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Abstract: This article aims to forecast the information trends related to the most popular cyberattacks,
seen as the cyber-crimes’ consequences reflecting on the Internet. The study database was formed
based on online users’ search engine requests regarding the terms “Cyberattacks on the computer
systems of a financial institution”, “Cyberattacks on the network infrastructure of a financial institu-
tion”, and “Cyberattacks on the cloud infra-structure of a financial institution”, obtained with Google
Trends for the period from 16 April 2017 to 4 October 2022. The authors examined the data using
the Z-score, the QS test, and the method of differences of average levels. The data were found to be
non-stationary with outliers and a seasonal component, so exponential smoothing was applied to
reduce fluctuations and clarify the trends. As a result, the authors built additive and multiplicative
cyclical and trend-cyclical models with linear, exponential, and damped trends. According to the
models’ quality evaluation, the best results were shown by the trend-cyclic additive models with an
exponential trend for predicting cyberattacks on computer systems and the cloud infrastructure and
a trend-cyclic additive model with a damped tendency for predicting cyberattacks on the network
infrastructure. The obtained results indicate that the U.S. can expect cybercrimes in the country’s
financial system in the short and medium term and develop appropriate countermeasures of a
financial institution to reduce potential financial losses.

Keywords: financial risks; cybercrime; cyberattack; exponential smoothing; prediction;
information trend

1. Introduction

Over the past two decades, the Fourth Industrial Revolution has rapidly increased
information and communication technologies and actively implemented them in different
areas of society worldwide. On the one hand, this has facilitated and promoted positive
trends, such as the digital transformation of business, the development of the Internet of
Things, the sharing economy, the virtualization of IT infrastructure, 3D marketing, the
emergence and use of cryptocurrencies, blockchains, artificial intelligence, I-tracking, etc.
(Kwilinski 2019; Miskiewicz 2020; Bezpartochna and Trushkina 2021; Kuzior and Sira
2022). On the other hand, the computerized and digitalized processes have resulted in such
negative phenomena as cybercrime, simultaneously accompanied by an increase in digital
literacy and a decreased cost for technology to commit cybercrimes. For example, it costs
$1 to install malicious software on the dark web marketplace, while anyone’s personal data
can be obtained for only USD 3 (Vojinovic 2022). In other words, anyone can become a
cybercriminal or gain access to any sensitive data for a small price.
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The relevance of cybercrime and cyberfraud is evidenced by other statistics, which
show a dynamic growth of its negative consequences in recent years. For example, the
average cost of a cyber incident worldwide in 2022 was USD 4.35 million, an increase of
about 24.29% compared to 2014 (USD 3.5 million) (IBM 2022a). The most affected sectors
are Healthcare (USD 10.1 million), Financial (USD 5.97 million), Pharma (USD 5.01 million),
Technology (USD 4.97 million), Energy (USD 4.72 million), Services (USD 4.7 million), and
Industrial (USD 4.47 million) (IBM 2022b).

The financial sector is ahead of all other sectors in its exposure to these risks, and not
only in terms of economic losses from cyber incidents. This industry is also in second place
regarding the volume of cyberattacks. It accounts for 22.4% of all attacks among all other
sectors. At the same time, 70% of attacks are aimed at banks, 16% at insurance companies,
and 14% at other financial organizations (IBM Security 2022). If we compare the average
cost of cybercrime, it is 40% higher for companies in the financial services sector than for
companies in other spheres (The Actuary 2019). Banking experts put cyber risks and data
protection first, among other threats. A total of 75% of respondents from European banks
consider it the most severe operational risk. Fully 82% of respondents who are professional
analysts also single it out along with geopolitical risk among all other threats. (EBA 2022).
In the consulting company Deloitte’s report, the financial services provider notes, “The
financial sector has always been exposed to cyber-attacks, and it is not only about stealing
our clients’ money, but also about doing damage just to do damage.” (Deloitte 2021). That
is, the financial sphere is the most targeted industry for cyber criminals and is one of the
most vulnerable to cybercrime.

How can cybercrime be countered? Global IT companies are engaged in developing
appropriate solutions for the protection of cyber-information and computer infrastructure,
contributing to the formation of the relevant cyber protection market. In 2022, revenue from
cyber solutions and cyber services is expected to be USD 159.84 billion, an increase of 14.88%
over the level in 2021 and 91.68% above that in 2014 (Statista Research Department 2022).
Meanwhile, the cybersecurity market is projected to grow by 86.87% to USD 298.7 billion
(Statista Research Department 2022). Experts estimate that the cyber incident insurance
market will also continue to grow. It reached USD 4 billion in 2018, USD 9 billion in 2020,
and is projected to reach USD 20 billion in 2025 (Insurance Insider 2018). Regarding the
financial sector, financial institutions are the largest investors in the cybersecurity industry,
investing much more than companies in other fields (Jones 2021). They can spend 6 to
10% of the IT budget on such matters annually (Deloitte Insights 2019). For large banks,
this figure can reach significant amounts. For example, Brian Moynihan, CEO of Bank
of America, has stated that the bank’s cybersecurity spending has recently reached over
$1 billion per year (Bursztynsky 2021). That is, the growth of cybercrime risks requires
more and more severe capital investments from the financial sector, which will contribute
not only to the strengthening of countermeasures but also to the development of the
cybersecurity market.

Global organizations have introduced several programs and initiatives to combat
cybercrime. In 2016, NATO member states recognized cybersecurity as an industry to be
taken care of by the Alliance on a par with protection on land, air and sea and adopted the
defensive mandate (NATO 2022). In 2021, a new Comprehensive Cyber Defense Policy was
proposed and endorsed at the NATO Summit (NATO 2022). United Nations developed
the Cybersecurity and New Technologies program to develop and strengthen measures
against cyber terrorism for member nations and private companies (United Nations 2020).
Due to the war launched by the Russian Federation against Ukraine, many countries
have introduced enhanced cybersecurity measures. For example, The The White House
(2022) outlined appropriate steps for private entities to counter cyberattacks that could
be a consequence of the cyber war in a fact sheet. National Cyber Security Centre (2022)
prepared and published new guidance to support staff resilience, which companies must
comply with in the face of cyber threats initiated by military aggression.



J. Risk Financial Manag. 2022, 15, 613 3 of 22

The European Commission is the leading developer of cyber strategies for the financial
sector. It published a Fintech action plan in 2018, which aims to ensure greater cyber
resilience for financial institutions (European Commission 2018). It also initiated the
Digital Operational Resilience Act (‘DORA’), which regulates the risks associated with
information and communication technologies and emphasizes creating and enforcing
standards that limit cyber incidents’ impact (European Commission 2021). The European
Banking Authority (EBA) is engaged in developing regulatory documents regulating IT
and cyber risks. It proposed the Guidelines on ICT and security risk management, which
contain defined requirements for the ICT and cyber risks management, which are based on
the organization of internal control of a financial institution (European Banking Authority
2019). Also, the activities of The Euro Cyber Resilience Board for pan-European Financial
Infrastructures (ECRB) and The European Union Agency for Cybersecurity (ENISA) to
ensure cyber security issues for financial organizations should be noted. While the first
agency performs an educational function to raise awareness of cyber security issues, the
second performs an expert function to develop and implement relevant policies. Despite
the strong international support for the implementation of cyber security strategies of
financial institutions, the main direction for them is the development and implementation
of personal measures to detect and counter threats identified as cybercrimes.

Thus, the issue of combating cybercrime is relevant, and the growing interest in it
has been noticed over time, especially on the part of financial institutions as the most
targeted objects for cybercrimes. Under these circumstances, it is essential to pay attention
to various directions of solving the problem of preventing cyber-risk situations, which
requires a systematic approach to their research and implementation at both practical and
scientific levels.

2. Literature Review

The analysis of literature sources on cybercrime relevant to economics allowed us
to state that there are studies for the macro level, business, and financial sphere. Thus,
scholars worldwide are focusing on the macroeconomic issues of cybercrime. Kobushko
et al. (2021) proved that not only is money the foremost tool of influence on different
spheres of life of the country, but also information and communication technologies exist
as a means of obtaining it. Their rapid development resulted in the transformation of the
economy in a positive way, which, as noted by Tiutiunyk et al. (2021a), may also affect
the macroeconomic stability of countries. However, the massive digitalization of society
has caused the cybercrime development, which fostered just the formation of the shadow
sector, as the financial flows from this type of activity are not transferred to the country’s
development, are not taxed and accumulated in offshore accounts of criminals (Logan
and Esmanov 2017). As a result, the countries’ innovation potential is weakened, as was
proven by Vysochyna et al. (2020). Cybersecurity measures must be developed to counter
cybercrime and its impact on a country’s development. Petroye et al. (2020) proved that
information security in general, and cybersecurity in particular, significantly influenced the
formation of the country’s image in the international arena, making it one of the effective
strategic areas for most countries worldwide when considering their development.

The following research direction looks to publications addressing cybercrime issues
in the business sector. Thus, Skrynnyk (2021) notes a positive perception of enterprises’
informatization and computerization of business processes, because they increase the
quality and efficiency of decision-making management and reduce routine operations in
economic activity. On the other hand, possible cyber-risks are the most dangerous for
effective business management and their growth results in increased losses for the national
economy (Semenova and Tarasova 2017; Bilan et al. 2020). Zadorozhnyi et al. (2021)
determined that the level of digital competitiveness influences the increased cyberthreats.
However, factors such as information and communication technology development, the
innovativeness of the economy, and access to the Internet may also significantly influence
a company’s cyber-risks (Leonov et al. 2019; Fernando Alonso Ojeda 2021). The global
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pandemic has made it possible to transfer the business processes of many companies to
cloud-based platforms. On the one hand, this has contributed to the cost reduction for
the use of physical storage facilities, while, on the other hand, increasing costs to ensure
cybersecurity because cloud technology facilitates cybercriminals’ access to data (Djamila
and Abdelatif 2022). Cybersecurity is nowadays considered to be a significant area of
management innovation development and support in business (Fernando Alonso Ojeda
2021). Therefore, comprehensive information technology covering key business processes
in the company as well as measures to prevent cyberattacks and data leaks needed to be
organized to ensure cybersecurity operates effectively (Rahiman et al. 2021).

The study of cybercrime risks in financial institutions is a rather specific topic con-
nected with the closedness and non-publicity of information in this sector. Despite this
limitation, some scientists are trying to solve several problems in this field. Thus, Nicholls
et al. (2021) introduced the concept of “financial cybercrime”, which means a set of financial
and cybercrimes that occur in the cyber environment and are directed at financial institu-
tions. Akinbowale et al. (2020) proved, based on the balanced scorecard, that the growing
level of cybercrime has a negative impact on the banking sector. The Fintech sector is the
most vulnerable to cyber criminals, which correlates to the greatest extent with cyber risks
due to its technological component. What are the most critical cyber threat risks for the
finance area? Primarily, computer infrastructure is exposed to cyberattacks, which can lead
to operational disruptions, physical damage, and outages (Kumar et al. 2020). Computer
networks support the work of many divisions of financial institutions and must withstand
the Internet load from many customers. Their vulnerability can be a source of cyber threats,
requiring authentication, privacy, and encryption risk management (Umaselvi et al. 2022).
Although cloud services reduce computing infrastructure losses, they are also the main
targets of cyberattacks (Aldasoro et al. 2022). Ghazi-Tehrani and Pontell (2021) highlight
phishing as a targeted cyberattack to steal personal financial information. Makki et al.
(2019) consider credit card cyber fraud the most critical threat to banks and their customers.

The global COVID-19 pandemic was one of the causes of the slowdown in economic
growth and sustainable development (Tiutiunyk et al. 2021b). But it also affected the
growth of the financial services business, which for customers takes place mainly online
and with the use of mobile technologies. (Kyslyy et al. 2021). That is, this crisis has created
a favorable environment for financial cybercrime development. Some scholars explore
other reasons for this. Thus, Vasylyev et al. (2021) note the low level of information
measures applied among the population in some countries regarding the risks of becoming
a cybercrime victim, especially those that are least developed or currently going through the
economic development phase. Didenko et al. (2020) found a direct correlation between the
population’s digital and financial literacy level and the cybersecurity measures they take
to counter cybercrime. Naser (2021) highlights the concept of digital financial inclusion,
which is one of the circumstances behind the rise in monetary cyberfraud.

Furthermore, research concerning the psychological aspects of the financial cyber-
crime issue can be singled out. Their implementation is a complex process that combines
the fraudster’s awareness of computer and information technology, motivation, and the
availability of software and hardware tools to commit cybercrimes. Therefore, when de-
veloping preventive measures, it is necessary to consider not only the factors listed above
but also to understand the nature of the cybercriminal’s decision-making (Njegovanović
2018). Leukfeldt and Roks (2021) confirmed that cybercrime incidents correlate with and
are isolated incidents that may be considered when determining relevant attributes in
the cybersecurity-building process. Stults and You (2021) researched that the low level of
self-control of information systems and computer technology users leads to an increased
risk of becoming a cybercriminal victim. This fact may also be used to develop the concept
of cyber threat prevention in financial institutions. One of the potential sources of cyber
threats is social networks, through which criminals can apply social engineering methods
and obtain personal and financial data (Kirichenko et al. 2017; Kuzior and Kuzior 2018;
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Štrbová and Kuzior 2019). This direction must be considered in determining the risks of
cyber threats for bank clients.

How can cybercrime risks be countered in financial institutions? Chinnasamy et al.
(2021) emphasize the need to develop cybercrime risk prevention standards to support
the Fintech industry. Mugarura and Ssali (2020) are inclined to the fact that, after all, the
problem of the imperfection of legislation in the field of cyber risks is key to combating
financial cybercrimes. Pandey et al. (2022) explore the need to develop an innovative cyber
security system for banks based on the most effective cyber threat detection algorithms.
Al-Dhaqm et al. (2017) suggest using a forensic examination of databases, which will
contribute to their prompt assessment and detection of cyber threats. Qasaimeh et al. (2022)
point out that predictive systems effectively combat cybercrime and should be integrated
into complex cybersecurity software solutions of financial institutions.

To solve this issue, the most effective application of mathematical methods and mod-
els are those proposed by scholars from different research schools worldwide. These
include traditional econometric research methods such as regression analysis (Leonov
et al. 2014), structural equation modeling methods (Brychko et al. 2021), VAR- and VEC-
modeling (Tiutiunyk et al. 2022), binary and matrix approaches (Yarovenko et al. 2021),
fuzzy sets-based methods (Sarwar et al. 2021), gravity modeling (Lyeonov et al. 2020),
data mining (Kuzmenko et al. 2020), and machine learning (Sivakumar et al. 2021), while
artificial intelligence (Obeid et al. 2020) also became popular in the research. In this study,
information trends of the most popular types of cybercrime will be used as input data.
Since their values represent a time series, it is advisable to use econometric methods for
their forecasting that are easy to implement and provide accurate results in the short- and
medium-term perspectives.

3. Data and Research Methodology
3.1. Data

A set of input data was generated based on Google Trends toolkit queries to research
and predict cybercrime trends. This included the most popular internet users’ queries for
the terms “Cyberattacks on computer systems of a financial institution” (CS), “Cyberattacks
on the network infrastructure of a financial institution” (NI), and “Cyberattacks on the
cloud infrastructure of a financial institution” (CI) for the period from 16 April 2017 to 10
April 2022, in the context of week-by-week levels.

This information was selected based on the following considerations. Mass cyberat-
tacks tend to be carried out in the economic entities of a particular country or countries.
These events are reflected in the growing interest among Internet users in the network
regarding these events. The time gap between actual cybercrime and online activity is
not excessively large, because users’ responses to significant events within the country
and around the world are instantaneous. Official sources that collect, process and publish
statistical data usually publish it with a significant time lag and in an aggregated form.
Therefore, in this case, the information trends reflecting the Internet users’ queries are a
quick response to real events. Accordingly, their research will make it possible to predict
possible cybercrimes worldwide quite accurately.

Decomposition of the studied temporal trends of global network users’ queries, con-
sidering seasonal, trend and random components for additive and multiplicative models
are presented in Figures 1–3.

An analysis of the “Cyberattacks on computer systems of financial institutions” time
series decomposition (Figure 1a,b) shows that it is a challenge to determine visually whether
the trend component is present, so to check the series for stationarity requires the application
of tests. The present outliers also need to be checked. The series contains a seasonal
component, and the density of residual distribution indicates the model to be additive.
Analysis of the “Cyberattacks on the network infrastructure of a financial institution” time
series decomposition (Figure 2a,b) indicates that the present seasonal component and the
density of the distribution of residuals testifies to an additive process. As for the trend
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component, the visual analysis does not allow us to conclude its absence or presence.
(Figure 3a,b) shows the decomposition of the “Cyberattacks on the cloud infrastructure
of a financial institution” time series, which demonstrates the clear presence of a trend,
seasonal components, and consistency with an additive process.
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Thus, the data under study are time series, which can be modeled by exponential
smoothing models or autoregressive models depending on whether the evidence of the
process is stationary or non-stationary.
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3.2. Research Methodology

The information trend forecasting of cybercrime indicators involves the following steps.
Step 1. Checking time series for the presence or absence of anomalous values and

making appropriate adjustments. To implement this step, we will use the Z-score statistical
method. The Z-score measures the distance between the value of observation and the mean
value by means of standard deviations and is calculated by the Formula (1):

z = (x − µ)/σ , (1)

where x is the actual value of observation; µ is the mean value of the series; and σ is the
root-mean-square deviation.

The calculated values of the Z-score are compared to extreme ones (−3 тa +3). If one
of the values is greater than +3 or less than −3, then the observation is an outlier.

Step 2. Checking for seasonality component for CS, NI, CI time series by performing
QS test.

Seasonal persistence occurs when the process is nearly periodic in the season. In this
case, we might think of average time series level xt as being modeled as:

xt = St + wt, (2)

where St is a seasonal component that varies a little from one year to the next, according to
a random walk:

St = St−12 + vt (3)

where wt and vt are uncorrelated white noise processes.
To check for seasonal component existence in CS, NI, CI time series it is proposed to

use QS test and its application in R on the base of “seastests” package. The score idea of QS
test is pillared on the ratio:

QS = n × (n + 2)×
(

R2
s

n − s
+

R2
2s

n − 2s

)
, (4)

where n is the number of observations in the time series and s is the periodicity of the data
(12 in this case with monthly data); R2

s and R2
2s denote the autocorrelations obtained for
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the corresponding time series. This statistic follows approximately the χ2 distribution with
2 degrees of freedom.

To perform the QS test for seasonality in a time series, the function is used:

qs(x, f req = NA, di f f = T, residuals = F, autoarima = T), (5)

where x—time series; freq—Frequency of the time series; diff —the differenced series; residu-
als—the residuals of a model; autoarima—automatic.

Step 3. Checking the stationarity in time series by applying the method of differences
of average levels. This test verifies the hypothesis about the homogeneity of variances
of parts of the time series and the hypothesis about the trend absence. It is reasonable to
apply this test for the input data, as the trend graphs (Figure 1, Figure 3 and Figure 5) show
that the data are not homogeneous over the whole period and there is an inflection. To
implement it, it is necessary to divide the series into two parts with approximately the
same number of points and calculate their variance (6):

σ2
1 =

∑n1
t1=1

(
Yt1 − Y1

)2

n1 − 1
; σ2

2 =
∑n2

t2=1
(
Yt2 − Y2

)2

n2 − 1
, (6)

where σ2
1 , σ2

2 are variances of two parts of the time series; Yt1 , Yt2 are actual values of two
parts of the time series; Y1, Y2 are mean values of two parts of the time series; n1, n2—the
number of observations in the first and second parts of the time series.

The hypothesis for the homogeneity of the series is carried out using Fisher’s criterion (7):

F =

{
σ2

1 /σ2
2 , σ2

1 > σ2
2

σ2
2 /σ2

1 , σ2
2 > σ2

1
, (7)

where F is the calculated value of Fisher’s criterion. If its value is less than the value
in the table, which is determined for the significance level of 0.05 and (n1 − 1), (n2 − 1)
are degrees of freedom, then the hypothesis of homogeneity of dispersions is accepted,
otherwise, the method does not provide an answer to the question about the presence or
absence of a trend.

The hypothesis of the trend absence is tested using Student’s criterion (8):

t =

∣∣Y1 − Y2
∣∣√

(n1−1)×σ2
1+(n2−1)×σ2

2
n1+n2−2 ×

√
1

n1
+ 1

n2

, (8)

where t is the calculated value of Student’s criterion. If its value is less than the table value
determined for the significance level of 0.05 and (n1 + n2 − 2) are degrees of freedom, then
the hypothesis regarding the trend absence is accepted, otherwise, the trend is present.

Step 4. Section 4 of this study proves that the analyzed series are non-stationary, so
exponential smoothing models will be chosen to predict cybercrime information trends.

A simple exponential smoothing model is of the form (9):

St = α × Xt + (1 − α)× St−1 (9)

where St, St−1 are exponentially smoothed values at time t and (t − 1) respectively (t = 1, n);
α is the smoothing parameter, taking a value from zero (when all current observations are
ignored) to one (when all previous observations are completely ignored); Xt is the level of
time series at time t.

In this paper, the following types of exponential smoothing models will be constructed:

(1) An additive cyclical model (10):

St = α × Xt + (1 − α)× St−1 + It−p, It = It−p + (1 − α)× et, (10)
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where It, It−p are the smoothed seasonal factor at time t and t − p (season length); and
et are the residuals at time t;

(2) A trend-cyclic additive model with a linear trend (11):

St = LTt + α × Xt + (1 − α)× St−1 + It−p, It = It−p + (1 − α)× et, (11)

where LTt is a linear trend (value at time t);
(3) A trend-cyclic additive model with an exponential trend (12):

St = ETt + α × Xt + (1 − α)× St−1 + It−p, It = It−p + (1 − α)× et, (12)

where ETt is an exponential trend (value at time t);
(4) A trend-cyclic additive model with a damped trend (13):

St = DTt + α × Xt + (1 − α)× St−1 + It−p, It = It−p + (1 − α)× et, (13)

where DTt is the damped trend (value at time t);
(5) A multiplicative cyclical model (14):

St = (α × Xt + (1 − α)× St−1)× It−p, It = It−p + δ × (1 − α)× et/St, (14)

where δ is the seasonal smoothing parameter, which is specified only for seasonal
models;

(6) A multiplicative trend-cyclic model with a linear trend (15):

St = LTt × (α × Xt + (1 − α)× St−1)× It−p, It = It−p + δ × (1 − α); (15)

(7) A multiplicative trend-cyclic model with an exponential trend (16):

St = ETt × (α × Xt + (1 − α)× St−1)× It−p, It = It−p + δ × (1 − α); (16)

(8) A multiplicative trend-cyclic model with a damped trend (17):

St = DTt × (α × Xt + (1 − α)× St−1)× It−p, It = It−p + δ × (1 − α). (17)

Although the visual analysis of the input data has been proven to follow an addi-
tive process, multiplicative exponential smoothing models will also be built to justify
mathematically the conclusions obtained.

Step 5. The last stage of this study provides the assessment of prediction accuracy of
indicators: “Cyberattacks on computer systems of a financial institution”, “Cyberattacks on
the network infrastructure of a financial institution,” “Cyberattacks on the cloud infrastruc-
ture of a financial institution,” calculated by the constructed exponentiation models. For this
purpose, the following values will be calculated: Mean Error, Mean Absolute Error, Sums
of Squares, Mean Square, Mean Percentage Error, and Mean Absolute Percentage Error.

4. Results

At the first stage of the proposed methodology for cybercrime information trends
prediction, time series were analyzed for the presence of anomalous values. The Python
programming language was used to implement the Z-score statistical method. As a result,
one anomalous value was found for the “Cyberattacks on computer systems of a financial
institution” time series, five—for the “Cyberattacks on the network infrastructure of a
financial institution” time series, and three—for the “Cyberattacks on cloud infrastructure
of a financial institution” time series. The detected values were replaced by the arithmetic
mean taken for the observations preceding and following the anomalous one.

At the second stage, a QS test, carried out with the help of the R programming
language, was applied. As a result, it was found that the cyclical component value for
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the three series of dynamics equals 48, which is also confirmed by the visualized seasonal
component in Figures 1–3.

At the third stage, autocorrelation functions of time series were constructed to carry
out their visual analysis for stationarity. The results are presented in Figures 4–6:
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Analyzing the obtained graphs, a preliminary conclusion was drawn that the series
“Cyberattacks on computer systems of a financial institution” (Figure 4) and “Cyberattacks
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on cloud infrastructure of a financial institution” (Figure 6) are non-stationary, as the
autocorrelation coefficients for the first levels are statistically significant. As for the series
“Cyberattacks on the network infrastructure of a financial institution,” we cannot definitely
state that the series is stationary or non-stationary because the value of the autocorrelation
function for the first level equals 0.5, which indicates only a visible level of connectivity
and does not allow to conclude with certainty about stationarity. Therefore, a mean level
difference test was carried out using MS Excel software, the results of which are presented
in Table 1.

Table 1. Results of the mean level difference test.

Criteria and Conclusions CS NI CI

F Calculated 4.6901 1.1489 1.8905

F Critical 1.3374 1.3374 1.3374

The result of the hypothesis
testing for the series

homogeneity

Homogeneity hypothesis is
rejected.

Homogeneity hypothesis is
accepted.

Homogeneity hypothesis is
rejected.

t Calculated 9.1187 2.3558 18.5668

t Critical 1.9692 1.9692 1.9692

The result of the hypothesis
testing regarding the absence

of a trend
The trend is present. The trend is present. The trend is present.

The test results show that the “Cyberattacks on computer systems of a financial
institution” and “Cyberattacks on the cloud infrastructure of a financial institution” series
are heterogeneous and contain a trend. For the “Cyberattacks on the network infrastructure”
series, the presence of a trend was confirmed, although it appeared to be homogeneous.
Thus, a class of exponential smoothing models can be applied to the research data.

At the fourth stage, exponential smoothing models were constructed to predict the
information trends of queries for cyberattacks on computer systems, network, and cloud
infrastructure of a financial institution. For this purpose, the tools of the STATISTICA analytical
package were used. The results of obtained predicted models are presented in Table 2.

The results of the detected cyclical components of three types of time series under
study are presented in Appendix A.

Let us represent the modeling results in Figures 7–9 as the ratio of actual, theoreti-
cal, and predicted levels of the “Cyberattacks on the computer systems of the financial
institution” indicator. Predicted values reflect the period from 16 April 2017 to 9 July 2023.
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Table 2. Predictive models of exponential smoothing of information trends of queries for cyberattacks
on the computer systems, network, and cloud infrastructure of a financial institution.

Indicator Model Model Features

Cyberattacks on Computer
Systems of a Financial

Institution

Model 1 Additive season (48); S0 = 62.42; No trend; Alpha = 1.00; Delta = 1.00

Model 2 Additive season (48); S0 = 57.50; T0 = 0.0815; Linear trend; Alpha = 1.00;
Delta = 1.00; Gamma = 0.00

Model 3 Additive season (48); S0 = 60.70; T0 = 0.9991; Exponential trend; Alpha = 1.00;
Delta = 1.00; Gamma = 0.00

Model 4 Multiplicative season (48); S0 = 62.42; No trend; Alpha = 0.883; Delta = 0.125

Model 5 Multiplicative season (48); S0 = 57.50; T0 = 0.0815; Linear trend; Alpha = 0.887;
Delta = 0.109; Gamma = 0.00

Model 6 Multiplicative season (48) S0 = 60.70; T0 = 0.9991; Exponential trend;
Alpha = 0.887; Delta = 0.114; Gamma = 0.00

Cyberattacks on the Network
Infrastructure

of a Financial Institution

Model 1 Additive season (48); S0 = 53.90; No trend; Alpha = 0.569; Delta = 0.00

Model 2 Additive season (48); S0 = 56.88; T0 = −0.012; Linear trend; Alpha = 0.564;
Delta = 0.00; Gamma = 0.00

Model 3 Additive season (48); S0 = 58.86; T0 = 0.9984; Exponential trend; Alpha = 0.573;
Delta = 0.00; Gamma = 0.00

Model 4 Additive season (48); S0 = 74.05; T0 = −0.728; Damped trend; Alpha = 0.361;
Delta = 0.00; Phi = 0.017

Model 5 Multiplicative season (48); S0 = 53.90; No trend; Alpha = 0.518; Delta = 0.00

Model 6 Multiplicative season (48); S0 = 56.88; T0 = −0.012; Linear trend; Alpha = 0.518;
Delta = 0.00; Gamma = 0.00

Model 7 Multiplicative season (48); S0 = 58.86; T0 = 0.9984; Exponential trend;
Alpha = 0.527; Delta = 0.00; Gamma = 0.00

Model 8 Multiplicative season (48); S0 = 71.43; T0 = −0.618; Damped trend;
Alpha = 0.328; Delta = 0.00; Phi = 0.020

Cyberattacks on the Cloud
Infrastructure

of a Financial Institution

Model 1 Additive season (48); S0 = 33.73; No trend; Alpha = 0.763; Delta = 0.00

Model 2 Additive season (48); S0 = 25.94; T0 = 0.0667; Linear trend; Alpha = 0.756;
Delta = 0.00; Gamma = 0.00

Model 3 Additive season (48); S0 = 27.21; T0 = 1.000; Exponential trend; Alpha = 0.761;
Delta = 0.00; Gamma = 0.00

Model 4 Multiplicative season (48); S0 = 33.73; No trend; Alpha = 1.00; Delta = 1.00

Model 5 Multiplicative season (48); S0 = 25.94; T0 = 0.0667; Linear trend; Alpha = 1.00;
Delta = 1.00; Gamma = 0.00

Model 6 Multiplicative season (48); S0 = 27.21; T0 = 1.000; Exponential trend;
Alpha = 0.815; Delta = 0.00; Gamma = 0.00

Let us present the results of the exponential modeling in Figures 10–13, as the ratio of
actual, theoretical, and predicted levels of the “Cyberattacks on the network infrastructure
of a financial institution” indicator. The predicted values reflect the period from 16 April
2017 to 9 July 2023.
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Figure 9. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the computer 
systems of a financial institution” indicator: (a) multiplicative trend-cyclic model with a linear 
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Figure 10. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network in-
frastructure of a financial institution” indicator: (a) additive cyclical model; (b) trend-cyclic addi-
tive model with a linear trend. 
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Figure 11. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network in-
frastructure of a financial institution” indicator: (a) trend-cyclic additive model with an exponential 
trend; (b) trend-cyclic additive model with a damped trend. 
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(a) (b) 

Figure 12. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network in-
frastructure of a financial institution” indicator: (a) multiplicative cyclical model; (b) multiplicative 
trend-cyclic model with a linear trend. 

  

Figure 10. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network
infrastructure of a financial institution” indicator: (a) additive cyclical model; (b) trend-cyclic additive
model with a linear trend.
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Figure 10. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network in-
frastructure of a financial institution” indicator: (a) additive cyclical model; (b) trend-cyclic addi-
tive model with a linear trend. 
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(a) (b) 

Figure 11. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network in-
frastructure of a financial institution” indicator: (a) trend-cyclic additive model with an exponential 
trend; (b) trend-cyclic additive model with a damped trend. 

Exponential smoothing: Multipl. season (48) S0=53.90
No trend,mult.season; Alpha=  0.518 Delta=0.00
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Exp. smoothing: Multipl. season (48) S0=56.88 T0=-0.012
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(a) (b) 

Figure 12. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network in-
frastructure of a financial institution” indicator: (a) multiplicative cyclical model; (b) multiplicative 
trend-cyclic model with a linear trend. 

  

Figure 11. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network
infrastructure of a financial institution” indicator: (a) trend-cyclic additive model with an exponential
trend; (b) trend-cyclic additive model with a damped trend.
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(a) (b) 

Figure 11. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network in-
frastructure of a financial institution” indicator: (a) trend-cyclic additive model with an exponential 
trend; (b) trend-cyclic additive model with a damped trend. 

Exponential smoothing: Multipl. season (48) S0=53.90
No trend,mult.season; Alpha=  0.518 Delta=0.00
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Exp. smoothing: Multipl. season (48) S0=56.88 T0=-0.012
Lin.trend,mult.season; Alpha=  0.518 Delta=0.00 Gamma=0.00
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(a) (b) 

Figure 12. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network in-
frastructure of a financial institution” indicator: (a) multiplicative cyclical model; (b) multiplicative 
trend-cyclic model with a linear trend. 

  

Figure 12. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network
infrastructure of a financial institution” indicator: (a) multiplicative cyclical model; (b) multiplicative
trend-cyclic model with a linear trend.
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Figure 13. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network in-
frastructure of a financial institution” indicator: (a) multiplicative trend-cyclic model with an ex-
ponential trend; (b) multiplicative trend-cyclic model with a damped trend. 

Figures 14–16 show modeled results of a ratio of actual, theoretical, and predicted 
levels of the “Cyberattacks on the cloud infrastructure of a financial institution” indica-
tor. The predicted values reflect the period from 16 April 2017 to 9 July 2023. 

Exponential smoothing: Additive season (48) S0=33.73
No trend,add.season; Alpha=  0.763 Delta=0.00
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Exp. smoothing: Additive season (48) S0=25.94 T0=0.0667
Lin.trend,add.season; Alpha=  0.756 Delta=0.00 Gamma=0.00
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(a) (b) 

Figure 14. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the cloud infra-
structure of a financial institution” indicator: (a) additive cyclical model; (b) trend-cyclic additive 
model with a linear trend. 

  

Figure 13. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network
infrastructure of a financial institution” indicator: (a) multiplicative trend-cyclic model with an
exponential trend; (b) multiplicative trend-cyclic model with a damped trend.

Figures 14–16 show modeled results of a ratio of actual, theoretical, and predicted
levels of the “Cyberattacks on the cloud infrastructure of a financial institution” indicator.
The predicted values reflect the period from 16 April 2017 to 9 July 2023.
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(a) (b) 

Figure 13. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the network in-
frastructure of a financial institution” indicator: (a) multiplicative trend-cyclic model with an ex-
ponential trend; (b) multiplicative trend-cyclic model with a damped trend. 

Figures 14–16 show modeled results of a ratio of actual, theoretical, and predicted 
levels of the “Cyberattacks on the cloud infrastructure of a financial institution” indica-
tor. The predicted values reflect the period from 16 April 2017 to 9 July 2023. 

Exponential smoothing: Additive season (48) S0=33.73
No trend,add.season; Alpha=  0.763 Delta=0.00
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Exp. smoothing: Additive season (48) S0=25.94 T0=0.0667
Lin.trend,add.season; Alpha=  0.756 Delta=0.00 Gamma=0.00
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(a) (b) 

Figure 14. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the cloud infra-
structure of a financial institution” indicator: (a) additive cyclical model; (b) trend-cyclic additive 
model with a linear trend. 

  

Figure 14. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the cloud
infrastructure of a financial institution” indicator: (a) additive cyclical model; (b) trend-cyclic additive
model with a linear trend.
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(a) (b) 

Figure 15. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the cloud infra-
structure of a financial institution” indicator: (a) trend-cyclic additive model with an exponential 
trend; (b) multiplicative cyclical model. 

Exp. smoothing: Multipl. season (48) S0=25.94 T0=0.0667
Lin.trend,mult.season; Alpha=  1.00 Delta=1.00 Gamma=0.00
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Exp. smoothing: Multipl. season (48) S0=27.21 T0=1.000
Expon.trend,mult.season; Alpha=  0.815 Delta=0.00 Gamma=0.00
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(a) (b) 

Figure 16. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the cloud infra-
structure of a financial institution” indicator: (a) multiplicative trend-cyclic model with a linear 
trend; (b) multiplicative trend-cyclic model with an exponential trend. 

Calculated predicted values of the cyberattack indicators on computer systems, 
network and cloud infrastructure of a financial institution for the period from 17 April 
2017 to 9 July 2023 are systematized in the form of a table and presented in Appendix B. 

The development of a model for predicting cyberattacks on the computer systems, 
network, and cloud infrastructure of a financial institution required testing the accuracy 
of calculated predicted levels. Therefore, at the fifth stage, the following list of indicators 
was analyzed: Mean Error, Mean Absolute Error, Mean Square, Mean Percentage Error, 
and Mean Absolute Percentage Error (Tables 3–5 for the three considered directions of 
cyberfraud attacks). 

Table 3. Prediction accuracy rates for the “Cyberattacks on computer systems of a financial insti-
tution” indicator. 

Error Name Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean Error 0.0539 −0.0088 * 0.1152 0.0229 −0.0472 0.0917 

Mean Absolute Error 4.3026 4.2923 * 4.2948 4.3488 4.3289 4.3471 
Mean Square Error 31.3206 31.2654 31.2653 * 35.7870 35.6338 35.6815 

Mean Percentage Error −0.3187 −0.4186 −0.2200 * −0.4462 −0.5556 −0.3336 
Mean Absolute Percentage Error 6.9939 6.9803 6.9776 * 7.0286 6.9983 7.0197 

* The lowest error values are highlighted in grey. 

Figure 15. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the cloud
infrastructure of a financial institution” indicator: (a) trend-cyclic additive model with an exponential
trend; (b) multiplicative cyclical model.
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Figure 16. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the cloud infra-
structure of a financial institution” indicator: (a) multiplicative trend-cyclic model with a linear 
trend; (b) multiplicative trend-cyclic model with an exponential trend. 

Calculated predicted values of the cyberattack indicators on computer systems, 
network and cloud infrastructure of a financial institution for the period from 17 April 
2017 to 9 July 2023 are systematized in the form of a table and presented in Appendix B. 

The development of a model for predicting cyberattacks on the computer systems, 
network, and cloud infrastructure of a financial institution required testing the accuracy 
of calculated predicted levels. Therefore, at the fifth stage, the following list of indicators 
was analyzed: Mean Error, Mean Absolute Error, Mean Square, Mean Percentage Error, 
and Mean Absolute Percentage Error (Tables 3–5 for the three considered directions of 
cyberfraud attacks). 

Table 3. Prediction accuracy rates for the “Cyberattacks on computer systems of a financial insti-
tution” indicator. 

Error Name Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean Error 0.0539 −0.0088 * 0.1152 0.0229 −0.0472 0.0917 

Mean Absolute Error 4.3026 4.2923 * 4.2948 4.3488 4.3289 4.3471 
Mean Square Error 31.3206 31.2654 31.2653 * 35.7870 35.6338 35.6815 

Mean Percentage Error −0.3187 −0.4186 −0.2200 * −0.4462 −0.5556 −0.3336 
Mean Absolute Percentage Error 6.9939 6.9803 6.9776 * 7.0286 6.9983 7.0197 

* The lowest error values are highlighted in grey. 

Figure 16. Ratio of actual, theoretical, and predicted levels of the “Cyberattacks on the cloud
infrastructure of a financial institution” indicator: (a) multiplicative trend-cyclic model with a linear
trend; (b) multiplicative trend-cyclic model with an exponential trend.

Calculated predicted values of the cyberattack indicators on computer systems, net-
work and cloud infrastructure of a financial institution for the period from 17 April 2017 to
9 July 2023 are systematized in the form of a table and presented in Appendix B.
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The development of a model for predicting cyberattacks on the computer systems,
network, and cloud infrastructure of a financial institution required testing the accuracy
of calculated predicted levels. Therefore, at the fifth stage, the following list of indicators
was analyzed: Mean Error, Mean Absolute Error, Mean Square, Mean Percentage Error,
and Mean Absolute Percentage Error (Tables 3–5 for the three considered directions of
cyberfraud attacks).

Table 3. Prediction accuracy rates for the “Cyberattacks on computer systems of a financial institution”
indicator.

Error Name Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Mean Error 0.0539 −0.0088 * 0.1152 0.0229 −0.0472 0.0917

Mean Absolute Error 4.3026 4.2923 * 4.2948 4.3488 4.3289 4.3471
Mean Square Error 31.3206 31.2654 31.2653 * 35.7870 35.6338 35.6815

Mean Percentage Error −0.3187 −0.4186 −0.2200 * −0.4462 −0.5556 −0.3336
Mean Absolute Percentage Error 6.9939 6.9803 6.9776 * 7.0286 6.9983 7.0197

* The lowest error values are highlighted in grey.

Table 4. Prediction accuracy rates for the “Cyberattacks on the network infrastructure of a financial
institution” indicator.

Error Name Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
Mean Error 0.1481 0.1503 0.2695 0.0162 * 0.0476 0.0507 0.1810 −0.0699

Mean Absolute Error 5.9178 5.9115 5.9130 5.8966 * 5.9721 5.9706 5.9709 5.9698
Mean Square Error 57.4386 56.9725 56.6455 55.7306 * 61.2920 60.9472 60.6463 60.2038

Mean Percentage Error −1.1104 −1.1033 −0.8663 * −1.2791 −1.3870 −1.3739 −1.1162 −1.5270
Mean Absolute

Percentage Error 11.3017 11.2936 11.2782 * 11.2887 11.3923 11.3905 11.3712 11.4027

* The lowest error values are highlighted in grey.

Table 5. Prediction accuracy rates for the “Cyberattacks on the cloud infrastructure of a financial
institution” indicator.

Error Name Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Mean Error 0.0812 0.0332 * 0.0915 0.0430 0.0052 * 0.0692

Mean Absolute Error 4.4419 4.4221 4.4229 4.6343 4.6063 4.3387 *
Mean Square Error 41.5554 41.4867 41.4841 * 45.5725 45.3386 44.1604

Mean Percentage Error −1.6617 −1.7840 −1.5980 * −1.6119 −1.7041 −1.6788
Mean Absolute Percentage Error 13.4378 13.3832 13.3663 13.9018 13.8019 12.914 3*

* The lowest error values are highlighted in grey.

An analysis of the calculated accuracy characteristics made it possible to select suit-
able models for the time series under study. Model 3 (Table 3), a trend-cyclic additive
model with an exponential trend, proved to be the most accurate for the “Cyberattacks on
computer systems of a financial institution” series by many indicators. The trend-cyclic
additive model with a damped trend is accurate for the “Cyberattacks on the network
infrastructure of a financial institution” series (Table 4). The trend-cyclic additive model
with an exponential trend showed the best results for the “Cyberattacks on the cloud
infrastructure of a financial institution” series (Table 5). The results also confirmed that the
studied series follow an additive process and have trend and seasonal components.

5. Conclusions

The research topic of predicting cybercrime information trends becomes relevant due
to the rapid growth of cybercrime over the past decade. The consequences of cybercrime
are felt worldwide by increased financial losses from the theft, loss and recovery of personal
information and data of business entities, government organizations, etc. This issue is
particularly tangible in the context of warfare and global pandemics, as they form a



J. Risk Financial Manag. 2022, 15, 613 17 of 22

favorable environment for cybercriminals and cyberfraudsters. That is why its prevention
and early detection are strategic goals in combating this phenomenon.

The research paper has revealed that the issue of cybercrime is being actively studied
by the scientific community, which pays attention to macroeconomic problems, namely, its
impact on macroeconomic stability, the country’s capacity for innovation, and its image, as
well as the growth of the shadow sector. Researchers also study the influence of information
technology on business development, issues of business process re-engineering in the
context of cloud-based technology implementation, conditions for increased cyber-risks and
cybersecurity organization measures. The scientific direction associated with the issues of
cybercrime against users of information systems and computer technology, which may occur
through social networks, mobile and Internet applications is also relevant. The psychological
causes of cybercrime, motivation of criminals and other factors are investigated.

We have proposed a research methodology, one which includes the investigation of input
data set for anomalous observations by using the Z-score, and the QS-test to identify the
cyclical patterns of the series, using the mean level difference test to carry out the hypothesis of
trend absence, modeling and forecasting the series of dynamics based on exponential smooth-
ing method, and building additive and multiplicative cyclical models with linear, exponential
and damped trends, as well as assessing the quality of the built models. Information trends
of Google user queries regarding cyberattacks on computer systems, networks and cloud
infrastructure of a financial institution were selected as input data. The data were selected
according to the consideration that the response to any event is faster on the Internet than in
reality, so a corresponding growing user query is identified as a response to cyberattacks.

The decomposition of the selected time series revealed that they follow an additive
process with seasonal and trend components. An analysis of the series for anomalous
observations revealed that the information trend of queries for “Cyberattacks on computer
systems” contains one anomalous observation, the trend of queries for “Cyberattacks on
network infrastructure” contains five anomalous observations, and the trend of queries for
“Cyberattacks on the cloud infrastructure” contains three anomalous observations. Their
values were replaced by the arithmetic mean taken for the observations preceding and
following the anomalous one. The QS-test determined that the cycle period is equal to 48 for
all three series, which is also confirmed by the visualization of their seasonal component.
The mean level differences test revealed that the information trends of cyberattacks on
computer systems and cloud infrastructure have heterogeneous variance while the series
of cyberattacks on network infrastructure has a homogeneous variance. However, the
study of Student’s criterion values found that the series are non-stationary and have a
trend component, so exponential smoothing models can be used for their modeling and
predicting. As a result of their building and quality assessment, it was determined that the
additive trend-cyclic model with an exponential trend sufficiently well models and predicts
several queries regarding cyberattacks on computer systems and cloud infrastructure, and
the additive trend-cyclic model with a damped trend—a number of queries regarding
cyberattacks on the network infrastructure.

The study of the information trends of user queries regarding cybercrimes and their
predictions will make it possible to prevent mass cyberattacks, which are common in
cyberwarfare and cyberterrorism at the state level. The methodology proposed in this
paper and its results are also practically significant for improving cybercrime strategies
for financial institutions. One of the possible directions is developing an internal standard
for determining potential cyber security risks, which will provide for implementing the
following countermeasures, considering the results of this study. Firstly, a company will
have the opportunity to continuously analyze potential cyber threats due to the availability
and interactivity of these information trends. Secondly, rapid monitoring screening of
crucial business processes least at risk for cybercrimes can be initiated based on receiving
operational forecasts of cyberattacks. Thirdly, the risk action plan in the event of a cyber
threat can be improved by risk management based on received predictions of mass cyberat-
tacks. Fourthly, the forecast’s results will increase the personnel’s awareness of the possible
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risks of cyberattacks and contribute to implementing appropriate responses. Fifthly, the
information trends of cyberattacks will contribute to the identification of potential dangers
of their influence on the activities of a financial institution in a proactive mode. In further
research, it is planned to expand the list of cyberattacks information trends to have an
opportunity to identify a broader range of cybercrime risks in financial institutions.
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Appendix A

Table A1. The value of the cyclical components of the information trends of inquiries regarding cyber
attacks on computer systems, network, and cloud infrastructure of a financial institution.

Case CS NI CI Case CS NI CI

1 −1.63689 −6.11530 −4.06617 25 −1.84210 1.41283 4.52446

2 −6.18898 −4.03717 −3.40992 26 0.44540 3.27533 2.42862

3 −0.69939 −2.39134 −3.92033 27 1.36207 9.50033 9.33279

4 −0.00148 −3.16738 −3.75367 28 0.86623 8.00866 13.63696

5 1.21207 5.62428 1.33487 29 −0.99210 0.76699 11.32029

6 0.92561 4.35866 −1.19117 30 3.42457 2.01283 −0.19221

7 0.85269 2.42637 −0.24846 31 2.66623 2.08783 2.77029

8 −1.15773 4.69720 −0.05054 32 5.04123 −0.52884 −0.73804

9 −5.46502 −2.29238 −3.58700 33 2.61623 1.20449 0.16196

10 −3.00668 −3.75592 1.90779 34 3.56623 0.55449 −2.74221

11 −2.29835 −0.02676 −0.69638 35 5.89540 6.08366 −1.06304

12 −2.07439 −1.82363 0.97550 36 3.00790 0.03783 −0.61721

13 −0.42856 −6.36530 2.64217 37 1.10373 −6.08717 −2.17554

14 −1.09523 −2.40697 0.99633 38 3.82457 3.71699 −0.27971

15 −3.49627 3.50449 3.92342 39 10.70373 4.72116 −1.03388

16 −4.42335 −1.83405 4.02237 40 9.60373 0.85449 −1.97138

17 −2.62648 −3.15176 1.88175 41 2.10790 −6.19551 −5.48804

18 −0.80877 1.03574 1.06404 42 3.20790 −0.80801 −0.96721

19 −4.70981 −7.51113 −1.30575 43 3.33290 −2.43301 −0.86721

20 −4.57439 −3.53197 −2.12867 44 −0.32127 −2.45801 −2.14638

21 −6.48064 4.44720 1.03279 45 1.40790 −5.09134 −3.67138

22 −5.88689 0.91595 −3.83700 46 −2.22960 −3.02884 −3.78804

23 −3.93898 −3.70905 1.33487 47 1.89436 2.86908 −2.35783

24 −5.81398 0.52533 −3.27971 48 3.12873 4.10866 −3.71721
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Appendix B

Table A2. Predicted levels of cyberattacks on computer systems, network, and cloud infrastructure
of a financial institution.

Data CS NI CI Data CS NI CI

17 April 2022 70 75 46 4 December 2022 80 77 51

24 April 2022 72 69 51 11 December 2022 77 78 51

1 May 2022 68 76 47 18 December 2022 72 69 47

8 May 2022 75 74 55 25 December 2022 74 69 53

15.May 2022 78 72 52 1 January 2023 71 73 50

22. May 2022 79 81 59 8 January 2023 77 70 52

29 May 2022 79 76 64 15 January 2023 74 67 54

5 June 2022 78 70 61 22 January 2023 77 69 52

12 June 2022 82 75 50 29 January 2023 77 78 55

19 June 2022 80 76 53 5 February 2023 75 70 55

26 June 2022 84 71 49 12 February 2023 77 69 53

3 July 2022 83 76 50 19 February 2023 79 74 52

10 July 2022 80 74 47 26 February 2023 76 63 50

17 July 2022 84 80 49 5 March 2023 75 69 49

24 July 2022 77 73 50 12 March 2023 74 81 52

31 July 2022 81 66 48 19 March 2023 74 75 47

7 July 2022 82 78 50 26 March 2023 76 69 53

14 August 2022 88 76 49 2 April 2023 72 76 48

21 August 2022 90 75 48 9 April 2023 79 74 56

28 August 2022 79 65 45 16 April 2023 82 72 54

4 September 2022 84 75 49 23 April 2023 83 81 61

11 September 2022 82 69 50 30 April 2023 83 76 65

18 September 2022 75 70 48 7 May 2023 82 70 63

25 September 2022 82 69 47 14 May 2023 86 75 51

2 October 2022 79 67 47 21 May 2023 84 76 54

9 October 2022 79 75 48 28 May 2023 88 71 51

16 October 2022 82 78 47 4 June 2023 87 76 52

23 October 2022 81 64 47 11 June 2023 84 74 49

30 October 2022 77 72 47 18 June 2023 88 80 50

6November 2022 80 73 47 25 June 2023 80 73 51

13 November 2022 79 67 47 2 July 2023 85 66 49

20 November 2022 80 85 52 9 July 2023 86 78 51

27 November 2022 80 79 50
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