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Sequential Sampling for Pest Management

George Fohnerl/

Introduction

With traditional methods of sampling and decision making, the number
of observations to be made is predetermined prior to taking the sample.
Sequential sampling is an alternative method in which the number of observa-
tions depends on the values that are observed as sampling proceeds. If the
first observations ;trongly favor a particular conclusion then a decision is
made without further sampling. When the purpose of sampling insect popula-
tions is to distinguish between population densities that warrant treatment
and those that do not, sequential sampling has important advantages compared
to sampling based on fixed sample sizes. The decision rule for drawing
conclusions using sequential sampling applies to samples of all sizes rather
than to only samples of a Sing]e fixed size. Consequently, decisions based
on sequential sampling can be made with equal reliability and, on the
average, with smaller samples than decisions based on fixed sample sizes.
The purpose of this paper is to discuss sequential sampling in an example
related to the Colorado Potato Beetle in potatoes. However, principles are

- applicable for other insects on other crops.

Sampling and Pest Management Decisions

As part of the New York State potato pest management program, fields

are sampled for Colorado Potato Beetle to decide whether population density
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exceeds two larvae per plant, the action threshold for insecticide treat-
ment. Since the number of beetles varies from plant to plant, the average
density on.samp1ed plants will rarely egual the true mean population density
in the field. Consequently, an estimate of population density based cn the
sample average may result in an erronesous cenclusion about whethef the true
population density exceeds the treatment threshon and aécdrding]y may
result in inappropriate recommendations. The frequencj of erroneous con-
clusions can be estimated using samp]ing theory and knowledge about the
frequency distribution of beetles per plant. The negative binomial dis-
tribution has been shown to be a useful representation 6f the frequency
distribution for counts of Colorado Potato Beetle and other insects that
tend to.have a "clumped" distribution {Anscombe, 1949; Harcourt, 1963). The
negative binomial distribution has two parameters. Described in terms 6f
insect counts, these parameters are (1) the mean population density, which
is the average number of insects per plant, and (2) the index of aggrega-
tion, which reflects the degree to which the insects are spatially c]umpéd.
Once values of the parameters have been assigned or estimated,_the negative
binomial distribution can be used to calculate fhe probability that a sample
will contain a particular number of insects. The probability of obtaining
sample averages that result in erroneous conclusions can therefore be esti-
mated for any particular true population density and 1ndex ofIaggr'ega‘c_ion_!T

For example, assume that the index of aggregation 13‘0.5 and the
sample size is 30 blants, which was the sample size used in the potato pesf
management program in 1980, Alsoc, assume that the true popd]ation density
is 2.5 larvae per piant, a "high" density for which spraying should be

recommended, In this situation, with a fixed'samp1e size of 30 plants,

sampling would result in an inappropriate recommendation not to spray



approximately 23% of the time (Appendix 1). With true densities nearer to

the 2.0 threshold, the probability of obtaining a misleading sample average
is higher, the closer to 2.0 the higher the probability of "error". Unless
sample size js very large, true densities near 2.0 will have a high prob-
ability of producing sample averages on the "wrong" side of the 2;0
threshold. Viewed from another perspective, a large sample size will be
necessary for distinguishing confidently between true densities 1.9 and 2.1
on the basis of sample averages. Fortunate]y, such distinctions between
densities near 2.0 have little if any biological significance; the 2.0
threshold value is a breakpoint for decision making but is not a point of

discontinuity in the effect of the beetle on the potato crop. Conceptually,

then, it is useful to classify true population densities into three cate-

gories: (1) densities significantly below 2.0, (2) densities near 2.0, and

(3) densities significantly above 2.0. In making recommendations, correct

identification of categories (1) and (3} is important, while for category
(2) it is less important that sample averages accurately indicate whether

true density is above or below 2.0. The essence of designing a sampling

program is to specify the boundaries between these three categories and the

required probability of correct jdentification.

Suppose that when the true population density of Colorado Potato
Beetle is less than 1.5 we want to correctly classify it as a Tow density at
least 90% of the time, and when the true density is greater than 2.5 we want
to correctly classify it as a high density at least 95% of the time. Fofl
other true densities, those between 1.5 and 2.5, we are less concerned about
whether they are classified as high or Tow and, accordingly, the probabi]ity'
of a correct classification can be less than the 90% and 95% standards

imposed for densities below 1.5 and above 2.5. How large a sample is




.

required tb dperate with these categories and prqbabi1ities of correct
classification? Assuming a population having a negative binomial distribh—.
tion and an index of aggregation of 0,5, a sample of 91 plants is required
. using traditioné] sampling with a fixed sample size (Appendix 2, and
Table 1). |
The same Tow and high categories and stahdards of accuracy can be

adopted for sequential sampling. Again, the emphasis is on having a high
probability of correctly identifying high and Tow densities while being less
concerned about whether intermediate densities are classified as high or
1ow. Since the sampling must result in eifhéf a récommendation to spray or
not to_spray; sampling continues until the population density is classified
~as high of Tow. -If the sample average exceeds a predetermined upper limit
- the population density is classified as high. If it drops below a predeter-
minéd lTower 1imit the population density is classified as Tow. With the
categories and standards described above, the predetermined 1imits are
chosen so that true density of 1.5 would have no more than a 10% chance of
being misclassified and a true density of 2.5 would have no more than a 5%
chance of being misclassified. Using terminology appiied to statistical _
hypothesis.testing, the .10 probability of misclassifying the Tow density is
called the "« level" and the .05 probability of misclassifying the high

density is ca}]ed the "g level" (Wald, 1947). With these predetermined
| Timits, true densities less than 1.5 would have less than a 10% chance of
being wrongly classified as high. True densities greater than 2.5 have 1es§
than a 5% chance of being wrongly classified as low. For an intermediate
true density, the probability of it being classified as high or low depends

on its position in the intermediate range. The cioser the intermediate true



density is to 2.5, for example, the higher the probability of it being

classified as high.

The number of observations required or make a decision will depend on

the true population density. If the tfue density is very low or very high,

sample average leading to a decision will be obtained on the average with
fewer observations than if the true density is intermediate. Also, for any
one true density the number of observations required to make a decision will
vary from one sample to another. Even when the true population density is
very high or low, a particular sample may require an unusually large number
of observations before a decision can be made with the chosen standards of
accuracy. As a result, the number of observations needed for making deci-
sions using sequential sampling is best described as an "average sample
number" (ASN) associated with a particular true population density. For
example, if the true population density is 2.5, then on the average 33
observations will be required to classify the population density as low or
high using the categories and standards described above (Appendix 3, and

Figure 1). Since the traditional sampling method required 91 observations,

the sequential sample on the average would result in a decision with 58

fewer observations if the true density is 2.5. The larger traditional

“sample may provide a more precise estimate of the true population density

but it is no better than the sequential sample for the purpose of deciding

whether the field should ‘be sprayed given the criterion for treatment that

we have adopted.

Since the average sample number (ASN) depends on the true population
density, the savings from using sequential sampling will also depend on the

true density. Figure 1 presents the relationship between ASN and true




density and indicates the average savings compared to the traditional sample
providing the same standards of accuracy.

It is possible that a particular sequential sample may require more
observations than the comparable traditional sample. In fact, the only
assurance provided by the sampling theorists is that sample size will not be
infinite (!} and will virtugT]y never exceed three times the ASN (Wald,
1947, p. 105). In practice, a common policy is to stop sampling at some
selected maximum sampie size if the sequential decision rule has not pro-
vided a decision by then. Adoption of such a policy, however, increases the

probability of misclassifying the population density (Wald, 1947, p. 64).

Information Needed for Sequential Sampling .

Recall that all of the preceding calculations of sample sizes and
Tevels of accuracy depend on the assumption that the Colorado Potato Beetle
population has a spatial distribution in the field that can be accurately
represented by the negative binomial distribution with an index of aggrega-
tion of 0.5. The usefulness of the negative binomial distribution is well
documented for representing the distribution of Coioradsc Potato Beetle and
other species with similar dispersion patterns, although a test of goodness
of fit using data from the study area is certainly warranted. The value of
the index of aggregation is less easily assumed. It has been suggested that
the index of aggregation is an intrinsic characteristic of a species, one
that does not vary with changes in population density {Anscombe, 1949). If
. populations behaved in a manner strictly consistent with the négative
binomial model then mean density and the index of aggregation would vary
independently, but in field studies estimates of the index increase as

population density increases (Harcourt, 1963). Within the range of beetle



population densities found in commercial potato fields, the index possibly
can be assumed to be constanf without significantly affecting the sampling
procedure. However, values of the index reported in the literature fof
Colorado Potato Beetle at high densities may be inappropriate for use in the

pest management program. Estimation of the index of aggregation for com-

mercial potato fields should be an important objective for developing a

sampling program. Table 1 indicates the effect of the index value on

sampling requirements when the density categories and standards of accuracy
are the same as those described in the previous section.

Clearly, if the index of aggregation is much below 1.0, and published
estimates (Harcourt, 1963) suggest that for low densities it probably 1is,
the density categories and standards of accuracy described above are not
feasible, even with sequential sampling. The effect on samplie size from
relaxing the accuracy requirements is represented in Figure 2.

For adjusting sampiing requirements, an alternative to changing the
standards of accuracy is to change the classification of low and high
densities. For exampie, with the original 90% and 95% standards of accuracy
and an index of aggregation egqual to 0.5, the boundary values of 1.5 and 2.5
result in a maximum average sample number equal to 65 (Table 1). [If a more
precise distinction between low and high densities had been desired and the
poundary values of 1.75 and 2.25 were used, the maximum average sample

number would jump to 258.

Conclusions and Proposed Action

The purpose of this discussion has been to suggest possible bene-
fits from sequential sampling and to highlight some of the important

considerations in using it (see Table 2). The mechanics of calculating and



using thé sequential decision rule were not discussed but these aspects of
the procedure are straight.forward once levels of precision and accéptab?e
probabilities of error have been specified (Onsager, 1976). The specifica-
tion of these Tevels and probabilities should receive careful c0ns1derat1on
when sampling procedures are being adopted. Costs of sampling, the cost of
inappropriate recommendations, and the probability of various popuiation
densities should be included among the considerations when these standards
are specified.

Prior to implementing a sequential sampling program, the'foTTowing

work is necessary:

(1} Intensive field sampling to determine the spatial distribution of
pests in commercial fields,

(2) Specification of the degree of precision that sampling should
provide and the frequency of errors that can be tolerated,

(3) An activity analysis of the sampling procedure: timing the scout
as various steps are performed and investigating the interrela-
tionship among these steps,

(4) Computer analyses and field testing of alternative sampling

programs.



Table 1. Effect of Index of Aggregation on Sampling Requirements

Index Maximum Average Sample Size of
of Number Using Sequential _ Comparable
Aggregation Sampling*® Traditional Sample**
0.1 269 382
0.3 | 99 140
0.5 65 91
1.0 39 54
1.5 31 . 42
2.0 26 36

Boundary Values 1.5 and 2.5
a = 10 g = .05

* Depending on the true population density, the sample sjze required using
sequential sampling may be sybstantially less than this maximum (see
Figure 1).

** See Appendix 2.

Table 2. Summary of the Relationship Between Sequential Sampling Require-
ments and Population and Decision Parameters

Change in Parameter Effect on Average Sample Size
Higher Index of Aggregation Decrease
True Density Farther Above Upper Boundary Decrease
True Density Farther Below Lower Boundary Decrease
Higher Tolerance for Misclassification Decrease
Higher Upper Boundary Value Decrease

Lower Lower Boundary Value Decrease
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Figure 1. Relationship Between True Population Density and Average
Sample Number and Savings Using Sequential Sampiing,

100 ¢ Size of Comparable Traditional Sample = 91
90
i
Average Average Savings
80 Using Sequential
Sample Sampling
70

Number

(ASN) 60 I

Using 50 |
Sequential

Sampling

1 | 1 H | 4

0.50 1.00 1.50 2.00 2.50 3.00

True Population Density

* Population has negative binomial distribution, index of aggregation
0.5, Boundary Values 1.5 and 2.5, a = .10, B = .05,
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Figure 2. Standards of Accuracy and Sampling Requirements.

100 |-
90 L
Sample
80 1
Size
z 70 |
Required 60 Traditional Sample®
to
50 F
Meet
40
Error
30+ Maximum Average Sample Number
Standard Using Sequential Sampling
20+ :
8
10 1 L | {

.05 10 .15 .20 B Value

g = Probability that a High Density Population (density = 2.5 larvae/
plant) will be Misclassified as a Low Density Population (less than
1.5 larvae/plant).

Probability of the converse misclassification: o = .10

Population has a negative binomial distribution, index of aggregation 0.5

% See Appendix 2.
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Appendix 1, Calculating the Probability that the Sample Average will be in
a2 Particular Interval

An estimate of the probability distribution of sample averages can be
obtained by relying on the Central Limit Theorem and approximating the

distribution of the sample average using the normal distribution. This

appr0x1mat1on is best when sample size is Targe and T n is close
-5. Using a continuity correction, the normal approximation for this

problem is:

probability (¥ < 2.0) = prob. (X - 2 0 - 2.5
‘ \/ 2.5 + (2. 5)/[—-'
, ¢ 2.0-2. 5-%5 .
= prOb. (Z = ppob. (Z _""7307) = ,23

e [

An alternative to the normal approximation is to use the exact dis-
tribution of the number of insects in a sample. If the number of insects
per plant has a negative binomial distribution with an index of aggregation
(k) of 0.5 then the number of insects per 30 randomly selected plants has a
negative binomial distribution with k = .5 x 30 = 15, Also, the threshold
of 2.0 per plant is equivalent to 2 x 30 = 60 per 30 plants, and a mean
density of 2.5 per plant is equivalent to 75 per 30 plants. The problem
involving average number of insects per plant can therefore be translated
into one involving insects per sampie. The cumulative negative binomial
distribution can then be used to calculate the probability that the number
of insects in the sample is less than 60. A computer program from the
International Mathematical and Statistical Library (IMSL) can be used to
perform this calculation. The IMSL does not contain a program explicitly
for the negative binomial distribution but does have programs for the

binomial distribution and the incomplete beta distribution. Problems
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involving the negative binomial distribution can be reformulated into

binomial or beta expressions as follows:

Cumulative Negative Binomial Distribution, mean density = mn, index = kn:

nc-1 nk

r
- _ r+nk-1 m m_
probability (x < nc) = Jio ("1 ) (1--x (o5

is equivalent to the Cumulative Binomial Distribution, number of trials

m
= {nc -1) + nk, p=(1 - — )

{nc-1)+nk
= X
r=nk

r m (nc-1)+nk-r

((nc-1)+nk) a - m ) ﬁ:E)

r mHK
and equivalent to the Incompiete Beta Distribution,

X =(1 - Er%_E)’ parameters a=nk, b=nc:

m
[ (nktne) 7 )
'r(?ik)?*?nc) §m T k1) g gy ne-1) gy

(T"(-) is notation for a gamma integral).

The formulation in terms of the beta distribution is more flexible since
noninteger values of nk and nc are permitted; nc and nk must be integers to
use the program for the binomial distribution.

For the example described above, the probability calculated using the
IMSL program is .24 that sampling will result in an inappropriate recommen-

dation.
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Appendix 2. Calculating Sample Size for Traditional Sampling

Sample size needed for traditional sampling can be calculated by
approximating the distribution of the samp?iﬂg average using the normal
distribution. This approximation is beét when the sample size (n) is

large and = T K is near .5 (where m is the mean density and k is the index

of aggregation), but has performed wel] for the range of n, m, and k
described in this Paper. The results reported in this paper were checked by
comparing the o and g levels suggested by the normal approximation with the
a and 8 levels calculated using the true cumuylative negative binomial
distribution (Table Al). These calculations were made using a computer
program contained in the International Mathematical and Statistical Library
(IMSL), (see Appendix 1). The computer program could be adapted to
Tteratively calculate sample sizes for specified o and B Tevels but the time
and expense to deve?op and use such an approach seems unjustified for oyr
purposes given the adequate performance of the normal approximation.

Using the normal approximation, sample size for traditional sampling
is estimated by specifying the two expressions implied by the o and B
Tevels, and then using the two expressions to solve for two uhknowns:
n {sample size) and c (the critical value for testing the alternative hypo-
theses about population density) (Waid, 1947, p. 54). The two expressions

implied by o and 8 are:

1
C-My - 5—
(1) prob. (?Zc given true mean density = mo) =1 - prob. (z £ _ETQ__nQQ) =
0/ Jm
1
T

S0 —E——— = q._
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Table Al. Comparison of 8 levels from Normal Approximation and Exact
Distribution Calculated Using IMSL Program

Index Traditional' g Level Using g Level Using
of Sample Normal Exact
Aagregation Size Approximation Distribution
0.1 382 .05 .039
0.3 140 05 ' .039
0.5 91 .05 .040
1.0 54 .05 041
1.5 42 .05 .041
2.0 36 .05 .042
Data used for g Level Using g Level Using
Figure 2 Normal Exact
Traditional Sample Size Approximation Distribution
91 .05 .040
66 .10 .091
51 .15 .148
41 : .20 .204

It

Index of Aggregation 0.5
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R
(2) prob. (X<c given true mean density = ml) < prob, (z < 7F~l—_~gﬂ) =
IVANFY
1
C=fMy ~5=
1 2n
S0 == = g
VI

where 9y_, and Qg are the quantiles of the normal distribution corresponding

to cumulative probability of 1 - o and B respectively, Substituting and

solving for n and c:

2
ql-aGU ~ CEBG.l
sample size n = ( }
My = mg
q,_ T
critical value ¢ = A0, m Y

+
J?T 0" 2n
With a'sample size n, and critical value ¢ for testing the hypotheses of low
versus high density, the probability is o that a population with a true

density mg would be erroneously classified as high; the probability is s

that a population with true density m1, would be erronecusly classified as
low.
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Appendix 3. Formula for Average Sample Number (ASN) for the Negative
Binomial Distribution (Oakland, 1950; Onsager, 1976)

hy + (hg-ny) L)

E,(n) = % ASN given true mean equal to m
h. = in B h. = ln A
0 P19 ! P19
in(—— in )
Pod1 Poi1
In(ly 8
= [ = ‘ =
S=Kk dg B =1 Py mi/k
P19 1-8
1n( ) A== q: = 1 +p;
p()ql a 1 1
my = lower boundary value for mean density
m = upper boundary value for mean density
k = index of aggregation
a, B = levels of significance
L = Ad -1 values of the function L{-) of
k Ad - Bd %-are found by varying d and solving
for the corresponding values of m
and ' m K
and L(F)'
d My
1 - (Eg d = 1 gives L(E_)
9
(&) = m
K P1% 9 d = -1 gives L(ZD)
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