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1 Introduction

Recently, a number of macroeconometric studies emphasize the role of antici-
pated shocks as sources of macroeconomic fluctuations. Beaudry and Portier
(2006) find that more than one half of business cycle fluctuations are caused
by news concerning future technological opportunities. Davis (2007) and Fuji-
wara, Hirose, and Shintani (2008) analyze the importance of anticipated shocks
in large scale DSGE models and report that these disturbances are important
components of aggregate fluctuations. Schmitt-Grohé and Uribe (2008) conduct
a Bayesian estimation of a real-business cycle model and find that anticipated
shocks are the most important source of aggregate fluctuations. In particu-
lar, they report that anticipated shocks explain two thirds of the volatility in
consumption, output, investment, and employment.

In light of these findings, Wohltmann and Winkler (2008) investigate, wheth-
er the anticipation of future cost-push shocks has a stabilizing effect on the
economy and thus reduces the welfare loss compared to unanticipated shocks.
In order to provide analytical results which do not rely on calibrations, they
consider the baseline New Keynesian model with purely forward-looking IS and
Phillips curves. This enables them to derive an analytical solution of welfare as
a function of the time span between the anticipation and the realization of the
shock. They find that – for empirically plausible degrees of nominal rigidity –
the anticipation of a future cost-push shock leads to a higher welfare loss than
an analogous unanticipated shock.

In order to conduct an analysis of the (welfare) effects of anticipated shocks
in more elaborate models, this paper presents a general solution method for
linear dynamic rational expectations models with anticipated shocks and opti-
mal policy. Our method extends the work of Söderlind (1999), who uses the
generalized Schur decomposition method, advocated by Klein (2000), to solve
linear rational expectations models with optimal policy. However, Söderlind
(1999) only considers stochastic models with white noise shocks which are, by
definition, unpredictable. In the case of anticipated shocks, the occurrence of
all future shocks is known exactly at the time when the solution of the model is
computed. Our method also contains unanticipated shocks as a limiting case.

As an economic example, we lay out a calibrated New Keynesian model for
a closed and cashless economy with internal habit formation in consumption
preferences, a variant of Calvo price staggering with partial indexation to past
inflation and a time-varying wage mark-up which represents a typical cost-push
shock. We compare the effects of mark-up shocks under optimal monetary
policy for different lengths of the anticipation period. Our results confirm the
finding of Wohltmann and Winkler (2008) who show that anticipated shocks
entail higher welfare losses than unexpected cost shocks.

The paper is organized as follows. Section 2 discusses optimal policies in
RE models with anticipated temporary shocks. We first determine the optimal
unrestricted policy under precommitment and calculate the minimum value of
the intertemporal loss function. We then consider (optimal) simple rules and
demonstrate how the Schur decomposition can be used to solve the model under
these conditions. Section 3 derives the hybrid New Keynesian model, presents
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the welfare-theoretic loss function and discusses the effects of anticipated and
unanticipated cost-push shocks. Finally, section 4 provides concluding remarks.
In the Appendix, we present a short discussion of the well known stochastic case
with white noise shocks.

2 The Model

In this paper we discuss the following linear expectational difference equations

A

(
wt+1

Et vt+1

)
= B

(
wt

vt

)
+ Cut + Dνt+1 (1)

where wt is an n1 × 1 vector of predetermined variables, assuming w0 given, vt

an n2 × 1 vector of non-predetermined variables, ut an m × 1 vector of policy
instruments, and νt+1 an r × 1 vector of exogenous shocks. The matrices A
and B are n × n (where n = n1 + n2), while the matrices C and D are n × m
and n × r respectively. We allow matrix A to be singular which is the case if
static (intratemporal) equations are included among the dynamic relationships.
The vector w, composed of backward-looking variables can include exogenous
variables following autoregressive processes. Et vt+1 denotes model consistent
(rational) expectations of vt+1 formed at time t. We assume that the shocks
are anticipated by the public in advance and take the following form

νt =

{
ν for t = τ > 0

0 for t 6= τ
(2)

where ν = (ν1, . . . , νr)
′ is a constant non-zero r × 1 vector. It is assumed that

at time t = 0 the public anticipates a shock of the form outlined in (2) to
take place at some future date τ > 0. Note that τ also defines the lengths
of the anticipation period. Since the shocks are anticipated by the public we
have Et νt+1 = νt+1. For notational convenience, we define the n × 1 vector
kt = (w′

t, v
′
t)
′ and the n3 × 1 target vector st = Ãkt + B̃ut, where the matrices

Ã and B̃ are n3 × n and n3 × m respectively. Assume that the policy maker´s
welfare loss at time t is given by

Jt =
1

2
Et

∞∑

i=0

λi{s′t+iW1st+i + u′
t+iW2ut+i} (3)

where W1 and W2 are symmetric and non-negative definite matrices and λ is a
discount factor with 0 < λ ≤ 1. We can rewrite Jt as

Jt =
1

2
Et

∞∑

i=0

λi{k′
t+iW̃kt+i + 2k′

t+iPut+i + u′
t+iRut+i} (4)

where W̃ = Ã′W1Ã and R = W2 + B̃′W1B̃ are symmetric and non-negative
definite and P = Ã′W1B̃.
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2.1 Optimal Policy with Precommitment

In the following, the policy maker´s optimal policy rule at time t = 0 is de-
veloped. It is assumed that the policy maker is able to commit to such a rule.
From the Lagrangian

L0 =
1

2
E0

∞∑

t=0

λt{k′
tW̃kt + 2k′

tPut + u′
tRut

+ 2ρ′t+1[Bkt + Cut + Dνt+1 − Akt+1]} (5)

with the n× 1 multiplier ρt+1, we get the first-order conditions with respect to
ρt+1, kt, and ut:




A 0n×m 0n×n

0n×n 0n×m λB′

0m×n 0m×m −C ′






kt+1

ut+1

ρt+1




=




B C 0n×n

−λW̃ −λP A′

P ′ R 0m×n






kt

ut

ρt


+




D
0n×r

0m×r


 νt+1 (6)

To solve the system of equations (6), expand the state and costate vector kt and
ρt as (w′

t, v
′
t)
′ and (p′wt, p

′
vt)

′ respectively and re-order the rows of the (2n+m)×1
vector (k′

t, u
′
t, ρ

′
t)
′ by placing the predetermined vector pvt after wt. Since vt

is forward-looking with arbitrarily chosen initial value v0, the corresponding
Lagrange multiplier pvt is predetermined with initial value pv0 = 0. Re-order
the columns of the (2n + m) × (2n + m) matrices in (6) according to the re-
ordering of (k′

t, u
′
t, ρt)

′ and write the result as

F

(
w̃t+1

ṽt+1

)
= G

(
w̃t

ṽt

)
+




D
0n×r

0m×r


 νt+1 (7)

where w̃t = (w′
t, p

′
vt)

′ and ṽt = (v′t, u
′
t, p

′
wt)

′. The n × 1 vector w̃t contains the
’backward-looking’ variables of (6) while the (n + m)× 1 vector ṽt contains the
’forward-looking’ variables.

Equation (6) implies that the (2n + m) × (2n + m) matrix F is singular.
To solve equation (7) we apply the generalized Schur decomposition method
(Söderlind, 1999; Klein, 2000). The decomposition of the square matrices F
and G is given by

F = Q
′
SZ

′
, G = Q

′
TZ

′
(8)

or equivalently

QFZ = S, QGZ = T (9)

where Q,Z, S, and T are square matrices of complex numbers, S and T are
upper triangular and Q and Z are unitary, i.e.

Q · Q
′
= Q

′
· Q = I(2n+m)×(2n+m) = Z · Z

′
= Z

′
· Z (10)
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where the non-singular matrix Q
′

is the transpose of Q, which denotes the
complex conjugate of Q. Z

′
is the transpose of the complex conjugate of Z.

The matrices S and T can be arranged in such a way that the block with the
stable generalized eigenvalues (the ith diagonal element of T divided by the ith
diagonal element of S) comes first. Premultiply both sides of equation (7) with
Q and define auxiliary variables z̃t and x̃t so that

(
z̃t

x̃t

)
= Z

′
(

w̃t

ṽt

)
(11)

Partitioning the triangular matrices S and T in order to conform with z̃ and x̃
and set

Q




D
0n×r

0m×r


 =

(
Q1

Q2

)
(12)

where Q1 is n× r and Q2 is (n + m)× r. We then obtain the equivalent system
(

S11 S12

0(n+m)×n S22

)(
z̃t+1

x̃t+1

)
=

(
T11 T12

0(n+m)×n T22

)(
z̃t

x̃t

)
+

(
Q1

Q2

)
νt+1 (13)

where the n×n matrix S11 and the (n+m)× (n+m) matrix T22 are invertible
while S22 is singular. The square matrix T11 may also be singular. The lower
block of equation (13) contains the unstable generalized eigenvalues and must
be solved forward. Since

x̃t+s = M2x̃t+s+1 − T−1
22 Q2νt+s+1 (s = 0, 1, 2, . . .) (14)

where M2 = T−1
22 S22, the unique stable solution for x̃t is given by

x̃t = −

∞∑

s=0

M s
2T−1

22 Q2 Et νt+s+1

=

{
−M τ−1−t

2 T−1
22 Q2ν for 0 ≤ t < τ

0 for t ≥ τ
(15)

The upper block of (13) contains the stable generalized eigenvalues and can
be solved backward. Since

z̃t+1 = M1z̃t + S−1
11 (T12x̃t − S12x̃t+1) + S−1

11 Q1νt+1 (16)

where M1 = S−1
11 T11 (which in general is not invertible), the general solution is

given by

z̃t = M t
1K +

t−1∑

s=0

M t−s−1
1 S−1

11 (T12x̃s − S12x̃s+1 + Q1νs+1)

=





M t
1K +

∑t−1
s=0 M t−s−1

1 S−1
11 (T12x̃s − S12x̃s+1) for 0 ≤ t < τ

M t
1K +

∑τ−1
s=0 M t−s−1

1 S−1
11 (T12x̃s − S12x̃s+1)

+M t−τ
1 S−1

11 Q1ν for t ≥ τ

(17)
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where x̃s is defined in (15).
The solution for t ≥ τ can be rewritten as

z̃t = M t−τ
1 K̃ for t ≥ τ (18)

where

K̃ = M τ
1 K + S−1

11 Q1ν +

τ−1∑

s=0

M τ−s−1
1 S−1

11 (T12x̃s − S12x̃s+1) (19)

Since

x̃s =

{
−M τ−1−s

2 T−1
22 Q2ν for 0 ≤ s < τ

0 for s ≥ τ
(20)

we can write K̃ as

K̃ = M τ
1 K + S−1

11 Q1ν + [−W̃1 + M1W̃2]T
−1
22 Q2ν (21)

where

W̃1 =

τ−1∑

s=0

M τ−s−1
1 S−1

11 T12M
τ−s−1
2 =

τ−1∑

k=0

Mk
1 S−1

11 T12M
k
2 (22)

and

W̃2 =
τ−2∑

s=0

M τ−s−2
1 S−1

11 S12M
τ−s−2
2 =

τ−2∑

k=0

Mk
1 S−1

11 S12M
k
2 (23)

W̃1 as well as W̃2 is a finite geometric sum of matrices and can be written as

W̃1 = S−1
11 T12 − M τ

1 S−1
11 T12M

τ
2 + M1W̃1M2 (24)

and

W̃2 = S−1
11 S12 − M τ−1

1 S−1
11 S12M

τ−1
2 + M1W̃2M2 (25)

To solve for W̃1 and W̃2 respectively, we use the matrix identities (Rude-
busch and Svensson 1999; Klein, 2000) vec (A + B) = vec (A) + vec (B) and
vec (ABC) = [C ′ ⊗ A] vec (B) where vec (A) denotes the vector of stacked col-
umn vectors of the matrix A and ⊗ denotes the Kronecker product of matrices.

We then obtain from (24) and (25)

vec W̃1 − [M ′
2 ⊗ M1] vec W̃1 = vec [S−1

11 T12 − M τ
1 S−1

11 T12M
τ
2 ] (26)

and

vec W̃2 − [M ′
2 ⊗ M1] vec W̃2 = vec [S−1

11 S12 − M τ
1 S−1

11 S12M
τ
2 ] (27)
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with the solution

vec W̃1 = [I − M ′
2 ⊗ M1]

−1 · vec [S−1
11 T12 − M τ

1 S−1
11 T12M

τ
2 ] (28)

vec W̃2 = [I − M ′
2 ⊗ M1]

−1 · vec [S−1
11 S12 − M τ−1

1 S−1
11 S12M

τ−1
2 ] (29)

According to (17) and (20), the solution of z̃t for the anticipation period
0 < t < τ can be rewritten as

z̃t = M t
1K + [−W ∗

1t + W ∗
2t]T

−1
22 Q2ν for 0 ≤ t < τ (30)

with

W ∗
1t =

t−1∑

s=0

M t−s−1
1 S−1

11 T12M
τ−s−1
2 =

t−1∑

k=0

Mk
1 S−1

11 T12M
τ−t+k
2 (31)

and

W ∗
2t =

t∑

s=1

M t−s
1 S−1

11 S12M
τ−s−1
2 =

t−1∑

k=0

Mk
1 S−1

11 S12M
τ−1−t+k
2 (32)

W ∗
1t satisfies the matrix equation2

W ∗
1t = S−1

11 T12M
τ−t
2 − M t

1S
−1
11 T12M

τ
2 + M1W

∗
1tM2 (0 ≤ t < τ) (33)

with the solution

vec W ∗
1t = [I − M ′

2 ⊗ M1]
−1 · vec (S−1

11 T12M
τ−t
2 − M t

1S
−1
11 T12M

τ
2 ) (34)

The matrix W ∗
2t satisfies the equation3

W ∗
2t = S−1

11 S12M
τ−1−t
2 − M t

1S
−1
11 S12M

τ−1
2 + M1W

∗
2tM2 (0 ≤ t < τ) (35)

with the solution

vec W ∗
2t = [I − M ′

2 ⊗ M1]
−1 · vec (S−1

11 S12M
τ−1−t
2 − M t

1S
−1
11 S12M

τ−1
2 ) (36)

The constant K can be determined using the initial value of the predeter-
mined vector w̃. By premultiplying equation (11) with Z and by partitioning
the matrix Z to conform with the dimension of z̃ and x̃, we obtain

(
w̃t

ṽt

)
=

(
Z11 Z12

Z21 Z22

)(
z̃t

x̃t

)
(37)

2Note that equation (33) is also well-defined for t = τ . In this case it is equivalent to (24)
implying W ∗

1τ = W̃1.
3For t = τ − 1 equation (35) is equivalent to (25) so that W ∗

2τ−1 = W̃2. Then, according to
(21), K̃ = z̃τ = Mτ

1 K + S−1
11 Q1ν + [−W ∗

1τ + M1W
∗
2τ−1]T

−1
22 Q2ν.

The definition of W ∗
1t implies that W ∗

1t also satisfies the dynamic equation

W
∗
1t+1 = S

−1
11 T12M

τ−(t+1)
2 + M1W

∗
1t (0 ≤ t ≤ τ − 1)

with the initial value W ∗
1 0 = 0. Analogical, W ∗

2t satisfies the matrix difference equation

W
∗
2t+1 = S

−1
11 S12M

τ−t−2
2 + M1W

∗
2t (W ∗

2 0 = 0)

which only holds for 0 ≤ t < τ − 1 since M
τ−(τ−1)−2
2 = M−1

2 generally does not exist.
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and therefore

w̃0 = Z11z̃0 + Z12x̃0 (38)

with w̃0 = (w′
0, 0

′
n2×1)

′, z̃0 = K, and

x̃0 = −M τ−1
2 T−1

22 Q2ν (39)

where it is assumed that τ > 0.4 Equation (38) implies

K = Z−1
11 w̃0 − Z−1

11 Z12x̃0 (40)

provided the inverse Z−1
11 exists. A necessary condition is that the dynamic

system (7) has the saddle path property, i.e., that the number of backward-
looking variables (n1 + n2 = n) coincides with the number of stable generalized
eigenvalues (Söderlind, 1999; Klein, 2000].

In the case τ > 0 we can assume w0 = 0 so that according to (39) the
constant K can be written as

K = Z−1
11 Z12M

τ−1
2 T−1

22 Q2ν (41)

The solution to the state vector (z̃t, x̃t)
′ for 0 ≤ t < τ now reads as follows

(
z̃t

x̃t

)
= ΞtT

−1
22 Q2ν for 0 ≤ t < τ (42)

where

Ξt =

(
φ∗

t

−M τ−1−t
2

)
(0 ≤ t < τ) (43)

and5

φ∗
t = M t

1Z
−1
11 Z12M

τ−1
2 − W ∗

1t + W ∗
2t (44)

If Z11 is invertible, equation (37) implies

ṽt = Z21z̃t + Z22x̃t = Z21(Z
−1
11 w̃t − Z−1

11 Z12x̃t) + Z22x̃t = Nw̃t + Ẑx̃t (45)

where N = Z21Z
−1
11 and Ẑ = Z22 − Z21Z

−1
11 Z12. Write equation (45) as




vt

ut

pw t


 =




N11 N12

N21 N22

N31 N32



(

wt

pv t

)
+




Ẑ1

Ẑ2

Ẑ3


 x̃t (46)

4In the special case τ = 0 (unanticipated shocks) we have x̃0 = 0 and z̃t = (S−1
11 T11)

tK +
(S−1

11 T11)
tS−1

11 Q1ν implying z̃0 = K + S−1
11 Q1ν and K = Z−1

11 w̃0 − S−1
11 Q1ν with w0 6= 0. By

contrast, the initial value w0 can be normalized to zero if τ > 0.
5φ∗

t satisfies the dynamic equation

φ
∗
t+1 = M1φ

∗
t + S

−1
11 [−T12M2 + S12]M

τ−t−2
2

where the time index t must be restricted to 0 ≤ t < τ − 1.
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and assume the n2×n2 matrix N12 is invertible. The optimal policy rule under
commitment can then be written as

ut = N21wt + N22pv t + Ẑ2x̃t

= N21wt + N22N
−1
12 (vt − N11wt − Ẑ1x̃t) + Ẑ2x̃t

= N22N
−1
12 vt + (N21 − N22N

−1
12 N11)wt + (Ẑ2 − N22N

−1
12 Ẑ1)x̃t (47)

where x̃t is given by (15). For t < τ , ut depends on the auxiliary variable x̃t,
while for t ≥ τ , ut is only a linear function of the predetermined state variables
wt and pvt, where pvt can be substituted with the original state variables vt and
wt.

Minimum Value of the Loss Function

To determine the minimum value of the loss function Jt at time t = 0, we
express Jt as function of w̃ and ṽ. The loss function (4) can be written as

Jt =
1

2

∞∑

i=0

λi(k′
t+i, u

′
t+i)H

(
kt+i

ut+i

)
=

1

2

∞∑

i=0

λi(w′
t+i, v

′
t+i, u

′
t+i)H




wt+i

vt+i

ut+i


 (48)

where the (n + m) × (n + m) matrix H is given by

H =

(
W̃ P
P ′ R

)
(49)

with H = H ′. Define the n1 × n matrix D̃1 and the (n2 + m) × (n + m)
matrix D̃2 by D̃1 = (In1×n1 , 0n1×n2) and D̃2 = (I(n2+m)×(n2+m), 0(n2+m)×n1

),

respectively. Then w = D̃1(w
′, p′v)

′ = D̃1w̃
′, (v′, u′)′ = D̃2(v

′, u′, p′w)′ = D̃2ṽ
′,

(w′, v′, u′)′ = D̃(w̃′, ṽ′)′ with

D̃ =

(
D̃1 0n1×(n+m)

0(n2+m)×n D̃2

)

=

(
In1×n1 0n1×n2 0n1×(n2+m) 0n1×n1

0(n2+m)×n1
0(n+m)×n2

I(n2+m)×(n2+m) 0(n2+m)×n1

)
(50)

which is a (n+m)×(2n+m) matrix. The loss function Jt can now be rewritten
as

Jt =
1

2

∞∑

i=0

λi(w̃′
t+i, ṽ

′
t+i)D̃

′HD̃

(
w̃t+i

ṽt+i

)
= J

(1)
t + J

(2)
t (51)

where

J
(1)
t =

1

2

τ−1∑

i=0

λi(w̃′
t+i, ṽ

′
t+i)D̃

′HD̃

(
w̃t+i

ṽt+i

)
(52)

and

J
(2)
t =

1

2

∞∑

i=τ

λi(w̃′
t+i, ṽ

′
t+i)D̃

′HD̃

(
w̃t+i

ṽt+i

)
(53)
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First, we calculate J
(2)
t . For t ≥ τ , we have ṽt = Nw̃t and w̃t = Z11z̃t,

where N = Z21Z
−1
11 . We then obtain (w̃′

t, ṽ
′
t)
′ = Ñw̃t = ÑZ11z̃t, where Ñ =

(In×n, N ′)′ is a (2n + m) × n matrix. J
(2)
t can then be rewritten as

J
(2)
t =

1

2

∞∑

i=τ

λiZ ′
11z̃

′
t+iÑ

′D̃′HD̃ÑZ11z̃t+i =
1

2

∞∑

i=τ

λiZ ′
11z̃

′
t+iH

∗Z11z̃t+i (54)

with H∗ = Ñ ′D̃′HD̃Ñ is a symmetric n × n matrix. Inserting (18) in (54) we
obtain

J
(2)
t =

1

2
(M t

1K̃)′λτ

(
∞∑

i=τ

λi−τ (Z11M
i−τ
1 )′H∗(Z11M

i−τ
1 )

)
M t

1K̃ (55)

=
1

2
λτϕ′

tV
∗ϕt =

1

2
λτ trace(V ∗ϕtϕ

′
t)

where ϕt = M t
1K̃ and V ∗ is the convergent geometric sum of matrices

V ∗ =
∞∑

i=τ

λi−τ (Z11M
i−τ
1 )′H∗(Z11M

i−τ
1 ) (56)

which is of dimension n × n and satisfies the matrix equation

V ∗ = Z ′
11H

∗Z11 + λM ′
1V

∗M1 (57)

with the solution

vec (V ∗) = [I − λM ′
1 ⊗ M1]

−1 vec (Z ′
11H

∗Z11) (58)

For t = 0 we obtain from (55)

J
(2)
0 =

1

2
λτ trace(V ∗ϕ0ϕ

′
0) =

1

2
λτ trace(V ∗K̃K̃ ′) (59)

with K̃ given by (21).

The next step is the calculation of the finite sum J
(1)
t as defined in (52).

Because (w̃′
t, ṽ

′
t)
′ = Z(z̃′t, x̃

′
t)
′, we can write J

(1)
0 as

J
(1)
0 =

1

2

τ−1∑

i=0

λi(z̃′i, x̃
′
i)Z

′D̃′HD̃Z

(
z̃i

x̃i

)
=

1

2

τ−1∑

t=0

λt(z̃′t, x̃
′
t)H̃

(
z̃t

x̃t

)
(60)

where H̃ = Z ′D̃′HD̃Z.
Inserting the solution formulas for z̃t and x̃t in (60), we obtain the expression

J
(1)
0 =

1

2
(T−1

22 Q2ν)′

[
τ−1∑

t=0

λtΞ′
tH̃Ξt

]
(T−1

22 Q2ν) (61)

=
1

2
µ′W ∗µ =

1

2
trace

(
W ∗µµ′

)
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where µ = T−1
22 Q2ν and W ∗ =

∑τ−1
t=0 λtΞ′

tH̃Ξt.
Ξt satisfies the matrix difference equation

Ξt+1 =

(
φ∗

t+1

−M
τ−1−(t+1)
2

)
(62)

=

(
M1φ

∗
t

0

)
+

(
S−1

11 [−T12M2 + S12]

−I

)
M

τ−1−(t+1)
2

=

(
M1φ

∗
t

−M τ−1−t
2

)
+

(
S−1

11 [−T12M2 + S12]

M2 − I

)
M

τ−1−(t+1)
2

= M̃Ξt + ΩM τ−t−2
2 (0 ≤ t < τ − 1)

with

M̃ =

(
M1 0
0 I

)
, Ω =

(
S−1

11 [−T12M2 + S12]

M2 − I

)
(63)

and the initial value

Ξ0 =

(
φ∗

0

−M τ−1
2

)
=

(
Z−1

11 Z12

−I

)
M τ−1

2 (64)

Note that the dynamic equation (62) is not defined for t = τ − 1, since M2 =
T−1

22 S22 is generally not invertible. The solution time path for Ξt (0 ≤ t < τ−1)
can be obtained by either solving equation (62) backward or – if possible – by
solving equation (62) forward.

Solving (62) backward in time yields

Ξt = M̃ tΞ0 +

t−1∑

s=0

M̃ t−s−1ΩM τ−s−2
2 (65)

To obtain the forward solution assume that M1 = S−1
11 T11 is invertible. Then

M̃−1 exists and equation (62) can be written as

Ξt = M̃−1Ξt+1 − M̃−1ΩM τ−t−2
2 (66)

Given

Ξτ−1 =

(
φ∗

τ−1

−I

)
(67)

we obtain recursively for t = τ − n:

Ξτ−n =
(
M̃−1

)n−1
Ξτ−1 −

(
M̃−1

)n−1
Ω −

(
M̃−1

)n−2
ΩM2

−
(
M̃−1

)n−3
ΩM2

2 − · · · −
(
M̃−1

)
ΩMn−2

2

=
(
M̃−1

)n−1
Ξτ−1 −

n−1∑

k=1

(
M̃−1

)n−k
ΩMk−1

2

10



With t = τ − n we then get the forward solution

Ξt =
(
M̃−1

)τ−t−1
Ξτ−1 −

τ−t−1∑

k=1

(
M̃−1

)τ−t−k
ΩMk−1

2 (0 ≤ t < τ − 2) (68)

The total loss under the optimal unrestricted policy under commitment is
now given by

J0 = J
(1)
0 + J

(2)
0 =

1

2
trace(W ∗µµ′) +

1

2
λτ trace(V ∗K̃K̃ ′) (69)

Obviously, the value of J0 depends on the size of the lead time τ . In New
Keynesian models we often have a hump-shaped pattern for the function J0 =
J0(τ) where J0 is increasing in τ for small values of τ (see Section 3).

In the limiting case of unanticipated shocks (τ = 0), the total loss is given
by

J0 = J
(2)
0 =

1

2
K̃ ′V ∗K̃ (70)

where

K̃ = K
∣∣∣
τ=0

+ S−1
11 Q1ν = Z−1

11 w̃0 − S−1
11 Q1ν + S−1

11 Q1ν = Z−1
11 w̃0 (71)

Then

J0 =
1

2
w̃′

0Z
−1′

11 V ∗Z−1
11 w̃0 =

1

2
w̃′

0V w̃′
0 =

1

2
trace(V w̃0w̃

′
0) (72)

where

w̃0w̃
′
0 =

(
w0

pv 0

)
(w′

0, p
′
v 0) =

(
w0w

′
0 0n1×n2

0n2×n2 0n2×n2

)
(73)

and V = Z−1′

11 V ∗Z−1
11 satisfies the matrix equation

V = Z−1′

11 V ∗Z−1
11 = H∗ + λZ−1′

11 M ′
1V

∗M1Z
−1
11

= H∗ + λZ−1′

11 M ′
1Z

′
11Z

′−1
11 V ∗Z−1

11 Z11M1Z
−1
11 = H∗ + λΓ′V Γ (74)

with Γ = Z11M1Z
−1
11 .

2.2 (Optimal) Simple Rules

The policy maker could alternatively commit to a suboptimal simple rule of the
form

ut = Λkt + Ψ Et kt+1 (75)

where the constant matrices Λ and Ψ are m×n. Assuming rational expectations
and exogenous shocks of the form (2) which are anticipated in t = 0, we obtain
the dynamic system

(
A 0n×m

Ψ 0m×m

)(
kt+1

ut+1

)
=

(
B C
−Λ Im×m

)(
kt

ut

)
+

(
D

0m×r

)
νt+1 (76)
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The generalized Schur decomposition yields the system of equations

F

(
w̃t+1

ṽt+1

)
= G

(
w̃t

ṽt

)
+

(
D

0m×r

)
νt+1 (77)

where w̃ = w is an n1×1 vector, ṽ = (v′, u′)′ is an (n2+m)×1 vector and where
the square matrices F and G are (n + m) × (n + m) with the decomposition
QFZ = S and QGZ = T , where Q, Z, S, and T are (n+m)×(n+m) matrices.
Since

(
w̃
ṽ

)
=

(
Z11 Z12

Z21 Z22

)(
z̃
x̃

)
(78)

the matrices Z11, Z12, Z21, and Z22 are now n1×n1, n1×(n2+m), (n2+m)×n1,
and (n2 + m) × (n2 + m) respectively. The auxiliary variables z̃ and x̃ satisfy
the system of equations
(

S11 S12

0(n2+m)×n1
S22

)(
z̃t+1

x̃t+1

)
=

(
T11 T12

0(n+m)×n1
T22

)(
z̃t

x̃t

)
+

(
Q1

Q2

)
νt+1 (79)

where S11 and T11 are n1 × n1 matrices, S22 and T22 are (n2 + m) × (n2 + m)
and S12 and T12 are n1 × (n2 + m). The matrices Q1 and Q2 are n1 × r and
(n2 + m) × r respectively with

(
Q1

Q2

)
= Q

(
D

0m×r

)
(80)

The solution of (79) is given by (15) and (17). For t ≥ τ , we obtain ṽt = Nw̃t =
Nwt, where N = Z21Z

−1
11 is now an (n2 + m) × n1 matrix.

The loss function (51) simplifies to

Jt =
1

2

∞∑

i=0

λi(w′
t+i, ṽ

′
t+i)H

(
wt+i

ṽt+i

)
(81)

since D̃1 = In1×n1 , D̃2 = I(n2+m)×(n2+m) and therefore D̃ = I(n+m)×(n+m)

(cf. (50)). Jt can be partitioned using (51). J
(2)
t can be written as (54) with

H∗ = Ñ ′HÑ and Ñ = (In1×n1 , N
′)′. The value of the loss function J0 for given

matrices Λ and Ψ is given by J0 = J
(1)
0 + J

(2)
0 , where J

(1)
0 and J

(2)
0 are defined

in (59) and (61) respectively.
The minimization of J0 with respect to the coefficients of the matrices Λ

and Ψ yields an optimal simple rule of the form (75).

3 Example: A Hybrid New Keynesian Model

The model is a standard New Keynesian model for a closed and cashless econ-
omy with the additional features of internal habit formation in consumption
preferences and a variant of the Calvo (1983) mechanism with partial indexa-
tion of non-optimized prices to past inflation.6 The economy consists of final

6Similar models are applied by Smets and Wouters (2003), Giannoni and Woodford (2004), or
Casares (2006).
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goods producers, labor bundlers, households, and intermediate goods produc-
ers.

Final goods producers use a continuum of intermediate goods Yt(i) to pro-
duce the homogenous final good Yt in a perfectly competitive market. A final
goods producer maximizes his profits PtYt −

∫ 1
0 Pt(i)Yt(i)di, subject to the fol-

lowing CES production function

Yt =

(∫ 1

0
Yt(i)

1
1+λp di

)1+λp

(82)

where Pt is the price of the final good, Pt(i) is the price of the intermediate
good i, and (1 + λp) is the mark-up in the intermediate goods market.

The first-order condition for profit maximization yields the demand function
for intermediate good i

Yt(i) =

(
Pt(i)

Pt

)−
(1+λp)

λp

Yt (83)

and the equation for marginal costs

Pt =

(∫ 1

0
Pt(i)

− 1
λp di

)−λp

(84)

Analogously to final goods producers, labor bundlers buy differentiated la-
bor types Nt(j), aggregate them to Nt and sell it to the intermediate goods
producers under perfectly competitive conditions. A bundler maximizes his
profits WtNt−

∫ 1
0 Wt(j)Nt(j)dj, subject to the following CES aggregation func-

tion

Nt =

(∫ 1

0
Nt(j)

1
1+λw,t dj

)1+λw,t

(85)

Wt is the price of the labor bundle Nt, Wt(j) denotes the price of labor type j
and (1 + λw,t) is the time-varying wage mark-up.

The first-order condition for profit maximization yields the demand function
for labor type j

Nt(j) =

(
Wt(j)

Wt

)−
(1+λw,t)

λw,t

Nt (86)

and the wage index equation

Wt =

(∫ 1

0
Wt(j)

− 1
λw,t dj

)−λw,t

(87)

The economy is made up by a continuum of households, indexed by j ∈ [0, 1].
Each household j is a monopolistic supplier of labor type Nt(j). The household
determines the amount of the final good Ct(j) for consumption, its one-period
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nominal bond holdings Bt(j), and chooses the wage for its labor type Wt(j) in
order to maximize its lifetime utility

Et

∞∑

k=0

βk

(
1

1 − σ

(
Ct(j) − hCt−1(j)

)1−σ
−

1

1 + η
Nt(j)

1+η

)
(88)

where β is the discount factor, σ ≥ 1 is the inverse of the intertemporal elasticity
of substitution in consumption, and η is the inverse of the labor supply elasticity.
Ct−1(j) is the consumption of the jth household in period t−1 and Nt(j) are the
total hours worked. We assume h ≥ 0 to allow for internal habit formation in
consumption. Maximization of (88) is subjected to the labor demand function
(86) and the households’ period-by-period budget constraint is given by

Ct(j) +
Bt(j)

Pt
=

Wt(j)

Pt
Nt(j) +

Rt−1Bt−1(j)

Pt
+ Dr

t (j) (89)

where Rt is the one-period gross nominal interest rate on households jth nom-
inal bond holdings Bt(j), and Dr

t (j) are dividends, expressed in real terms.
The first-order conditions for this maximization problem are given by

βRt Et π−1
t+1 = Et

[
(Ct − hCt−1)

−σ − hβ(Ct+1 − hCt)
−σ

(Ct+1 − hCt)−σ − hβ(Ct+2 − hCt+1)−σ

]
(90)

Wt

Pt
= (1 + λw,t) Et

[
Nη

t

(Ct − hCt−1)−σ − hβ(Ct+1 − hCt)−σ

]
(91)

where πt = Pt/Pt−1 is the gross rate of price inflation. We make use of the fact
that all households are faced with the same optimization problem and hence,
choose the same amount of consumption Ct(j) = Ct, the same nominal wage
Wt(j) = Wt, and supply the same amount of labor Nt(j) = Nt.

Each intermediate goods producer is a monopolistic supplier of the inter-
mediate good i ∈ [0, 1]. Firm i uses the amount Nt(i) of homogenous labor and
the constant returns to scale technology Yt(i) = Nt(i), to produce its interme-
diate good Yt(i). Real marginal costs are the same for all firms and is given by
MCt(i) = Wt/Pt.

The price-setting decision for profit-maximization is constrained by a stan-
dard Calvo mechanism. In each period, the intermediate goods producer faces
the constant probability 1 − θ of being allowed to re-optimize his price Pt(i).
We follow Smets and Wouters (2003) by assuming that a firm which cannot
re-optimize his price, resets the price according to Pt(i) = Pt−1(i)π

γ
t−1, where γ

is the degree of price indexation. The firm chooses Pt(i) in order to maximize

Et

∞∑

k=0

θk∆t,t+k

(
Pt(i)Πt,t+k−1

Pt+k
Yt+k(i) − MCt+kYt+k(i)

)
(92)

subject to the sequence of demand functions

Yt+k(i) =

(
Pt(i)Πt,t+k−1

Pt+k

)−
(1+λp)

λp

Yt+k for k = 0, 1, 2, . . . (93)
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where ∆t,t+k denotes the stochastic discount factor for real payoffs and Πt,t+k−1 =
πγ

t πγ
t+1 . . . πγ

t+k−1 = (Pt+k−1/Pt−1)
γ .

The first-order condition for the price-setting problem yields

P ∗
t (i) = (1 + λp)

Et
∑∞

k=0 θk∆t,t+kMCt+k(Pt+k/Πt,t+k−1)
(1+λp)/λpYt+k

Et
∑∞

k=0 θk∆t,t+k(Pt+k/Πt,t+k−1)−1/λpYt+k
(94)

Dividing equation (94) by Pt yields

P ∗
t (i)

Pt
= µp

Et
∑∞

k=0 θk∆t,t+kMCt+k

(
Pt+k

Pt

) 1+λp

λp

(
Pt+k−1

Pt−1

)− γ(1+λp)

λp Yt+k

Et
∑∞

k=0 θk∆t,t+k

(
Pt+k

Pt

) 1
λp

(
Pt+k−1

Pt−1

)− γ

λp Yt+k

(95)

where µp = 1 + λp.
Since all firms which are allowed to re-optimize their price will choose the

same price P ∗
t (i) = P ∗

t , the price index (84) can be rewritten as

1 = θ

(
πγ

t−1

πt

)−λp

+ (1 − θ)

(
P ∗

t

Pt

)−λp

(96)

Log-linearizing equation (96) yields

P̂ ∗
t − P̂t =

θ

1 − θ
(π̂t − γπ̂t−1) (97)

Note that we use the convention that a hat above a variable denotes the per-
centage deviation from its steady-state value.

By combining the latter equation with the log-linearized price-setting con-
dition (95), we finally obtain

π̂t =
γ

1 + βγ
π̂t−1 +

β

1 + βγ
Et π̂t+1 + ΘM̂Ct (98)

where Θ = (1−βθ)(1−θ)
θ(1+βγ) . By log-linearizing the optimality condition (91), using

the log-linearized overall resource constraint Ŷt = Ĉt and using the fact that

Ŵt/Pt = M̂Ct and Ŷt = N̂t, we obtain

M̂Ct = λ̂w,t + (η + δ1)Ŷt − δ2Ŷt−1 − βδ2 Et Ŷt+1 (99)

where δ1 = σ(1+βh2)
(1−h)(1−βh) , δ2 = hσ

(1−h)(1−βh) . The log-linearized mark-up λ̂w,t is

described by the AR(1) process

λ̂w,t = ρλ̂w,t−1 + et (100)

By inserting the latter equation into equation (98), we obtain a hybrid Phillips
curve that follows

π̂t = ω1 Et π̂t+1 + ω2π̂t−1 + ω3Ŷt − ω4Ŷt−1 − βω4 Et Ŷt+1 + Θλ̂w,t (101)
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where ω1 = β
1+βγ , ω2 = γ

1+βγ ω3 = Θ(η + δ1), and ω4 = Θδ2.
Note that in our model the level of output in the absence of nominal rigidities

(the natural level) Y n
t is constant. Thus, the linearized output Ŷt coincides with

the linearized output gap Ŷ g
t = Ŷt − Ŷ n

t , where Ŷ n
t = 0. Further note that for

γ = 0, equation (101) collapses into the purely forward-looking New Keynesian
Phillips curve.

By log-linearizing the optimality condition (90) and using Ŷt = Ĉt, we obtain

Ŷt = κ1ρŶt−1 + κ2 Et Ŷt+1 − κ3 Et Ŷt+2 − κ4(R̂t − Et π̂t+1) (102)

where κ1 = h
1+h+βh2 , κ2 = 1+βh+βh2

1+h+βh2 , κ3 = βh
1+h+βh2 , and κ4 = (1−h)(1−βh)

σ(1+h+βh2)
.

Note that for h = 0, we obtain the purely forward-looking New Keynesian IS
curve.

Following Woodford (2003, Ch. 6) and Giannoni and Woodford (2004), a
second-order approximation to the households’ utility yields a loss function of
the form

J0 = E0

∞∑

t=0

βt

(
(π̂t − γπ̂t−1)

2 + αY (Ŷt − δŶt−1)
2

)
(103)

where αy =
Θhσλp

(1+λp)δ(1−βh)(1−h) and δ is the smaller root of the quadratic equation

hσ

(1 − βh)(1 − h)
(1 + βδ2) =

(
η +

σ

(1 − βh)(1 − h)
(1 + βh2)

)
δ (104)

We follow Giannoni and Woodford (2004) and Casares (2006) by assuming
that the monetary authority is concerned about the volatility of the nominal
interest rate. Therefore, we augment the welfare-theoretic loss function by the
additional term αRR̂2

t , where αR measures the weight on interest rate stabiliza-
tion.

The monetary authority then seeks to minimize the loss function

J0 = E0

∞∑

t=0

βt

(
(π̂t − γπ̂t−1)

2 + αY (Ŷt − δŶt−1)
2 + αRR̂2

t

)
(105)

subject to the model equations (100), (101), and (102). Note that in our model,
the discount factor for the policy-maker, λ, is equal to the household’s discount
factor β.

In order to solve the model by using the methods outlined in Section 2, we
define the policy objective parameters Ŷ o

t = Ŷt − δŶt−1 and π̂o
t = π̂t − γπ̂t−1.

Furthermore, we define the auxiliary variables π̃t = π̂t−1, Ỹt = Ŷt−1, and st =
Et π̂t+1. If we add the definition of the real interest rate r̂t = R̂t − Et π̂t+1,
we finally obtain a 3 × 1 vector wt of predetermined variables given by wt =
(λ̂w,t, π̃t, Ỹt)

′, a 6 × 1 vector vt of non-predetermined variables given by vt =
(π̂t, Ŷt, st, r̂t, π̂

o
t , ŷ

o
t )

′, the vector of policy instruments ut which is simply the
scalar ut = R̂t, and the 1 × 1 shock vector νt = et. The 9 × 9 matrices A and
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B are given by

A =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 β
1+βγ −βω4 0 0 0 0

0 0 0 κ4 κ2 −κ3 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




B =




ρ 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

−Θ − γ
1+βγ ω4 1 −ω3 0 0 0 0

0 0 −κ1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 γ 0 −1 0 0 0 1 0
0 0 δ 0 −1 0 0 0 1




while the 9 × 1 matrices C and D are

C =
(
0 0 0 0 κ4 0 1 0 0

)′

D =
(
1 0 0 0 0 0 0 0 0

)′

Finally, the matrices W̃ , P , and R are given by P = 09×9, R = αR, and

W̃ =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 αY




We complete the description of the model by presenting the calibration.
The time unit is one quarter. The discount rate is equal to β = 0.99, implying
a quarterly steady-state real interest rate of approximately one percent. The
intertemporal elasticity of substitution, σ, is assumed to σ = 2. We follow
Casares (2006) and set the habit formation parameter to h = 0.85 implying that
the weight on lagged output in the IS equation is 1/3. The calibrated η = 3
implies a labor supply elasticity with respect to the real wage of 1/3. λp is set to
8/7 which implies a steady-state mark-up in the goods market of approximately
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14 percent. We assume the linearized wage mark-up λ̂w,t to be persistent and
choose ρ equal to 0.8. The Calvo parameter θ is set to 0.75 implying an average
duration of price contracts of one year. The price indexation parameter γ is
set to 0.45 which is roughly equal to the value reported by Smets and Wouters
(2003). This implies that the weight on lagged inflation in the Phillips curve
equation is 0.31.

The parameter values chosen for our model imply a weight on output in
the policy-makers’ objective function of approximately αY = 0.69. Following
Casares (2006), we set αR = 0.0088 implying a small preference for interest rate
smoothing.

For the analysis concerning anticipated and unanticipated shocks, we as-
sume that the economy is in a deterministic steady-state until period t = 0. In
the case of an unanticipated shock, the mark-up λ̂w,t jumps by one percent in
period t = 0 and begins to fall thereafter. In the case of an anticipated shock,
the agents anticipate in period t = 0 that a one percent increase in the mark-up
will take place at some future date τ > 0. They also know that the mark-up
will subsequently decline according to the autoregressive process (100), where
now et = 1 for t = τ and et = 0 for t 6= τ . Note that τ also defines the lengths of
the anticipation period or the time interval between t = 0 and t = τ . In order
to obtain impulse response functions and welfare results, we simulate dynamic
adjustment paths and the welfare loss function by using the methods outlined
in Section 2.7

Figure 1 depicts the impulse response functions of inflation, output, nominal,
and real interest rates under the unrestricted optimal monetary policy. The
solid lines with circles represent the responses to an unforeseen cost-push shock
that emerged in period t = 0. The solid lines with squares, triangles, and stars
represent responses to a cost-push shock whose realization in period τ = 1,
τ = 2, or τ = 3 is anticipated in period t = 0.

An unanticipated rise in the wage mark-up puts upward pressure on the
prices of intermediate goods and hence on inflation. Despite the instantaneous
jump in inflation, the real interest rate rises due to the sharp increase in the
nominal interest rate. The increase in the real interest rate induces households
to postpone consumption which implies an abrupt drop in output. Subse-
quently, the nominal interest rate continues to rise. This leads – in conjunction
with the decline in inflation – to hump-shaped response functions of the real
interest rate and output.

In the case of anticipated shocks, the optimal policy calls for a decline in
nominal and real interest rates in response to the anticipation of a future rise
in marginal costs. At the latest with the occurrence of the anticipated shock in
period τ , the nominal and real interest rates start to rise and display a hump-
shaped development. Inflation declines in response to the anticipation of the
future rise in marginal costs. After this initial decline, inflation starts to rise and
peaks in the period when the anticipated shock materializes. Output displays a
hump-shaped downturn, starting at the point of anticipation, t = 0. The drop

7Matlab codes can be downloaded from the author’s webpage at http://www.wiso.uni-
kiel.de/vwlinstitute/Wohltmann/REAS solution.zip.
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Figure 1: Impulse response functions under unrestricted optimal monetary policy.

Notes: Solid lines with circles denote responses to an unanticipated cost-push
shock, solid lines with squares, triangles, and stars denote responses to an anticipated
cost-push shock taking place in period τ = 1, τ = 2, and τ = 3.

in output is thereby amplified by the lengths of the anticipation period, τ .
Notably, the anticipation of future shocks leads to an increase in the per-

sistence (or volatility) of inflation, output as well as nominal and real interest
rates which increases in lead time τ . Thereby, persistence is measured as the
total variation of a variable over time, i.e. by its intertemporal deviation from
its initial steady-state. The impact or anticipation effect, however, is inversely
related to the time span between anticipation and realization of the cost-push
shock. It measures the initial jump of a variable taking place at the time of
anticipation.

The opposing effects of anticipations are shown in Figure 2 which displays
the welfare loss as a function of the time span between the anticipation and the
occurrence of the cost-push shock. The welfare function exhibits a hump-shaped
pattern implying that for a realistic time span between the anticipation and the
realization of cost-push shocks, anticipated shocks entail higher welfare losses
than unanticipated shocks of equal size. The rationale is that the anticipation
effect is dominated by the persistence effect. A welfare gain from anticipating
can only be achieved for very large values of τ . Besides the anticipation effect,
this can also be explained by discounting the realization impacts from period τ
to period t = 0.
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Figure 2: Welfare loss for different lengths of the anticipation period under unre-
stricted optimal monetary policy

The results we obtained from our simulations show that the welfare loss of
anticipated cost-shocks exceeds the welfare loss of an unanticipated cost-shock
of equal magnitude for plausible lengths of the anticipation period. Hence,
our results strongly support the findings of Wohltmann and Winkler (2008)
who report a similar result within the purely forward-looking canonical New
Keynesian model.

4 Conclusion

In this paper, we presented a method to solve linear dynamic rational expec-
tations models with anticipated shocks and optimal policy by using the gen-
eralized Schur decomposition method. Furthermore, we determine the opti-
mal unrestricted and restricted policy responses to anticipated shocks. Our
approach also allows for the evaluation of the widely discussed case of unpre-
dictable shocks and can therefore be seen as a generalization of the methods
summarized by Söderlind (1999). We demonstrated our method by means of a
calibrated New Keynesian model with internal habit formation in consumption
preferences, a variant of Calvo price staggering with partial indexation to past
inflation, a time-varying wage mark-up which represents a typical cost-push
shock, and a utility-based loss function. We simulated the model economy’s
responses to unanticipated and anticipated cost-push shocks under the unre-
stricted optimal monetary policy. We then showed that anticipated shocks
amplify both, the stagflationary effects of cost-push shocks and the overall wel-
fare loss. Hence, our results strongly support the previous work by Wohltmann
and Winkler (2008) who find welfare-reducing effects of anticipations within the
purely forward-looking canonical New Keynesian model.
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Appendix

The Stochastic Case

We now assume that νt+1 is an r × 1 vector of independent and identically
distributed white noise disturbances with variance-covariance matrix Σνν =
E(νtν

′
t). The i.i.d shocks are, by definition, unpredictable (τ = 0) and occur at

time t = 0. Since Et(νt+1) = 0r×1, equation (7) implies

F · Et

(
w̃t+1

ṽt+1

)
= G

(
w̃t

ṽt

)
(A1)

The Schur decomposition yields the following system of equations

(
S11 S12

0 S22

)
Et

(
z̃t+1

x̃t+1

)
=

(
T11 T12

0 T22

)(
z̃t

x̃t

)
(A2)

where
(

w̃t

ṽt

)
=

(
Z11 Z12

Z21 Z22

)(
z̃t

x̃t

)
(A3)

and x̃t = 0 for all t ≥ T = 0. Partitioning the matrices A and B in equation
(1) to conform with the dimension of wt and vt, i.e.

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
(A4)

Equation (1) then implies

A11wt+1 + A12 Et vt+1 = B11wt + B12vt + C1ut + D1νt+1 (A5)

and

A11 Et wt+1 + A12 Et vt+1 = B11wt + B12vt + C1ut (A6)

where

C =

(
C1

C2

)
, D =

(
D1

D2

)
(A7)

From (A5) and (A6) we get

A11(wt+1 − Et wt+1) = D1νt+1 (A8)

so that

wt+1 − Et wt+1 = A−1
11 D1νt+1 (A9)

holds (provided A−1
11 exists). The corresponding equation for the costate vector

pv is given by (Backus and Driffill, 1986)

pv,t+1 − Et pv,t+1 = 0n2×1 (A10)
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Defining w̃t = (w′
t, p

′
vt)

′ and using equations (A2) and (A3) then imply

w̃t+1 − Et w̃t+1 = Z11(z̃t+1 − Et z̃t+1) = Z11(z̃t+1 − S−1
11 T11z̃t) =

(
A−1

11 D1νt+1

0n2×1

)

(A11)

and therefore

z̃t+1 = (S−1
11 T11)z̃t + Z−1

11

(
A−1

11 D1νt+1

0n2×1

)
= (S−1

11 T11)z̃t + Z−1
11

(
A−1

11 D1

0n2×r

)
νt+1

(A12)

The solution of the VAR(1) process (A12) has the general form

z̃t = (S−1
11 T11)

tK +

t−1∑

s=0

(S−1
11 T11)

t−s−1Z−1
11

(
A−1

11 D1

0n2×r

)
νs+1 (A13)

where

K = z̃0 = Z−1
11 w̃0 = Z−1

11

(
w0

0n2×1

)
(A14)

Since E0 νs+1 = 0 the expected time path of z̃t is given by

E0 z̃t = (S−1
11 T11)

tZ−1
11 w̃0 (A15)

Premultiplying equation (A12) with Z11 and using w̃t = Z11z̃t to obtain the
VAR(1) process

w̃t+1 = Γw̃t +

(
A−1

11 D1

0n2×r

)
νt+1 (A16)

where

Γ = Z11(S
−1
11 T11)Z

−1
11 (A17)

Then

w̃t = Γtw̃0 +
t−1∑

s=0

Γt−s−1

(
A−1

11 D1

0n2×r

)
νs+1 (A18)

and the expected future path of w̃t is given by

E0 w̃t = Γtw̃0 = Γt

(
A−1

11 D1

0n2×r

)
ν0 (A19)

The solution to the forward-looking vector ṽt follows from

ṽt = Z21z̃t = Z21Z
−1
11 w̃t = Nw̃t (N = Z21Z

−1
11 ) (A20)

by inserting the solution time path of w̃t.
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In order to determine the minimum value of the loss function J0, set

εt+1 =

(
A−1

11 D1

0n2×r

)
νt+1 (A21)

According to (48), (51), (54), and (A18) we then obtain

J0 =
1

2
E0

∞∑

i=0

λiw̃′
iH

∗w̃i

=
1

2

∞∑

i=0

λi

{
(Γiw̃0)

′H∗(Γiw̃0) + 2E0(Γ
iw̃0)

′H∗
( i−1∑

s=0

Γi−s−1εs+1

)

+ E0

( i−1∑

s=0

Γi−s−1εs+1

)′
H∗
( i−1∑

s=0

Γi−s−1εs+1

)
}

=
1

2
w̃′

0

( ∞∑

i=0

λiΓi′H∗Γi
)
w̃0

+
1

2

∞∑

i=0

λi E0

( i−1∑

s=0

Γi−s−1εs+1

)′
H∗
( i−1∑

s=0

Γi−s−1εs+1

)
(A22)

where we have used E0 εs+1 = 0. V =
∑∞

i=0 λiΓi′H∗Γi satisfies the matrix
equation (cf. (74))

V = H∗ + λΓ′V Γ (A23)

and

1

2
w̃′

0

( ∞∑

i=0

λiΓi′H∗Γi
)
w̃0 =

1

2
w̃′

0V w̃0 =
1

2
trace(V w̃0w̃

′
0) (A24)

To calculate the infinite sum in (A22) note that

E0

( i−1∑

s=0

Γi−s−1εs+1

)′
H∗
( i−1∑

s=0

Γi−s−1εs+1

)

= E0(Γ
i−1ε1 + Γi−2ε2 + ... + Γ0εi)

′H∗(Γi−1ε1 + Γi−2ε2 + ... + Γ0εi)

= E0(Γ
i−1ε1)

′H∗(Γi−1ε1) + E0(Γ
i−2ε2)

′H∗(Γi−2ε2) + ... + E0(Γ
0εi)

′H∗(Γ0εi)

= E0 ε′i(Γ
0′H∗Γ0 + Γ′H∗Γ + ... + Γi−2′H∗Γi−2 + Γi−1′H∗Γi−1)εi

= E0 ε′i
( i−1∑

s=0

Γi−s−1′H∗Γi−s−1
)
εi (A25)

since E0(ε
′
iεj) = 0 for i 6= j. The variance-covariance matrix

E0(εiε
′
i) = E0(εjε

′
j) = Σεε (A26)
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is independent of i and j. We then obtain

1

2

∞∑

i=0

λi E0

( i−1∑

s=0

Γi−s−1εs+1

)′
H∗
( i−1∑

s=0

Γi−s−1εs+1

)

=
1

2

λ

1 − λ
trace(V Σεε) (A27)

with V defined as in equation (A23). The optimal value of the loss function J0

in the stochastic case (with T = 0) is then given by

J0 =
1

2
trace(V w̃0w̃

′
0) +

1

2

λ

1 − λ
trace(V Σεε) (A28)

Note that (A28) is a generalization of equation (72) where we have assumed a
deterministic shock in t = 0 (Σεε = 0). The formula (A28) holds for a discount
factor λ with 0 < λ < 1.8 The right-hand side of (A28) is not defined in the
special case λ = 1. If the discount factor λ approaches unity we must scale the
intertemporal loss function J0 by the factor (1 − λ) (Rudebusch and Svensson,
1999). Equation (A28) then implies

(1 − λ)J0 =
1

2
(1 − λ) trace(V w̃0w̃

′
0) +

1

2
λ trace(V Σεε) (A29)

The scaled intertemporal loss function (1 − λ)J0 converges as λ approaches
unity. (A29) implies

lim
λ→1

(1 − λ)J0 =
1

2
trace(V Σεε) (A30)

Note that in the case T = 0 and λ = 1 the RHS of (A30) equals the RHS of (72)
provided w0w

′
0 = Σεε. In this special case the stochastic and deterministic case

are equivalent. If the off-diagonal elements of W1 and W2 in the loss function
(3) are equal to zero, then the limit value of (1 − λ)J0 can be expressed as

lim
λ→1

(1 − λ)J0 =
1

2
E(Lt) (A31)

where E(Lt) is the unconditional mean of the period-loss-function

Lt = (s′t, u
′
t)

(
W1 0
0 W2

)(
st

ut

)
=

n3∑

i=1

wii,1s
2
i,t +

m∑

i=1

wii,2u
2
i,t (A32)

Then

E(Lt) =

n3∑

i=1

wii,1 Var si,t +
m∑

i=1

wii,2 Var ui,t (A33)

The period-loss-function can also be written as

Lt = Y ′
t HYt (A34)

where Y ′
t = (k′

t, u
′
t) and H as defined in (49). Then the unconditional period

loss also fulfills

E(Lt) = E(Y ′
t HYt) = trace(HΣY Y ) (A35)

where ΣY Y is the unconditional variance-covariance matrix of the vector Y .

8In the deterministic case, where Σεε = 0, (A28) also holds for λ = 1.
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