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Abstract

In this note a Monte Carlo approach is suggested to determine critical values for diagnostic
tests of Value-at-Risk models that rely on binary random variables. Monte Carlo testing
offers exact significance levels in finite samples. Conditional on exact critical values the
dynamic quantile test suggested by Engle and Manganelli (2004) turns out more powerful
than a recently proposed Portmanteau type test (Hurlin and Tokpavi 2006).
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1 Introduction

Value-at-risk (VaR) is a widely used measure of portfolio risk. Formally, suppose that {yt}T
t=1

is a process of speculative returns. Then, conditional on the information set available in time

t− 1, Ωt−1, the value-at-risk with coverage α, denoted VaRt(α), is the quantile such that

Prob[yt < −VaRt(α)|Ωt−1] = α. (1)

The computation of VaRt(α) is challenging since the ‘true’ conditional distribution of returns

is unknown. In the light of a plentitude of alternative approaches to VaR determination, model

diagnosis is of essential importance in applied finance.

The remainder of this short note is organized as follows. Two particular tools for VaR

diagnosis (Engle and Manganelli 2004, Hurlin and Tokpavi 2006) are sketched in the next Section.

In light of their finite sample size biases a Monte Carlo approach to testing VaR accuracy is

adopted in Section 3. Concluding remarks are provided in Section 4.
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2 VaR diagnosis

Starting from the definition of VaRt(α) in (1) so-called hit processes formalize the event of a

conditional return shortfall. The centered hit process is

δα
t = Hitt(α) ≡ I(yt < −VaRt(α)|Ωt−1)− α, (2)

where I() is an indicator function. For diagnosing (condtional) VaRt(α) estimates it is important

to verify that no piece of information contained in Ωt−1 carries explanatory content for the mean

zero process δα
t . In particular, δα

t−1, δ
α
t−2 . . . and lagged hits observed at other VaR nominal

coverages a 6= α are part of Ωt−1. For considering ’cross coverage’ dynamics a hit vector is

defined as δt = ( δα1
t , δα2

t , . . . , δαm
t )′. In the following three competing statistics for VaR diagnosis

are listed that rely on the centered hit process δα
t or its vector valued counterpart δt.

1. Binary regression (I): Engle and Manganelli (2004) suggest the dynamic quantile test

building upon a regression design for binary variables. Conditional on presample values

this regression reads as

δα
t = β0 +

p∑

i=1

βiδ
α
t−i + ut, (3)

= xα′
t−1β + ut, t = 1, . . . , T,

where xα
t−1 = (1, δα

t−1, δ
α
t−2, . . . , δ

α
t−p)

′. For backtesting the conventional Wald statistic,

Wα =
β̂′(

∑
t−1 xα

t−1x
α′
t−1)β̂

α(1− α)
d→ χ2(p + 1), (4)

is used, where p + 1 is the row dimension of xα
t−1 and β̂ contains OLS estimates from (3).

The asymptotic χ2(p + 1)-distribution holds if the VaR model is well specified (H0).

2. Binary regression (II): Analogous to (3), diagnosing VaRt(α) may also exploit lagged hits

measured for VaRt(a), a 6= α. Relying on lag one hits, for instance, obtains

δ
(α)
t = β0 +

p∑

i=2

βiδ
(α)
t−i +

m∑

a=1

γaδ
(a)
t−1 + ut, (5)

= x′t−1β + ut,

with a redefined vector of explanatory variables xt−1 and β = (β0, β2, . . . , βp, γ1, . . . , γm).

To test H0 : β = 0 the Wald statistic in (4) applies with a χ2(p+m) asymptotic distribution

under H0.

3. A multivariate portmanteau statistic: Although the regression in (5) takes ’cross depen-

dence’ of VaR violations into account, the test is specific for nominal level α. For the

vector hit process δt joint accuracy of VaR estimates implies

Cov (δt, δt−j) =

{
C0 for j = 0

0 else.
(6)
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Covariance and correlation estimates are, respectively,

Ĉj =
1
T

T∑

t=j+1

δtδ
′
t−j , R̂j = D1/2ĈjD

1/2 and D = Im ¯ Ĉ0,

where Im is the m-dimensional identity matrix and ’¯’ signifies element-by-element mul-

tiplication. Hurlin and Tokpavi (2006) propose a portmanteau statistic with asymptotic

distribution applying under the null hypothesis of a well specified VaR model

Qm(J) = T

J∑

j=1

(
vecR̂j

)′ (
R̂−1

0 ⊗ R̂−1
0

)(
vecR̂j

)
d→ χ2(Jm2). (7)

Both approaches the dynamic quantile regression, in (3) or (5) and the portmanteau statistic

in (7) adopt (auto)regression tools that originated in the framework of modelling continous

random variables. Since hit statistics defined in (2) are binary, the postulated asymptotic

distributions may only hold in very large samples. Thus, with access to finite dimensional

sample information, an analyst runs the risk of biased inferential conclusions when founding

test decisions on standard, χ2(•), critical values.

3 Monte Carlo test

The test statistics (4) and (7) build upon processes that can be very easily constructed by

simulation under the null hypothesis of a correct (dynamic) VaR specification. Thus, Monte

Carlo critical values (Dufour 2006) offer exact significance levels for VaR diagnosis. This section

illustrates the merits of Monte Carlo based VaR diagnosis. Size violations invoked by inference

based on asymptotic critical values are illustrated. Moreover, alternative diagnostic tools are

compared in terms of power estimates implied by Monte Carlo critical values.

3.1 Design

To imitate a well specified VaR model, δα
t processes are determined by means of iid Gaussian

variates. Let Φ(•) denote the Gaussian distribution function. Then,

δα
t = I(ξt < Φ−1(α)) with ξt ∼ iidN(0, 1), t = 1, . . . , T. (8)

Vector hit processes are obtained by stacking δα
t for α ∈ {.005, .01, .015, .02, .025, .03, .035} (m =

7). To investigate the performance of VaR diagnostics in case of misspecification, ξt in (8) is

generated as a first order autoregressive process, ξt = 0.1ξt−1 + ζt, ζt ∼ iidN(0, 0.99). The

adjusted variance for drawing ζt ensures that the unconditional variance of ξt is one. To specify

the regression models in (3) or (5) the lag order is p = 5. For the portmanteau statistic in

(7) order parameters J = 5, 15 are considered alternatively. Thus, the asymptotic distributions

of alternative diagnostic tools are χ2(q), q = 6, 12, 245, 735. Simulated sample sizes vary from
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T Wα, χ2(p + 1) Wα, χ2(p + m) Qm(J)

.005 .01 .025 .005 .01 .025 J = 5 15

Empirical size (χ2(•) 5% critical values)

2 .223 .101 .062 .201 .149 .102 .265 .250

4 .118 .079 .059 .147 .125 .084 .224 .215

8 .094 .074 .054 .134 .099 .069 .170 .167

20 .083 .063 .049 .094 .077 .059 .113 .116

50 .067 .051 .049 .075 .063 .056 .080 .078

Empirical power (Monte Carlo 5% critical values)

2 .068 .080 .098 .100 .120 .143 .106 .085

4 .076 .082 .122 .121 .150 .190 .134 .090

8 .085 .109 .187 .176 .200 .280 .200 .126

20 .112 .174 .397 .259 .343 .491 .324 .176

50 .165 .327 .766 .434 .606 .823 .580 .320

Table 1: Top panel: Empirical size estimates for alternative asymptotic tests diagnosing VaRt(α)

with 5% nominal significance level. Bottom panel: Power estimates implied by applying 5%

Monte Carlo critical values. Considered sample sizes are T · 1000.

conventional magnitudes to extreme time dimensions, i.e. T ∈ {2000, 4000, 8000, 20000, 50000}.
10000 Monte Carlo replications are used for all experiments.

An often raised caveat of Monte Carlo results is their dependence on the data generating

process used for the simulation. For simulating VaR hits under the null hypothesis of a well

specified risk model, it is worthwhile to point out that the design in (8) matches the null hypoth-

esis in a one-to-one manner. Employing competing, well specified VaR models for imitation of

the null hypothesis would not deliver systematically different empirical size features. The data

generating mechanism employed to imitate poor VaR specifications lacks parametric rigor. It is

interesting, though, to investigate how alternative tests cope with a ’nonparametric’ alternative.

3.2 Results

Table 1 provides inferential results for diagnosing VaR specifications with 5% significance. The

top panel documents rejection frequencies of alternative tests based on the first order asymptotic

approximations. Rejection frequencies under misspecification of the VaR model as implied by

Monte Carlo critical values are displayed below. Performing analogous experiments for nominal

significance levels 1% or 10% yields qualitatively identical results which are not displayed for

space considerations.

Marked size distortions feature all diagnostic tools for conventional sample sizes (T =

2000, 4000) if the nominal coverage level α is small, 1% or less. Throughout, overrejections
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under the null hypothesis are higher for the Portmanteau statistic Qm(J) as for the Wald statis-

tics Wα. For instance, empirical rejection frequencies for diagnosing VaRt(.01) estimates exceed

twice the nominal level for both regression models (3) and (5) conditional on T = 2000. Testing

joint accuracy of the 7-dimensional hit process (T = 2000) obtains empirical size estimates of

26.5% (J = 5) and 25.0% (J = 15), respectively.

Convergence to the asymptotic pivotal distributions is effectively very slow. The speed

of convergence of Wald test rejection frequencies depends on the investigated nominal VaR

coverage. For instance, employing test regression (3) for α = .01 and α = .025 the empirical

significance level comes close to the nominal level for T = 50000 (with rejection frequency 5.1%)

and T = 20000 (with rejection frequency 4.9%), respectively. With respect to the augmented test

regression (5) significant oversizing features VaRt(α) diagnosis for α = .005, .01 even conditional

on an ’extreme’ sample size T = 50000.

Using Monte Carlo 5% critical values to diagnose VaR misspecification uncovers marked

power differentials. Irrespective of the considered sample size Qm(5) turns out more powerful

in comparison with Qm(15). The former is less powerful than a Wald statistic based on the

regression (5) and testing VaRt(α) specifications with α ≥ 0.1. Diagnosing VaRt(.005) appears

most challenging in terms of power. Obviously, the power of the Wald test in (4) is improved

by conditioning on lagged hit processes measured for nominal VaR coverage a 6= α.

4 Conclusion

In diagnosing conditional VaR estimates the dynamic quantile test (Engle and Manganelli 2004)

and a Portmanteau approach (Hurlin and Tokpavi 2006) are shown to suffer from marked size

distortions prevailing in even rather large (finite) samples. With regard to the dynamic quantile

test oversizing is particularly likely if low VaR coverage levels are subjected to diagnostic testing.

Monte Carlo inference offers exact empirical significance levels. In terms of power the dynamic

quantile regression augmented with lagged hits measured for distinct VaR nominal coverages is

most effective.
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