
Cockshott, W. Paul

Article

Von Mises, Kantorovich and in-natura calculation

Intervention. European Journal of Economics and Economic Policies

Provided in Cooperation with:
Edward Elgar Publishing

Suggested Citation: Cockshott, W. Paul (2010) : Von Mises, Kantorovich and in-natura calculation,
Intervention. European Journal of Economics and Economic Policies, ISSN 2195-3376, Metropolis-
Verlag, Marburg, Vol. 07, Iss. 1, pp. 167-199,
https://doi.org/10.4337/ejeep.2010.01.13

This Version is available at:
https://hdl.handle.net/10419/277182

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.4337/ejeep.2010.01.13%0A
https://hdl.handle.net/10419/277182
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Von Mises, Kantorovich and in-natura calculation

W. Paul Cockshott*

Th e article reviews the idea of calculation in kind. It is argued that Kantoro-
vich and subsequent mathematicians essentially validated the idea of in-kind 
calculation. Th is has not been evident because Kantorovich nowhere deals with 
the Austrian school and they for their part have ignored him. Th e article con-
tinues by examining improvements in linear optimisation since Kantorovich 
and the implications these have for economic planning. Finally it discusses the 
problem of deriving the plan ray in the context of markets for consumer goods.

JEL classifi cations: C61, B14
Keywords: planning, calculation debate, linear optimisation

1. Introduction

Th is paper presents a historical review and extended tutorial on the work of Kantoro vich 
and his position with respect to the famous economic calculation debate. It focuses on 
Kantorovich because he is the most signifi cant Soviet contributor to the question, and be-
cause his ideas are less well known to modern Western economists than those of the Aus-
trian school. A Western readership is more likely to be familiar with neo-Classical or Sraf-
fi an approaches to economic calculation, so it is perhaps worth saying a little about how 
Kantorovich’s approach will be seen to diff er from these. We shall argue that in one sense 
Kantorovich’s methods are a generalisation of those of Ricardo, but one aspect of Ricardo’s 
work that Kantorovich shares, Ricardo’s analysis of foreign trade, is not one that the mod-
ern neo-Ricardian school lays much emphasis on. In another aspect of his work though, 
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the use of linear production functions, Kantorovich has a certain amount in common with 
Sraff a, but with an important diff erence. Kantorovich assumes that there are multiple pos-
sible linear techniques, the optimal intensities of which have to be determined. Th e exist-
ence of a multiplicity of techniques, a combination of which will be used, means that the 
production frontier for Kantorovich is piecewise linear. Th is contrasts with the continu-
ously curved production frontier assumed by the Cobb Douglas function typically used in 
neo-Classical work. At a micro level, at the level of detailed production planning, we know 
that what happens has to be strictly linear: the output of cars will be constrained by engine 
production in a linear rather than an exponential way. Th is implies that the stylised curved 
production frontier of neo-Classical theory is probably best seen as a conceptual approxi-
mation to a piecewise linear reality. We will start, however, by situating Kantorovich in re-
lation to the Austrian school.

2. What is economic calculation?

In contemporary society the answer seems simple enough: economic calculation involves 
adding up costs in terms of money. By comparing money costs with money benefi ts one 
may arrive at a rational – wealth maximising – course of action.

In a famous paper (von Mises 1935) the Austrian economist von Mises argued that it 
was only in a market economy in which money and money prices existed, that this sort of 
economic rationality was possible.

His claims were striking, and, if they could be sustained, apparently devastating to 
the cause of socialism. Th e dominant Marxian conception of socialism involved the abo-
lition of private property in the means of production and the abolition of money, but von 
Mises argued that 

»every step that takes us away from private ownership of the means of production 
and the use of money also takes us away from rational economics« (von Mises 1935: 
104).

Th e planned economy of Marx and Engels would inevitably fi nd itself »groping in the 
dark«, producing »the absurd output of a senseless apparatus« (von Mises 1935: 106). Marx-
ists had counterposed rational planning to the alleged ›anarchy‹ of the market, but accord-
ing to von Mises such claims were wholly baseless; rather, the abolition of market relations 
would destroy the only adequate basis for economic calculation, namely market prices. 
However well-meaning the socialist planners might be, they would simply lack any basis 
for taking sensible economic decisions: socialism was nothing other than the »abolition of 
rational economy«.

As regards the nature of economic rationality, it is clear that von Mises has in mind the 
problem of producing the maximum possible useful eff ect (satisfaction of wants) on the basis 
of a given set of economic resources. Alternatively, the problem may be stated in terms of its 
dual: how to choose the most effi  cient method of production in order to minimize the cost 
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of producing a given useful eff ect. Von Mises repeatedly returns to the latter formulation in 
his critique of socialism, with the examples of building a railway or building a house:1 How 
can the socialist planners calculate the least-cost method of achieving these objects? 

As regards the means for rational decision-making, von Mises identifi es three possi-
ble candidates:

1. Planning in kind (in natura).2 Th is he rejects, and the validity of this rejection will be 
the main subject of this article.

2. Planning with the aid of an »objectively recognizable unit of value« independent of 
market prices and money, such as labour time. Th is too he rejects. 

3. Economic calculation based on market prices.

It is clear that monetary calculation lends itself well to problems of the minimising or max-
imising sort. We can use money to fi nd out which of several alternatives is cheaper, or which 
sale will yield us the most profi t. But if we look in more detail at what is involved here, we 
shall see that a lot of calculation has to be done prior to the use of money. If an architect 
is planning a house, she must do a large amount of calculation in physical terms: estimat-
ing how much timber of each diff erent type, how many bricks, how many tiles, window 
frames etc. will be required. Only once all the physical calculation has been done, once the 
bill of materials and the work schedules have been determined, then a costing can be done 
and presented to the client.

Th e architect would, in a capitalist economy, have prices of materials in mind when she  
chose them, but even in a capitalist economy price can not be the only factor. Actual avail-
ability of the supplies, lead time on delivery etc. are just as important. For an architect in a 
pre-capitalist economy, the designer of the Great Pyramid for example, these physical con-
straints would have been all that she had to go on. Th e architect in an earlier society would 
have done her calculations directly in terms of the available labour and natural resources, so 
such in-natura calculation has obviously been possible in the past. Th e question is whether 
it is still possible in modern societies with an extensive division of labour.

3. Planning in kind

Th e organisational task that faced a pyramid architect was vast. Th at it was possible without 
money was an indication that monetary calculation was not a sine qua non of calculation. But 
as the project being planned becomes more complex, then planning it in material units will 
become more complex. Von Mises is in eff ect arguing that optimization in complex systems 
necessarily involves arithmetic, in the form of the explicit maximization of a scalar objective 

1 Th e railway example is in von Mises (1935). Th e house-building example is in von Mises 
(1949).
2 In talking about planning »in kind«, von Mises was responding to the proposals of Neurath 
(2004).



170 Intervention. European Journal of  Economics and Economic Policies

function (profi t under capitalism being the paradigmatic case), and that maximising the 
money return on output, or minimising money cost of inputs is the only possible such sca-
lar objective function. Von Mises argued for the impossibility of planning in kind because, 
he said, the human mind is limited in the degree of complexity that it can handle.

So might the employment of means other than a human mind make possible plan-
ning in kind for complex systems? 

Th ere are two »inhuman« systems to consider:

1. Bureacracies. A bureacracy is made up of individual humans, but by collaborating on 
information processing tasks, they can carry out tasks that are impossible to one indi-
vidual.

2. Computer networks. Nobody familiar with the power of Google to consolidate and 
analyse information will need persuading that computers can handle volumes and com-
plexities of information that would stupify a single human mind, so a computer net-
work could clearly do economic calculations far beyond an individual human mind.

More generally as Turing pointed out (Turing 1937) any extensive calculation by human be-
ings depends on artifi cial aides-memoir, papyrus, clay tablets, slates, etc. With the existence 
of such aides to memory, algorithmic calculation becomes possible, and at this point the 
diff erence between what can be calculated by a human using paper and pencil methods or 
a digital computer comes down only to matters of speed (Turing 1950 and 2004).

Th ere is no question that the procedure of economic calculation considered by von 
Mises was primarily algorithmic. It involves a fi xed process of:

1. For each possible technique of production
a) form a physical bill of materials, 
b) use a price list to convert this into a list of money expenditures, 
c) then add up the list to form a fi nal cost

2. Select the cheapest fi nal cost out of all the costs of techniques of production 

Th e question then arises as to whether there exist in-natura algorithms with an analogous 
function?

3.1 Kantorovich’s method

In the 1920s and early 1930s when von Mises fi rst advanced his arguments, no such algo-
rithmic techniques were known. But in 1939 (Kantorovich 1960) the Soviet mathematician 
V. Kantorovich came up with a method which later came to be known as linear program-
ming or linear optimisation, for which he was later awarded both Stalin and Nobel prizes. 
Describing his discovery he wrote:

»I discovered that a whole range of problems of the most diverse character relating to 
the scientifi c organization of production (questions of the optimum distribution of 
the work of machines and mechanisms, the minimization of scrap, the best utiliza-
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tion of raw materials and local materials, fuel, transportation, and so on) lead to the 
formulation of a single group of mathematical problems (extremal problems). Th ese 
problems are not directly comparable to problems considered in mathematical anal-
ysis. It is more correct to say that they are formally similar, and even turn out to be 
formally very simple, but the process of solving them with which one is faced [i.e., by 
mathematical analysis] is practically completely unusable, since it requires the solu-
tion of tens of thousands or even millions of systems of equations for completion.
I have succeeded in fi nding a comparatively simple general method of solving this 
group of problems which is applicable to all the problems I have mentioned, and is 
suffi  ciently simple and eff ective for their solution to be made completely achievable 
under practical conditions.« (Kantorovich 1960: 368)

What was signifi cant about Kantorovich’s work was that he showed that it was possible, start-
ing out from a description in purely physical terms of the various production techniques 
available, to use a determinate mathematical procedure to determine which combination of 
techniques will best meet plan targets. He indirectly challenged von Mises,3 both by prov-
ing that in-natura calculation is possible, and by showing that there can be a non monetary 
scalar objective function: the degree to which plan targets are met.

Th e practical problems with which he was concerned came up whilst working in the 
plywood industry. He wanted to determine the most eff ective way of utilising a set of ma-
chines to maximise output. Suppose we are making a fi nal product that requires two com-
ponents, an A and a B. Altogether these must be supplied in equal numbers. We also have 
three types of machines whose productivities are shown in the Table 1.

Table 1: Kantorovich’s fi rst example

Type of machine # of machines Output per machine Total output

As Bs As Bs

Milling machines 3 10 20 30 60

Turret lathes 3 20 30 60 90

Automatic turret lathes 1 30 80 30 80

Max total 120 230

Suppose we set each machine to produce equal numbers of As and Bs. Th e three milling 
machines can produce 30 As per hour or 60 Bs per hour. If the 3 machine produce As for 
40 minutes in the hour and Bs for 20 minutes then they can produce 20 of each. Applying 
similar divisions of time we can produce 36 As and Bs on the Turret lathes and 21 As and Bs 
on the automatic turret lathe (see Table 2).

3 Th ere is no indication that he was aware of von Mises at the time.
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Table 2: Kantorovich’s examples of output assignments

Type of machine Simple solution Best solution

As Bs As Bs

Milling 
machines

20 20 26 6

Turret lathes 36 36 60 0

Automatic turret 
lathes

21 21 0 80

Max total 77 77 86 86

But Kantorovich goes on to show that this assignment of machines is not the best. If we as-
sign the automatic lathe to producing only Bs, the turret lathe to producing only As and split 
the time of the milling machines so that they spend 6 minutes per hour producing Bs and 
the rest producing As, the total output per hour rises from 77 As and Bs to 86 As and Bs.

Th e key concept here is that each machine should be preferentially assigned to pro-
ducing the part for which it is relatively most effi  cient. Th e relative effi  ciency of producing 
As/Bs of the three machines was milling machine = 1/2, turret lathes = 2/3, and automatic 
lathe = 3/8. Clearly the turret lathe is relatively most effi  cient at producing As, the auto-
matic lath relatively most effi  cient at producing Bs and the milling machine stands in be-
tween. Th us the automatic lathe is set to produce only Bs, the turret lathes to make only As 
and the time of the milling machines is split so as to ensure that an equal number of each 
product is turned out.

Th e decision process is shown diagrammatically in Figure 1. Th e key to the construc-
tion of the diagram, and to the decision algorithm is to rank the machines in order of their 
relative productivities. If one does this, one obtains a convex polygon whose line segments 
represent the diff erent machines. Th e slopes of the line segments are the relative produc-
tivities of the machines. One starts out on the left with the machine that is relatively best 
at producing Bs, then moves through the machines in descending order of relative produc-
tivity. Because relative productivity is monotonically decreasing one is guaranteed that the 
boundary will be convex. One then computes the intersection of the 45 degree line repre-
senting equal output of As and Bs with the boundary of this polygon. Th is intersection point 
is the optimal way of meeting the plan. Th e term linear programming stems from the fact 
that the production functions are represented by straight lines in the case of two products, 
planes for three products, and for the general higher dimensional case by linear functions. 
Th at is to say, functions in which variables only appear raised to the power one.



Paul Cockshott: Von Mises, Kantorovich and in-natura calculation 173 

Figure 1: Kantorovich’s example as a diagram

auto turret lathe

turret lathe

milling machine
tops

bottoms

Plan Ray

Note: Th e plan ray is the locus of all points where the output of As equals the output of Bs. Th e 
production possibility frontier is made of straight line segments whose slopes represent the relative 
productivities of the various machines for the two products. As a whole these make a polygon. Th e 

plan objective is best met where the plan ray intersects the boundary of this polygon.

Th e slope of the boundary where the plan ray intersects was called by Kantorovich the re-
solving ratio. Any machine whose slope is less than this should be assigned to produce Bs 
any machine whose slope is greater, should be assigned to produce As.

When there are only two products being considered, the method is easy and lends it-
self to diagramatic representation. But it can handle problems of higher dimensions, in-
volving three or more products. In these cases we can not use graphical solutions, but Kan-
torovich provided an algorithmic by which the resolving ratios for diff erent pairs of outputs 
could be arrived at by successive approximations. Kantorovich’s work was unknown out-
side of the USSR until the late 1950s and prior to that Dantzig had independently devel-
oped a similar algorithm for solving linear programming problems, the so called simplex 
method (Dantzig/Wolfe 1961). Th is has subsequently been incorporated into freely avail-
able software tools.4 Th ese packages allow you to enter the problem as a set of linear equa-
tions or linear inequalities which they then solve. Th e constraints of the problem have to 
be expressed as a series of equations and the software package can then be treated as ›black 
box‹ to solve these equations. For Kantorovich’s example problem we can express the pro-
duction constraints as shown in Table 3.

4 For example lp_solve and GLPK.
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Table 3: Th e constraints of Kantorovich’s original problem expressed as equations

3

3

1

m
⎡ ⎤
⎢ ⎥≤ ⎢ ⎥
⎢ ⎥⎣ ⎦

Number of machines constraint

1 1
10 20
1 1
20 30
1 1
30 80

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

a bm x x

Productivity
xa(i) number of As made on ith machine
xb(i) number of Bs made on ith machine

=∑ ax A Total A production equals production on 
each machine

=∑ bx B Total B production equals production on 
each machine

Note: For the vectors above, index 1 means milling machines, 2 means turret lathes, and 3 automatic 
turret lathes.

In the West, linear programming was used to optimise the use of production facilities op-
erating within a capitalist market. Th is meant that the objective function that was maxim-
ised was not a fi xed mix of outputs, in Kantorovich’s fi rst example equal numbers of parts 
A and B, but the money that would be obtained from selling the output: price A × number 
of As + price B × number of Bs as expressed in Algorithm 1. Manuals and textbooks pro-
duced in association with Western linear programming software assumes this sort of ob-
jective. Th us one can get formulations which say that the task of linear programming is to 
maximise the objective function f (x):

f (x) = c · x ,

where x is a vector of inputs or outputs, c is a unit cost or price vector. Maximisation is sub-
ject to the constraints

Ax ≤ b and  x ≥ 0 ,

where A is a technology matrix and b a vector of available stocks. It is obvious that this for-
mulation of linear programming is not in-natura calculation since it relies on the price vec-
tor c, readily available in a market economy, but which can not be assumed to exist in a 
planned economy. But the general formulation of linear programming that Kantorovich 
gives for the economy as a whole is an extension of the one he gave for his initial machine 
tool example. It again involves fi nding the intersection between the production possibility 
frontier given by the linear constraints, and a multi-dimensional plan ray. Th e diff erence 
between the two approaches is highlighted by Figure 2.



Paul Cockshott: Von Mises, Kantorovich and in-natura calculation 175 

Figure 2: Comparison of the Western and Soviet versions of linear programming

price lines
A

B

P

Q

Plan Ray
constant relative 

Note: In the Western formulation the problem is to fi nd P the maximal intersection of the produc-
tion possibility frontier with lines of constant relative price for the outputs (A and B). In the Soviet 

formulation the problem is to fi nd Q the intersection of the plan ray with the production possibility 
frontier.

In the Soviet formulation of the linear programming problem, there is no initial assump-
tion of the existence of a set of relative prices. Th ere is also a diff erence in where the solu-
tion point will occur. In the Western version of the problem the solution occurs at a ver-
tex of the production possibility frontier, whereas in the Soviet formulation it occurs at a 
face of the frontier.

Let us fi rst look at how one could apply modern software to solve a Western style lin-
ear programming problem with the same production constraints as those given by Kan-
torovich. If the factory he was dealing with faced prices such that an A sold for 100 roubles 
and a B sold for 60 roubles, we could express the problem faced by the factory manager 
as: Maximise A + 0.6B subject to the production constraints in Table 3. In Algorithm 1 we 
show how this objective function and constraints can be expressed in the notation required 
by lp_solve.

To get Kantorovich’s type of optimisation we replace maximising A + 0.6B with just 
maximising A and add the constraint that 

A – B = 0 .
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Algorithm 1: Western factory facing Kantorovich’s problem would formulate it as follows

/* Objective function */
max:A+0.6 B ;
/* Variable bounds */
m1<=3;m2<=3;m3<=1;
m1-0.1 x1a - 0.05 x1b=0;
m2-0.05 x2a - 0.033333 x2b=0;
m3- 0.033333 x3a - 0.0125 x3b=0;
x1a+x2a+x3a - A=0;
x1b+x2b+x3b -B =0;
int A;

Algorithm 2 shows how to express Kantorovich’s problem in lp_solve notation. When this 
algorithm is run it exactly reproduces the solution originally given in Kantorovich (1960).

Algorithm 2: Kantorovich’s example as equations input to lp_solve

/* Objective function */
max:A;
/* plan ray constraint */
A-B=0;
/* Variable bounds specifi ed as in algorithm 1*/

3.2 Kantorovich and Ricardo

Th ere is a strong parallel between the arguments that Kantorovich uses and those that Ricar-
do used in his Principles to explain the benefi ts of international trade. He constructed an 
argument to the eff ect that if it took Portugal 80 men to produce one unit of wine and it 
took England 120 men to do the same (Ricardo 1951: 135). On the other hand in Portugal it 
took 90 men to produce one unit of cloth but in England 100. Under these circumstances 
he said it was advantageous for England to export cloth to Portugal and import wine. Th e 
argument was that labour in each country should be used to produce what it is relatively 
best at. Th is can now be seen as a specifi c case of linear optimisation.

We can set up a plan ray requiring the production of equal quantities of wine and cloth 
for similarity with Kantorovich’s example. We will also assume that both England and Por-
tugal have 1 million workers.

We can then express Ricardo’s example as a linear program:

max: wine;
/* Constraints */
wine -pwine -ewine = 0; 
cloth -pcloth -ecloth = 0;
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wine -cloth = 0;
-90 pcloth +pcl = 0;
-80 pwine +pwl = 0;
pcl +pwl <= 1000000;
-100 ecloth +ecl = 0;
-120 ewine +ewl = 0;
ecl +ewl <= 1000000;

Where the variables are:

wine:  total wine production, cloth similarly
pwine:  Portuguese wine production, ewine, pcloth, ecloth similarly
ecl:  English cloth producing labour, pcl, ewl, pwl similarly

Solving for the equations with lp-solve (Table 4) we fi nd a net production of both wine and 
cloth of 11,176 units. If we now prevent trade by forcing each country separately to equate 
its wine and cloth production (e.g. pcloth=pwine), we fi nd that total production of each 
falls to 10,427 units, demonstrating that Ricardo was right: overall production turns out to 
be seven percent higher with trade between the two countries. But whilst we can say that 
Ricardo recognised a specifi c instance of linear optimisation, it was not until Kantorovich 
that a general mechanism for formulating economic problems in this way was arrived at.

Table 4: Solving Ricardo’s problem with lp_solve

Variables trade allowed trade not allowed

objective -11176.47 -10427.80

wine 11176.47 10427.80

pwine 11176.47 5882.35

ewine 0.00 4545.45

cloth 11176.47 10427.80

pcloth 1176.47 5882.35

ecloth 10000.00 4545.45

pcl 105882.35 529411.76

pwl 894117.64 470588.23

ecl 1000000.00 454545.45

ewl 0.00 545454.54

3.3 Generalising Kantorovich’s approach

In his fi rst example Kantorovich deals with a very simple problem, producing two goods in 
equal proportions using a small set of machines. He was aware, even in 1939 that the poten-
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tial applications of mathematical planning were much wider. We will look at two issues that 
he considered which are important for the more general application of the method.

1. Producing outputs in a defi nite ratio rather than in strictly equal quantities.
2. Taking into account consumption of raw materials and other inputs.

Suppose that instead of wanting to produce one unit of A for every unit of B, as might be 
the case if we were matching car engines to car bodies, we want to produce four units of 
A for every unit of B, as would be the case if we were matching wheels to car engines. Can 
Kantorovich’s method deal with this as well? Consider Figure 1 again. In that the plan ray 
is shown at an angle of 45 degrees a slope of one to one. If we drew the plan ray at a slope 
of four to one, the intersection with the production frontier would provide the solution. 
Since this geometric approach only works for two products, let us consider the algebraic 
implications.

You should now be convinced that it is possible to solve Kantorovich’s original prob-
lem5 by algebraic means. In Algorithm 2 we specifi ed that A – B = 0 or in other words A = B, 
if one wanted four units of A for every B we would have to specify A = 4B or, expressing 
it in the standard form used in linear optimisation, A – 4B = 0. Suppose A stands for en-
gines, B stands for wheels. If we now say wheels come in packs of 4, then we can repose the 
problem in terms of producing equal numbers of packs of wheels and engines. Introduce 
a new variable β = 4B to stand for packs of wheels, and rewrite the equations in terms of β 
and we can return to an equation specifying the output mix in the form A – β = 0, which 
we know to be soluble. 

In order to use standard linear programming packages to solve a »Soviet type« prob-
lem with a plan ray and n products we introduce n – 1 additional constraints of the form 
A – kbB = 0, A –kcC = 0, ...A – knN and maximise on A. Th e constants kb, kc, ...kn specify 
the ratios in which the goods are to be produced in the plan.

How do we deal with consumption of raw materials or intermediate products?
In our previous example we had variables like x1b which stood for the output of prod-

uct B on machine 1. Th is was always a positive quantity. Suppose that there is a third good 
to be considered – electricity, and that each machine consumes electricity at a diff erent rate 
depending on what it is turning out. Call electricity C and introduce new variables x1ac, 
x1bc etc. referring to how much electricity is consumed by machine 1 producing outputs A 
and B. Th en add equations specifying how much electricity is consumed by each machine 
doing each task, and the model will specify the total amount of electricity consumed.

We now know how to...

1. ...use Kantorovich’s approach to specify that outputs must be produced in a defi nite 
ratio.

2. ...use it to take into account consumption of raw materials and other inputs.

5 Actually this was his »problem A«
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If we can do these two tasks, we can in principle perform in-natura calculations for an en-
tire planned economy. Given a fi nal output bundle of consumer and investment goods to 
maximise (the plan ray) and given our current resources, a system of linear equations and 
inequalities can be solved to yield the structure of the plan. From simple beginnings, op-
timising the output of plywood on diff erent machines, Kantorovich had come up with a 
mathematical approach which could be extended to the problem of optimising the opera-
tion of the economy as a whole.

3.4 A second example

Let us consider a more complicated example, where we have to draw up a plan for a sim-
ple economy. We imagine an economy that produces three outputs: energy, food, and ma-
chines. Th e production uses labour, wind and river power, and two types of land: fertile 
valley land, and poorer highlands. If we build dams to tap hydro power, some fertile land is 
fl ooded. Wind power on the other hand, can be produced on hilly land without compro-
mising its use for agriculture. We want to draw up a plan that will make the most rational 
use of our scarce resources of people, rivers and land.

In order to plan rationally, we must know what the composition of the fi nal output 
is to be – Kantorovich’s ray. For simplicity we will assume that fi nal consumption is to be 
made up of food and energy, and that we want to consume these in the ratio three units of 
food per unit of energy. We also need to provide equations relating to the productivities 
of our various technologies and the total resources available to us. Valleys are more fertile. 
When we grow food in a valley, each valley requires 10,000 workers and 1,000 machines 
and 20,000 units of energy to produce 50,000 units of food. If we grow food on high land, 
then each area of high land produces only 20,000 units of food using 10,000 workers, 800 
machines and 10,000 units of energy. Electricity can be produced in two ways. A dam pro-
duces 60,000 units of energy, using one valley and 100 workers and 80 machines. A wind-
mill produces 500 units of electricity, using four workers and six machines, but the land on 
which it is sited can still be used for farming. We will assume that machine production uses 
20 units of electricity and ten workers per machine produced. Finally we are constrained 
by the total workforce, which we shall assume to be 104,000 people.

Tables 5 and 6 show how to express the constraints on the economy and the plan in 
equational form. If we feed these into lp_solve we obtain the plan shown in Table 7. Th e 
equation solver shows that the plan targets can best be met by building no dams, generating 
all electricity using 541 windmills, and devoting the river valleys to agriculture.

It also shows how labour should be best allocated between activities: 40,000 people 
should be employed in agriculture in the valleys, 109 people should work as farmers in the 
highlands, 2,164 people should work on energy production, and 61,727 people should work 
building machines.
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Table 5: Variables in the example economy

e total energy output

ec household energy consumption

f food

v valleys

w windmills

m machines

d dams

u undammed valleys

h highland

fh food produced on high land

fv food produced in valleys

Table 6: Resource constraints and productivities in our example economy

fi nal output mix f = 3ec

number of valleys v = 4

dams use valleys v – u = d

valley food output fv = 50,000u

valley farm labour lv = 10,000u

valley energy use ev = 20,000u

valley farm machines mv = 1,000u

highland food output fh = 20,000h

highland farm labour lh = 10,000h

highland energy use eh = 10,000h

highland farm machines mh = 800h

energy production e = 500w + 60,000d

energy workers le = 100d + 4w

machines in energy prod me = 80d + 6w

workers making machines lm = 10m

energy used to make machines em = 20m

energy consumption em + ev + eh + ec ≤ e

machine use me + mh + mv ≤ m

total food prod f = fh + fv

workforce lm + le + lv + lh ≤ 104,000
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Table 7: Economic plan for the example economy using lp_solve

d (dams) 0

e 270,500

f 200,218

h 0.0108889

m 6172.71

u 4

v 4

w (windmills) 541

ec 66739.3

eh 108.889

em 123,454

ev 80,000

fh 217.778

fv 200,000

le 2,164

lh 108.889

lm 61727.1

lv 40,000

me 2,164

mh 8.71111

mv 4,000

Th e results that we have obtained were by no means obvious at the outset. It was not in-
itially clear that it would be better to use all the river valleys for agriculture rather than 
building dams on some of them. In fact, whether dams or windmills are preferred turns 
out to depend on the whole system, not just on their individual rates of producing electric-
ity. We can illustrate this by considering what happens if we cut the labour supply in half 
to 52,000 people?

If we feed this constraint into the system of equations we fi nd the optimal use of re-
sources has changed. Th e plan now involves one dam and 159 windmills. Cut the working 
population slightly further, down to 50,000 people and the optimal plan involves fl ooding 
two valleys with dams and building only 23 windmills. Why?

As the population is reduced, there are no longer enough people available to both farm 
the valleys and produce agricultural machinery. Under these circumstances the higher fer-
tility of lowland valleys is of no importance, it is better to use one or more of them to gen-
erate electricity. By applying Kantorovich’s approach it becomes possible for a socialist plan 
to do two things that von Mises had believed impossible: 
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1. It allows the plan to take into account natural resource constraints – in this case the 
shortage of land in river valleys which can be put to alternative uses.

2. It allows rational choices to be made between diff erent technologies – in this case be-
tween windmills and hydro power and between lowland and highland agriculture.

Contrary to what von Mises claimed, the whole calculation can be done in physical units 
without any recourse to money or to prices.

4. Valuation

Th e core of von Mises’s argument relates to the use of prices to arrive at a rational use of in-
termediate or capital goods. Von Mises argues that, in practice, only money prices will do 
for this, but concedes that, in principle, other systems of valuation, such as labour values 
would also be applicable. Kantorovich too, was very concerned with the problem of rela-
tive valuation (Kantorovich 1965), and developed what he called objectively determined val-
uations (ODV). 

He considered a situation where planners have to deal with several diff erent types of 
factories (A..E) each able to produce products one and two, and where the intended ratio 
of output of product one and two are fi xed in the plan. Each class of factory A..E has dif-
ferent relative productivities for the two products.

He next looked at the apparent profi tability of producing products one and two un-
der diff erent relative valuations. Under some schemes of relative price, all factories would 
fi nd product one to be unprofi table relative to product two, under other the reverse would 
occur. Intermediate price schemes would allow both products to be produced, with some 
classes of factories specializing on one and others on two. He gives the example of children’s 
clothing as something which, under the administratively determined valuations then used 
in the USSR, were unprofi table to produce, and unless factories were specifi cally instruct-
ed to ignore local profi tability, too few children’s clothes would be made.

He asks if there exists a relative valuation structure which would allow factories to con-
centrate on the most valuable output, and at the same time meet the specifi ed plan targets 
and arrives at certain conclusions:

1. Th at among the very large number of possible plans there is always an optimal one 
which maximises output of plan goals with current resources.

2. Th at in the optimal plan there exists a set of objectively determined valuations (ODV) 
of goods which will ensure that each factory

 a) produces the output which will contribute most to maximising the plan goals;
 b) each factory also fi nds that the output which contributes to maximising plan targets

 is also the output which is most profi table.
3. With arbitrary valuations which diff er from ODV, these conditions can not be met, 

and profi t maximising factories will not specialise in a way that meets plan goals op-
timally.
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It is important to understand that his ODVs are valuations that apply only for a plan 
which optimally meets a specifi c plan target. Kantorovich’s procedure for arriving at an opti-
mal plan involved successive adjustments to the ODVs and factory specialisation until both 
the appropriate mix of goods is reached, and at the same time each factory is producing its 
most profi table good. He actually gave several diff erent mathematical procedures for arriv-
ing at such a plan and system of ODVs. Th e ODVs basically specify the derivatives of the 
production possibility frontier in the region of its intersection with the plan ray. 

Table 8: Example optimal plan with technology matrix, plan ray and net output

outputs inputs gross outputs

labour corn machines coal

corn
1
–
3

1
–
10

1
–
20

1416.76

machines 2
3
–
20

93.43

coal
1
–
10

1
–

100
858.49

bread
1
–
5

1
–
10

1275.08

plan ray

coal bread

1 2

net output

coal bread

1275.08 637.54

labour force

1000

Let us use another example to explore the idea of ODVs.
Although Kantorovich asserts that labour is ultimately the only source of value, his 

ODVs are short term valuations and diff er from the classical labour theory of value, which 
gave valuations in terms of the long term labour reproduction costs of goods – including 
the reproduction costs of capital goods. Kantorovich, in contrast, is concerned with valu-
ations which should apply with the current stock of means of production and labour re-
sources. For example, he considers the situation of giving a valuation to electric power rel-
ative to labour. Instead of valuing it in terms of the labour required to produce electricity, 
he fi rst assumes that the total electrical power available is fi xed – i.e., power-stations oper-
ating at full capacity, and then works out how many person hours of labour is saved by us-



184 Intervention. European Journal of  Economics and Economic Policies

ing an additional kilowatt hour of electricity. Th is defi nition of the value of electricity in 
terms of labour is clearly diff erent from the way labour value was defi ned by the classical 
economists. In their formulation the labour value of a kilowatt hour, for example, was the 
mean labour expended to produce a kilowatt. One would expect the classical labour value 
to be lower than Kantorovich’s labour ODV, since otherwise the use of electricity would 
not be worth while. 

Nemchinov (1964: 373) criticised Kantorovich for raising what the former saw as 
just: 

»indices expressing defi ciency, limitation, and scarcity of resources […] applicable to 
the economic calculations involved in discovering how best to use resources to en-
sure maximum fullfi llment of a production programme.«, 

to concepts of a universal character. For this he was »gravely at fault«.
Kantorovich’s insistence on considering short term, very material constraints – so 

many megawatts of power, such and such a number of cutting machines, etc., gives his 
work an intensely practical and pragmatic character, quite diff erent from that of most the-
oretical economists.

Why is Kantorovich so concerned with valuations and profi tability? Th ere seem to be 
two reasons. We should fi rst note that by profi t maximising Kantorovich actually meant 
maximising the value of output. Th is must be understood in the context of Soviet prac-
tice where mines and factories were given incentives to over-fulfi ll plan targets. If the out-
put was a single good – say coal, the target could be specifi ed in tons. But if the factory 
produced several goods, then the target had to be set in terms of x rubles worth of a mix of 
goods. With the »wrong« price structure, plants would attempt to maximise the production 
of the goods which were of the highest value, ignoring those of lower value, with the result 
that the aggregate supply of all goods was often not in the proportions that the planners 
intended. Th is practice of setting plan targets in money terms refl ected the limited ability 
of GOS PLAN to specify detailed targets in kind as described by Nove (1983). We have to 
understand that he was engaging in a wider debate during the 1950s about the appropriate 
pricing structure for a socialist economy. Th us Nove (1964) identifi es three alternative re-
forms being proposed for Soviet prices: the suggestion of Strumlin that prices should cor-
respond to labour values; that of Novozilov who argued for Marxian »production prices« 
(Novozilov 1964: 36); and that of Kantorovich (1965: 53 – 57) who proposed »objectively 
determined valuations«. Nove argues that Novozilov and Kantorovich were both trying to 
develop rational costing models.

Th e second reason relates to his particular algorithm for solving linear programming 
problems which used an iterative adjustment to initial ODVs (resolving multipliers) until 
an optimal plan is achieved.

Th ese two aspects seem intimately linked in his presentation, but the presuppositions 
about the incentives to factories are not brought to the fore which owes something to the 
cryptic language in which economic debates in the USSR were conducted. Swann (1975) 
relates that some of the Soviet optimal planning school, he cites Volonsky, argued that the 
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ODVs were all that had to be exchanged between distinct units of production each follow-
ing their own optimisation goal. In this his arguments for come close to those of the Aus-
trian school with respect to prices. In retrospect though we can see that the use resolving 
multipliers, however much it infl uenced Kantorovich’s own thought, is incidental to the is-
sue. With computer algorithms, the process of solving a linear program becomes a »black 
box«. Th e user need not concern herself with details such as the method of calculation – 
whether it uses Kantorovich’s approach Dantzig’s or Karmarkar’s, except insofar as this af-
fects the size of problem that can be handled, as we discuss in Section 5. With computer 
packages, ODVs would no longer be needed for computing a plan, but would they still be 
needed for specifying targets to factories?

Th is depends on the information processing capacity of the planning system. If it were 
capable of specifying fully disaggregated plans, then it could in principle just place orders 
with factories for specifi c quantities of each good. In these circumstances, the factories could 
not cheat by producing more of high value items and less of low value ones. Indeed, the very 
information that would be required to compute Kantorovich’s ODVs, would have been suf-
fi cient for GOS PLAN to specify disaggregated orders in kind for the products that would 
have had valuations attached. Th us were it possible to compute ODVs then they would have 
been redundant for the purpose that Kantorovich originally proposed them!

Th ere remains another level at which valuations would have been useful – when prod-
uct designs were being drawn up at a local level. If a refrigerator designer was deciding on 
what components to use in a planned new model, she would need some way of telling which 
components would, from a social standpoint, have been the most economical, which im-
plies a system of valuations. However it is not clear that the full apparatus of ODVs would 
be either necessary or appropriate here. ODVs correspond to a system of marginal cost, 
rather than average cost pricing. Th ey refl ect current marginal costs with the immediately 
current constraints on production. Th e use of such marginal costing was criticized by other 
Soviet economists (Grossman 1963, Menshikov 2006).

It is not clear, in retrospect, that ODVs would have been more appropriate than a sys-
tem of average cost valuation if one was projecting ahead a year or so. If one draws up ex-
ample plans in which all goods are reproducible from scratch, then the ODVs will just be 
the same as labour values. If there are some other »free« inputs left over from the past, then 
the ODVs begin to deviate from labour values. So in the short term ODVs could be useful, 
but it is not clear that they are so useful in the preparation of long term plans. Indeed, giv-
en the stochastic properties of prices in a real capitalist economy (Farjoun/Machover 1983), 
it is questionable whether, with the exception of certain constrained products like oil, the 
diff erence between average and marginal costs is signifi cant in the West.

5. Complexity

Linear programming, originally pioneered by Kantorovich, provides an answer in principle 
to von Mises’ claim that rational economic calculation is impossible without money. But 
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this is an answer only in principle. Linear programming would only be a practical solution 
to the problem if it were possible, in practice, to solve the equations required in a socialist 
plan. Th is in turn requires the existence of a practical algorithm for solving them, and suf-
fi cient computational resources to implement the algorithm. Kantorovich, in an appen-
dix to Kantorovich (1960), gave a practical algorithm, to be executed by paper and pencil 
mathematics. Th e algorithm was suffi  ciently tractable for these techniques to be used to 
solve practical problems of a modest scale. When tackling larger problems he advised the 
use of approximative techniques like aggregating similar production processes and treating 
them as a single composite process. Whilst Kantorovich’s algorithm uses his ODVs, which 
he earlier called resolving multipliers, subsequent algorithms for linear programming do 
not, so the ODVs should not be considered as fundamental to the fi eld.

Since the pioneering work on linear programming in the 1930s, computing has been 
transformed from something done by human »computors« to something done by electron-
ic ones. Th e speed at which calculations can be done has increased many billion-fold. It is 
now possible to use software packages to solve huge systems of linear equations. But are 
computers powerful enough to be used to plan an entire economy?

In a large economy like the former USSR there were probably several million distinct 
types of industrial products, ranging from the various sorts of screws, washers and types of 
electronic components to large fi nal products like ships and airliners. Although there was 
great enthusiasm for Kantorovich’s methods in the USSR during the 1960s, the scale of the 
economy was too great for his techniques to be used for detailed planning with the then 
available computer technology. Instead they were used either in optimising particular pro-
duction plants, or, in drawing up aggregated sectoral plans for the economy as a whole.

How has the situation changed today, given that the power of computers has contin-
ued to grow at an exponential rate since the fall of the USSR? In other words to what com-
plexity class (Sipser 2006, Part III) does linear programming belong?

»For a long time it was not known whether or not linear programs belonged to a 
non-polynomial class called ›hard‹ (such as the one the traveling salesman problem 
belongs to) or to an ›easy‹ polynomial class (like the one that the shortest path prob-
lem belongs to). In 1970, Victor Klee and George Minty created an example that 
showed that the classical simplex algorithm would require an exponential number 
of steps to solve a worst-case linear program (Klee/Minty 1972). In 1978, the Russian 
mathematician L.G. Khachian developed a polynomial-time algorithm for solving 
linear programs (Khachian 1979). It is an interior method using ellipsoids inscribed 
in the feasible region. He proved that the computing time is guaranteed to be less 
that a polynomial expression in the dimensions of the problem and the number of 
digits of input data. Although polynomial, the bound he established turned out to 
be too high for his algorithm to be used to solve practical problems. Karmarkar’s al-
gorithm (Karmarkar 1984) was an important improvement on the theoretical result 
of Khachian that a linear program can be solved in polynomial time. Moreover his 
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algorithm turned out to be one which could be used to solve practical linear pro-
grams.« (Dantzig 2002)

Modern linear programming packages tend to combine Dantzig’s simplex method with the 
more recent interior point methods. Th is allows the most modern implementations to solve 
programming problems involving up to one billion variables (Gondzio/Grothey 2006a and 
2006b). For such huge problems large parallel supercomputers with over a thousand proc-
essor chips are used. But even with much more modest 4 CPU computers, linear program-
ming problems in the million variable class were being solved in half an hour using inte-
rior point methods.6

Th ese advances in linear programming algorithms and in computer technology mean 
that linear programming could now be applied to detailed planning at the whole economy 
level, rather than just at an aggregate level.

6. Deriving the plan ray

Kantorovich assumed that the plan had a given target to optimise in the form of a particu-
lar mix of goods: the plan ray. Th is refl ected the social reality for those engaged in manag-
ing Soviet industry, in that they were given a mix of products to produce by GOS PLAN. 
Th e planning authorities themselves however, needed to specify what this ultimate output 
mix would be. In the early phases of Soviet planning, when Kantorovich wrote his original 
paper, the goals set by the planners were primarily directed at achieving rapid industriali-
zation and building up a defence base against the threat of invasion. Th e planning process 
was successful in achieving these goals. But in an already industrialised country, in times 
of peace, the meeting of current social needs becomes the fi rst priority and so the plan vec-
tor has to be pointed in that direction. A criticism commonly levelled at the Soviet-type 
economies – and not only by their Western detractors – is that they were unresponsive to 
consumer demand. It is therefore important to our general argument to demonstrate that 
a planned economy can be responsive to the changing pattern of consumer preferences – 
that the shortages, queues and surpluses of unwanted goods of which we hear so much are 
not an inherent feature of socialist planning. Th e economists Dickinson and Lange, writ-
ing just prior to Kantorovich, outlined a practical mechanism by which this could be done 
(Lange 1938, Dickinson 1933).

Th ey proposed that the state wholesale sector should operate on a break-even basis with 
fl exible prices. Wholesale managers would set market clearing prices for the products on sale 
as consumer goods. Th ese wholesale prices would then act as a guide to the plan authori-
ties, telling them whether to increase or decrease production of particular lines of product. 
If prices were high, then that line of product would have its output increased, otherwise its 
planned output would be reduced. 

6 See Bienstock (2002: Chap 4). Th e Harmony Algorithm for constructing plans, given in Cot-
trell/Cockshott (1992), is an instance of the class of algorithm discussed by Bienstock.
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Th e basic idea is clear, the same principle that adjusts production of consumer goods 
in a capitalist economy was to be employed. But this then raises the problem of how one de-
termines that a price is high or low. High or low relative to what? What would be the basis 
of valuation used? Although Marx and Engels had laid great stress on planning as an alloca-
tion of labour time, this conception had been more or less abandoned by English speaking 
socialist economists by the late 1930s. Neither Lange nor Dickinson relied on the classical 
theory of value in their arguments. Writing in 1930, Appel et al. (1990) had laid great stress 
on the relevance of the labour theory of value for socialist economics, but their ideas were 
largely ignored. More recent writers have again laid emphasis on Marx’s theory of value as 
a guide to socialist planning (Dieterich 2002, Peters 1996 and Peters 2000). It has been ar-
gued that labour values are eff ectively calculable and that in combination with Dickinson’s 
proposals for socialist markets they provide a pragmatic way of obtaining a plan ray that 
conforms to consumer demand (Cottrell/Cockshott 1992).

Whilst the task of determining the plan ray itself can be solved by Dickinson’s meth-
od, determining its intercept with the production frontier remains problematic unless all 
the technical coeffi  cients of production are available to the planning system. In this context 
the Austrian school has tended to emphasise the importance of tacit or private knowledge. 
Th ey have argued that a key role of the price system is its ability to make public, data that 
was previously held privately by fi rms. Th e gist of the argument is that although fi rms may 
wish to keep private the technical details of production, they are forced by the market to 
make public such portions of the data as relate to their interaction with other fi rms through 
the prices that they bid for inputs. But this view of the price system as the principle chan-
nel of inter fi rm information is demonstrably wrong. Prices are only a small part of the in-
formation that is exchanged between fi rms. Details about quantities, specifi cation of com-
ponents, delivery times etc., all have to be exchanged between supplier and consumer. In 
quantity, this other information far outweighs the information content of the price that is 
fi nally agreed upon.7 If you were to gather together the information of this sort that a fi rm 
communicates to its suppliers and to its customers, you would be able to reconstruct a pret-
ty accurate linear model of the production processes it was undertaking. In a modern econ-
omy this information is already largely computerised. Orders are entered into purchasing 
systems that record the purchases in a database and typically transmit the details electroni-
cally to suppliers. It requires no great feat of imagination to envisage a planned economy in 
which a set of standardised order control packages are generally used. Th ese packages, in-
stead of sending the orders directly to supplier, could route them via central servers which 
record the information in databases used by the planning computers. In the process, checks 
could be made to see if the anticipated use of critical inputs was likely to exceed availabil-
ity. A generalised solution to the linear programming problem on a national scale can then 
be invoked to adjust up or down the intensities of outputs of diff erent processes in order to 
converge on the Kantorovich ray.

7 Th e metric used for measuring information in this context could either be that Shannon (1948) 
or Li/Vitanyi (1997).
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7. Conclusion

Th e Soviet mathematical school founded by Kantorovich and the Austrian school exempli-
fi ed by von Mises took radically diff erent positions on the feasibility of socialist economic 
calculation. To a large extent they ignored one another. Th e Austrian school largely concen-
trated on criticising Western trained socialist economists like Lange and the Soviet school 
appears to have ignored von Mises completely. Even when the key participants met, the is-
sue was not raised. Menshikov writes:

»It is interesting that in the account of his trip to Sweden for receiving the Nobel 
Prize, Kantorovich mentions an informal reception with the participation of several 
American economists – Nobel Prize laureates – including Hayek, Leontief, and Sam-
uelson. But, apparently, neither at this reception, nor during other meetings, this is-
sue was never raised. In January 1976, when I worked in USA as the Director of the 
United Nation Projections and Perspective Studies Branch, I was asked to present 
L.V. Kantorovich as a new Nobel Prize laureate at the annual meeting of the Amer-
ican Economic Association in Atlantic City. Of course, I put the emphasis on the 
economic discovery of the laureate. In the discussion, none of the audience, which 
included T. Koopmans and L. Klein, a future Nobel Prize laureate, mentioned the 
question of actual Kantorovich’s answer to a part of Hayek’s argumentation.« (Men-
shikov 2006: 1396)

With the political demise of the USSR, the Austrian school have tended to assume that von 
Mises arguments have been vindicated, but theoretical economic arguments are not fi nally 
resolved by politics. No, one has to bring economic arguments head to head in their own 
terms. Kantorovich, an absent participant in the Western debate on socialist calculation, is 
still worth paying attention to.

A. Appendix: Kantorovich’s Algorithm

We refer in the main text of the article to Kantorovich’s method of resolving multipliers. In 
Kantorovich (1960) he gives what is essentially a paper and pencil algorithm for his prob-
lems. Th e algorithm described there requires a certain residual of human intelligence to im-
plement. In what follows I give a representation of his algorithm in a form suffi  ciently un-
ambiguous as to allow computer implementation.

What follows is a program written in Vector Pascal (Cockshott 2002) a dialect of Pascal 
(Jensen/Wirth 1991) extended with elements of Iversons notation (Iverson 2007). Pascal is a 
strongly typed language which helps guard against programming errors. Iverson developed 
his notation whilst he was a PhD student of Leontief and was looking for a notation suit-
able for unambiguous expression of algorithms, initially algorithms needed for computer-
ised prepartion of Input/Output tables. Th e program has been processed by a literate pro-
gramming tool similar to that described in Knuth (1984a) and typeset using TEX (Knuth 
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1984b). Th e text in roman font that follow are comments describing the algorithm. Th e pro-
gram code is generally in san-serif font. Th e text in roman font that follows are comments. 
Th e program code is generally in san-serif font, and the whole, is in the literate program-
ming output format generated by the compiler.

program excavate;

Th e objective of the program is to solve Kantorovich’s soil excavation problem by his meth-
od of resolving multipliers. It starts out from the data provided in Table 9. In the table the 
norms for the excavator types are shown in italics. In Soviet parlance, a norm appears to have 
meant the expected output per hour of the A-machine applied to a particular type of work. 
Th us Excavator A can dig out 105 m3/hr of soil type I, 56 m3/hr of soil of type II etc.

Th e objective is given in the last column: 20,000 m3 of each type of soil.

Table 9: Simplifi ed version of Kantorovich (1939: Table 5)

Kinds of soil Machinery for the work

Excavator A Excavator B Excavator C

I 105 190 107 0 64 0 20,000

II 56 92 66 222 38 0 20,000

III 56 0 83 60 53 282 20,000

Total Hours 282 282 282

Following the columns of the norms Kantorovich gives the optimal allocation of machine 
times to activities to minimise overall time taken to do the digging. Th e program will repro-
duce this result by applying his method of resolving multipliers or objectively determined 
valuations. We fi rst introduce our domain of discourse: the types of soil, the types of ma-
chine and the units of measurement we are using.

type
 soil = (I, II, III);
 excavator = (A, B, C);
 units =(hr, meter);

Now we introduce the dimensions in which volume, time and norms are specifi ed. For in-
stance norms are real numbers denoting cubic meter per hour. Th e word pow in what fol-
lows means raised to the power, and * is the multiplication operator.

type
 volume = real of meter pow 3;
 duration = real of hr;
 norm = real of meter pow 3 * hr pow –1;
const
 hour: duration = 1.0;
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 cubicmeter: volume = 1.0;
 epsilon = 0.001;

Th e production norms for the machines working on each kind of soil and targets for soil to 
be moved are copied from Kantorovichs Table 5 and stored in an appropriate matrix called 
norms, and a scalar called targets. In a more general algorithm this could be a vector, but 
since all targets are the same I use a scalar.

const
 norms : array [soil, excavator] of norm =
  ((105, 107, 64),
  (56, 66,38),
  (56, 83, 53));
 identity: array [soil, soil] of real =
  ((1, 0, 0),
  (0, 1, 0),
  (0, 0, 1));
 target: volume = 20000 ;

We now introduce the variables of the problem: a matrix x which will encode the time each 
machine spends on each type of soil; L, a vector of objectively determined valuations of dif-
ferent soils. Th e standardised output of each machine for each soil type is obtained by ap-
plying resolving multipliers to the soil types.

var
 x: array [soil ,excavator ] of duration;
 Let dx ∈  duration;
 L: array [soil] of real;
 standardisedoutput: array [excavator, soil] of norm;
 outputs: array [soil] of norm;
 totals: array [soil] of volume;
 Let ok ∈  boolean;
 Let greatestsoil, leastsoil, deltam ∈  volume;
 Let best ∈  norm;
 Let e, Scoop ∈  excavator;
 Let s, least, m, j ∈  soil;
 Let λ, f ∈  real;
 Let count ∈  integer;
 equated: array [soil] of real;
procedure ComputeTotalsEtc; (see Section A1)
function marginalgain (s: soil; d: excavator): volume; (see Section A2)
function mainSoilProducedBy (e: excavator): soil; (see Section A3)
function fi ndScoop (var s: soil): excavator; (see Section A4)
begin
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 L ← 1;
 ok ← false;
 count ← 0;
 f ← 0.3;

Iterate the following steps until we have a satisfactory answer.

 while not ok do
 begin
  x ← 0 × hour;

Use the L to get a standardised performance for each machine.

  standardisedoutput ← (norms × LT )T ;

For each machine fi nd the soil for which it has the best performance

  for e ← A to C do
  begin

fi nd the best performance of the machine on any soil

   outputs ← standardisedoutpute;
   best ← \max outputs;

set each machine to work on the soil it is best at

   for s ← I to III do
    if standardisedoutpute,s = best then xs,e ← hour;
  end;
  totals ← ∑ (norms × x);
  greatestsoil ← \max totals;
  leastsoil ← \min totals;
  if leastsoil ≤ 0.0 × cubicmeter then
  begin

check if any soil has a zero output and raise its value if it has

   for s ← I to III do
   if totalss < greatestsoil then Ls ← Ls(1.02 + (ord(s)/10))
  end
  else ok ← true;
 end;
 count ← 0;

At this point our estimate of the resolving multipliers is accurate enough to ensure that some 
of each soil is now being moved, but we have not yet met the requirement that the same 
amount of each soil must be moved. We now try to get a more precise estimate of the re-
solving multipliers and in the process we adjust the amounts of each soil being moved. It is 
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important to note at this point that any further adjustments must come by de-specialising 
some of the excavators so that they move more than one soil type. Th e resolving multipliers 
have until now been used to weight the outputs of diff erent soil types in order to assign each 
digger to the soil it is best suited to. If a machine is no longer specialised, that is if it moves 
more than one soil, then the weights must be such that it is no longer best at one particular 
soil type. Th e multipliers must be set so that the marginal weighted output of the excavator 
on any of the soils on which it is employed are the same. Th us if a machine k is employed 
on two soils i, j then standardisedoutput[k, j] = standardisedoutput[k, i].

In turn this implies that for any machine that is employed to move two soils the ratio 
of the resolving multipliers must be the inverse of the ratio of the norms.

Th e algorithm will work soil a time bringing ever more soil outputs into equality. 
We defi ne the set of soils whose outputs has been brought into equality as the equated set.

For those soils in the equated set, the resolving multipliers of the soils will have been 
corrected so that for any machine moving more than one soil they stand in inverse ratio to 
that digger’s norms.

computeTotalsEtc;
repeat

Find which machine not in the equated set is 2nd best at producing this soil under current 
resolving multipliers. Call this machine Scoop.

Scoop ← fi ndScoop (least);
m ← mainSoilProducedBy (Scoop);

Adjust the resolving multiplier ratio between Scoops soil and the least produced soil to ra-
tio of Scoops norms.

← least least,scoop
m

m,scoop

L ×norms
L ;

norms

It is now necessary to reduce the output of scoop on scoops soil and increase it on the least 
produced soil. It is necessary to compute how much to reduce scoops soil by. Th e resolv-
ing multipliers give us substitution ratios between diff erent soil outputs. Suppose that we 
want to reduce output of soil m by one unit and increase the output of soil j, the increase 
in j we get is

m
j

j

L
L

Δ =
 
.

If we want to reduce the output of i and we have two other soils j, k which we want to in-
crease equally then we have

Δk = Δj

where Δk means change in x and

–ΔmLm = ΔkLk + ΔjLj = Δk (Lj + Lk) .
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Th us

j k
m k

m

L L
L

Δ Δ
+

= −
 
.

Let Cm, Cj, Ck be the current outputs of each soil; given that Cj = Ck we have to chose the 
Δs so that

Cm + Δm = Cj + Δj = Ck + Δk .

It follows that

j k
m k k k

m

L L
C C

L
Δ Δ

+
− = + .

and

(1 )j k j k
m k k k k

m m

L L L L
C C

L L
Δ Δ Δ

+ +
− = + = +

so

1

m j
j

j k

m

C C
L L

L

Δ
−

=
+

+
 

.

We next compute the reduction to be made in soil m from the formula

j k
m k

m

L L
L

Δ Δ
+

= −

substituting we get

( )
1

m j j k
m

j k m

m

C C L L
L L L

L

Δ
− +

= −
+

+
 

.

Translating this to the variables used in the program we have:
j least;

L.equated
L

;

deltam
(-1)× ×(totals -totals )

1+
;

m

m j

←

←

←

λ

λ
λ

Note that in the line above we are generalising the term Lj + Lk to an arbitrary number of 
multipliers (1 or 2 in this program) by computing the inner product between the equated 
vector and the multipliers. Th is works because the equated vector has a 1 for all soils in the 
equated set. We now compute the change in duration that Scoop spends on its best soil (dx) 
by scaling deltam by Scoops norm for soil m.
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←

←
m,Scoop

m,Scoop m,Scoop

deltamdx ;
norms

x x +dx;

reallocate this time to Scoops best soil in the equated set which we will now call j

best ← normsI,Scoop × 0;
j ← I;
for s ← I to III do
 if normss,Scoop × equateds > best then
 begin
  best ← normss,Scoop;
  j ← s;
 end ;
 xj,Scoop ← xj,Scoop – dx;
 computeTotalsEtc;
 count ← count + 1;
 until ((∑ equated ) = 3) ∨  (count > 10);
 writeln(‘answer arrived at after’‚ count, ‘trys‘);

 writeln(‘allocation’, 
/ I×x target totals

hour
);

end;

A.1 ComputeTotalsEtc

procedure ComputeTotalsEtc;

Work out how much is being produced, which soil is being produced least and which soils 
outputs are equals to this,

var
 d: array [soil] of real;
begin
 totals ←∑ (norms × x);
 leastsoil ← \min totals;

Find the soil that is least produced.

 for s ← I to III do
  if totalss = leastsoil then least ← s;

Find the ones on the plan ray
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1.0 if
0.0 otherwise

ε ε

←

∧⎧
← ⎨

⎩

totals-leastsoild ;
cubicmeter

(d< ) (d>- )
equated ;

end;

A.2 marginalgain

function marginalgain (s: soil; d: excavator): volume;

Th is computes the marginal gain, under the weighting imposed by the current resolving 
multipliers, of a small shift of the digger d’s time to the specifi ed soil type s. We compute 
the eff ect of multiplying all current time allocations to 1 – ε whilst increasing the alloca-
tion of time to soil s by ε. Th e assumption here is that for now each machine has only one 
hour to allocate.

const
 epsilon = 0.001;
var
 Let currentoutput ∈  volume;
begin
 currentoutput ← Σ xd × normsι0,d;
 marginalgain ← ((ε × hour) × normss,d) - ε × currentoutput;
end;

A.3 mainSoilProducedBy

function mainSoilProducedBy (e: excavator): soil;

Th is determines which soil excavator e produces the most of.

var
 Let v ∈  volume;
 Let j, s ∈  soil;
begin
 v ← 0 × cubicmeter;
 s ← i;
 for j ← I to III do
 begin
  if v < normsj,e × xj,e then
  begin
   v ← normsj,e × xj,e;
   s ← j;
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  end;
 end;
 mainSoilProducedBy ← s;
end;

A.4 fi ndScoop

function fi ndScoop (var s: soil): excavator;

Find which machine not currently fully committed is best at producing the soil s. Th e pa-
rameter s is updated by the call. Th e soil s must be drawn from one of those in the equated 
set. We call this machine Scoop. Th e algorithm searches to fi nd which machine will have 
the greatest marginal output of the soil in the equated set per unit of other soil it gives up 
by switching to produce s.

var
 Let gain ∈  volume;
 Let j, m ∈  soil;
 Let d, Scoop ∈  excavator;
begin
 Scoop ← A;
 gain ← (–maxint) × cubicmeter;
 for d ← A to C do
  for j ← I to III do
   if equatedj > 0 then
   begin
    m ← mainsoilproducedby (d);
    if marginalgain (j, d) > gain then
    begin
     if equatedm < 1 then
     begin
      gain ← marginalgain (j, d);
      Scoop ← d;
      s ← j;
     end;
    end;
   end;
   fi ndScoop ← Scoop;
end;



198 Intervention. European Journal of  Economics and Economic Policies

References

Appel, J., Baker, M., Deutschlands, A.A., Kommunisten, G.I., (1990): Fundamental principles 
of communist production and distribution, Movement for Workers’ Councils, Kolle-
ktivarbeit der Gruppe Internationaler Kommunisten – GIK [Allgemeine Arbeiter Un-
ion Deutschlands – AAUD].

Bienstock, D. (2002): Potential Function Methods for approximately solving Linear Programming 
Problems: Th eory and Practice, Norwell, Massachusetts: Kluwer Academic Publishers.

Cottrell, A., Cockshott, P. (1992): Towards a New Socialism, Nottingham: Bertrand Russell 
Press.

Cockshott, P. (2002): Vector pascal reference manual, in: ACM SIGPLAN Notices, 37(6), New 
York: ACM Press, 59 – 81, URL: http://doi.acm.org/10.1145/571727.571737.

Dantzig, G.B., Wolfe, P. (1961): Th e decomposition algorithm for linear programming, in: 
Econometrica, 29(4), 767 – 778.

Dickinson, H.D. (1933): Price formation in a socialist community, in: Th e Economic Journal, 
43(170), 237 – 250.

Dieterich, H. (2002): La Democracia Participativa: El Socialismo del Siglo XXI, Baigorri: Pais 
Vasco.

Farjoun E., Machover M. (1983): Laws of Chaos, A Probabilistic Approach to Political Economy, 
London: Verso.

Gondzio, J., Grothey, A. (2006a): Solving nonlinear fi nancial planning problems with 109 de-
cision variables on massively parallel architectures, in: Constantino, M., Brebbia, C.A. 
(eds.), Computational Finance and its Applications II, Southampton/Boston: WIT Press, 
95 – 108.

Gondzio, J., Grothey, A. (2006b): Solving distribution planning problems with the interior 
point method, Technical Report MS-06-001, School of Mathematics, University of Ed-
inburgh, Edinburgh EH9 3JZ, Scotland, UK.

Grossman, G. (1963): Review: Against bourgeois economic pseudo-theories of socialism, in: Th e 
American Economic Review, 53(1), 211 – 213.

Iverson, K. (2007): Notation as a tool of thought, in: ACM Turing Award Lectures, New York: 
ACM, 1979, URL: http://doi.acm.org/10.1145/1283920.1283935.

Jensen, K. Wirth, N. (1991): PASCAL User Manual and Report: ISO PASCAL standard, 
Berlin: Springer.

Kantorovich, L.V. (1960): Mathematical methods of organizing and planning production, in: 
Management Science, 6(4), 366 – 422.

Kantorovich, L.V. (1965): Th e Best Use of Economic Resources, Oxford: Harvard University 
Press.

Karmarkar, N. (1984): A new polynomial-time algorithm for linear programming, in: Combi-
natorica, 4(4), 373 – 395.

Khachian, L. (1979): A polynomial algorithm in linear programming, in: Soviet Mathematics 
Doklady, 20, 191 – 194.



Paul Cockshott: Von Mises, Kantorovich and in-natura calculation 199 

Klee V., Minty G. (1972): How good is the simplex algorithm, in: Shisha, O. (ed.), Inequalities-
III, New York: Academic Press, 159 – 175.

Knuth, D.E. (1984a): Literate programming, in: Th e Computer Journal, 27(2), 97 – 111.
Knuth, D.E. (1984b): Th e TeXbook, Addison-Wesley.
Lange, O. (1938): On the Economic Th eory of Socialism, Minnesota: University of Minnesota 

Press.
Li, M., Vitanyi, P.M.B. (1997): An Introduction to Kolmogorov Complexity and Its Applications, 

New York: Springer.
Menshikov, S.M. (2006): Topicality of Kantorovich’s economic model, in: Journal of Mathemat-

ical Sciences, 133(4), 1391 – 1397.
Nemchinov, V.S. (1964): Th e use of Mathematics in Economics, Cambridge: MIT Press.
Neurath, O. (2004): Economic plan and calculation in kind, in: Uebel, T.E., Cohen, R.S. (eds.) 

Th e Use of mathematics in economics, edited by A. Nove, publisher Oliver and Boyd, Ed-
inburgh, 1964, London: Kluwer.

Nove, A. (1983): Th e Economics of Feasible Socialism, London: George Allen and Unwin.
Nove, A. (1964): Introduction, in: Use of mathematics in economics, Oliver and Boyd, wpc,  

2008.11.04.
Novozilov V.V. (1964): Cost benefi t comparisons in a socialist economy, in: Use of mathemat-

ics in economics, Oliver and Boyd, wpc, 2008.11.04.
Peters, A. (1996): Das Äquivalenzprinzip als Grundlage der Global Ökonomie, Akademische Ver-

lagsanstalt.
Peters, A. (2000): Was ist und wie verwirklicht sich Computer-Sozialismus: Gespräche mit Konrad 

Zuse, Berlin: Verlag Neues Leben.
Ricardo, D. (1951): Principles of political economy and taxation, in: Sraff a, P. (ed.), Th e Works 

and Correspondence of David Ricardo, Volume 1, Cambridge: Cambridge University 
Press, 249 – 298.

Shannon, C. (1948): A mathematical theory of communication, in: Th e Bell System Technical 
Journal, 43, 379 – 423, 623 – 56.

Sipser, M. (2006): Introduction to the Th eory of Computation, Oxford: Th omson.
Swann, M.J. (1975): On the theory of optimal planning in the Soviet Union, in: Australian Eco-

nomic Papers, 14(24), 41 – 56.
Turing, A. (1937): On computable numbers. With an application to the Entscheidungsproblem, 

in: Proceedings of the London Mathematical Society, 1(2), 126 – 151.
Turing, A. (1950): Computing machinery and intelligence, in: Mind, 49, 433 – 460.
Turing, A. (2004): Lecture on the automatic computing engine, in: Copeland, B.J. (ed.), Th e 

Essential Turing, New York: Oxford University Press.
von Mises, L. (1935): Economic calculation in the socialist commonwealth, in: Hayek, F.A. (ed.), 

Collectivist Economic Planning, London: Routledge and Kegan Paul, 87 – 130.
von Mises, L. (1949): Human Action, London: Hodge and Company.






