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CONTROLLING SEDIMENT AND NUTRIENT LOSSES
FROM AGRICULTURAL LANDS

By

James J. Jacobs

@uality of the environment is measured and evaluated by some
criteria, such-as composition, and by performance (L). However,
quality, in terms of composition and/or performance, ag a factor in
environment has no meaning except as it relates to some use of the
environment and secale of health, happiness and aspirvations of man.
For example, an enviroument is regarded as having a lower quality
than 15 years ago because of an increase in the phosphorus contained
in surface water and/or a change in-the species of fish pregent in
surface waters., In tewms of performance, a particular environment
(watershed) is not producing enough because the soil and phogphorus
losses are twice the acceptable rate. Furthermore, the composition
and performance of an enviromment are related. Measurement of the
nitrogen and phosphorus content of waters helps to determine if a given
water resource can be used {perfowm) in a particular way.

- It is this ability to measure the content and performance of an
environment that enables one to determine if there is a possible
conflict between waste constituents (contents) and constituent re-
quirements (performance) among uzes of a parbicular resource. The
conflicts between uses of a water resource are the result of three
important and fundamental characteristics of the resource. These
characteristics are: (1) the guality heterogeneilty of water supplies;
(2) the quality differentiation of demands by uses; and (3) the
linkage between water uses. . '

The above characteristics can be explained by the ability of water
to incorporate and transport, to some extent, everything it comes in
contact with. Therefore, its every use whether ngbural , industrial oy
domestic has some effect on the constituent composition of a water
supply. As a result, constituents and their levels will vary among
water supplies. In turn, each user of a waber supply desires different
congtituents in that supply or at least vary in their tolerance of a
certain congtituent. For example, dissolved oxygen 18 essential for
a fish habitat but may be detrimental in cooling water because of
increased corrosion associated with high oxygen levels (2). Thisg
suggests that "water quality” has no absolute definition bub Lhat
quality of a water supply can only be measurcd by content as it
relates to the uses (performance) to which i% is to be put.




Wext~Use Concept in Quality Determination

Water quality management may be regarded ag a problem of -determining the
appropriate quality and means of obtaining that quality of a water supply
in view of the differentiated quality desires of uses of that supply in a
given location and time. Viewed in an econcimic context, a water supply
is regarded as an economic resource only when it exhibits the characteristic
of scarcity and thereby needs to be allocated among competing ends.
Realizing that water supplies and demands are quality differentiated,
economle scarcity can relate to quality of a water supply as well as
physical quantity.

The existence of varying quality demands by water uses means that in
an economlec conbext, water quality is a relative rather than an absolute
concapt. This suggesbts that in defining poliution and establishing
waber quality levels there is a need to consider the next uses. Under
the Tlext-Use Concept, degradation or pollution occurs when the effluent
of the initial use adversely affects the next use to which the resource,
i.e., water, is put in meeting the needs of man (3). Viewed in this
manner, the waste constituents from one use may affect the quality of a
water supply such that it increases the cost to or precludes the next use
of that supply. This constitutes water poliubtion which is a problem of
external diseconomies. Thig means the initial use of a water supply
failed to consider the impact of its effluent so that additional costs
must be horne by the next use to achieve the quality required for adeguate
performance by that use. If a conflict occurs between uses, an analysis
reflecting both the costs and berefits of albernative levels of quality
and methods of control should be undertaken. FHowever, if the initial
uge has no adverse effect on the next uses, then there is no pollution
and no need for establishing levelg of water quality.

The next-use concept means that quality of a water supply will vary
from area to area and from time to time depending on the uges of that
supply. It can also be used in minimizing the costs of obbaining given
guality levels, by expressing quality criteris (requirements) of usges
in physical terms and regarding them as proxics for societal goals (h);
thereby, treating them as constraints upon a cost minimization objective.

Pollubtants from Agriecultural Rumoff and Their Control

The major purpose of agriculture is to manage part of the environ-
ment in producing the food and fiber demanded by mankind (5). Therefore,
agricultural production and environmental research is not new. In the
past, however, this research has concentrated on efforts to increase
production and has largely ignored the effects of production on the
environment. An example of this is a study by Duley (6) in 1926 which
was concerned with runoff water as a means of depleting soil nutriente.
Compare this with recent studies by Weider, et al (7) and Timmons, et al
(8), which are concerned with nubrients From agricultural runoff as a
factor in strezm pollution. '



The increased concern over the effect of agricultural production
on-the environment hag resulted in society asking agriculture, as well
as other segments, to reassess their goals and to incorperate into them
their role in quality management. Thus, 1t appears that in the future
agriculture will not only have to increase producticn but in deing so
will be required to maintain minimum quality characteristics. Theve-
fore, agrieculture must move toward management gystems that will maintain
both high production and environmentsl quality (9). '

While agriculture's potential in polluting our surface waters is
recognized, 1ittle is known sbout agriculture's contribubion to the
weter quality problem. This ignorence and potential of agriculture’s
role in water quality management ariges primarily from the combination
of: (1) agricultural production being scattered over most of the nation
and (2) the rapid adoption of modern technologies with their residues
and fallouts. Although some information is becoming aveilable concerning
agriculture’s contribution to environmental guality, the impowtant and
difficult task remsining is that of relating its contribution to soil,
climate, crop rotabions, land practicas, chemicael and fertilizer use,
and animal waste disposal practices (10),

However, when the gources of waste constituents entering surface
watercourses are enumerated, sgriculture is, with increased freguency,
being listed as a major contributor. Sources of potential pollutants
from agricultural production are (11):

Sediment from erogion

Plant nutrients

Livestock manure

Pesticides '

Waste from processing plants

Alr pollution, primarily odors and dusts.

Ol L0 1O

Assuming a concern for achieving specified quality levels for constituents
from agricultural runoff, any of the first four waste constibuents

above could have served as the focal point in this paper (12). However,
sediment and phosphorus were the constituents selected for intensive
study. These are likely candidates because of the magnitude of sediment
as a pollutant, the increased emphasls on rhosphorus as a likely key
nutrient in limiting growth of aguetic plant life and the diffuse source
of such pollutants from agriciltural runoff as compared to point sources
{i.e., processing plants, feedlots, ete.). Furthermore, what appears

to be dmportant in the influence of sediments on water guality, in
addition to the physical damages, involves the phosphorus', as well as
nltrogen and pesticides’, adherence to the sediment and its relationship
with the phogphorus in solution (13, 14).

To regard sediment and phosphorus from agricultural lands as
pollutants requires a means of transporting these elements to the
point of use and that they are in amounts sufficient to adversely affect
other uses. Since runoff from agricultural land is capable of moving



constituents ( in this case sediment and phosphorus) over time and space,
the question which ariges is: "How would different levels and mixes of
agricultural inputs and practices affect 1mportaﬂt env1ronm3ntal variables
of concearn to soc1etj9”

Having designated -sediment and phosphorus as the pellutants of prime
concern in agricultural runoff, the rest of this paper is devoted to the
presentation of the model and the results.

Development and Results of a Quality Menagement Model

Surface runoff from agricultural cropland is the primary transport
agent of sediment entering surface waters. Therefore, planning for the
control of sediment requires knowledge of the relations between those
facters that cause logs of soil and those that help reduce such losses
on cropland. ~ Toward this end the "universal soil-loss equation” (15)
was developed to provide specific guidelines needed to help select
appropriate control practices Tor parblicular fields. In predicting
these losses from individuasl fields, the equation takes into consideration
rainfall, soil type, slope length and gradient, cropping practices and
erogion-control practices. IHowever, the estimation of sediment losses
from a watershed is less reliable beczuse the complex solls, land-use
patterns and Lopography present problems in inZerpretation and factor
evaluation that reguires further research. By breaking the drainage
area into a series of relatively homogenous land trects, such as land
capapility classes by soll types, the erosicn eguation provides a
methodical means of bringing thes effects of rainfall, soils and land
use into the computation of sgoll losses. An additional problem is
that the above are gross estimates of the cuantity of soll moved from
its original position. Since the prime interest ig in only that portion
of sediment actually entering the watercourse, the initisl sgediment
logs eztlimates must be adjusted for that portion deposited in sod
waterways, fence rows. ete. To predict that portion delivered to the
stream, a delivery ratic of .25 developed by Seay (3) is uszed. Delivery
ratios of .20 and .30 are also used to check its sensitivity.

The "universal soil-loss eguetion" and "delivery ratio" will give
egtimates of sediment being delivered to the watercourse under different
cropping and land practices but nothing similar to this exists for _
predicting phosphorus losses in agricultural runoff. However, a review
of the literature did point oubt three dmportant characteristics of
phosphorus losges from agricultural cropland:

1. A positive relationship between soil and phosphorus losses
(7, 15)

2. Fhosphorus is readily absorbed by s0il psrtlcles (17}

3. Erosion is selective in removing phosphorus (1.8)

Congidering the above propertiés_of phogphorus, estimates of
phegphorous losses were obteined by applying the level >f phosphorus in



the surface soil and an enrichment ratio }/ to the sediment losses
vredicted by the =oil loas equation and the delivery ratio. In this
manner assuming a given stream flow, estimates of bhoth sediment and
phosphorus contributions to the stream were obiained for wvarious
cropping, tillage and ercsion~control practices. g/

For water use conflicts to result From the estimated sediment and
phosphorug levels there must be & physical system linking the water
uses. The physicol linkage system of surface water poliution for the
potential pollutants of sediment and phosphorus and the control methods
is 1llustrated in Figure 1.

To operationalize the mcdel of the physical system, several parts
of" the physical system are agsumed to be constant. Tn ths source
section, rainfall, soil type, slope length, and slope gradient are
aggumed constant. In the stream carriage systen, the delivery ratio,
strean flow, and the transport of sediment and rhosphorus are assumed
constant. In the use section, quaiity and quantity ilevels are specified
for the uses considered. Thege fixed factors relate primarily to
relationships taken from the physical sciences and those which require
gimplifying assumpbions. Thizg leaves only soil conservetion practices
end water supply treatment as variables in the physical system, the
Justification Being that both soil corservation practices and waber
supply treatment are important water gquality management techniques.

In Table 1 the alternative methods allowed for contrelling sediment
and phosphorus losses by capapility classes are presented. The guestion
of which control methods and at what level Gepends on (1) the level of
water quality desired; (2) the unit cost coefficients of alternative
methods and (3) the technical coefficients of the alternative melhods,

A summary of the cost coefficients are presented in Table 2. Sediment
and phosphorus coefficients were alss estimeted for each management
systaem ligted in Table 1 using the scil-loss equation and phogphorus
enrichment ratio as explained above.

Having developed the cost and technical coefficients Tor each
alternative control method, each method was regarded as an activity
and a cost minimization model was cast in the Tolilowing form:

;/ An enrichment retio ig the increage in the content of constituents
in the eroded goil over that in the originel surface soil,

g/ For a more detailed discusgsion of the development of sediment and
phosphorus coefficients under alternative practices see (5,
Chapter 3 and 5).
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' Table 1 o
_ Programming Activities Allowed by Capability Class

Propramming Capability classes
activitics I It I1T Iv VL VII

Conventional tillage:

Ry ® x° X X X
R,P ‘ X . X X X
Ry {rcontguring  X X
R, <4 contouring o .XT . X.
Ry +‘terr§cés - . S X X | .X
Ry + terraces - | ) ‘:_ X x . X

Minimum tillage:

R, X X X X
R," X X X X
Rl + contouring . - X .i
R2'+ contouring | X 'g
Ry ++ terraces ' o N X X g X
Ry k terraces - X ;:'X . 'X
Gully control structures : X - X ’X | l,X:.‘ | X -
Permanent pasture | X X X X X XV

- a . .
R] designates the corn-corn~soybzans rotation,
sz designates the cornnsoybeans~cornnoat5umeadowrmeadow rotation,

+ ©X indicates those activities allowed in the various capability
classes,
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Minimize 2 = CX + CX + « - -+ CX

L1 2 2 nn
Subject to & x + 3 x 4+ - = o 4+a x &b
' 1L 1 12 2 Inn 1
a x + a x + -« - 4+ a8 x < b
21 1 22 2 o 2nn 2
a2 X + a =x + - - x o=

ml 1 mae 2 Jan n m

In the above model, the combinations of land classes, soil conservation
practices and gully control structurcs rrovides the bundle of alternative
water quality improvement techniques, which is represented by the vector (Xj),
J=21, - -~ = «, n. “In solving the model to obtain the minimum abatement
cost and the corresponding treatment program, the following data are required:

alj, the amount of constituent m delivered to the stream from one acre
of practice Xj. " :

bm,  the water guality level given in terms of the maximum concentration
(mg/1) of a constituent allowed in the stream. Other constraints are

the amount of land in the varlous land classes and the nuwber of gully
control structures allowad.

CJ, the cost in dollars for one acre of practice Xj. The model then
determines a set of variables L1, which are interpreted as the level of
various soil conservation practices which minimizes the abatement cosgts
for a given level of gquality. In addition, by parametrically changing
the constraints the incremental inerease in the minimum cost per unit
decrease in the amount of constltuent m allowable can he obtained.

To illustrate application of the next-use concept to developing and
costing water guality levels, the framework is applied to the Nighnabotna
River Basin in southweshern Towa., §/ In applying the model, several sadiment
and phosghorus econstraints were used, with the three most stringent sediment
and phosphorus constraints based on municipal use, a warm water fish habitat
and contact rescreation, respectively. Having specified the coefficients and
constraints the program was run initially to give solutions for various
suspended sediment levels only and then with the phosphorus constraints added.
These rung were made using three Aifferent dellivery ratiog and without
"minimum tillage" activities in the final 6 rune. Solutions obtained in this
manner wade it possible to (1) derive total cost funchions for the range of
quality levels considered, (2) determine +the impact of phosphorus
constraints on tobal

3/ For a detalled description of this basin see (5, Chapter V).
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cost and at what level it becomes the constraining value, (3) cbserve

Tthe different activities which are present in the optimal solutions, and
(L) observe the changes in the shadow price of the quality constraints
(marginal cost) over the range of guallty levels considered. Furthermore,
the use of three different delivery ratios provides a sensibivity analysis
of the program to changes in a physical parameber while the runs without
"minimum tillage" indicate the impact of neglecting a modern technology.

Upon observing all of the computer results, some general comments
are posgible. Land capability clagses 1 and 2 were always in continuous
row cropg with terracing on class 2 land observed in only one of the
solutions. WNeither contouring nor the (-8-C-0-M-M rotation entered any
of the optimal golutions. The phosphorus constraints added very little
to the total cost of the sediment congtraints, from O to just under 7
percent depending on the delivery ratio. Finally, the mogt stringent
sediment and phosphorus quality levels were chtainable in all solutions.

A summary of the results for sediment constraints only are presented
in Table 3. The results are illustrated in Figure 2 for the sediment
constraints with a .25 delivery ratio. Referring to Figure 2, the
program gtarts by pasburing class IV land, then builds gnlly control
structures and is terracing class ITI land when meeting the most
stringent sediment consirasint, which is 37.5 mg/l,

_ A summery of the programming for the corbined sediment and phosg-
phorus constraints arve presentad in Teble L. The progremming results
~indicate the following: (1) thah the costa per acre are high but not
unreasonable; (2) ‘the most gtringent constraints were obtainable; and
(3) that a large portion of the agricultural land would remaln in
continuous row crops. While the sediment and phosphorus constraints
were obtainable the guestion which remains and needs to be analyzed is:
"Are the benefits sufficient to Jjustily any level of control on sediment
and phosphorug from cropland runoff?" A study by Frankel (19) and a
report by Eneese and Bower (20) indicabe that municipal and industeial
cogts are surprisingly insensitive to intake water quality. This suggests
that decision of which level of water quality will rest either on =z
large reuse of the water and/or on aesthetic and recreational benefits.
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Table
Linear Programming Results: Sediment and Phosphorus
Constraints with Three Delivery Rabtlios

- Objectives Finmiting Value of Dual activity
rSediment Phos- Objective, value for

Phogphorug = phorus Function Cbjectives
(ng /1) Values (total cost Sediment
million $) Phosphorus -

Emarginal cost)
thousand )} (million)

.20

) DR =
10,000  1.600 0.206 - - -
9,000  0.5%h4 0.227 - - -
8,000 0.586 0.235 0.26k 0.30207 -
7,000  0.580 0.243 0,566 0.30207 -
6,000 ©.555 0.243 - 0.923 0.56141 -
5,000 0,522 0.222 1.h8h 0.561h1 -
4,000 o476 0.193 2.0L45 0.56141 -
3,000  0.413 0.155 2.607 0.56141 -
2,000 0.328 0.122  3.997 1.45365 -
1,000  0.209 0.076 5.451 1.45365 -
500  0.127 0.0k 6.178 1.45365 -
250  0.075 0.024 6.541 1.145365 -
150  0.049 0.01%4 6.687 1.45365 -
75 0.029 0.005 6.796 1.k5365 -
37.5 0.016 0.0003 6.850 1.45365 -




Linear Programming

Table 4 Cont'a
Regults:

15

Sediment and Phosgphorus
Congtiraints with Three Delivery Ratios

Objectives

Limiting

Vailue of

Dual activity
Sediment Phos- Objective value for
Phosgphorus phorus Fanction Objectives
(mg?lj '  Values (total cost Sediment
: | million § Phosphorus
‘ ‘ marginal cost)
thousand ) (million)
~ DR = ,25
10,000 0.600 0.246 0.176 0.25078 -
9,000  0.5% 0.253 0.kt 0.25078 -
8,000  0.586 0,260 0.678 0.25078 -
7,000 0.580 0.262 1.082 0.561h1 -
6,000 0,555 0.246 L 1.643 0.561L1 -
5,000 0.522 0.226 2.205 0.56141 -
4,000 0.476 0,201 2.093 1.20633 -
3,000  0.b13 0.179 %,110 1.20633 -
2,000 0.328 0.149 5.316 1.20633 -
1,000 0.209 0.108 6.522 1.20633 -
500 0.127 0,082 7.125 1.20633 -
250  0.075  0.067 N4 1.20633 -
150  0.0k9 0.061 7.548 - 9.21956
75 0,029 0,059 7.638 ~ 8.,16327
37.5 0.016 0.059 7.638 - 7.34683




Table 4 Cont'a
Linear Programming Regults:

Sediment and Phosphorus

Constraints with Three Delivery Ratios

Oojectives Limiting Value of ‘Dual activity
Sediment Fhos- Objective value for
Phosphorus phorus Function Chjectives
(mg/1) - Values (total cost ~ Sediment
_ | ‘ million $) Phosphorus
| {marginal cost)
(thousand ) (3iillion)
DR = .30
10,000 0.600  0.167 0.543 0.21437 -
9,000 0.594 0.27h 0.757 0.21437 -
8,000 0.586 0.271 1.2kl 0.56141 -
7,000 0.580 0.265 1.803 0.561h1 -
6,000  0.555  0.250 2,36k 0,561k -
5,000 0.522 0.236 3.159 1.03073 -
), 000 0.476 0.220 L. 190 1.03073 -
3,000 0.413 0.201 5.220 1.03073 -
2,000 0.328 0.173 6.251 1.03073 -
1,000 0.209  0.136 7.282 1.03073 -
500 C.127 0.115 T7.979 1.03073 -
250 0.075 0.1c6 8.318 - 8.57258
150 0.0ko 0.104 8.583 - 7.70909
75 0.029 0.107 8.764 - 6.80359
37.5 0.016 0.112 8.863 - 6.12363
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