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Abstract: The study investigates the effects of stock market volatility and cybercrime on cryptocur‑
rency returns in the South African economy. Daily time series data on four different types of cryp‑
tocurrencies (Bitcoin, Ethereum, Tether, and BMB) were employed. The data covers the period from
1 January 2019–31 December 2021. The study employed the dynamic conditional correlation (DCC
GARCH) and Bayesian liner regression model to investigate time‑varying correlations among the
variables. Empirical findings suggest that stock market volatility has a positive impact on the re‑
turns of BNB, Bitcoin, and Ethereum. However, it has a negative impact on Tether. Expectedly,
cybercrime poses negative impacts on the returns of BNB, Bitcoin, and Ethereum but could be said
to have no impact on the returns of Tether. The study concludes that ongoing efforts to reduce cy‑
bercrime activities need to be strengthened to further the use of digital currencies.
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1. Introduction
Cryptocurrency (also called crypto or crypto currency) is a modern economic and fi‑

nancial phenomenon that is receiving significant attention from investors, organisations,
governments, and many other economic agents (Liu and Tsyvinski 2021). Cryptocurrency
is defined as a decentralised virtual currency that uses cryptography to track and secure
transactions. Factors that affect the cryptocurrencymarket are continuously emerging and
are constantly changing. The increasing popularity and influence of cryptocurrency has
attracted the interest of criminals. Cryptocurrency has many advantages as a virtual cur‑
rency; however, it is also characterised by many threats as it operates in cyberspace. Umar
(2021) states that because it operates in cyberspace, it is a favourite target for hackers and
is thus vulnerable to cyber‑attacks or cybercrime. The reason why crypto is a favourite
of cybercriminals is because of its vulnerability to attacks, due to the anonymity granted
by encrypted blockchain technology (Caporale et al. 2020). A blockchain is defined as
digitally distributed, decentralised, public ledger that records digital transactions. They
are sustained through several computer systems that are linked to a peer‑to‑peer network
(Caporale et al. 2020). The inception of cryptocurrencies was based on the notion that
individuals no longer trusted traditional financial authority. However, the lack of a struc‑
tured regulatory framework is leading to the misuse and abuse of the public nature of its
blockchain (Schipor 2019).

Aprominent issue associatedwith cryptocurrency is the extremely high level of volatil‑
ity, and the contagion effect between Bitcoin (the largest and most well‑known currency)
and other cryptocurrencies. Due to this, the crypto market is vulnerable to market crashes
and is likely to experience bubbles (Ferreira and Pereira 2019; Schipor 2019). Due to the
decentralisation of crypto, researchers note that the spillover effect might occur easily due
to unrestricted transactions (Luu Duc Huynh 2019). The magnitude of the spillover effect
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needs to be investigated and monitored because these spillovers may cause disruption to
financial systems.

However, in the existing literature there is insufficient knowledge on the market dy‑
namics of cryptocurrencies and traditional financial assets in the context of developing
countries (Vardar and Aydogan 2019). Moreover, the impact of cybercrime on cryptocur‑
rencies in emerging markets is not investigated. This study intends to investigate the im‑
pact of stock market volatility and cybercrime on the cryptocurrency market using South
Africa as a case study. The study was conducted due to the volatile nature of the stock
market and with the aim of investigating how volatility affects cryptocurrency markets.
This is the case particularly in South Africa, an emerging market where the stock mar‑
kets are considered more volatile than in developed markets (Duncan and Kabundi 2011).
Cheteni (2016) conducted an empirical analysis on the Johannesburg Stock Exchange (JSE)
and found that this market is highly volatile compared to other equity markets. Hence,
this study made use of the volatility series generated from the JSE Top 40 Index. There
are limited studies investigating the spillover effect of the JSE highly volatile market into
cryptocurrency markets. In addition, South Africa is known to be more vulnerable to cy‑
bercrime thanmost other countries, which creates further opportunity to study cybercrime
and its impact on cryptocurrency. The remainder of the study is structured as follows:
Section 2 reviews the theoretical and empirical literature, while Section 3 discusses the em‑
pirical method. Section 4 discusses the empirical results. The conclusion is provided in
Section 5.

2. Literature Review
This section is divided into two parts. The first part examines the theories that ex‑

plain how stock market volatility and cybercrime impact cryptocurrency markets, while
the second part reviews previous empirical attempts.

2.1. Theoretical Framework
The modern portfolio theory is applicable to cryptocurrency. The most prominent

cryptocurrency, Bitcoin, has been an important subject of discussion in recent years. Sev‑
eral characteristics of Bitcoin have been common in financial assets, leading it to be classi‑
fied as a new asset class (Liu and Tsyvinski 2021; Gil‑Alana et al. 2020). Modern portfolio
theory is concernedwith how an investor looks at how an asset co‑moves with other assets
before including it into a portfolio in order to maximise expected return and reduce risk
(Saksonova and Kuzmina‑Merlino 2019). Observing how stock market volatility affects
cryptocurrency is important in order to understand if it can be used as a
diversification option.

The stock market is known for being highly volatile, and therefore investors are al‑
ways looking at alternative assets to hedge risk. The “risk to safety” theory is applicable
in cryptocurrency. The theory states that risk‑averse investors reallocate their investment
from assets facing high volatility to less‑volatile assets during that particular market pe‑
riod (Inghelbrecht et al. 2013). When stock markets are facing periods of high volatility, in‑
vestors reallocate their investment, and instead buy cryptocurrency to diversify risk. They
choose cryptocurrency for the many advantages it provides.

The ‘flight to safety’ theory can also be applied to cryptocurrencymarketswhenvolatil‑
ity is extremely high. Fang et al. (2021) states that consecutive cyber‑attacks on cryptocur‑
rencies trigger high volatility in cryptocurrency markets. This deteriorates investor con‑
fidence in cryptocurrency markets and deters their risk receptors. This induces ‘flight to
safety’ in investors, causing them to seek more stable markets for their investments. The
stock market becomes their safe haven in times of cryptocurrency market instability.

2.2. Empirical Evidence
There is a considerable amount of literature stating that cryptocurrencies behave and

function as a traditional asset. Liu and Tsyvinski (2021) stated a valuation that links the fre‑
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quency of cryptocurrency prices to those of traditional assets. This classification has been
investigated and the evidence has distinct aspects according to each study. Yeimack states
that cryptocurrency is a speculative investment due to its high volatility, chances of theft
and hacking, its scarcity, and the computer knowledge needed to use it. The evidence sug‑
gests that cryptocurrency is classified as an asset, not a currency. The European Central
Bank (2012) state that this classification of cryptocurrency is now a concern due to the pos‑
sibility that it might affect different asset classes and therefore threaten the stability of the
financial system. Investors require more information as to whether it can be utilised fur‑
ther in portfolios, and specifically, the correlation it exhibits with other asset classes. Other
literature supports the theory that cryptocurrency is used as a diversification option, but
state that it is used because of its linkage or spillover effect between it and other traditional
assets (López‑Cabarcos et al. 2021; Bouri et al. 2017).

A volatility spillover is defined as transmission of one asset’s volatility to another
asset (Duncan and Kabundi 2011). Equity markets and cryptocurrency markets have be‑
come more integrated since the beginning of the coronavirus crisis. Iyer (2022) conducted
a study that examined the extent to which cryptocurrencies and equity markets have po‑
tential spillover in the United States and emerging markets using price returns and volatil‑
ity. The results suggest that volatility spillover from S&P500 and MSCI emerging market
indices to cryptocurrency markets is extremely high. They take note that bidirectional
spillovers tend to increase during episodes of market volatility.

Corbet et al. (2018) uses an empirical approach to explore the connectedness of Bit‑
coin and mainstream assets. They found that the directional returns and volatility of VIX,
gold, bonds, GSCI, FX, and S&P500 are very low. They concluded that cryptocurrencies
aremore interconnectedwith one another thanmainstream traditional assets. Ghorbel and
Jeribi (2021) use the BEKK‑GARCH model to analyse the relationship between cryptocur‑
rency andAmericanmarket indices, using the volatility of fivemajor cryptocurrencies and
American market indices (namely S&P500, VIX, Nasdaq, oil prices, and gold). They noted
that volatility spillover between cryptocurrencies is extremely high, and it is lower between
cryptocurrency and the investigated traditional assets. However, they found proof of bidi‑
rectional volatility between cryptocurrencies and financial assets. Vardar and Aydogan
(2019) pioneered an empirical study that investigated the return and volatility spillover
of the cryptocurrency market. They used Bitcoin as a proxy of the market and key tra‑
ditional assets, namely the Bosra Istanbul stock market index and Turkish government
bonds, and included international currencies such as the US dollar and the euro. The study
employed themultivariate econometric method and the VAR‑GARCHmodel and incorpo‑
rated a mean framework with the BEKK representation. The study found that there exists
a cross‑market shock that is bidirectional in nature. It also found that cryptocurrency and
the investigated mainstream assets exhibit a volatility spillover. The study notes the exclu‑
sion in the case of the US Dollar and Turkish five‑year government bonds, where there is
only unidirectional volatility spillover from the assets to Bitcoin.

Cyber‑attacks and cryptocurrency spillovers are of importance to investors because
they contain important information that affects investor behaviour and their preferences
(Yousaf et al. 2021). Caporale et al. (2020) investigates the volatility spillover between
different cryptocurrencies and the role of cyber‑attacks in these spillovers. The study esti‑
mated the trivariate GARCH‑BEKKmodels that included dummyvariables corresponding
to the suitably defined cyber‑attack. The results concluded that cyber‑attacks reduce diver‑
sification opportunities by strengthening cross‑market linkages. Ciaian et al. (2016) further
states that cyber‑attacks on crypto market exchanges are found to reduce their attractive‑
ness to investors.

Umar (2021) conducted a study that exploredhowcryptocurrency attacks affect crypto
price, return, and liquidity. The study used a multiple linear regression model that in‑
cluded a categorical independent variable plus quantile‑on‑quantile regression. The re‑
sults supported the evidence of Fang et al. (2021), stating that cyber‑attacks do not have
any effect on cryptocurrency prices and return. Furthermore, cyber‑attacks enhance the liq‑
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uidity of cryptocurrency. However, there exists evidence that suggests the opposite, that
the frequent occurrence of cybercrime has the negative effect of destabilising the cryptocur‑
rency market (Yousaf et al. 2021). Caporale et al. (2020) conducted a study and found that
cryptocurrencies are extremely vulnerable to cybercrime. They continue to state that cyber‑
attacks are classified as a risk factor due to the disruptions caused to the cryptocurrency
market through the negative impact on returns, volatility, and trading volumes. Ramos
et al. (2021) used cumulative abnormal return models (CAR) to investigate the effect of cy‑
bercrime on cryptocurrency returns. The results indicate that reported cyber‑attacks (51%
attacks) have a negative effect on returns and that unreported attacks have the opposite ef‑
fect. Cryptocurrency exchanges are highly volatile and cyberattacks are found to increase
this volatility (Marella et al. 2021).

Corbet et al. (2019) used DCC‑GARCH to analyse intra‑day trading of cryptocur‑
rencies. The study determined that international trading times, volatility of oil prices,
GBP/USD, and cybercrime events affect intra‑day volatility. The study observed that cy‑
bercrime activities lead to higher volatility of the affected cryptocurrency. Sanusi and
Dickason‑Koekemoer (2022) investigate the effects of stock market volatility and cyber‑
crime on cryptocurrencies’ returns in the South African economy using time series data us‑
ingGeneralizedAutoregressive ScoreModel (GAS) and regime‑switching approach. Their
findings show that the effects of the cyberattack on the returns of the cryptocurrencies
could be said to be non‑regime dependent. Their findings also show that the effect of stock
market volatility is regime‑depending. Stock market volatility has positive effects on the
returns of each of the cryptocurrencies. The study provides evidence which states that the
cryptocurrency market is highly vulnerable to cybercrime. Cybercrime is observed to be
a risk factor and causes disruptions in the cryptocurrency market through the effects on
returns, volatility, and trading volumes.

3. Materials and Methods
3.1. Data Description and Summary

Daily time series data on 4 types of cryptocurrencies (Bitcoin, Ethereum, Tether, and
Binance Coin (BMB)) from the first day of January 2019 to last day of December 2021 were
obtained from CoinMarketCap. Data on cybercrime were taken from the Hackmageddon
database on cybercrime. Daily data on the Johannesburg Stock Exchange Top 40 Index
(FTSE/JSE Top 40) was taken from Thompson Reuters Eikon database. The study aims to
investigate the impact of stockmarket volatility and cybercrime on cryptocurrency returns
in the South African economy. The choice and the scope of the data are informed by the
availability of data. Volatility series were generated using the GARCH (1,1) model.

3.2. GARCH‑DCC Model
The GARCH‑DCC is a multivariate model also known as the dynamic conditional

correlation (DCC) model. The DCC model was adopted to examine the time‑varying cor‑
relations against static correlation. The specified GARCH(p,q) model was estimated using
maximum likelihood estimation (MLE) techniques. It is represented by the subsequent
equations, where r_t is a residual from the fitted VAR equation:

r_t = θ_0 + ϵ_t (1)

ϵ_t~(0,σ_t^2)

log(σ_t^2) = α_0 + ∑_(j=1)^p
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ϵ_t is the already‑standardised disturbance term as a result of mean removal from the VAR
residual series. The log of volatility of ϵ_t is given as a function of its own lagged values
and lagged standardised disturbance terms. β^’s are the persistence of volatility and α^’s
represent the GARCH effects. The standardised residual from the VAR equations is re‑
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standardised. The following variant of DCC is used for estimation in the R statistical pack‑
age:

Q_t = (1 − α− β)
−
Q+ αz_t z_t̂′ + βQ_(t− 1) (3)

where Q_t is the dynamic conditional correlation, z_t is the standardised residual from the

GARCH’s. α and β are the persistence of correlation, and
−
Q is the initial correlation matrix

at t = 0 i.e.,
−
Q = Q_(t = 0).

Q_(t = 0) = correlation of standardised residuals of GARCHS. The obtained correla‑
tions would shed light on the time‑varying contemporaneous relationships between the
variables.

3.3. Bayesian Linear Regression Model
The empirical approach employed in the study is the Bayesian linear regressionmodel

(BLR). The general multiple linear regression model can be written as:

Y = Xβ + ε (4)

where Y is a column matrix of the dependent variable.
X is a vector of independent variables.
β is a vector of regression model parameters.
ε is a column vector of error terms.
Bayesian linear regression obtains parameter estimation bymeans of prior, likelihood

distribution, and posterior distribution. Estimation of parameters is done through poste‑
rior distribution which is used to multiply both prior distribution and likelihood distri‑
bution. The linear regression model assumes error terms are normally distributed, and
as such, variables are assumed to be normally distributed. In the Bayesian approach, the
probability density function of the variables can be stated as follows:

p(Y/X,β σ^2) = 1/
√
(2πσ^2) exp {−1/(2σ^2) (Y − Xβ)^(T) (Y − Xβ)} (5)

The likelihood function of the variables can be stated as follows:

p(Y/X,β σ^2) = Π_(i = 1)^n 1/
√
(2πσ^2) exp {−1/(2σ^2) (Y − Xβ)^(T) (Y − Xβ)} (6)

p(Y/X,β σ^2) = (σ^2)^((−n)/2) exp {−1/(2σ^2) (Y − Xβ)^(T) (Y − Xβ)} (7)

p(Y/X,β σ^2)∝(σ^2)^((−v)/2) exp[(−vs^2)/(2σ^2)] × (σ^2)^((−n)/2) exp {−1/(2σ^2) (Y − Xβ)^(T) (Y − Xβ)} (8)

The Bayesian approach to regression analysis makes use of several prior distributions.
Parameter estimation using the Bayesian approach can be executed through iteration of
the marginal posterior. Posterior distribution is obtained by multiplying both the prior
distribution and the likelihood function.

p(β,σ^2/Y,X)∝p(Y/X,β,σ^2)p(σ^2)p(β/σ^2)

p(β,σ^2/Y,X)∝(σ^2)^((−n)/2) exp{−1/(2σ^2) (Y − Xβ)^(T) (Y − Xβ)} × (σ^2)^(−(v/2 + 1))
exp[−(vs^2)/σ^2 ] × (σ^2)^((−k)/2) exp[−1/(2σ^2) (β − µ)^T Λ(β − µ)]

The study makes use of the MCMC (Markov Chain Monte Carlo) algorithm to obtain
regression model parameters. The Gibbs sampling method of algorithms in MCMC is
adopted. The MCMC pack is available in the R statistical package.
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4. Results
4.1. Preliminary Analysis

Table 1 presents the summary statistics. The means of BNB returns, Bitcoin returns,
and Ethereum returns are positive, suggests a bullish trend during the period under in‑
vestigation. The mean of Tether returns indicates a reduction in the volatility because it is
negative. While Figure 1 shows the graphical presentation of returns of each type of Cryp‑
tocurrencies considered in the study as well as the plots of the volatility series of FTSE/JSE
Top 40 and cybercrime.

Table 1. Summary statistics of the Cryptocurrencies returns.

Statistics BNB Bitcoin Ethereum Tether
Mean 0.004083 0.002279 0.002934 −1.75 × 10−5

Median 0.002189 0.001705 0.002550 −6.10 × 10−5

Maximum 0.529243 0.171820 0.230704 0.053393

Minimum −0.542809 −0.464730 −0.550714 −0.052570
Std. Dev. 0.057131 0.039260 0.050309 0.003984

Skewness −0.194613 −1.433718 −1.467205 0.314088

Kurtosis 21.28703 22.86319 19.14648 64.45056

Jarque‑Bera 15236.73 18342.75 12265.26 171991.1

Probability 0.000000 0.000000 0.000000 0.000000

Observations 1093 1093 1093 1093
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Figure 1. Correlation chart of cryptocurrency returns with cybercrime and stock market volatility.

Figure 1 shows the correlation chart among the variables otherwise known as the
static correlation coefficient. The correlation coefficients between cybercrime and each of
the cryptocurrency returns is negative, with the exception of Tether’s returns. Conversely,
the correlation coefficients between stock market volatility and each of the cryptocurrency
returns is positive, with the exception of Tether’s returns. However, these coefficients have
been accused of being static as they do not reflect the correlation changes which take place
over time, as static correlation only shows instant relationships over a period of time. The
study hence utilizes dynamic conditional correlation (DCC GARCH) to investigate time‑
varying correlations among the variables. The histograms of the plots of the returns of the
cryptocurrencies are shown in Figure 2.
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Figure 2. Histogram plot of cryptocurrency returns.

4.2. DCC GARCH Results
The cryptocurrency returns, together with the cybercrime and stock market volatil‑

ity series, are then fitted to into a DCC GARCH model. A DCC with multivariate skew
student‑t distribution (sstd) and a DCCwith multivariate student‑t distribution (std) were
modelled. The DCC with the multivariate student‑t distribution yielded lower Akaike in‑
formation criteria.

The time‑varying correlations between returns on BNB and cybercrime, and time‑
varying correlations between returns on BNB stock market volatility, are presented in in
Figure 3. As shown in Figure 1, the dynamic correlation between returns on BNB and
cybercrime was found to be largely oscillating between 0.00 and −0.05. However, a pos‑
itive coefficient of 0.1 is somewhat observed around mid‑2021. The dynamic conditional
correlations between returns on BNB and stock market volatility were found to be highly
negligible and insignificant for the majority of the period, with some cases of negative co‑
efficients. Stock market volatility was observed to have its highest negative correlation
with BNB’s return around mid‑2020. This could be a result of the COVID‑19 pandemic
which significantly worsened global economic performance. The overall picture is that
conditional correlations between returns on BNB and cybercrime as well as stock market
volatility are highly unstable and volatile.
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Figure 3. Time‑varying correlation coefficients between returns on BNB and cybercrime and stock
market volatility.
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The time‑varying correlations between returns on Bitcoin and cybercrime, and the
time‑varying correlations between returns on Bitcoin and stock market volatility are pre‑
sented in Figure 4. As shown in Figure 4, the dynamic correlation between returns on
Bitcoin and cybercrime is found to oscillate between positive and negative regions with
the majority of the coefficients being negative. In other words, the conditional correlation
coefficients are mostly within the negative region with few episodes of unstable positive
values. The dynamic conditional correlation between returns on Bitcoin and stock market
volatility is found to be largely negative. The overall picture is that conditional correla‑
tions between returns on BNB and cybercrime as well as stock market volatility are highly
unstable and volatile.
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Figure 4. Time‑varying correlation coefficients between returns on Bitcoin and cybercrime and stock
market volatility.

Figure 5 presents the dynamic correlation coefficients between returns on Ethereum
and cybercrime, and time‑varying correlations between returns on Ethereum and stock
market volatility. As reflected in Figure 5, the dynamic correlation between returns on
Ethereum and cybercrime is found to be entirely unstable throughout the period under
consideration. They show that the conditional correlation coefficients oscillate between
0.05 and −0.05. The dynamic conditional correlations between returns on Ethereum and
stock market volatility could also be said to be dynamically unstable.
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Figure 5. Time‑varying correlation coefficients between returns on Ethereum and cybercrime and
stock market volatility.
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The time‑varying correlations between returns on Tether and cybercrime as well as
the time‑varying correlations between returns on Tether and stock market volatility are
presented in Figure 6. As shown in Figure 6, the dynamic correlation between returns
on Tether and cybercrime largely oscillate in the positive region. In other words, the
conditional correlation coefficients are mostly within the positive region with very few
episodes of unstable negative values. The dynamic conditional correlation between returns
on Tether and stock market volatility is found to exhibit a similar pattern as observed with
cybercrime. In other words, conditional correlation coefficients are largely in the positive
region with few cases of negative coefficients.
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Figure 6. Time‑varying correlation coefficients between returns on Tether and cybercrime and stock
market volatility.

4.3. BLR Results
The Gibbs sampling algorithm approach using the Markov Chain Monte Carlo

(MCMC) method is employed in the Bayesian estimation process in order to obtain the
posterior distribution. Iteration used as many as 10,000 with a burn of 500 and a thin of 1.
Table 2 shows the BLR results of the effects of stock market volatility and cybercrime on
BNB’s returns, with posterior distributions plotted in Figure 7. From the results in Table 2,
stock market volatility is found to have a positive impact on the returns of BNB while
cybercrime is seen to have a negative impact on BNB’s returns.

Table 3 shows the BLR results of the effects of stock market volatility and cybercrime
on returns on Bitcoin in the South African economy, with posterior distributions plot in
Figure 8. From Table 3, stock market volatility is found to have positive effects on Bitcoin
returns while cybercrime has a negative impact on the returns of Bitcoin for the period
under review. Based on the observed data, other factors being equal, we believe there is
a 95% possibility that the returns on Bitcoin will increase by 8.55 to 16.21 with additional
stock market volatility, while returns will reduce by 0.0131 to 0.0020 with an increased
cybercrime rate.

Table 2. BLR results with Return on BNB as dependent variable.

Statistics Posterior Mean Posterior STD 2.5% 97.5%
Intercept 0.004275 0.002138 1.46 × 10−4 0.0084

Stock Market Volatility 1.537 9.205 −1.6 19.745

Cybercrime −0.003519 0.005561 −1.5 × 10−2 0.00733

Sigma2 0.003275 0.000141 3.0 × 10−3 0.00356
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Table 3. BLR results with Return on Bitcoin as dependent variable.

Statistics Posterior Mean Posterior STD 2.5% 97.5%
Intercept 0.002422 1.468 × 10−3 −0.0004 0.0053

Stock Market Volatility 3.712267 6.321 8.55326 16.2158

Cybercrime −0.005455 3.818 × 10−3 −0.0131 0.0020

Sigma2 0.001544 6.649 × 10−5 0.00141 0.00168

Table 4 shows the BLR results of the effects of stock market volatility and cybercrime
on returns on Ethereum in the South African economy, with posterior distributions plot in
Figure 9. FromTable 4, stockmarket volatility is found to have positive effects on returns of
Ethereumwhile cybercrime is found to have a negative impact on returns of Ethereumdur‑
ing the period under consideration in the South African economy. Based on the observed
data, ceteris paribus, we believe there is a 95% possibility that returns on Ethereum will
increase by 1.2 to 19.18 with additional stock market volatility, while returns will reduce
by 1.33 to 0.0020 with an increased cybercrime rate.

Table 4. BLR results with Return on Ethereum as dependent variable.

Statistics Posterior Mean Posterior STD 2.5% 97.5%
Intercept 0.00288 0.0018826 −7.5 × 10−4 0.0066

Stock Market Volatility 3.15337 8.1055105 1.201 19.1875

Cybercrime −0.00311 0.0048965 1.303 0.00645

Sigma2 0.00254 0.0001093 2.33 × 10−3 0.0027
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Figure 10. From Table 5, it is observed that stock market volatility has negative effects on
returns of Tether while cybercrime is found to have an insignificant positive impact on
the returns of Tether during the period under consideration in the South African economy.
Based on the empirical findings, other factors being equal, there is a 95% possibility that
the returns on Tether will reduce by 1.8 to 0.734 with additional stock market volatility,
while the increased cybercrime rate will have an insignificant impact on Tether’s returns.

Table 5. BLR results with Return on Ethereum as dependent variable.

Statistics Posterior Mean Posterior STD 2.5% 97.5%
Intercept 1.112 × 10−5 1.532 × 10−4 −2.8 × 10−4 3.11 × 10−4

Stock Market Volatility −0.5718 6.598 × 10−1 −1.8 7.34 × 10−1

Cybercrime 0.0003 3.986 × 10−4 0.0004 0.0011

Sigma2 1.683 × 10−5 7.245 × 10−7 1.63 × 10−5 7.24 × 10−9
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5. Discussion
From the empirical results obtained, cybercrime is seen to have a negative impact on

cryptocurrency returns. The implication is that the growth of digital currencies is being
hindered by the increased rate of cybercrime in the South African economy. This is consis‑
tent with some empirical studies in the literature, such Caporale et al. (2020) and Ciaian
et al. (2016) and Sanusi andDickason‑Koekemoer (2022). However, the study is at variance
with studies such as those undertaken by Umar (2021) and Fang et al. (2021), which claim
that cyber‑attacks do not have an effect on cryptocurrency prices and return. Similarly, the
correlation relationships between stock market volatility and the cryptocurrency returns
are largely positive. This is not unexpected, as stock market volatility often motivates in‑
vestors to diversify their portfolio through diversification into digital currencies. This is,
however, at variance with Gil‑Alana et al. (2020), who argued that there is no link between
the cryptocurrencymarket and other financial major assets, such as the stockmarket. Also,
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the findings from the Bayesian linear regression model show that cybercrime has a quanti‑
tative negative impact on cryptocurrency returns. This is consistentwith existing studies in
the literature. This finding confirms the theory that cybercrime activities have consistently
been a major impediment to the growth of Fin‑Tech in developing countries. This is be‑
cause the potential and existing investors in Fin‑Tech are being deterred and discouraged
from the industry. This has been a major threat to the overall growth and development of
digital currencies and financial technology in general. The positive impact of stock market
volatility follows the theoretical expectation as enunciated by the modern portfolio theory,
as investors looks at how an asset co‑moves with other assets before investing in it. The
negative co‑movement between stock market volatility and investment in cryptocurren‑
cies would undoubtedly motivate investors to diversify into digital currencies, which in
turn raises the returns due to increased investment.

6. Conclusions
This study presented empirical findings on the effects of stock market volatility and

cybercrime on cryptocurrency returns in the South African economy. Daily time series
data on four different types of cryptocurrencies (Bitcoin, Ethereum, Tether, and BMB)were
employed. The data covers the period 1 January 2019–31 December 2021. The data were
sourced from CoinMarketCap. Data on cybercrime were taken from the Hackmageddon
database on cybercrime. Daily data on the Johannesburg Stock Exchange Top 40 Index
(FTSE/JSE Top 40) were taken from the Thompson Reuters Eikon database, and the volatil‑
ity series was generated using the GARCH (1,1) model.

This study, in addition to contributing to relatively scarce studies on the effects of
stock market volatility and cybercrime on cryptocurrency returns in the South African
economy, is largely unique as it employs dynamic conditional correlation (DCC GARCH)
to investigate the time‑varying correlation between the returns of each cryptocurrency and
cybercrime, as well as stock market volatility. We also used the Bayesian linear regression
model to investigate the effects of stock market volatility and cybercrime on cryptocur‑
rency returns. Our findings can be summarised as follows. Firstly, the dynamic correlation
between returns on BNB and cybercrime was found to be largely oscillating between 0.00
and −0.05. The dynamic conditional correlations between returns on BNB and stock mar‑
ket volatility were found to be highly negligible and insignificant for the majority of the
period. Secondly, the conditional correlation coefficients between returns on Bitcoin and
cybercrime are mostly within the negative region with few episodes of unstable positive
values, while dynamic conditional correlations between returns on Bitcoin and stock mar‑
ket volatility were found to be largely negative. Thirdly, the dynamic correlation between
returns on Ethereum and cybercrime was found to be entirely unstable throughout the
period under consideration, while the dynamic conditional correlations between returns
on Ethereum and stock market volatility were also noticed to be dynamically unstable.
Fourthly, the conditional correlation coefficients aremostlywithin the positive regionwith
very few episodes of unstable negative values, while the dynamic conditional correlations
between returns on Tether and stock market volatility exhibit similar patterns as observed
with cybercrime. Finally, stock market volatility was found to have a positive impact on
the returns of BNB, Bitcoin, and Ethereum, however it had a negative impact on Tether. Ex‑
pectedly, cybercrime had negative impacts on the returns of BNB, Bitcoin, and Ethereum,
but could be said to have no impact on the returns of Tether. The study concludes that on‑
going efforts to reduce cybercrime activities need to be strengthened in order to further the
use of digital currencies. Furthermore, given the varying impacts of stockmarket volatility
on cryptocurrencies, more policy measures must be taken to ensure reduced or moderate
stock market volatility. Future research could adopt other time‑varying correlation mod‑
els, such as the GAS, among others.
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