 1
for sufficiently small (ϵ, ρ), Meyer (1989).
For the setting of the theorem, the Simon-Ando theory, see Simon and Ando (1961), shows that
there is 0 << T so that the agent part behaves during the first T updates as if independent of
the bots. By ergodicity of A together with 0 < λ2(A) << 1, it follows that (AT f (0))(i) is close
to πAf

(0) for all i ∈ A, which establishes the first part of the theorem. The proof of the second
part follows from the same line of argument and is therefore omitted.

We conclude that λ2(A) << 1 eliminates the harmful impact of bots in the short run and can
postpone the influence of the bots for a very long time. We will refer to such agent networks A as
short-term resilient. In order to characterize such networks, we employ some useful estimation
techniques for λ2(A).

14



For A irreducible and aperiodic, the Coefficient of Ergodicity

τ(A) = 1−min
i,j

n∑
k=1

min{Ai,k, Aj,k}, (31)

provides an upper bound for λ2(A) (see Seneta (1979)). From (31) it can easily be seen that
τ(A) is small when the nodes in the network have similar connection patterns such that the
matrix has similar rows. As a simple example, consider the stylized case where all agents weight
each other equally such that all elements of A are given by 1/nA. Here, τ(A) = 0 = λ2(A).
This society shows immediate (quasi-stationary) consensus within A. Since A is wise for large
nA, this local consensus will be close to the truth µ and will stay there for a long time until the
impact of the bots sets in and drives the agents’ consensus away from µ. The agent network A
is hence short-term wise.
Note, however, that a small λ2(A) ≈ 0 does not ensure short term wisdom. A simple counterex-
ample is a society where all agents weight just one agent, say agent 1. Here, as in the previous
setting, we conclude from (31) τ(A) = 0 = λ2(A) and hence immediate (quasi-stationary) con-
sensus within A. This network, however, is not short-term wise as A is not wise in the first place.
The network A is short-term resilient, as the consensus among agents is independent of bots for
a very long time.

Another approach to estimate λ2(A) goes back to Cheeger (1970) and employs the graph
interpretation of a Markov chain A. In particular, note that any A can be related to a graph
(E, V ) with node set E = {1, . . . n} and edge set V = {(i, j) ∈ E2 : Ai,j > 0}. The subsequent
definition is taken from Cheeger (1970).

Definition 5. Let (E, V ) be the graph related to Markov chain A. For W ⊂ V let ∂W = {(i, j) ∈
V, i ∈ W, j ∈ V \W}, then the Cheeger constant is given by

h(A) := min

{
|∂W |
|W |

: W ⊂ V, 0 < |W | < 1

2
|V |
}
, (32)

where |W | denotes the cardinality of W .

As shown in Cheeger, the Cheeger constant h(A) ≤ 1 provides bounds for the second-largest
eigenvalue of A as follows

1− 2h(A) ≤ λ2(A) ≤ 1− (h(A))2

2∆
, (33)

where ∆ denotes the maximum degree of the graph of A. We call

hl(A) = 1− 2h(A)

the lower Cheeger bound and

hu(A) = 1− (h(A))2

2∆
(34)

the upper Cheeger bound.
The Cheeger constant h(A) ≤ 1 can be interpreted as a measure of ”seperability” of a network

A. Indeed, the Cheeger constant is small if the network can be split into two big components by
cutting only a few links. Hence, a disassortative network with two evenly large clusters (read,
two hubs) has a low Cheeger bound. This phenomenon is very frequent, such as in political blogs
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supporting opponent candidates (see for example Sasahara et al. (2021)).

A simple heuristic for the quality of estimation provided by the Cheeger constant is the dis-
tance between the upper and lower bound of (33). This distance is the smallest for h(A) = 0 and
keeps increasing for increasing h(A) ≤ 1. Moreover, this distance increases with increasing ∆.
In summary, the rule of thumb is that estimation (33) works best for networks showing patterns
of separability and bounded maximal degree.

The following example illustrates the suitability of estimation techniques (31) and (33) de-
pending on the network A.

Example 5. Consider again the simple stylized case where all agents weight each other equally.
We refer to this case as complete uniform with network Acu with all equal elements 1/nA. As
noted earlier, (31) provides λ2(Acu) = 0 due to the upper bound τcu = 0. The Cheeger constant,
however, is at its maximal value h(Acu) = 1. Moreover, the maximal degree is at its highest
possible value ∆ = nA. As conjectured by the rule of thumb, (33) will not be sharp and indeed
reads,

−1 ≤ λ2(Acu) ≤ 1− 1

2nA
,

which provides no information about the actual value of λ2(Acu) and hence no indication about
the resistance to bots.
Now consider the network in Figure 1 to which we refer as the splitted network As. Moreover,
the highest degree ∆ = 3 is small compared to nA = 19 such that we expect the Cheeger inequality
(33) to provide a sharper estimation than (31). Table (1) confirms this intuition for nA = 19.

Figure 1: Splitted network with informative Cheeger bound
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Table 1: Coefficient of Ergodicity and Cheeger Bound in Comparison

Network Structure λ2(A) τ(A) hl(A) hu(A)

Complete uniform A = Acu 0 0 -1 0.98

Splitted network A = As 0.992 1 0.84 0.99

The numerical examples put forward in Table 1 illustrate the validity of our qualitative ar-
gumentation. For cohesive networks with similar connection patterns among agents, as in the
extreme case Acu, the coefficient of ergodicity tends to provide sharp estimations as upper bound
while the Cheeger bounds are not informative. For networks with patterns of separability, in
contrast, it is the other way around. Note that τ(As) = 1 and hence provides no information as
an upper bound for the splitted network. The high value of the lower Cheeger bound, however, is
very informative as it precludes λ2(As) << 1 and therefore forecloses this indicator of short-term
resilience.

6 Applications: Echo Chambers, Filter Bubbles and False
Balance

Our model speaks to the widespread concern about information bubbles. One proposed explana-
tion for the occurrence of these bubbles is that many agents have homophilic preferences (see e.g.
Hart et al. (2009); Kastenmüller et al. (2010); Boucher (2015); and Del Vicario et al. (2017)) and
that internet and social media facilitate the self-selection of like-minded contacts and information
sources, resulting in echo chambers or information cocoons (see e.g. Cinelli et al. (2021)). An-
other explanation for the occurrence of information bubbles is that search algorithms employed
by search engines and social media tend to select information that is likely to agree with the
user’s ideas (e.g. Mobasher et al. (2000); Nikolov et al. (2015); and Levy (2021)) Both echo
chambers and filter bubbles create situations where agents update their beliefs, mostly according
to the information they receive from within the bubble. Our model explains why information
bubbles are harmful even in the absence of bots. The main argument is that bubbles represent
a partition of the set of agents into weakly coupled subgroups of various sizes. Our analysis,
however, shows that every bubble has the same impact on the global consensus, regardless of
its size. This is an obstruction to wisdom, as the wisdom of crowds phenomenon deploys for
large sizes of agents. A partition of the nodes into smaller subgroups will decrease the likelihood
of social learning arriving at a consensus close to the truth. Moreover, one echo chamber can
be biased and less open to beliefs outside the bubble. Our study shows that this introspection
tendency obstructs social learning, since introspective chambers neglect information outside the
bubble. In addition, the influence of subgroups grows with introspection, which amplifies the
harmful effect of introspective subgroups on social learning.
Finally, this paper provides a theoretical foundation of the media term “false balance”. The
latter emerges from the ideal of journalistic objectivity of reporting all (credible or reasonable)
opposing positions. Similar to information bubbles, the harmful effect is that every position
of an ideological community has the same impact on consensus, irrespective of its number of
supporters and proportion of actual evidence.
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7 Conclusion

We study the impact of bots on social learning in social networks. In particular, our model ad-
dresses the impact of bots (or stubborn agents) on consensus forming. We introduce the concept
of instantaneous truth gap, which captures the impact of bots in case there is a comparatively
“infinitesimal” small number of bots. We show that even the smallest number of bots has a
sizeable impact on the consensus and hence represents an obstruction of the “wisdom of crowds’.
However, the agent’s network architecture impacts the speed of the learning process. If the con-
vergence process of the agent network is sufficiently fast, the learning process of the agents can
reach a quasi-stationary consensus independent of the bots. Identifying these resilient network
structures gives rise to some optimism, as it shows means to preserve the wisdom of a crowd for
a very long time.
Our framework allows various extensions for future work. A fruitful avenue could be to study a
non-stationary model approach, where the truth value may slowly vary over time due to exoge-
nous effects. Moreover, extending the model to consider a case in which links are endogenously
determined would be interesting. Such a setting would allow agents to place a higher weight on
individuals who share similar priors and choose to “unfollow” (e.g. break links) agents who have
views that are relatively far from their own.
Finally, it is of high societal relevance to find counteractive measures to bots. Our model ex-
plains the underlying mechanics of misinformation and could be a fruitful toolbox for identifying
effective policy measures.
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