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Abstract

We derive optimal monetary policy rules when government debt may be a constraint for the
monetary authority. We focus on an environment where fiscal policy is exogenous, setting taxes
according to a rule that specifies the tax rate as a function of lagged debt. In the case where
taxes do not adjust sufficiently to ensure the solvency of debt, then the monetary authority
is burdened by debt sustainability. Under this scenario, optimal monetary policy is a ‘passive
money rule’, setting the interest rate to weakly respond to inflation. We characterize analytically
the optimal inflation coefficients under alternative specifications of the central bank loss function,
using a simple Fisherian model, but also the canonical New Keynesian model. We show that
the maturity structure of debt is a key variable behind optimal policy. When debt maturity
is calibrated to US data, our model predicts that a simple inflation targeting rule where the
inflation coefficient is 1− 1

Maturity is a good approximation of the optimal policy.
Lastly, our framework can also nest the case where fiscal policy adjusts taxes to satisfy the

intertemporal debt constraint. In this scenario optimal monetary policy is an active policy rule.
We contrast the properties of active and passive policies, using the analytical optimal policy
rules derived from this framework of monetary/fiscal interactions.
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1 Introduction

Since the 2008-9 recession and more recently due to the spending and transfer programs launched to
deal with the effects of the COVID 19 recession, governments in developed economies accumulated
large stocks of debt. High debt levels require bold fiscal adjustments to ensure the solvency of
government budgets. However, in many cases it is questionable whether fiscal authorities will be
able/willing to generate the large required surpluses to finance debt.1

At high debt levels, and when fiscal authorities may not be able/willing to adjust taxes sufficiently,
debt may become an important constraint for monetary policy. Under such circumstances, ensuring
debt solvency becomes a task burdening the monetary authority and inflation needs to be used to
finance debt. How should policy be then designed to be optimal?

A sizable literature has studied optimal policy in the 3-equation New Keynesian model (see
e.g. Woodford (2001b); Giannoni and Woodford (2003); Orphanides and Williams (2007); Svensson
(1999, 2003); Woodford (2003); Giannoni (2014) among numerous others), that is in the case where
monetary policy is not burdened with debt substainability. These papers have used the baseline New
Keynesian framework to develop practically relevant recommendations for the design of interest rate
rules, the desirable response of the main instrument of monetary policy to macroeconomic conditions.

Another strand of literature has analyzed optimal policy in environments where inflation responds
to debt. Using the so called Ramsey approach to optimal policy, Chari and Kehoe (1999); Siu
(2004); Schmitt-Grohé and Uribe (2004); Faraglia, Marcet, Oikonomou, and Scott (2013); Lustig,
Sleet, and Yeltekin (2008); Leeper and Zhou (2021) among others, have solved policy problems in
which a Ramsey planner can simultaneously set inflation and fiscal variables (taxes) to satisfy the
intertemporal solvency of debt.

From this second class of models, however, it is not easy to derive transparent conclusions concern-
ing the conduct of monetary policy. Firstly, because bringing together monetary and fiscal policies
under one authority makes it difficult to disentangle which of the implications of the models concern
monetary policy and which do not.2 Secondly, and most importantly, because in the optimal policy
equilibrium in these models macroeconomic variables become functions of current and lagged values
of the Lagrange multiplier attached to the consolidated budget constraint, the object that defines
the dynamics of debt. The multipliers are state variables and it is not easy to derive an interest
rate rule that expresses the nominal rate solely as a function of macroeconomic conditions, without
involving Lagrange multipliers.

This is evidently an important limitation of the analysis. Lagrange multipliers cannot be observed
in practice, and therefore solving the Ramsey first order conditions (expressing the path of the
nominal rate as a function of the multipliers) cannot provide any meaningful guidance to monetary
policy.

This paper makes progress with characterizing optimal interest rate rules in an environment where

1Even prior to the COVID crisis, the US had a debt to GDP ratio exceeding 100 percent and was projected to
rise. At the same time, on the fiscal side, there was no announced increase in tax rates to stabilize debt. In light
of this, several papers have built models based on the assumption that taxes do not adjust to ensure fiscal solvency
and investigating the effects on the macroeconomy (see Bianchi and Melosi (2017, 2019) and the recent strand of the
literature on monetary/fiscal interactions we summarize below).
In the Euro area, similar conditions held after the 2010-11 debt crisis, the main concern being that debt has been

explosive in some countries, and sustainable in others. This has led to a development of a considerable academic and
policy literature on ‘fiscal divergence’.
These problems are obviously more relevant today due to the effects of COVID on debt levels in OECD economies.
2In many of these models the planner will use the tax schedule not only to generate surpluses and finance debt, but

also to ‘manipulate interest rates’ and hence change the real costs of financing debt (see Faraglia, Marcet, Oikonomou,
and Scott, 2019; Faraglia et al., 2019). Taxes will therefore affect real and nominal interest rates but so does monetary
policy, operating through inflation and output targets. In effect, the optimal interest rate path is jointly determined
by the fiscal/monetary policies.
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the monetary authority may have to take into account debt sustainability. We utilize a standard
New Keynesian model augmented with a fiscal block, the consolidated budget constraint and a rule
that sets taxes as a function of the lagged value of debt. We solve an optimal policy problem in this
linear quadratic framework assuming, as in much of the literature, that the central bank may seek
to minimize inflation, output and interest rate variability.

In Section 2 we show that the nominal interest rate in this model can be expressed as the sum
of two components: i) the optimal interest rate rule obtained from the standard 3-equation New
Keynesian model (when debt is not a relevant constraint); and ii) a term expressing the influence of
debt, and which is the sum of current and lagged Lagrange multipliers attached to the consolidated
budget.

In Sections 3 and 4 we strive to derive interest rate rules that express the nominal rate as a
function of macroeconomic conditions only, that is to substitute out the Lagrange multipliers or to
identify conditions under which the multipliers are zero and so the optimal policy we can derive from
our model becomes that of the standard New Keynesian benchmark.

We firstly show that our model admits two types of optimal policy equilibria: In one case, when
taxes adjust strongly to debt (in broadly used terminology fiscal policy is ‘passive’), then the Lagrange
multipliers equal 0, and the debt constraint is slack. In the second case, when taxes do not adjust to
debt, (fiscal policy is ‘active’) then the debt constraint is binding; the multipliers are not zero and
exert an influence on the optimal policy.

We then focus on the latter scenario (though we contrast our results with the former). We ask,
is there an equivalent writing of the optimal interest rate rule where the right hand side variables
are macroeconomic variables only and Lagrange multipliers can be dropped? Our key finding is that
such rules do exist and they are passive money rules : the nominal rate responds weakly to inflation,
the output gap etc (e.g. Leeper, 1991).

Over a wide range of specifications of the model parameters and of the central bank’s objective
function we can characterize these rules analytically. We first use a simplistic Fisherian model (as
in e.g. Cochrane (2001); Sims (2013) among others) assuming that the central bank only seeks
to minimize the volatility of inflation. We then show that the optimal policy is a simple inflation
targeting rule that tracks the real interest rate and the inflation coefficient equals δ, the decay factor
of the coupon payments on government debt.

This result is intuitive. Under passive monetary policy, a higher inflation coefficient implies more
persistence, given that inflation is a backward looking process. When the maturity of debt is short
(i.e. δ = 0) persistence is undesirable, since only short term price changes can contribute towards
making debt sustainable when a shock has occurred. With long maturity (δ close to 1) it is optimal
for inflation to revert to target at the same rate as the coupon payments on government debt decay.
This enables to spread efficiently the costs of inflation over time.

Our analysis then departs from this simplistic setup to consider more plausible specifications
of the model, considering a central bank that desires to smooth output and the nominal rate and
assuming that the real interest rate is not exogenous, i.e. as in the canonical New Keynesian model.
Smoothing output (or the nominal rate) adds inertia to the optimal policy rule, which makes inflation
a more persistent process, for any maturity of debt. Our analytical results characterize the optimal
coefficients in these cases, as functions of the model parameters.

In the canonical model, when the real interest rates are not exogenous but are a function of
output growth, optimal policy also takes the form of a simple inflation targeting rule. The optimal
inflation coefficient is now not only a function of the average maturity of debt but also accounts for
the indirect effects of inflation through output on the real bond prices, since prices matter for the
intertemporal solvency of debt. We provide a simple formula showing the dependence of the optimal
rule on the parameters that account for the direct and indirect channels of inflation.

Using our model we can also easily characterize analytically, for each of the different parameter-
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izations that we consider, the optimal policy when taxes adjust to debt and satisfy fiscal solvency.
In this case, optimal interest rate rules are active, the maturity of debt or any other object related
to the consolidated budget constraint is not relevant (since the constraint itself is also not relevant).
Besides illuminating the contrast between interest rate rules under active and passive fiscal policies,
this exercise demonstrates that our model nests the two equilibria of active/passive policies defined
in Leeper (1991). The contribution here is that we derive optimal monetary policy rules, whereas
in Leeper (1991) and the rest of the literature that used his influential framework interest rate rules
are ad-hoc.

Section 4 then investigates further the optimal monetary policy under active fiscal policy, deriving
analytically the impulse responses of inflation and interest rates to shocks. This helps us highlight
the key channels of transmission of policy in the various versions of the model considered. In the final
paragraph of Section 4 we highlight an important implication of these analytical results. We show
that when the maturity of debt in the model is calibrated to the US data, then a simple inflation
targeting rule that sets the inflation coefficient equal to δ provides a very good approximation of
optimal policies in the canonical model and when the central bank can have the dual objective to
stabilize both output and inflation. For this practically relevant case the indirect effects on bond
prices turn out not matter much and the objective to smooth output lines up with the objective
to spread the distortions of inflation across periods. Therefore, a simple transparent rule where the
average maturity of debt is the only relevant moment, works pretty well.

Finally, Section 5 briefly argues that these results hold regardless of whether taxes are lump sum
or they are distortionary, referring the reader to the appendix for the complete derivations.

Our work is related to a large literature that studies the interactions between monetary and
fiscal policies in macroeconomic models (e.g. Sargent, Wallace et al., 1981; Leeper, 1991; Sims,
1994; Woodford, 1994, 1995, 2001a; Cochrane, 1998, 2001; Schmitt-Grohé and Uribe, 2000; Bassetto,
2002; Eggertsson, 2008; Canzoneri, Cumby, and Diba, 2010; Del Negro and Sims, 2015; Reis, 2016;
Jarociński and Maćkowiak, 2018; Leeper and Leith, 2016; Kumhof, Nunes, and Yakadina, 2010; Bi
and Kumhof, 2011; Benigno and Woodford, 2007; among many others).3 As discussed previously,
particularly related is the framing of the monetary/fiscal interactions in Leeper (1991), in terms
of two distinct regimes: In one regime fiscal policy is ‘active’ (taxes do not ensure the solvency of
debt) and monetary policy is ‘passive’, and in the second regime (active monetary/passive fiscal)
the opposite holds, taxes adjust strongly to satisfy the intertemporal debt constraint. For any other
configuration of policies, (i.e. active/active or passive/passive) the model does not have a unique
stable rational expectations equilibrium. Building on this influential framework Bianchi and Ilut
(2017); Bianchi and Melosi (2017, 2019); Leeper, Traum, and Walker (2017), have constructed rich
DSGE models. Bianchi and Ilut (2017); Bianchi and Melosi (2017, 2019), and Davig and Leeper
(2007), among others, have considered the case where policy can fluctuate across regimes.

Our framework can be seen as an extension of this important model of monetary/fiscal interactions
to optimal monetary policy. We solve an optimal monetary policy program under active/passive fiscal
policies and derive (respectively) passive/active optimal interest rate rules. Thus, our solution gives
rise to the two stable equilibria defined in Leeper (1991), and there is no room here for any lack
of coordination between the two policies that could bring about multiple equilibria (as for example
in the case of a passive/passive regime).4 Furthermore, we consider the two fiscal regimes to be
permanent, that is we do not allow for random switches in fiscal policy. We believe, however, that
the framework proposed here can be applied to study regime fluctuations, something that we intend

3See in particular Leeper and Leith (2016) for a very comprehensive overview of this literature focusing on the
interactions between monetary and fiscal policy.

4This has to do with the assumed structure of the policy program. The fiscal authority ‘commits’ to a tax rule and
this is internalized by the optimizing monetary authority. Essentially, monetary policy acts like a ‘Stackelberg leader’
(though this term is not fully correct since we do not model optimal fiscal policy here). Given this framing, it is not
surprising that optimal monetary policy leads to unique equilibria.
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to consider in future work.
This work is also broadly related to a considerable literature studying optimal policy with debt.

A large strand of this literature has studied the properties of optimal distortionary taxes and debt
issuance in real models (e.g. Lucas and Stokey (1983); Aiyagari, Marcet, Sargent, and Seppälä
(2002); Angeletos (2002); Buera and Nicolini (2004); Faraglia et al. (2019) among many others).
Lucas and Stokey (1983) were the first to study this problem in a complete financial market setting,
that is assuming that debt is issued in state contingent securities. Aiyagari et al. (2002) and Marcet
and Scott (2009) instead focused on the case where the optimizing government issues only non-state
contingent debt, a short term bond. Faraglia et al. (2019) extend this approach to modelling long
term government bonds. Angeletos (2002) and Buera and Nicolini (2004) considered models with
a rich enough maturity structure of non-state contingent assets so that effectively the optimizing
government can complete the market and use this framework to draw relevant conclusions regarding
the optimal maturity structure of debt.

Our approach to modelling optimal policy is methodologically similar to the approach taken in
these papers. We assume incomplete markets as Aiyagari et al. (2002), Marcet and Scott (2009),
and Faraglia et al. (2019) do, however, we also consider limiting scenarios where the debt maturity
structure is such that markets are ’effectively complete’. Even though here taxes are exogenous
and the policy instead sets distortionary inflation to make debt solvent, many of the features of the
optimal allocation are common with optimal taxation models. We therefore frequently refer to well
known results from this literature to explain our findings.

From the second strand of this related literature studying optimal policy with debt- the papers
on Ramsey monetary/fiscal policies previously referenced- the work of Leeper and Zhou (2021) is
most closely related to ours. Leeper and Zhou (2021) utilize a linear quadratic framework broadly
similar to the one employed here, to study how the optimal mix of inflation and taxes varies with
the debt maturity and with the relative importance attached to smoothing inflation v.s. smoothing
output fluctuations in the objective of the planner. While their paper makes considerable progress
with deriving analytical results in this context, their interest is not to derive optimal monetary policy
rules, as we do in this paper. Thus our findings are complementary.

Lastly, in recent work, Chafwehé, de Beauffort, and Oikonomou (2022) use the simplistic Fisherian
model we present in Section 3 to derive optimal interest rate rate rules in a model with active fiscal
policy. Their paper experiments with alternative ways of modelling government bonds, most notably
considering separately the case where governments can engage in debt buybacks and the case where
they cannot. We use a standard setup of modelling government debt (as in e.g; Woodford, 2001a;
Bianchi and Ilut, 2017; Leeper and Zhou, 2021 and others) and moreover, relative to Chafwehé et al.
(2022), our derivations extend to more plausible calibrations of the New Keynesian model with debt.

2 Theoretical Framework

We consider an optimal policy equilibrium where a Ramsey planner (the Fed) sets the path of
macroeconomic variables, interest rates, inflation and output, subject to the dynamic equations
that define the competitive equilibrium. Our framework is a standard New Keynesian model, with
monopolistically competitive firms operating technologies which are linear in the labour input and
setting prices subject to adjustment costs as in Rotemberg (1982). The model is augmented with a
fiscal block, the consolidated budget constraint and a tax rule that determines the response of taxes
to the lagged value of government debt. We first derive our results under the assumption that taxes
are lump sum.

Since this is a standard setup we will describe the competitive equilibrium using the equations
of the log-linear model. We leave it to the appendix to characterize the household and firm optimal
behavior from the (background) non-linear model.
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2.1 The model

Let x̂ denote the log deviation of variable x from its steady state value, x. The model equations are
the following:

π̂t = κ1Ŷt − κ2Ĝt + βEtπ̂t+1, (1)

where κ1 ≡ − (1+η)Y
θ

(γh + σ Y
C
) > 0, and κ2 ≡ − (1+η)Y

θ
σG
C
> 0,

ît = Et

(
π̂t+1 − ξ̂t+1 + ξ̂t − σ

[
Y

C
(Ŷt − Ŷt+1)−

G

C
(Ĝt − Ĝt+1)

])
, (2)

pδbb̂t,δ + pδbp̂t,δ = −sŝt + (1 + δpδ)b

(
b̂t−1,δ − π̂t

)
+ δpδbp̂t,δ, (3)

pδp̂t,δ = β(1 + pδδ)Et

[
−σ
(
Y

C
(Ŷt+1 − Ŷt)−

G

C
(Ĝt+1 − Ĝt)

)
− π̂t+1 + ξ̂t+1 − ξ̂t

]
+ βδpδEtp̂t+1,δ

]
. (4)

(1) is the Phillips curve at the heart of our model. π̂t represents inflation and Ŷt is the output
gap. Ĝt denotes government spending in t. Parameters η < 0 and θ > 0 govern the elasticity of
substitution across the differentiated (monopolistically competitive) goods produced in the economy
and the degree of price stickiness, respectively.5

σ denotes the inverse of the intertemporal elasticity of substitution and γh is the inverse of the
Frisch elasticity of labour supply. These objects influence the slope of the Phillips curve, κ1, through
their influence on the response of hours/output to changes in marginal costs (wages).

(2) is the standard log-linear IS-Euler equation which prices a short term nominal asset. ξ̂ is a
standard preference shock which affects the relative valuation of current vs. future utility by the
household. A drop in ξ̂ makes the household relatively patient, willing to substitute current for future
consumption.6

(3) is the consolidated budget constraint. The LHS of this equation represents the value of debt
issued in period t. The leading term, b̂t,δ denotes the quantity of real net government bonds issued
in t and held by the private sector, whereas the second term, p̂t,δ, represents the price of the newly
issued debt in deviation from steady state. When δ > 0 debt is issued in a perpetuity bond that
pays decaying coupons.7 When δ = 0 only short bonds are issued by the government. On the RHS
of (3) we have the government’s surplus (sŝt = τ τ̂t−GĜt, where τ denotes taxes) and the real value
of debt that was issued in t− 1 (remaining terms).

Finally, equation (4) defines the recursive formula that determines the price of debt in period t.
Iterating forward this equation and substituting the equilibrium price in (3) and rearranging, it is

5θ is the parameter that governs the magnitude of price adjustment costs in the standard quadratic cost function
of Rotemberg (1982). When θ equals zero prices are fully flexible.

6Below we refer to ξ̂t also as the demand shock and to Ĝt simply as the spending shock. Obviously both ξ̂t and Ĝt

are demand innovations, but we will reserve this term for ξ̂t.
We focus on these two types of shocks as firstly fiscal shocks are clearly important in the context of a paper on

fiscal inflation, and secondly, changes in real interest rates driven by demand shocks have been recently shown an
important source of fluctuations for government budgets. For example, de Lannoy, Bhandari, Evans, Golosov, and
Sargent (2022) argue that such shocks are an important source of risk that debt management should ward off to
ensure the intertemporal solvency of US government debt. Here the focus is on the inflation consequences of the
shocks however.
Finally, it should also be noted that the formulae that we will derive below will continue being relevant when we

assume additional sources of shocks, e.g. shocks to government transfers, or cost-push types of shocks. We discuss
this further below.

7In this case we can assume that short term debt is in zero net supply.
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possible to write the consolidated constraint as:

βb

1− βδ
b̂t,δ + b

∞∑
j=1

βjδj−1

[
Et

(
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=1

π̂t+l + ξ̂t+j

)]

= −sŜt − bσ

(
Y

C
Ŷt −

G

C
Ĝt

)
+ bξ̂t (5)

+
b

1− βδ
(b̂t−1,δ − π̂t) + δb

∞∑
j=1

βjδj−1Et

(
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=1

π̂t+l + ξ̂t+j

)

where Ŝt denotes the surplus scaled by marginal utility in deviation from the steady state and

sŜt ≡
[
−G
(
Ĝt(1 + σ

G

C
)− σ

Y

C
Ŷt + ξ̂t

)
+ τ

(
τ̂t − σ(

Y

C
Ŷt −

G

C
Ĝt) + ξ̂t

)]
2.1.1 Tax rule

Fiscal policy is assumed to follow a standard rule that links the level of taxes to the face value of
debt outstanding:

τ̂t = ϕτ,bb̂t−1,δ (6)

Coefficient ϕτ,b is a crucial object. Below we will separately consider cases where taxes adjust strongly
to debt, so that debt becomes solvent through fiscal policy and cases where taxes do not adjust
sufficiently to debt, in which case the solvency of debt will be (endogenously) ensured by monetary
policy. In standard terminology, fiscal policy is passive in the former case and active in the latter
(e.g. Leeper (1991)).

To derive our results analytically, we will assume that when fiscal policy is ‘active’, then ϕτ,b = 0.
This assumption is also made by Bianchi and Ilut (2017) and Bianchi and Melosi (2017). For passive

fiscal policy we will set ϕτ,b > ϕ̃τ where ϕ̃τ is a threshold value defined below as a function of model
parameters.

2.2 Optimal Policy

The central bank sets inflation, output and interest rate sequences to maximize the following objective
function:

− 1

2

∞∑
t=0

βtE0

{
π̂2
t + λY Ŷ

2
t + λiî

2
t

}
(7)

for λY , λi ≥ 0.8 Maximization of (7) is subject to the dynamic equations (1), (2) and (5) and given
the tax rule (6).9

As it is standard we solve for optimal policies with a Lagrangian. Letting ψπ,t be the multiplier
attached to the Phillips curve constraint, ψi,t, and ψgov,t the analogous multipliers attached to the

8We adopt a standard loss function for the central bank, as in Giannoni and Woodford (2003). Our results below
are presented in terms of parameters λY , λi and we do not consider that these weights have to necessarily coincide
with the weights that would derive from a quadratic approximation of the household’s welfare function.

9Given optimal policies we can use (4) to solve for p̂t,δ. In other words, we do not have to keep track of the bond
price in the optimal policy program.
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Euler equation and the consolidated budget respectively, the first order conditions for the optimum
are given by:

−π̂t +∆ψπ,t −
ψi,t−1

β
+

b

1− βδ

∞∑
l=0

δl∆ψgov,t−l = 0 (8)

−λY Ŷt − ψπ,tκ1 + σ
Y

C
(ψi,t −

ψi,t−1

β
) + σ

Y

C
b

∞∑
l=0

δl∆ψgov,t−l + ωY ψgov,t = 0 (9)

−λiît + ψi,t = 0 (10)

b

1− βδ

(
ψgov,t − Etψgov,t+1

)
+ ϕτ,bτEtψgov,t+1 = 0 (11)

where ωY ≡ σ Y
C
(G− τ).10

(8) is the FONC with respect to π̂t; (9), (10), (11) are first order conditions with respect to Ŷt,
ît and b̂t,δ respectively.

2.2.1 Interpreting the first order conditions

To inspect these optimality conditions, let us consider first the case where ψgov,t = 0 for all t. Notice
that this corresponds to the case where the consolidated budget constraint exerts no influence on
optimal policy and it will later be shown as an endogenous outcome of the model under passive fiscal
policy. Equations (8) - (10) reduce to:

−π̂t +∆ψπ,t −
ψi,t−1

β
= 0

−λY Ŷt − ψπ,tκ1 + σ
Y

C
(ψi,t −

ψi,t−1

β
) = 0 (12)

−λiît + ψi,t = 0

System (12) can be solved to derive the optimal policy outcome defined in Giannoni and Woodford
(2003), in the context of the 3-equation NK model.11 As is well known, this optimal plan is inertial,
featuring the lagged Lagrange multipliers ψi,t−1, ψπ,t−1 due to the presence of expectations in the
Euler equation and the Phillips curve constraints. Giannoni and Woodford (2003) have shown that
these optimality conditions can be rearranged to derive a policy rule expressing the target nominal
rate as a function of macroeconomic conditions. We will later revisit their derivation.

Consider now the case where ψgov,t ̸= 0. The first order conditions (8) and (9) feature additional
terms, the weighted averages of the current and lagged values of the multiplier on the consolidated
budget. What do these terms capture? Shocks to government spending or to demand will impact
the value of debt and the deficit. When the debt constraint becomes important for the optimal
allocation, inflation and output adjust to satisfy the constraint and ensure the solvency of debt. The

10Note that we solve for optimal policy from a timeless perspective. We thus do not consider (for example) the usual
initial allocation problem whereby the planner may inflate away public debt at the beginning of the horizon.
As is well known, solving for optimal policies from a timeless perspective, requires to introduce additional constraints

on the initial allocation (e.g Giannoni and Woodford, 2003), or the program can be stated in terms of an objective
function that accounts explicitly for the lagged Lagrange multipliers at the beginning of the planning horizon (e.g
Faraglia et al. (2019)). To avoid introducing explicitly all these elements we do not state the Lagrangian here.

11Since we imposed that the consolidated budget constraint has no influence, optimal policy is equivalent to maxi-
mizing objective (7) subject to the Phillips curve and the Euler equation. This is essentially the problem considered
by Giannoni and Woodford (2003).
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final terms in equations (8) and (9) essentially capture changes in π̂t and Ŷt driven by shocks being
filtered through the consolidated budget constraint.

To clarify this further, consider the intertemporal budget constraint that can be obtained by
iterating forward on (5):

Et

∞∑
j=0

βjsŜt+j =
b

1− βδ
b̂t−1,δ + b

∞∑
j=0

βjδjEt

[
−σ
(
Y

C
Ŷt+j −

G

C
Ĝt+j

)
−

j∑
l=0

π̂t+l + ξ̂t+j

]
(13)

The intertemporal constraint (13) links the present value of the government’s surplus (LHS) to the
real value of debt outstanding in t (RHS). Note also that (13) is equivalent to (5) in terms of the
optimal policy.12 Consider the impact of a shock which lowers the LHS of (13) relative to the RHS.
This may, for example, occur following a shock which increases spending. In response to such a
shock, the constraint tightens, and the value of the multiplier ψgov then increases. To satisfy the
constraint, the monetary authority may need to engineer a drop in the real payout of debt (the RHS
of (13)) either through increasing inflation and/or adjusting output when σ > 0. Moreover, since
optimal policy features full commitment it is feasible to adjust both the current and future values
of these variables. When debt is long term, δ > 0, promising higher future inflation (output) in
response to the shock, will be optimal. The lagged values of the multipliers in the date t optimality
conditions capture promises made by the planner to change inflation and output in t in response to
shocks which have occurred in the past.

The multiplier under active fiscal policy. Consider now the case where fiscal policy is active
and ϕτ,b = 0. Then (11) becomes:

ψgov,t = Etψgov,t+1

The multiplier thus evolves according to a random walk.
This result is standard in models of optimal policy under incomplete markets. Aiyagari et al.

(2002); Faraglia et al. (2019) consider models where a Ramsey planner sets optimally the path of
distortionary taxes to finance spending shocks. In Schmitt-Grohé and Uribe (2004); Lustig et al.
(2008); Faraglia et al. (2013); Leeper and Zhou (2021) the planner can set simultaneously taxes and
distortionary inflation to satisfy the intertemporal budget constraint. In both cases, the multiplier
on the debt constraint measures the burden of the distortions, and follows a random walk because
the planner wants to spread evenly the costs over time.

The principle also applies here. Though we have assumed that taxes are exogenous to the planning
program, inflation is distortionary (because of the Phillips curve and the objective (7)). The random
walk property means that optimal policy seeks to spread the burden of the distortions due to inflation
evenly across periods.

2.2.2 Optimal interest rate policy

Combining the first order conditions (8)-(10) and following the argument of Giannoni and Woodford
(2003) we can derive analytically the optimal interest rate rule from the Ramsey program. The
following proposition summarizes the result:

Proposition 1. The optimal interest rate policy is:

ît = Tt + Dt (14)

12See for example Aiyagari et al. (2002).
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Tt ≡ ϕππ̂t + ϕY∆Ŷt + ϕiît−1 +
1

β
∆ît−1

with ϕπ = κ1C
λiσY

, ϕi = (1 + κ1
βσ

C
Y
) and ϕY = λY C

σλiY
. Moreover,

Dt = −C
Y

κ1
λiσ

b

1− βδ

∞∑
l=0

δl∆ψgov,t−l −
b

λi

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
− CωY

Y σλi
∆ψgov,t

Proof See online appendix.

Equation (14) shows that there are two distinct components in the interest rate rule. The first,
Tt, is the standard robustly optimal rule derived in Giannoni and Woodford (2003). It links interest
rates to inflation, output growth and lagged values of the interest rate. The impact of these variables
on ît depends on the weights λi, λY that capture the output and interest rate stabilization objectives
of the central bank and on the structural parameters σ, κ1 and β.

The second component, the term Dt, measures the impact of changes in the value of ψgov,t. As
discussed previously, the lagged values of the multiplier are the promises made by the planner to
alter inflation and output following shocks that have hit the consolidated budget in the past. These
terms enter in Dt because changes in inflation and output will influence the path of the nominal
interest rate.

3 Optimal Monetary Policy and Interactions with Fiscal

Policy

The rule derived in Proposition 1 can implement the optimal policy equilibrium. We can thus leave
aside the first order conditions for π̂t, Ŷt, ît and focus on the properties of (14) to characterize optimal
monetary policy. As we saw, the optimal policy rule is the rule of Giannoni and Woodford (2003)
when ψgov,t = Dt = 0 (when the debt constraint is not important for the optimal allocation) but
features the additional term Dt , when ψgov,t ̸= 0 and policy responds to the debt constraint.

How important is the influence of Dt on the interest rate policy? Does rule (14) imply a drastically
different response of the nominal interest rate to macroeconomic conditions than the optimal policy
when Dt = 0 ? Moreover, is there a version of the model (a range of values of the parameters) for
which we get Dt = 0 as an endogenous outcome?

Our analytical results in this section establish the following properties: First, we show that the
model admits two types of equilibria. In one case, when fiscal policy is passive, we have Dt = 0. Then,
debt sustainability is ensured by taxes and inflation does not need to adjust to make debt solvent.
In the opposite case, when fiscal policy is active we have in equilibrium Dt ̸= 0 and fluctuations of
inflation are driven also by debt sustainability.

Second, we show that in the case where Dt ̸= 0, we can derive an optimal monetary policy rule
which expresses the nominal rate as a function of macroeconomic variables only, without involving
the Lagrange multipliers on the consolidated budget. The resulting rule is a passive money rule, the
nominal rate responds weakly to macroeconomic variables, to inflation, lagged interest rates etc.

We provide analytical formulae expressing the optimal coefficients on macroeconomic variables
for several calibrations of the model. We firstly consider a simplistic setup, a Fisherian economy
in which the central bank seeks to stabilize inflation only (e.g. Cochrane, 2001). This amounts to
assuming λY = λi = σ = 0. We then relax these assumptions to consider cases where the central
bank explicitly targets output and the interest rate, and to also consider the canonical New Keynesian
model where σ > 0.

10



Finally, note that in the cases that we will consider, the optimal monetary policy rules when fiscal
policy is passive, will not necessarily be of the functional form T in Proposition 1. We will therefore
also derive optimal policy rules for passive policy to illuminate the differences with the active fiscal
scenario. We present our results as two separate equilibria, one in which the monetary/fiscal regime
is active/passive and one in which it is passive/active. This framing essentially follows Leeper (1991).

3.1 A simplistic Fisherian model

Let us first assume that λY = λi = σ = 0. Under this calibration, output and interest rate stabi-
lization are not objectives of the central bank and the real interest rate is exogenous (driven only
by shocks to demand). This Fisherian setup is also employed by Aiyagari et al. (2002); Cochrane
(2001); Davig and Leeper (2007); Cochrane (2018); Sims (2013); Faraglia et al. (2019); Bouakez,
Oikonomou, and Priftis (2018); Bianchi and Melosi (2019).

3.1.1 Fiscal Policy

We begin by characterizing the equilibrium multiplier ψgov under passive and active fiscal policies.
When λY = λi = σ = 0 we can reduce the dimensionality of the equilibrium system of equations
by dispensing with some of the variables and multipliers. Effectively, the system that needs to be
resolved can be reduced to the consolidated budget constraint and the first order condition for b̂t,δ,
(11).

To simplify the algebra let us also assume δ = 0 and that shocks to demand and spending are
i.i.d.13 Then, inflation will evolve according to:

π̂t = b∆ψgov,t (15)

Using this expression to substitute inflation out from the consolidated budget and using the Phillips
curve to substitute output, together with the tax rule (6), we get:

b̂t,δ − bEt∆ψgov,t+1 +
1

βb

(
(s− b)ξ̂t −GĜt

)
=

1

β

[
1− τϕτ,b

b

]
b̂t−1,δ − b∆ψgov,t (16)

Equation (16) together with the first order condition (11) which defines the process of ψgov,t, form
the system of equations that needs to be resolved to find the optimal allocation.

Active Fiscal Policy. Consider first ϕτ,b = 0. Since from (11) ψgov,t is a random walk we can
write (16) as:

b̂t,δ +
1

β
χ̃t =

1

β
b̂t−1,δ − b∆ψgov,t (17)

where χ̃t ≡ 1
b

(
(s− b)ξ̂t −GĜt

)
.

(17) defines a difference equation with an unstable root 1
β
. It can be solved forward to give:

b̂t−1,δ =
∑
j≥0

βjEt

[
χ̃t+j + b∆ψgov,t+j

]
= χ̃t + b∆ψgov,t (18)

13At the end of this subsection we generalize the results to δ ≥ 0. Moreover, we will derive most of our analytical
results in Sections 3 and 4 assuming i.i.d shocks for simplicity, but at the end of Section 4 we will show that it is
simple to extend our analytical formulae to the case of persistent shocks.
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where the second equality makes use of the assumption that shocks are i.i.d and the random walk
property of the multiplier. Clearly, (18) can be consistent with the random walk if and only if b̂t,δ = 0
for all t. In equilibrium we then have:

∆ψgov,t = −1

b
χ̃t

and from (15) π̂t = −χ̃t.

Passive Fiscal Policy. Now assume ϕτ,b is positive and its value exceeds some threshold ϕ̃τ > 0.
ψgov,t evolves according to:

ψgov,t =

(
1− τϕτ,b

b

)
Etψgov,t+1 (19)

and solving (19) forward we get ψgov,t = 0 for all t14.
Inflation will be zero at all times. The consolidated budget constraint then becomes:

b̂t,δ +
1

β
χ̃t =

1

β

(
1− τϕτ,b

b

)
b̂t−1,δ (20)

Equation (20) can be used to characterize the threshold ϕ̃τ . It defines a stable debt process

(consistent with the equilibrium where debt will not explode) if

(
1− τϕτ,b

b

)
< β. It must thus be:

ϕτ,b > (1− β)
b

τ
≡ ϕ̃τ (21)

The model admits two types of equilibria: In one case, when fiscal policy is active we have that
ψgov,t ̸= 0. Inflation then responds to shocks that hit the consolidated budget constraint as equation
(15) suggests. In the second scenario, fiscal policy adjusts taxes to debt, so that condition (21) holds.
Then, taxes ensure the intertemporal solvency of debt and ψgov,t = 0. The debt constraint is slack
and it is not necessary to use inflation to adjust the real value of debt.

The above derivations can be easily extended to the case where δ > 0. The algebra is then a bit
more cumbersome and so we simply highlight the main result with the following Proposition:

Proposition 2. If ϕτ,b satisfies

ϕτ,b >
(1− β)

(1− βδ)

b

τ
≡ ϕ̃τ

then ψgov,t,Dt = 0. If ϕτ,b = 0 then ψgov,t,Dt ̸= 0.

Finally, note that Proposition 2 does not only hold under the calibration λY = λi = σ = 0
considered here. It will continue to hold when these parameters are considered positive in subsequent
sections.

14Note that we will focus on cases where

(
1− τϕτ,b

b

)
> 0. Scenarios where taxes respond too strongly to debt and

violate this condition are implausible.
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3.1.2 Optimal Monetary Policy Rules

We now turn to the optimal monetary policy rules that can implement the Ramsey outcome when
λY = λi = σ = 0. Moreover, we now let δ ≥ 0. Under these assumptions we cannot derive an
optimal policy rule directly from the first order conditions; however, we can verify that the following
simple inflation targeting rule can implement the allocation under optimal policy:

ît = ξ̂t + ϕ̃ππ̂t (22)

Consider first the case where fiscal policy is passive, i.e. ϕτ,b ≥ ϕ̃τ . As we showed previously, in

this equilibrium optimal policy sets π̂t = 0. From the Phillips curve we find Ŷt = 0. It is easy to
show that the interest rate rule (22) can implement this outcome. Combining (22) with the Euler
equation we get the following difference equation in inflation:

π̂tϕ̃π = Etπ̂t+1

Standard results yield π̂t = 0 as the unique solution if and only if ϕ̃π > 1.

Consider now the case of active fiscal policy. In equilibrium inflation and the interest rate will be
given by the following expressions:

π̂t =
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l ît = ξ̂t +
bδ

1− βδ

∞∑
l=0

δl∆ψgov,t−l (23)

A rule of the form (22) can implement this outcome if the following holds:

ϕ̃π
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l = δ
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l (24)

hence ϕ̃π = δ ∈ [0, 1].

We highlight these results with the following Proposition:

Proposition 3. Assume λY = σ = λi = 0. The optimal policy is a rule of the form (22). In the

case where fiscal policy is passive, the optimal monetary policy sets ϕ̃π > 1. In the case where fiscal
policy is active, the optimal inflation coefficient is ϕ̃π = δ ∈ [0, 1]. Optimal monetary policy is then
‘passive’.

Several comments are in order. First, note that this is an example which shows clearly the analogy
between our framework and the equilibria with active/passive monetary/fiscal policies defined in
Leeper (1991). Whereas in Leeper (1991) and in the rest of the literature that used this influential
framework, monetary policy is modelled using ad hoc interest rate rules, here the policy rules are
optimal, in the sense that commitment to rule (22) can implement the optimal allocation when the
parameter values are as stated in Proposition 3. Moreover, simple inflation targeting rules as in (22)
are commonly used in the literature. The analytical derivations we provide here show the conditions
under which (22) is optimal in terms of the objective of the planner and the fundamental model
parameters.

According to Proposition 3, in the case of passive fiscal policy the optimal allocation can be
implemented with any rule that satisfies the Taylor principle (sets ϕ̃π > 1). In contrast, in the

active fiscal scenario, optimal monetary policy constrains the parameter ϕ̃π to equal δ, the rate at
which the coupon payments on debt decay. The average debt maturity ( 1

1−δ ) becomes a key variable
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determining the reaction to inflation. A higher maturity of debt entails a stronger reaction of the
nominal rate to inflation.

Why is this the desired response to inflation? It is quite simple to show that following a shock
to either spending or demand, inflation will jump initially and then monotonically revert to steady
state, at rate ϕ̃π.

15 When inflation is used to satisfy the intertemporal budget, it is then optimal that
the rate at which it reverts to zero is exactly the rate at which debt payments decay. With short term
debt all of the response of inflation should be concentrated to the period when a shock occurs; future
inflation will not contribute anything towards making debt sustainable and a policy setting a positive
inflation coefficient couldn’t be optimal. Analogously, when δ > 0 making inflation persistently react
to the shock enables to spread the burden of fiscal inflation efficiently.16If the inflation coefficient
exceeded (fell short of) δ then the inflation persistence will be too high (too low), in the sense that
inflation would be substantially above 0 (close to 0) even when the coupon payments are nearly 0
(are high).17

Finally, under both active and passive fiscal policies, the optimal interest rate rule tracks the
real interest rate. This is a standard feature of optimal monetary policy, which enables to eliminate
the demand shock from the Euler equation. When fiscal policy is passive, this leads to the zero
inflation/divine coincidence outcome in response to demand shocks. In the case of active fiscal
policy inflation will not be zero, since the demand shock is also filtered through the government
budget constraint, as we will later illustrate. Real interest rate tracking will be a feature of all
versions of the model we will consider subsequently.

3.2 Alternative Calibrations

We now extend the above analysis to the case where λY , λi, σ are not constrained to equal zero. In
order to continue with analytical results and to transparently demonstrate how each of the parameters
affects the optimal monetary policy rule under passive and active fiscal policies, we consider 3 cases
separately, allowing one of the parameters at a time to be positive, the other two being set to 0.

15This can be easily seen by combining the Euler equation and the interest rate rule. To simplify, assume that a
shock hits in t and thereafter no further shock occurs. We then have π̂t+t+1 = ϕ̃ππ̂t+t for t ≥ 0 which for ϕ̃π < 1 can
be solved backwards up to the initial condition π̂t. π̂t is pinned down by the intertemporal debt constraint.

16See also Lustig et al., 2008; Leeper and Zhou, 2021.
17Rule (22) defines the optimal monetary policy as a simple inflation targeting rule with real interest rate targeting.

However, it should be noted that this rule is not unique in the sense that other specifications of the interest rate
reaction function, can deliver the same outcome. For example, consider a rule of the form

ît = ξ̂t + ϕ̃ππ̂t + ϕ̃Y Ŷt (25)

where the nominal rate responds to both output and inflation. We can show that (25) can implement the optimal

policy outcome under active fiscal policy provided that ϕ̃π +
ϕ̃Y

κ1
(1−βδ) = δ. When this condition holds, then inflation

will again decay at rate δ following a shock to the economy (the analogous condition to get the passive fiscal policy

equilibrium under rule (25) is the familiar ϕ̃π + ϕ̃Y

κ1
(1− β) > 1).

Though (25) is an optimal interest rate rule in this model, we prefer to work with the simple inflation targeting
rule in (22) for two reasons: First, because it is less appealing to assume that monetary policy targets output in a
model where output fluctuations do not contribute towards making debt sustainable (i.e. when σ = 0); second, rule
(22) leads to a more transparent policy recommendation, setting the inflation coefficient equal to δ, relative to (25)
where the analogous condition involves estimating additional parameters β and κ1. For all models considered below
we focus on the simplest possible rules.
Finally, note that the optimal policy in this subsection could be stated as in Proposition 1, a rule that satisfies

ît = Tt +Dt. We can write Tt = ξ̂t +(1+ δ)π̂t and Dt = − b
1−βδ

∑∞
l=0 δ

l∆ψgov,t−l. Then, substituting out the term Dt

we arrive to the passive rule defined in Proposition 3.
From now on we find convenient to state our results as in Proposition 3, directly characterizing the optimal rules

when we have substituted out the Lagrange multipliers.
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Our aim in this subsection is to derive the interest rate rules, not to provide an in depth character-
ization of the mechanisms driving optimal monetary policy in each of the model versions considered.
The analytical formulae we derive here will be used in Section 4, where we carry out an analysis of
the dynamic adjustment of the economy following shocks to spending and demand. We will then
clarify the key forces behind optimal policy.

3.2.1 Case 1: λi > 0, λY , σ = 0.

Consider first the case where λi > 0. The following defines the optimal monetary policy rules that
emerge from this model.

Proposition 4. Assume λi > 0 and λY = σ = 0. The optimal interest rate rules are:
i)

ît =
ξ̂t

1 + λi/β
+ λ̃1π̂t + λ̃2ît−1

with λ̃1 + λ̃2 > 1 and λ̃2 =
λi
β
λ̃1, when ϕτ,b > ϕ̃τ and ψgov,t = 0 (passive fiscal policy).

ii)

ît =
ξ̂t

1 + λi/β
+

δ

1 + λi/β
π̂t +

δλi/β

1 + λi/β
ît−1

when ϕτ,b = 0, ψgov,t ̸= 0 (active fiscal policy).

Proof: See appendix.

According to Proposition 4 optimal interest rates follow inertial rules, ît reacts to inflation and
to the lagged value of the nominal rate. This is clearly in accordance with the planner’s objective
when λi > 0. Moreover, the model continues to admit the two equilibria under passive/active

monetary/fiscal policies. When fiscal policy is passive, the condition λ̃1 + λ̃2 > 1 tells us that
monetary policy is active (satisfies the Taylor principle). In this case an x percent increase in

inflation in period t will lead to a cumulative adjustment of the nominal rate of x λ̃1
1−λ̃2

> 1. In

contrast, when fiscal policy is active then monetary policy is passive, the cumulative response of the
nominal rate to a rise in inflation in t is δ

1+λi/β(1−δ)x ≤ δx.

3.2.2 Case 2: λY > 0, λi, σ = 0.

Next, assume that the planner’s objective is to smooth both inflation and the output gap, focusing
on the case where λY > 0 but λi, σ = 0. Under these assumptions, combining (8) and (9) we can
show that inflation satisfies the following condition:

−π̂t −
λY
κ1

∆Ŷt +
b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0 (26)

Moreover, using the Phillips curve to substitute out aggregate output and after rearranging we obtain
the following :

Etπ̂t+1 − (1 +
1

β
+ κ̃)π̂t +

1

β
π̂t−1 = −ζt (27)
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where κ̃ =
κ21
λY β

and ζt ̸= 0 (=0) when fiscal policy is active (passive). Inflation thus follows a second
order difference equation; for brevity we define the forcing term ζt in the appendix.

Consider the equilibrium where fiscal policy is passive. Equation (27) can be written as:

Etπ̂t+1 = (λ̃1 + λ̃2)π̂t − λ̃1λ̃2π̂t−1

where λ̃1,2 are the roots of the characteristic polynomial in (27):

λ̃1,2 =
1

2

(
(1 +

1

β
+ κ̃)±

√
(1 +

1

β
+ κ̃)2 − 4

β

)
Since one of the roots is unstable (say λ̃2) and the other root is stable, the interest rate rule that
implements the optimal allocation

ît = ξ̂t + (λ̃1 + λ̃2)π̂t − λ̃1λ̃2π̂t−1 (28)

defines an active monetary policy.

Turning to the active fiscal policy scenario we can show that the optimal interest rate rule is:

ît = ξ̂t + (λ̃1 + δ)π̂t − λ̃1δπ̂t−1 − δ
õ

λ̃2 − 1
∆ψgov,t (29)

where õ > 0 is defined in the appendix for brevity.
Proposition 5 summarizes these results:

Proposition 5. Assume λY > 0 and λi = σ = 0. The Ramsey optimal interest rate rule is given
by (28) when fiscal policy is passive and ψgov,t = 0. It is given by (29) when fiscal policy is active
and ψgov,t ̸= 0.

Proof: See appendix.

The result in Proposition 5 and in particular the active fiscal scenario deserves a brief comment.
Note that the systematic response of the nominal rate to current and lagged inflation in (29) indeed

defines a passive monetary policy. Since λ̃1 + δ − λ̃1δ < 1 an x per cent rise in inflation will lead to
a less than x per cent increase in the nominal rate. Thus, this case also conforms with the principle
that when fiscal policy is active, optimal monetary policy can be expressed as a passive money rule.
However, notice also that the Lagrange multiplier ψgov,t continues to appear on the RHS of (29); we

did not (yet) derive a solution where the nominal rate is only a function of the real rate, ξ̂t, and
current and lagged inflation.

The final term on the RHS of (29), −δ õ

λ̃2−1
∆ψgov,t is a stochastic intercept. It basically introduces

a temporary innovation to the interest rate rule, whenever a shock hits the economy leading to
∆ψgov,t ̸= 0. For example, assume that spending increases in t and so ∆ψgov,t > 0. According to (29)
and since −δ õ

λ̃2−1
< 0, optimal policy will keep the nominal rate slightly lower in t than the value

implied by the systematic component of the interest rate rule. This effect concerns only period t,
since as we saw ∆ψgov,t is an i.i.d variable.

It turns out that in equilibrium ∆ψgov,t can be written as a function of the two shocks (see Section
4 for the analytical expression). Thus, we could replace the stochastic intercept with the shocks, or
even some linear combination of macroeconomic variables can substitute out ∆ψgov,t.

18 We choose
not to expand on this here. In Section 4, when we will evaluate the model, we will explore in detail
the stochastic intercept term and investigate its significance for optimal policy. We will then show
that over plausible calibrations of the model this term exerts a small influence on optimal policy.

18In the latter case, the macroeconomic variables cannot be part of the systematic response component, they will
only be relevant in period t, when the shock hits, but not in other periods.
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3.2.3 Case 3: σ > 0, λY = λi = 0

Finally, consider the case where σ > 0. To simplify the formulae we will derive in this subsection
let us assume that only demand shocks can hit the economy, setting also G = 0 and Y = C. The
appendix extends our derivations to the case of spending shocks.

Combining the FONC of the planner’s program we now get:

π̂t =
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l +
σ

κ1
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
− στ

κ1
∆ψgov,t (30)

which expresses inflation as a function of the multipliers.
It is evident that optimal inflation is zero in the equilibrium where ψgov,t = 0 for all t and the debt

constraint is not relevant. A simple inflation targeting rule as in (22) can implement this outcome

insofar as ϕ̃π > 1.
Consider now the case where ψgov,t ̸= 0 under active fiscal policy. Using the Phillips curve to

eliminate aggregate output we can write the Euler equation as:

ît =
σ

κ1
Et

(
π̂t+1 − βπ̂t+2 − π̂t + βπ̂t+1

)
+ Etπ̂t+1 + ξ̂t

and using (30) it is simple to show that:

Etπ̂t+1 = δπ̂t −
σ

κ1
(b− δτ)∆ψgov,t and Etπ̂t+2 = δEtπ̂t+1

With appropriate substitutions (see appendix) we obtain the following expression for the interest
rate rule:

ît = ξ̂t +

(
δ +

σ

κ1
(1− δ)(δβ − 1)

)
π̂t − ω̃∆ψgov,t (31)

where ω̃ > 0 is derived in the appendix and

(
δ + σ

κ1
(1 − δ)(δβ − 1)

)
< 1 so that (31) defines a

passive monetary policy.
The nominal rate thus again follows a simple rule which tracks the demand shock ξ̂t, and responds

to inflation. As is evident from (31) the optimal coefficient on inflation is a function of debt maturity,
but also parameters κ1 (the slope of the Phillips curve) and σ the (inverse of the IES) influence the
value of the coefficient. We will later explain in detail how these terms are relevant, but basically these
parameters pertain to effects that changes in output have on the intertemporal debt constraint, when
we assume σ > 0. These effects are internalized by optimal policy through the term σ

κ1
(1−δ)(δβ−1).

Notice also that as in the previous paragraph, the optimal rule features a stochastic intercept, the
final term on the RHS of (31). The loading on this term is negative and therefore when ∆ψgov,t > 0
(for example due to a positive spending shock) optimal policy will keep the nominal interest rate
lower in t than what is implied by the systematic component of the rule. We again leave it to Section
4 to explain this term.

Finally, it will prove useful for our subsequent analysis to state here the optimal policy rule in
the case where fiscal shocks can hit the economy and G > 0.

Proposition 6. Assume σ > 0, λY = λi = 0 and G > 0. The optimal monetary policy rule
under active fiscal policy is:

ît = r̂nt +

(
δ +

Y

C

σ

κ1
(1− δ)(δβ − 1)

)
π̂t − f∆ψgov,t︸ ︷︷ ︸

Stochastic Intercept

(32)
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where r̂nt ≡ ξ̂t + σ(G
C
− κ2

κ1
Y
C
)Ĝt.

Proof: See appendix.

For brevity we give the explicit formula for coefficient f in the appendix. (32) is similar to (31),
the main difference is that the leading term is now also a function of the spending shock. The term
r̂nt denotes the natural rate of interest obtained under flexible prices.19

3.3 Optimal Policy Rules: Further Examples

We have now derived optimal interest rate rules considering three separate cases, when the central
bank desires to smooth output or the nominal rate, and when intertemporal elasticity of substitution
is finite as in the canonical New Keynesian model. Though considering separately each of these
cases will enable us later on (in Section 4) to transparently show how each of the parameters affects
optimal policy, the reader may be wondering whether it is feasible to combine the above formulae or
to derive interest rate rules in cases where (say) two of these parameters are simultaneously positive.
Even if this is feasible, the algebra involved will be extremely cumbersome and the solution may not
feature any new elements relative to the scenarios we considered. Thus, instead of attempting to get
further analytical results, we utilized the numerical solution of the model to characterize the optimal
monetary policy rule under active fiscal policy, in the case where λi, σ are positive and λY ≥ 0. For
brevity, we present our experiments in the appendix and only provide a brief account of our findings
here.

To approximate the optimal interest rate rules we matched the impulse responses of the Ramsey
model with those of a model in which monetary policy follows interest rate rules such as the ones we
derived in the previous subsections. That is, simple inflation targeting rules, that may also feature
interest rate lags. We found that such rules can deliver a perfect match with the Ramsey model and
moreover the coefficients on inflation, lagged interest rates, etc were such that monetary policy is
passive.

These experiments also revealed an important difference with the optimal policy in the standard
New Keynesian model (the rule of Giannoni and Woodford (2003) when we assume λi, λY , σ > 0).
Whereas in the robustly optimal policy of Giannoni and Woodford (2003), the interest rate rule is
superinertial (the second order difference equation for ît contains an explosive root), under active
fiscal policy we can obtain a close approximation of the Ramsey outcome with inertial rules featuring
only up to one lag of the nominal rate, similar to the analytical results of the previous paragraphs.20

In Section 4 we will resume this analysis focusing on the case where λY , σ > 0 (the canonical New
Keynesian model when we assume that the central bank has a dual objective of stabilizing inflation

19Analogously, the rule in the passive fiscal scenario is now of the form:

ît = r̂nt + ϕ̃ππ̂t

where again ϕ̃π > 1. Since this is easy to verify we left it outside Proposition 6, but state it here for completeness.
20We can (for example) show analytically that when λi, σ > 0 but λY = 0 and debt is short term, a rule of the form

ît = Shock + ϕππ̂t (33)

where ‘Shock’ is a function of spending and demand shocks capturing the natural interest rate (as in the above
examples), can fit perfectly the Ramsey solution. Contrast this with the optimal rule under passive fiscal policy,
object T in Proposition 1 to see how the consolidated budget constraint can change optimal interest rate policy.
Note also that with δ = 0 the finding that (33) can fit the Ramsey solution when λi > 0, conforms with the result

we derived in Proposition 4 where the lagged interest rate is included only when δ > 0. We will return to explain this
property later on.
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and the output gap, a very commonly used setup of optimal policy). There we will also show that
for a realistic calibration of the model a simple inflation targeting rule can approximate very well
the Ramsey solution.

3.4 Optimal Policy when Debt is a Shock Absorber

We close this section by providing a further analytical result, deriving the optimal interest rate rule
under active fiscal policy in a limiting scenario where ψgov,t = 0. Our argument is rooted on a recent
literature on optimal debt management in macroeconomic models21 which shows that under certain
conditions regarding the debt maturity structure, debt can absorb shocks that hit the consolidated
budget and no adjustment of either inflation or fiscal variables is necessary to satisfy the intertemporal
constraint. We will show that even in this limiting case, when shocks that hit the economy do not
tighten the intertemporal budget constraint (and so ψgov,t = 0 for t), optimal monetary policy under
constant taxes can be again represented as a passive money rule.

To simplify, let us continue with the model of subsection 3.2.3 assuming σ > 0 and only demand
shocks can hit the economy. We consider δ = 1, the limit when long bonds are consols. We show in
the appendix that, under these assumptions, inflation, output and debt are at steady state for all t.

To grasp the intuition behind this result, notice that when long bonds are consols the consolidated
budget (in format analogous to equation (3)) can be written as:

bp1(b̂t,1 + p̂t,1) = (1 + p1)b(b̂t−1,1 − π̂t) + bp1p̂t,1 −RR̂t (34)

where b1 now represents the quantity of the consol and p̂1 is the corresponding price. The latter
evolves according to:

p̂t,1 = −ξ̂t − Et
[
π̂t+1 + σ(Ŷt − Ŷt+1) + βp̂t+1,1

]
.

Clearly, the terms bp1p̂t,1 on the LHS and RHS of (34) cancel out and ξ̂t can be dropped from this

equation. The disturbance ξ̂t changes the price of newly issued debt, and changes, in proportion,
the market value of outstanding debt, which acts as a shock absorber. Under optimal policy we
have ψgov,t = 0 and inflation, output do not need to adjust to finance the shock, regardless of the
specification of fiscal policy.

In the appendix we show that optimal monetary policy again can be represented as a simple
inflation targeting rule of the form (22). The following Proposition formalizes our findings:

Proposition 7 Consider the case where σ > 0 and λi = λY = G = 0. Assume also that δ = 1
(i.e. long bonds are consols). We then have ψgov,t = 0 under both active and passive fiscal policies.
Optimal monetary policy sets the nominal rate according to (22) and:

i) Under passive fiscal policy it sets ϕ̃π > 1

ii) Under active fiscal policy it sets ϕ̃π ≤ 1.

Proof: See appendix.

i) is simply a repetition of the result in subsection 3.2.3. ii) states that in the active fiscal case,
optimal monetary policy sets the inflation coefficient to any value less than or equal to 1. Interestingly,
the optimal rule derived in subsection 3.2.3 (i.e. equation (31)) predicts that in the limit when δ = 1

21See for example Angeletos (2002); Buera and Nicolini (2004); Faraglia et al. (2019); Bhandari, Evans, Golosov,
and Sargent (2017).
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the optimal policy is ît = ξ̂t + π̂t (the stochastic intercept term can be dropped since, as we saw,
∆ψgov,t = 0). However, because in this model shocks exert no influence, all that monetary policy
needs to do is to support the zero inflation outcome. This can in turn be accomplished with any
passive interest rate policy.

Proposition 7 can be extended in several meaningful ways to find analogous results when λi, λY >
0 and when spending shocks can hit the economy.22 In all these cases we can derive a passive interest
rate rule to implement the optimal policy equilibrium.

4 Going deeper into optimal policy

We now build the analytical results of the previous section to go deeper into the mechanics of optimal
policy, unraveling the various channels, under the different cases considered. To do so we complement
our derivations with new formulae characterizing the transmission of the spending and demand shocks
on the macroeconomy, focusing in particular on the dynamic response of inflation to the shocks. We
also present numerical simulations of the model to study the responses of other macroeconomic
variables and to consider cases where parameters λi, σ, λY are simultaneously positive.

Finally, throughout this section we focus on the case of active fiscal policy. The passive fiscal
model, besides having been very well investigated in the literature, was previously shown to lead to
zero inflation, under most of the versions we considered. Thus, it is simple for the reader to compare
the properties of the equilibrium under passive and active fiscal policies.

4.1 Impulse Responses

4.1.1 Output smoothing (λY ≥ 0)

Consider first the Fisherian model of Section 3 (σ = 0) and let us first focus on the case where the
planner can have the dual objective of stabilizing inflation and the output gap. We therefore assume
λY ≥ 0 but λi = 0. Consider shocks at date t which change the values of {Ĝt, ξ̂t} assuming that
after t there are no further shocks to the economy.

In the appendix we show the following dynamic response of inflation to one off shocks:

π̂t =
λ̃2

λ̃2 − 1
õ∆ψgov,t

(35)

π̂t+j = õ
(δj+1 − λ̃j+1

1 )

δ − λ̃1
∆ψgov,t + õ

λ̃j1

λ̃2 − 1
∆ψgov,t, j ≥ 1

where 0 < λ̃1 < 1,λ̃2 > 1 and õ were defined previously.23 Moreover,

∆ψgov,t = ψ̃(GĜt + (b− s)ξ̂t) (36)

22The case λY > 0 is simple to illustrate. Since in the equilibrium studied above output is always equal to target,
any value λY > 0 would again lead us to Proposition 7. Assuming that spending shocks can hit the economy however,
would probably require a change in the modelling of government debt. For example Angeletos (2002) and Buera and
Nicolini (2004) consider the case where debt is issued in two zero coupon bonds and show that the portfolio that can
absorb fiscal shocks is one where the long bond debt position is several times GDP and short term debt is negative.
The returns to this portfolio cannot be replicated with the decaying coupon model we assume here. Finally, when
λi > 0 letting δ = 1 would not be enough for debt to fully absorb the demand shocks. Under interest rate smoothing
inflation and output will not be zero and it turns out that to insulate the budget constraint from the shock, the
portfolio needs to be tilted even more towards long term debt. See below for an analytical derivation supporting this
claim.

23This formula assumes the most plausible scenario λ̃1 ̸= δ.
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where ψ̃ = (1−βδ)(1−βδλ̃1)
bõ( 1

1−βδ2
+ 1

λ̃2−1
)
> 0. Let us use these formulae to discern how a shock to demand/spending

will impact inflation.
According to (36) a positive spending shock in t will yield ∆ψgov,t > 0. This is not surprising; the

increase in spending reduces the present value of government revenues and the consolidated budget
constraint tightens. The planner needs to increase inflation to make debt solvent.

(35) shows that this will have a persistent effect on inflation. Persistence derives from two sources:
First, it derives from the maturity of debt, with higher coefficient δ implying more persistence and
second, it derives from the objective to smooth output through time (coefficient λ̃1 is increasing in
λY ).

The rationale behind the first channel was stated previously. Assume for simplicity that λY = 0.
We can then show that λ̃1 = 0, λ̃2 → ∞ and õ = b

1−βδ . Then, the above formulae tell us that
inflation will display persistence equal to δ. A shock to spending will increase inflation on impact
and subsequently π̂ converges towards the target value at the same rate at which the coupon payments
on debt decay. As discussed previously, this path spreads the costs of inflation efficiently.

In addition to this channel, output stabilization also contributes to persistence. Assume that
δ = 0 and so debt is only short term. Then,

π̂t+j = õ
λ̃2

λ̃2 − 1
λ̃j1∆ψgov,t, j ≥ 0

and inflation decays at rate λ̃1. We further have dλ̃1
dλY

> 0 and in the limit, when λY → ∞, λ̃1 → 1.
Even in the presence of short term debt, the deviations of inflation from target can be very

persistent, depending on the desire to smooth output fluctuations. The intuition for this property
is simple: Making inflation respond only in period t (the optimal policy under δ = 0 and no output
smoothing) will entail a large contemporaneous response of output to the shock. When a smooth
path of output is desired inflation needs to adjust gradually to the shock.

Let us now investigate how the output smoothing objective affects the magnitude of the response
of inflation to the shock. A stark result is that when δ = 0, coefficient λY has no bearing on the
level of inflation in t.24 In contrast, when δ > 0, then a stronger incentive to smooth output implies
a smaller initial response of inflation to the shock. To understand these properties notice first that,
in this Fisherian model, the path of output does not matter at all for fiscal sustainability. Since real
bond prices and the intertemporal surplus are not functions of output, it is only inflation that can
adjust to make debt sustainable. When δ = 0 all of the burden of the adjustment falls on period
t inflation. Thus, more inflation persistence, when λY > 0, will not change the level of inflation
in t required to satisfy the intertemporal debt constraint. In contrast, with long term debt, a more
persistent response of inflation will imply a larger fall in the real payout of debt following the spending
shock, and the increase in inflation in t required to satisfy the intertemporal budget constraint will
be smaller.

It may thus seem that when the maturity of debt is long an explicit output smoothing objective
will complement the inflation smoothing motive of the planner. However, this is not so. Once again
output has nothing to do with satisfying the intertemporal debt constraint, and inflation persistence
driven by output stabilization may not be desirable in terms of the inflation smoothing objective.

24To see this, combine (35) and (36), evaluated at δ = 0. We get

π̂t =
GĜt + (b− s)ξ̂t

b

which in independent of λ̃1 and λ̃2 and hence also independent of λY .
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The term õ
(δj+1−λ̃j+1

1 )

δ−λ̃1
∆ψgov,t in (35) reveals this property. This term is essentially a correction

in terms of the persistence of the inflation process relative to the second term in (35) which is

persistence driven purely by output smoothing. Whenever δ < λ̃1 then persistence deriving from
smoothing output is too high and the first term will frontload inflation to match more closely the
payment profile of debt. In contrast, if δ > λ̃1 then the first term will add persistence, the planner
targets a flatter path of inflation than what is dictated by the objective to smooth output.

Let us now turn to the demand shock and in particular let us assume that in period t the economy
is hit by a negative shock, i.e. ξ̂t < 0. Noting that s < b when δ < 1,25 equation (36) tells us that
the shock will make ∆ψgov,t turn negative, therefore inflation will drop following the shock.

To understand why a negative ξ̂t shock is deflationary, note that it has two opposing effects on
the intertemporal consolidated budget. On the one hand, the shock will increase the market value
of debt outstanding in t through increasing real long bond prices. On the other hand, it will also
increase the present value of surpluses that compensate for debt. When δ < 1 the second effect
dominates and the shock needs to be ‘financed’ with deflation for the intertemporal budget to hold.
When long bonds are consols, δ = 1, the two effects will cancel out and inflation will be zero, as was
shown in subsection 3.4.

The previous discussion concerning how parameters λY and δ affect the path of inflation continues
to apply to the ξ̂ shock.

Graphical impulse response analysis. We complement the above formulae with plots showing
the impulse responses of macroeconomic variables to the spending and demand shocks under different
calibrations of λY and δ. Table 1 reports the assumed numerical values of the model’s parameters
and the notes of the table briefly explain our calibration targets.

The top panel of Figure 1 shows the responses to the spending shock when λY = 0. From left to
right we plot the response of inflation, output and the nominal interest rate. The blue, red and black
lines represent the case of active fiscal policy under δ = 0, 0.5, 0.95 respectively. (For comparison,
the cyan line shows the passive fiscal policy outcome.) The bottom panel of the Figure plots the
same responses when λY = 0.5.

The graphs are qualitatively consistent with our previous analytical results. Consider the behavior
of the interest rate shown in the top panels. When debt is short term and the planner only cares
about smoothing inflation, the nominal rate is kept constant after the spending shock. With long
term debt optimal policy increases the interest rate with inflation, the optimal response is equal to
δ.

Introducing the objective to stabilize output exerts a significant influence on the path of macroe-
conomic variables but only when debt is short or medium term. Under long term debt (i.e. δ = 0.95)
setting λY to 0 or to 0.5 makes only a small difference to the path of inflation and the nominal rate.
This property is intuitive. With long debt inflation rises (almost) permanently to absorb the shock,
and the path of output is guaranteed to be smooth regardless of λY .

Figure 2 shows the same objects as Figure 1 for the case of a negative demand shock. The
responses of the variables have flipped sign, but the patterns are essentially the same as in Figure 1.

4.1.2 Interest rate smoothing

We now turn to the case where the planner’s loss function includes the objective to smooth the
nominal interest rate, letting (as before) σ = λY = 0. In the appendix we derive the following

25From the steady state intertemporal budget we have s
1−β = b

1−βδ (the present value of the surplus equals the

value of debt outstanding). Thus s ≤ b with equality only when δ = 1.
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Table 1: Calibration

Parameter Value Label

β 0.995 Discount factor
λY {0, 0.5} Loss function - weight on output
λi {0, 0.5} Loss function - weight on interest rate
θ 17.5 Price Stickiness
η -6.88 Elasticity of Demand
σ {0, 1} Inverse of IES
γh 1 Inverse of Frisch Elasticity

b 2.4 SS debt Level
τ 0.11 SS tax Rate
Y 1 SS output
G 0.1 SS gov. spending

Notes: The table reports the values of model parameters assumed in the numerical examples considered
in Sections 3 and 4 of the paper. β notes the discount factor chosen to target a steady state (annual) real
interest rate of 2 percent. Parameter η is calibrated to target markups of 17 percent in steady state. θ
governs the price adjustment cost and is calibrated as in Schmitt-Grohé and Uribe (2004). The steady
state level of debt is assumed equal to 60 percent of GDP (at annual horizon), and the level of public
spending is 10 percent of aggregate output which is normalized to unity in steady state. The value of
the tax rate is such that the steady state government budget constraint holds. We further assumed that
inflation at steady state is 0.

These parameter values are held constant throughout the numerical experiments of Section 4. Parameters

λY , λi and σ (the relative weights on output and interest rates stabilization and the inverse of the IES

respectively) vary across experiments. We set σ = 1 as our baseline in the canonical New Keynesian model.

Moreover, we consider λY ∈ {0, 0.5} and λi ∈ {0, 0.5}.
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Figure 1: Impulse response functions, G shock
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Notes: The figure displays the impulse responses of inflation, output, and the nominal interest rate following a
government spending shock, in the case where λi = σ = 0. Top panels assume λY = 0, while in the bottom panels
we set λY = 0.5. In each plot, the solid blue line depicts impulse responses in the case where government debt is
short term (δ = 0); the dashed red lines and dash-dotted black lines plot the responses of variables when δ = 0.5 and
δ = 0.95, respectively. The dotted cyan line considers the case where fiscal policy is passive (ϕτ,b > ϕ̃τ ).
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Figure 2: Impulse response functions, ξ shock
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Notes: The figure displays the impulse responses of inflation, output, and the nominal interest rate following a negative
preference shock (ξ), in the case where λi = σ = 0. Top panels assume λY = 0, while in the bottom panels we set
λY = 0.5. In each plot, the solid blue line depicts impulse responses in the case where government debt is short term
(δ = 0); the dashed red lines and dash-dotted black lines plot the responses of variables when δ = 0.5 and δ = 0.95,
respectively. The dotted cyan line considers the case where fiscal policy is passive (ϕτ,b > ϕ̃τ ).
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formula characterizing the response of inflation to the two shocks:

π̂t+j =



b
1−βδ∆ψgov,t j = 0

− λi/β
1+λi/β

ξ̂t +
δ

1+λi/β
b

1−βδ∆ψgov,t j = 1

δj

1+λi/β
b

1−βδ∆ψgov,t j ≥ 2


(37)

∆ψgov,t =

[
GĜt +

(
b− s+

b

1− βδ

βδλi/β

1 + λi/β

)
ξ̂t

]
(38)

Smoothing interest rates has two important effects on optimal policy. First, it makes optimal
inflation frontloaded. Following the shock in spending we again have ∆ψgov,t > 0; however, inflation
does not monotonically decline at rate δ throughout the entire path. In period t+1 inflation is δ

1+λi/β

times π̂t. This is due to the inertial response of interest rates to inflation.
Second, assuming that λi is positive introduces an additional source of inflation volatility, the term

− λi/β
1+λi/β

ξ̂t in period t+1 inflation. Under interest rate smoothing ît does not fully track the real rate

ξ̂t. Therefore the shock does not only impact macroeconomic variables through the debt constraint,
but also through the Euler equation, the standard demand channel. This effect is concentrated in
period t+ 1 since we have assumed an i.i.d shock.

Graphs. The top panels of Figures 3 and 4 plot the responses of macroeconomic variables to
the two shocks. We assumed λi = 0.5 to produce these graphs. Moreover, in the bottom panels we
assumed that the planner also desires to smooth output setting λY = 0.5.

Consider first the top panel of Figure 3. It is obvious that the desire to smooth interest rates
affects optimal policy when the maturity of debt is long.26 Consistently with formula (37), inflation
is now frontloaded, displaying a sharp drop between t and t+1 when δ > 0. The response of output
is analogous, displaying a sharp increase in the period the shock occurs.

The bottom panel shows that these properties do not carry over to the case where λY = 0.5.
Introducing output smoothing in the policy objective restores the smooth paths of inflation and
output we had seen in previous graphs. This is an interesting property: It suggests that the objective
to smooth output fluctuations overrides the objective to smooth the nominal rate, in this calibrated
version of the model.

Let us turn to the responses to the demand shock, shown in Figure 4. In the top panel of
the Figure we see that inflation turns positive in period t + 1 and is negative in all other periods.
Therefore, the negative ξ̂t shock implies (as before) that ∆ψgov,t < 0 (implying that a drop in the
price level is needed to satisfy the debt constraint) but the positive impact of the demand shock on
inflation dominates in t+ 1.

Moreover, assuming long term debt reduces the variability of inflation. Note that with interest
rate smoothing this is not an obvious finding, and therefore it is worth commenting on. Recall that
long term debt stabilizes inflation through two channels: First, it enables to spread inflation over a
longer term, relying on both current and future price changes to adjust the real value of debt when
the shock hits and second, debt acts as a shock absorber when changes in real long bond prices
compensate for the change in the present value of the government’s surplus.

26With short term debt, the optimal policy keeps the nominal rate constant in response to a fiscal shock and so
there is perfect interest rate smoothing. We thus get the same responses independent of λi.
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Figure 3: Impulse response functions with interest rate smoothing (G shock)
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Notes: The figure displays the impulse responses of inflation, output, and the nominal interest rate following a
government spending shock, in the case where λi = 0.5 and σ = 0. Top panels assume λY = 0, while in the bottom
panels we set λY = 0.5. In each plot, the solid blue line depicts impulse responses in the case where government debt
is short term (δ = 0); the dashed red lines and dash-dotted black lines plot the responses of variables when δ = 0.5
and δ = 0.95, respectively. The dotted cyan line considers the case where fiscal policy is passive (ϕτ,b > ϕ̃τ ).
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Figure 4: Impulse response functions with interest rate smoothing (ξ shock)
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Notes: The figure displays the impulse responses of inflation, output, and the nominal interest rate following a negative
demand shock (ξ), in the case where λi = 0.5 and σ = 0. Top panels assume λY = 0, while in the bottom panels
we set λY = 0.5. In each plot, the solid blue line depicts impulse responses in the case where government debt is
short term (δ = 0); the dashed red lines and dash-dotted black lines plot the responses of variables when δ = 0.5 and
δ = 0.95, respectively. The dotted cyan line considers the case where fiscal policy is passive (ϕτ,b > ϕ̃τ ).
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With interest rate smoothing the first channel may not reduce the variability of inflation, and in
fact it may even increase it. Since the price level must drop for the intertemporal budget to hold,
however inflation is positive in t + 1, issuing long debt (setting δ > 0) gives a higher weight to π̂t+1

and so inflation must be more negative in other periods to satisfy the intertemporal constraint. This
is not what we find in Figure 4. Therefore, it must be that the second channel (debt is a shock
absorber) is more powerful.27

Finally, consider the bottom part of Figure 4. Assuming λY > 0 again produces a much smoother
response of inflation to the shock, most notably inflation does not switch sign between periods t and
t + 1. Interestingly, with long debt maturity inflation is positive when the shock hits and remains
positive for a few periods, before turning persistently negative around period t + 10. When debt is
long term the planner can leverage on future deflation to satisfy the intertemporal debt constraint.
In contrast, when debt is short or medium term inflation must be negative throughout the entire
path for the intertemporal budget to hold.28

4.1.3 The canonical New Keynesian model (σ > 0)

We now turn to the case where σ > 0. In the appendix we show that the following formula charac-
terizes the path of inflation under active fiscal policy and λY = λi = 0:

π̂t+j =



[
b

1−βδ +
σ
κ1

Y
C
(b− s)

]
∆ψgov,t j = 0

[
b

1−βδδ
j − σ

κ1
(1− δ)δj−1 Y

C
b

]
∆ψgov,t j ≥ 1

 (40)

where

∆ψgov,t = ϵ̃

[
(G+ (b− s)σ

G

C
)Ĝt + (b− s)ξ̂t

]
(41)

and ϵ̃ > 0.29

Let us explain this formula starting from the impact effect of a shock on inflation. In (40) there

are two main channels driving period t inflation: The term b
1−βδ measures the direct effect on the

real payout of all outstanding debt. An increase in inflation in t lowers the real value of the entire
stream of payments, i.e. b, bβδ, b(βδ)2, ...

The second term represents the indirect effect of inflation, through output, on the intertemporal
budget constraint. Since we now assume σ > 0 the path of output affects the constraint through
two channels: First, through impacting real bond prices it impacts the real value of debt (this is

measured by the term b σ
κ1

Y
C
); second, output also affects the value of the government’s surplus (the

term s σ
κ1

Y
C
).

27Equation (38) can be used to show that in order to fully absorb the shock δ must exceed 1. To see this, note that
setting

b =
s

1 + 1
1−βδ

βδλi/β
1+λi/β

< s (39)

is required to have ∆ψgov,t = 0. From the steady state intertemporal budget we have: b = 1−βδ
1−β s. Thus, b < s can

only hold when δ > 1.
28Issuing long debt is preferable also in this case. The reader can be sure of this by noting that the black dotted

line is closest to the cyan dashed line that represents the passive fiscal outcome. Obviously, under passive fiscal policy
we have ∆ψgov,t = 0.

29The expression for ϵ̃ is cumbersome and for the sake of the exposition is left to the appendix.
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Next, consider inflation after t. Again we have two distinct channels: The direct effect of inflation
b

1−βδδ
j (the magnitude of which decays at the coupon rate since π̂t+j affects the real value of payments

to be made in t+ j and thereafter) and the indirect effect through output, − σ
κ1
(1− δ)δj−1 Y

C
b.

Let us focus on the new indirect output channel in t and after t and note that what is particularly
striking here is that whereas in t the output term contributes positively to the variability of inflation
(i.e. it holds that b > s) after t the sign switches and the effect becomes negative.

To understand this consider again the intertemporal budget constraint (13). Assume δ = 0 and
for simplicity let us also assume that only spending shocks can hit the economy. Then, (13) can be
written as:30

−GĜt + s
G

C
σĜt − s

Y

C
σŶt + Et

∞∑
j=1

βjsŜt+j = bb̂t−1,δ − b

[
σ

(
Y

C
Ŷt −

G

C
Ĝt

)
+ π̂t

]
(42)

With short term debt the RHS of the constraint decreases in period t inflation and output. The
LHS also decreases in output, but the effect on the RHS dominates.31 Thus, following a positive
spending shock in t, the planner will increase inflation and hence output to satisfy the constraint.
The dependence of the importance of this channel on parameter κ1 follows from the Phillips curve.

Notice however that even though it is only date t variables that matter here for fiscal solvency,
equation (40) suggests that inflation will continue responding to the shock in t + 1 but it will turn
negative.32 This is so because of the Phillips curve: to engineer a bigger increase in date t output, it
is optimal to let prices fall in t+1. Basically, the planner is trying to shift some of the burden of the
adjustment from inflation to output. Reducing output volatility is not an objective and, moreover,
the distortions stemming from inflation are convex and so the planner is willing to tolerate a slightly
negative inflation rate in t+ 1 in exchange for a smaller inflation rate in t.

When debt is long term the effect of output on debt solvency is not concentrated in t. The RHS
of the inter-temporal budget will also depend on output in t + 1, t + 2, since real long bond prices
will depend on output. This effect is negative and so the planner will target a path of output so that

30We have imposed that taxes are constant.
31Note that for brevity we wrote the term Et

∑∞
j=1 β

jsŜt+j on the left hand side of (42). This term, though clearly
a function of future output, can be expressed as a function of current output and inflation.

Recall that sŜt+j = −sσ Y
C
Ŷt+j − (G− sσG

C
)Ĝt+j + sξ̂t+j . Then, dropping the shocks, as these will cancel out due

to the i.i.d processes, we can focus on Et

∑∞
j=1 β

jsŜt+j = −Et

∑∞
j=1 β

jsσ Y
C
Ŷt+j . Using the Phillips curve we have:

−Et

∞∑
j=1

βjsσ
Y

C
Ŷt+j = −s σ

κ1

Y

C
βEtπ̂t+1 = −s σ

κ1

Y

C
(π̂t − κ1Ŷt + κ2Ĝt)

which makes evident that only current output and inflation influence this term.
Intuitively, output exerts and influence here, because it affects the real interest rates and hence the value of the

given stream of surpluses s. It is an effect analogous to what Leeper and Zhou (2021) label a ‘discount factor’ effect of
policy. Whereas in their model this channel concerns both inflation and tax policies, here it is a pure inflation effect.
Notice also that with these derivations, on the LHS of (42) we will get:

−σY
C
Ŷt + Et

∞∑
j=1

βjsŜt+j = −s σ
κ1

Y

C
(π̂t + κ2Ĝt)

This term captures the indirect effect of inflation, when we use the Phillips curve to substitute out output.

32Equation (40) suggests that π̂t+1 = − σ
κ1

Y
C
b∆ψgov,t
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Figure 5: Impulse response functions with σ > 0 (G shock)
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Notes: The figure displays the impulse responses of inflation, output, and the nominal interest rate following a
government spending shock, in the case where λi = 0 and σ = 1. Top panels assume λY = 0, while in the bottom
panels we set λY = 0.5. In each plot, the solid blue line depicts impulse responses in the case where government debt
is short term (δ = 0); the dashed red lines and dash-dotted black lines plot the responses of variables when δ = 0.5
and δ = 0.95, respectively. The dotted cyan line considers the case where fiscal policy is passive (ϕτ,b > ϕ̃τ ).

the change in the prices absorbs part of the shock. Following a positive shock to spending, it now
becomes optimal to target a higher output level after t to engineer a sharper drop in bond prices.

Note that this basically explains why the term − σ
κ1
(1 − δ)δj−1 Y

C
b becomes less important as δ

increases. The planner will not allow output to fall in t + 1 to strengthen the increase in output at
date t. This also applies to periods after t.

The direct and indirect channels of inflation are present in the optimal interest rate rule we derived
for this model, in Proposition 6. The optimal inflation coefficient is equal to δ + σ

κ1
(1 − δ)(δβ − 1)

echoing the principle that the optimal policy is mindful not only of the direct impact of inflation on
the real debt, but also of the output impact. Moreover, when debt is long term then the indirect
output channel becomes less important in the interest rate rule. For example, when δ is close to 1,
σ
κ1
(1− δ)(δβ− 1) will approximately be 0, and the optimal policy can be approximated by a simpler

rule setting the inflation coefficient equal to δ. We will return to this implication of the model below.

Graphs. Figures 5 and 6 plot the usual IRFS. Focus on the top panel in Figure 5 to continue
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Figure 6: Impulse response functions with σ > 0 (ξ shock)
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Notes: The figure displays the impulse responses of inflation, output, and the nominal interest rate following a negative
demand shock (ξ), in the case where λi = 0 and σ = 1. Top panels assume λY = 0, while in the bottom panels we set
λY = 0.5. In each plot, the solid blue line depicts impulse responses in the case where government debt is short term
(δ = 0); the dashed red lines and dash-dotted black lines plot the responses of variables when δ = 0.5 and δ = 0.95,
respectively. The dotted cyan line considers the case where fiscal policy is passive (ϕτ,b > ϕ̃τ ).
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studying the effect of the spending shock when λY = 0. As can be seen from the Figure, when debt is
short term, output and inflation increase contemporaneously with the shock and subsequently drop
in t+1. This is obviously consistent with equation (40). The nominal interest rate drops initially and
turns positive in t + 1. From equation (32), we know that this is due to monetary policy operating
through the indirect output effect, when δ = 0.

With long maturity debt (δ = 0.95) optimal policy targets a smooth path of inflation and output.
The nominal rate rises when the shock hits (responding to r̂nt in (32)) and subsequently reacts to
inflation only; the inflation coefficient is now approximately equal to δ.

These results continue being relevant in the case λY > 0 studied in the bottom panels of Figures
5 and 6. In this case the indirect output channel becomes somewhat less important under short term
debt, since targeting a smoother path makes increasing output in t to absorb the spending shock
(Figure 5) or reducing it to absorb the preference shock (Figure 6) less desirable. Nonetheless, the
indirect effect through output remains an active channel of policy.

4.2 Optimal Policy with Simpler Rules

We have now analyzed the key forces behind optimal monetary policy in various versions of the
model. As we have seen, assuming that the monetary authority desires to smooth inflation and
output introduces inertia in the optimal interest rates, ît needs to respond not only to current but
also to lagged inflation. Moreover, in the canonical model with σ > 0 where optimal monetary policy
set the interest rate as a function of current inflation only, the optimal inflation coefficient reflected
both the direct effect of inflation on real debt and the indirect effect through output on bond prices
and on the debt constraint. Finally, our results in Section 3 demonstrated that in both of these cases
optimal interest rate rules featured stochastic intercepts, terms involving the multiplier ∆ψgov,t.

In this paragraph we examine more closely these results focusing on a plausibly calibrated value
of δ and show that even the simplest inflation targeting rule setting the inflation coefficient equal
to δ can approximate the Ramsey outcomes very well. Our argument is built in two layers; first,
we demonstrate that stochastic intercepts are not essential and without them the paths of inflation,
output and interest rates are close to their optimal policy analogues. Second, we show that when
δ = 0.95 (implying a 5 year average maturity of debt, a reasonable calibration for the US data)
then not accounting for indirect output effects or lagged inflation does not change dramatically the
behavior of macroeconomic variables. For brevity, we focus only on the case of spending shocks,
however, our results also apply to demand driven fluctuations.33

4.2.1 The (un)importance of stochastic intercepts.

Let us first consider the model of subsection 3.2.2 and in particular equation (29) characterizing
optimal policy when λY > 0. Using also the analytical formula for ∆ψgov,t in equation (36) we can
write:

−δ õ

λ̃2 − 1
∆ψgov,t = −δ õ

λ̃2 − 1
ψ̃GĜt

Consider a positive fiscal shock. In response to this shock optimal policy will keep the nominal rate
slightly lower in t than the value implied by (λ̃1 + δ)π̂t − λ̃1δπ̂t−1 to target a more gradual response

33Note also that we focus on the case of no interest rate smoothing. Assuming a dual objective to stabilize inflation
and output is most common in the literature and it would also correspond to the objective we could derive as an
approximation to the household’s utility. Though, as discussed, our purpose is not interpreting as such the central
bank’s loss function, being able to include this case seems important.
For the interest rate smoothing scenario, the numerical results of subsection 3.3 and in the appendix provide a

glimpse into how the interest rate responds to macroeconomic variables when λY , λi, σ > 0.
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of output to the shock. Note that this is driven only by the desire to smooth output when debt is
long term. When λY = 0 and/or δ = 0 the stochastic intercept does not influence optimal policy.34

Figure 7 shows the responses of macroeconomic variables to the spending shock. The solid blue
lines are the Ramsey outcomes, the dashed red lines are the solution to a model where monetary
policy sets interest rates as in (29) but without the stochastic intercept. The top panel corresponds to
short term debt. The middle and bottom panels set δ = 0.5 and δ = 0.95 respectively. As expected,
the stochastic intercept has no bearing on the outcomes in the case of short debt. However, it is also
noteworthy that even when we assume long term debt the differences between the Ramsey outcome
and the model without the intercept are insignificant. We therefore conclude that in this model the
stochastic intercept is not an important aspect of optimal policy.

Next, consider the model of subsection 3.2.3 (setting σ > 0) focusing on equation (32), noting
that we can again express the stochastic intercept −f∆ψgov,t as a function of the spending shock
(e.g. equation (41)). Once again this term will keep the nominal rate lower in t following a positive
innovation to government spending. The effect of this channel is revealed in Figure 8 which plots
the IRFS under optimal policy and in a model where monetary policy is set according to

ît = r̂nt +

(
δ +

Y

C

σ

κ1
(1− δ)(δβ − 1)

)
π̂t

The top, middle and bottom panels vary the maturity of debt δ.
Notice that when debt is short or medium term the stochastic intercept does affect optimal policy.

Most notably, in the case where δ = 0 the interest rate rule without the intercept predicts that output
and inflation increase when the shock hits, but they will not fall in the next period as is the case
under the optimal policy. This leads to a smaller increase in output in t which is compensated by
a larger response of inflation contemporaneously to the shock, to satisfy the intertemporal budget
constraint. Thus, the stochastic intercept enables to reduce the variability of inflation by relying
more on a stronger response of output to make debt solvent, when λY = 0.35

However, as is evident from the bottom panel of the Figure, this channel is not at all important
when δ = 0.95.

4.2.2 Simple inflation targeting rules

Therefore, simple rules as in (29) and (40) but without the stochastic intercepts can approximate well
the optimal policy outcome under the plausible calibration of the debt maturity structure, δ = 0.95.
We now insist on this finding to investigate whether even simpler interest rate rules in which the
central bank may target only inflation and the inflation coefficient is equal to δ also perform well.

Consider first the case where σ = 1 (our baseline value for this parameter) and λY = 0. The top
panel of Figure 9 shows the responses under the optimal policy and in the model where the interest
rate rule is ît = r̂nt + δπ̂t, assuming in both cases a 5 year average maturity of debt. As can be seen
from the Figure the impulse responses almost completely overlap.

The intuition for this finding should be clear from our previous discussion. When debt is long
term, indirect output effects exert only a small influence on optimal policy, the main driving force
is the direct impact of inflation on the real value of debt. For our assumed parameter values we get
that δ + Y

C
σ
κ1
(1 − δ)(δβ − 1) = 0.9484 which is indeed very close to δ = 0.95. Thus, a simpler rule

34Evidently, when δ = 0 there is no margin for the planner to smooth the response of output by trading off less
inflation in t for more inflation in the future, since only date t inflation can satisfy the intertemporal budget constraint.

35It is interesting to note that even though including the term −f∆ψgov,t can change the optimal path of inflation
significantly with short term debt, the gain in terms of the loss function will not be significant. This is intuitive since
shifting the burden of the fiscal adjustment to output requires to engineer deflation in t+1. This also impinges a loss.
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Figure 7: The role of stochastic intercepts: λY > 0, σ = 0.

0 10 20 30
0

0.005

0.01

 =
 0

Inflation

0 10 20 30
0

0.005

0.01
Output

0 10 20 30
0

2

4

6
10

-3Interest rate

0 10 20 30
0

2

4

6

 =
 0

.5

10
-3 Inflation

0 10 20 30

-2

0

2

10
-3 Output

0 10 20 30
0

2

4

6
10

-3Interest rate

Optimal policy

No intercept

0 10 20 30
0

0.005

0.01

 =
 0

.9
5

Inflation

0 10 20 30
0

0.005

0.01
Output

0 10 20 30
0

2

4

10
-3Interest rate

Notes: The figure plots the impulse responses of inflation, output, and the nominal interest rate following a government
spending shock, in the full Ramsey solution (solid lines) and in a model without stochastic intercepts (dashed lines).
We assume λY = 0.5 and σ = 0. The top panel shows the case of short term debt, the middle and bottom panels set
δ = 0.5, 0.95 respectively.
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Figure 8: The role of stochastic intercepts: λY = 0, σ > 0.
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Notes: The figure plots the impulse responses of inflation, output, and the nominal interest rate following a government
spending shock, in the full Ramsey solution (solid lines) and in a model without stochastic intercepts (dashed lines).
We assume λY = 0 and σ = 1. The top panel shows the case of short term debt, the middle and bottom panels set
δ = 0.5, 0.95 respectively.
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Figure 9: Simple rules vs Ramsey outcome.
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Notes: The figure compares the optimal policy impulse responses of inflation, output, and the nominal interest rate
with simple inflation targeting rules. We assume δ = 0.95 in all graphs. The top panel focuses on the case where
σ = 1 and λY = 0. The solid line is the optimal policy and the dashed line assumes that the inflation coefficient is
equal to δ. The bottom panel assumes σ = 1 and λY = 0.5. In this case a ‘Simple Rule with Inflation Lags’ shock, is
a rule of the form ît = r̂nt + (λ̃1 + δ)π̂t − λ̃1δπ̂t−1 . The ‘Simple Rule’ is ît = r̂nt + δπ̂t.
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that only accounts for the maturity of debt to determine the inflation coefficient, is very close to the
fully optimal policy.

Next, consider the case where σ = 1 and λY = 0.5. This is shown in the bottom panel of the
Figure. The solid blue line shows the optimal policy outcome, whereas the red dashed line is the
impulse response when monetary policy is set according to

ît = r̂nt + (λ̃1 + δ)π̂t − λ̃1δπ̂t−1

where λ̃1 is defined as in subsection 3.2.2. We label this case ‘Simple Rule with Inflation Lags’ in
the Figure. Then, the dashed black line (‘Simple Rule’) assumes that interest rates follow:

ît = r̂nt + δπ̂t

The three cases produce similar impulse responses. (Remarkably the simplest policy, setting the
inflation coefficient to δ, is even closer to the optimal policy outcome). Intuitively, since debt is long
term, the objective to smooth output aligns with the objective to smooth inflation distortions over
time. Thus, simply targeting a persistent path of inflation is enough to approximate the fully optimal
outcome.

We therefore conclude that when the average debt maturity is calibrated to the US data, the
optimal policy in the canonical model and with a dual objective to stabilize inflation and output can
be closely approximated by a simple inflation targeting rule with coefficient δ.

4.3 Alternative Shock Structures

We derived, for tractability, our analytical results assuming that spending and demand shocks are
i.i.d. Our findings can be easily generalized to the case where spending and demand are first order
autoregressive processes. It is indeed possible to show that the interest rate rules we derived in
Section 3 are still relevant in this case. For example, consider the model of subsection 3.2.2. With
persistent shocks the optimal policy will follow a rule

ît = ξ̂t(1− ρξ) + (λ̃1 + δ)π̂t − λ̃1δπ̂t−1 − δ
õ

λ̃2 − 1
∆ψgov,t (43)

where ρξ denotes the demand shock persistence. The values of λ̃1, λ̃2, õ are the same as before.
Evidently, to account for persistent shocks we only need to adjust the leading (real interest rate)
term, the optimal coefficients on current and lagged inflation will not need to be changed.

Moreover, in the version of the model studied in subsection 3.2.3 the optimal rule will become:

ît = ξ̂t(1− ρξ) + σ(
G

C
− σκ2

κ1

Y

C
)Ĝt(1− ρG)︸ ︷︷ ︸

r̂nt

+

(
δ +

Y

C

σ

κ1
(1− δ)(δβ − 1)

)
π̂t − f∆ψgov,t (44)

where now ρG is the persistence parameter of spending. Once again the inflation coefficient is
unaffected by shock persistence.

The principle behind these changes is the following: The leading terms in (43) and (44) have to
account for shock persistence since monetary policy uses these terms to eliminate the shocks from
the Euler equation. The optimal inflation coefficients are however determined by the debt constraint
and the persistence of the shocks will not matter for how inflation will optimally adjust to satisfy
this constraint. Shock persistence will affect only the size of the response of inflation and output.

Finally, note that its is also easy to generalize our findings to consider alternative types of shocks,
for example considering shocks to government transfers (a common modelling assumption in related
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DSGE models) or cost push shocks. Again, the optimal rules will not change in the presence of
these alternative shock types. Transfers shocks will only impact the consolidated budget, similar
to spending shocks in the Fisherian model we presented. Cost push shocks will be filtered through
the consolidated budget and the Phillips curve, parameter λY will determine how much output and
inflation stabilization is desired. The usual tradeoff is already present in the policy rules we derived.

5 Distortionary Taxation

Before concluding the paper in the next section we briefly discuss the implications of replacing the
assumption that taxes are lump sum with distortionary taxation. Distortionary taxes do not change
any of the conclusions we drew from our previous analysis. The model continues to admit two types
of equilibria, when fiscal policy is active/passive and moreover, the optimal monetary policy rules
are very similar to the rules we derived previously.

More specifically, we show in the appendix that the threshold for passive fiscal policy is now given
by:

ϕ̃τ ≡
b(1− β)

r(1− βδ)

(
1

1−τd −
τd

1−τd (1 +
1

γh+σ
Y
C

)

) (45)

where r denotes the steady state revenue of the government and τ d is the distortionary tax rate.
Parameters γh, σ become important for the threshold ϕ̃τ since they determine the responses of output
to shocks and consequently the responses of fiscal revenue.

To show how optimal monetary policy rules change in the presence of distortionary taxes we
consider the simplest scenario σ = λY = λi = 0. We can show that when ϕτ,b > ϕ̃τ the optimal
monetary policy is again a rule of the form (22) and the inflation coefficient exceeds unity. In the
active fiscal scenario the optimal interest rate rule is:

ît = ξt + δπ̂t − δ
r(1 + γh)

κ1
∆ψgov,t (46)

(see appendix).
Notice that relative to Proposition 3 which characterized the analogous rule under lump sum

taxes, assuming distortionary taxation introduces an additional element to policy, the final term on
the RHS of (46).

This term relates to the effect of output on fiscal revenue. An increase in inflation will increase
current output and increase the government surplus. In response to, say, a fiscal shock that needs to
be financed via higher inflation, the planner will also internalize the new revenue effect. According
to (46) this will induce to keep the nominal rate slightly lower in t as is indicated by the intercept

−δ r(1+γh)
κ1

∆ψgov,t.
Evidently, this effect is valid only when debt is long term. With short debt, only period t inflation

can finance debt and the magnitude of the response of inflation is pinned down by the intertemporal
budget. When δ > 0, then inflation will be slightly more frontloaded in t and decay at rate δ from t+1
onwards. The planner tolerates a less smooth inflation path in order to reduce the overall volatility
of inflation, taking advantage of the higher revenue that relaxes the intertemporal constraint.

It turns out that this effect is not substantial. One can therefore, drop the stochastic intercept
term from the optimal policy rule and end up with very similar dynamics for macroeconomic variables.
For the sake of brevity, we leave it to the appendix to plot the impulse response functions for this
model. We also derive optimal policy rules for each of the other versions of the model we considered.
We prove that our previous results continue to hold.
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6 Conclusion

We presented a framework of optimal monetary policy when the central bank may need to take into
account the government budget constraint and is thus concerned with the solvency of debt. Our
model is tractable and enables us to derive optimal interest rate rules analytically. We exploited
this to show how (under various specifications of the model) the monetary policy optimally reacts
to inflation. A key result is that when the debt maturity is calibrated to the US data, then a simple
inflation targeting rule setting the inflation coefficient equal to 1− 1

Maturity
brings us close to the fully

optimal policy outcome.
A couple of extensions of this work seem to us fruitful for future research. First, using the

framework we proposed to extend the analysis to the case of regime fluctuations, seems a meaningful
next step. Second, our analytical results were derived in the baseline New Keynesian framework
(augmented with a fiscal block) and we have not explored optimal policy in environments featuring
wage rigidities, inflation inertia or the zero lower bound constraint. It would be interesting to extend
the approach of this paper to models including these features.
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Appendix

A Proofs

A.1 Proofs of Propositions and Derivations in Sections 3 and 4

We provide proofs for the Propositions made in text. We also derive the analytical formulae shown
in Section 4 (the impulse responses of inflation).

A.1.1 Proof of Proposition 1.

From the first order conditions of the planner’s program we have:

κ1∆ψπ,t = −λY∆Ŷt + σ
Y

C

(
λi∆ît −

λi∆ît−1

β

)
+σ

Y

C
bδ

∞∑
l=0

δl(∆ψgov,t−l −∆ψgov,t−l−1) + ωY∆ψgov,t

and the FONC with respect to inflation becomes

−π̂t +
1

κ1

[
−λY∆Ŷt + σ

Y

C

(
λi∆ît −

λi∆ît−1

β

)
+σ

Y

C
bδ

∞∑
l=0

δl(∆ψgov,t−l −∆ψgov,t−l−1) + ωY∆ψgov,t

]
− λiît−1

β
+

bδ
1− βδ

∞∑
l=0

δl∆ψgov,t−l = 0 (47)

Rearranging the FONC with respect to î we get:

σλi
κ1

Y

C
ît = π̂t +

λY∆Ŷt
κ1

+ (
σλi
κ1

Y

C
+
λi
β
)̂it−1 +

σλi
Y
C
∆ît−1

κ1β

− σ

κ1

Y

C
bδ

∞∑
l=0

δl(∆ψgov,t−l −∆ψgov,t−l−1) +
ωY
κ1

∆ψgov,t +
bδ

(1− βδ)

∞∑
l=0

δl∆ψgov,t−l (48)

Rearranging (48) we can easily get the optimal interest rate rule in Proposition 1.■

A.1.2 Proof of Proposition 4 and derivations for Case 1: λi > 0, λY , σ = 0.

Proof of Proposition 4.
Consider λi ≥ 0 and λY = σ = 0 and the case of active monetary policy. Conjecture that optimal

policy is a rule of the form

ît = θξ̂t + λ̃1π̂t + λ2ît−1 (49)

From the FONC of the Ramsey program, inflation satisfies:

π̂t = −λi
β
ît−1 (50)

and therefore ît =
1

1+
λi
β

ξ̂t.
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Now use (49) and the Euler equation to get:

ît =
1

1− λ̃2L

(
θξ̂t + λ̃1π̂t

)
= ξ̂t + Etπ̂t+1

and when λ̃1 + λ̃2 > 1 we have

π̂t = Et
∑
j≥0

1

(λ̃1 + λ̃2)j

(
1− θ

(λ̃1 + λ̃2)
ξ̂t+j −

λ̃2

(λ̃1 + λ̃2)
ξ̂t+j−1

)
=

1− θ

(λ̃1 + λ̃2)
ξ̂t −

λ̃2

(λ̃1 + λ̃2)
ξ̂t−1 −

λ̃2

(λ̃1 + λ̃2)2
ξ̂t

where the final equality uses the assumption that shocks are i.i.d. From this equation, we can easily
derive the conditions on parameters θ, λ̃1, λ̃2 stated in the Proposition.

Now consider the case of passive monetary policy. Optimal inflation satisfies:

π̂t = −λi
β
ît−1 +

b

1− βδ

∑
l≥0

δl∆ψgov,t−l

From the Euler equation we have:

ît = ξ̂t + Et

(
−λi
β
ît +

b

1− βδ

∑
l≥0

δl∆ψgov,t−l+1

)
= ξ̂t −

λi
β
ît +

δb

1− βδ

∑
l≥0

δl∆ψgov,t−l

= ξ̂t −
λi
β
ît + δ

(
π̂t +

λi
β
ît−1

)
Thus :

ît =
1

1 + λi
β

ξ̂t +
δ

1 + λi
β

π̂t +

λi
β

1 + λi
β

ît−1

■

Additional derivations: The path of optimal inflation.
Consider now the dynamic response of inflation to shocks in period t. In the active monetary

policy case we have:

1

1− λ̃2L

(
ξ̂t

1 + λi/β
+ λ̃1π̂t

)
= ξ̂t + Etπ̂t+1

π̂t =
1

(λ̃1 + λ̃2)

(
λi/βξ̂t
1 + λi/β

− λ̃2ξ̂t−1

)
+

1

(λ̃1 + λ̃2)
Etπ̂t+1 =

− λ̃2

(λ̃1 + λ̃2)
ξ̂t−1 +

1

(λ̃1 + λ̃2)

(
λi/β

1 + λi/β
− λ̃2

(λ̃1 + λ̃2)

)
︸ ︷︷ ︸

=0

ξ̂t = − λ̃2

(λ̃1 + λ̃2)
ξ̂t−1

Therefore in the case of a single shock in period t we get:

π̂t+j = 0 for j ̸= 1 and π̂t+1 = − λ̃2

(λ̃1 + λ̃2)
ξ̂t
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Now consider the passive monetary policy equilibrium. Combining the interest rate rule and the
Euler equation, and dropping expectations, we get:

(π̂t+1 + ξ̂t)(1−
δλi/β

1 + λi/β
L) = ξ̂t

1

1 + λi/β
+

δ

1 + λi/β
π̂t

or

π̂t+1 = δπ̂t −
λi/β

1 + λi/β
ξ̂t +

δλi/β

1 + λi/β
ξ̂t−1 (51)

To derive the reaction of inflation to the shocks in t we use the intertemporal consolidated budget
constraint. Under the assumed parameter values this can be written as:

−GĜt + sξ̂t = −b
∑
j≥0

(βδ)j
j∑
l=0

π̂t+l + bξ̂t

(To derive this equation we assumed no shocks before t and b̂t−1,δ = 0. The focus here is to derive
the impulse response of inflation to a one off shock).

Generalizing (51) to t + j we can easily show that π̂t+1 = δjπ̂t when j > 1. With that we can
write the intertemporal constraint as:

−GĜt + ξ̂t = − b

(1− βδ)(1− βδ2)
π̂t +

βδb

(1− βδ)

λi/β

1 + λi/β
ξ̂t + bξ̂t

Solving for π̂t and using (51 ) we can solve for the entire path of inflation. Consider first the response
to the spending shock:

π̂t+j = δj(1− βδ)(1− βδ2)
GĜt

b

and clearly the impulse response is independent of λi. For the demand shock we have:

π̂t =
(1− βδ)(1− βδ2)

b

(
b− s+

βδb

(1− βδ)

λi/β

1 + λi/β

)
ξ̂t

π̂t+1 = δ
(1− βδ)(1− βδ2)

b

(
b− s+

βδb

(1− βδ)

λi/β

1 + λi/β

)
ξ̂t −

λi/β

1 + λi/β
ξ̂t

π̂t+j = δj
(1− βδ)(1− βδ2)

b

(
b− s+

βδb

(1− βδ)

λi/β

1 + λi/β

)
ξ̂t

A.1.3 Proof of Proposition 5 and derivations for Case 2: λi = 0 and λY > 0

The FONC for inflation and output combined give us the following condition:

−π̂t −
λY
κ1

∆Ŷt +
b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0

Using the Phillips curve, we can write:

−π̂t −
λY
κ21

(π̂t − βEtπ̂t+1) +
λY
κ21

(π̂t−1 − βEt−1π̂t) +
b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0
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Define:

ζt ≡ (π̂t − Et−1π̂t) +
κ21
βλY

b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0

Then, inflation evolves according to:

Etπ̂t+1 − (1 +
1

β
+

κ21
λY β

)π̂t +
1

β
π̂t−1 = −ζt (52)

We will now resolve the above difference equation. Letting κ̃ =
κ21
λY β

, the characteristic polynomial is

λ2 − (1 + 1
β
+ κ̃)λ+ 1

β
. The two roots are:

λ̃1,2 =
1

2

(
(1 +

1

β
+ κ̃)±

√
(1 +

1

β
+ κ̃)2 − 4̃

β

)
It is simple to show that one root is stable and one unstable. Let λ̃1 denote the stable root. (52) can
be written as:

π̂t =
1

λ̃2
Etπ̂t+1 +

1

λ̃2

1

1− λ̃1L
ζt =

1

λ̃2

1

1− λ̃1L

∑
j≥0

1

λ̃j2
Etζt+j (53)

(for the usual boundary condition that inflation does not explode).
Let us compute the term∑

j≥0

1

λ̃j2
Etζt+j =

∑
j≥0

1

λ̃j2
Et

[
(π̂t+j − Et+j−1π̂t+j) + κ̃

b

1− βδ

∞∑
k=0

δk∆ψgov,t+j−l

]
When ∆ψgov,t ̸= 0 (in an equilibrium with active fiscal policy), the final term on the RHS is

κ̃
b

1− βδ

∑
j≥0

1

λ̃j2
Et

[ ∞∑
k=0

δk∆ψgov,t+j−l

]
= κ̃

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t

(this follows from the random walk property of the multiplier). Moreover, it clearly holds that:∑
j≥0

1

λ̃j2
Et(π̂t+j − Et+j−1π̂t+j) = π̂t − Et−1π̂t

Putting everything together and using (53) we have:

π̂t = λ̃1π̂t−1 +
1

λ̃2
(π̂t − Et−1π̂t) +

κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t (54)

Proof of Proposition 5.
To derive the interest rate rules use (85). Consider first the the case where ∆ψgov,t = 0 (passive

fiscal policy).
Then,

Etπ̂t+1 = λ̃1π̂t +
1

λ̃2
Et(π̂t+1 − Eπt+1) = λ̃1π̂t
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and clearly Et−1π̂t = λ̃1π̂t−1. Then since ζt = 0 from (52) optimal inflation solves

π̂t+1 − (λ̃1 + λ̃2)π̂t + λ̃1λ̃2π̂t−1 = 0 (55)

(expectations can be dropped because inflation is clearly not random). The unique solution is π̂t = 0
for all t. Standard arguments imply uniqueness of the equilibrium when:

ît = ξ̂t + (λ̃1 + λ̃2)π̂t − λ̃1λ̃2π̂t−1

Now consider the case where ∆ψgov,t ̸= 0. From (85) we have

Etπ̂t+1 = λ̃1π̂t +
κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

Et
1

1− δL
∆ψgov,t+1︸ ︷︷ ︸

= δ
1−δL

∆ψgov,t

and also

Et−1π̂t = λ̃1π̂t−1 +
κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

δ

1− δL
∆ψgov,t−1

We thus have

π̂t − Et−1π̂t =
1

λ̃2
(π̂t − Et−1π̂t) +

κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

∆ψgov,t

→ π̂t − Et−1π̂t =
λ̃2

λ̃2 − 1

κ̃

λ2

b

1− βδ

1

1− δ

λ̃2

∆ψgov,t

It is now easy to derive the optimal interest rate rule. Let õ = κ̃
λ2

b
1−βδ

1
1− δ

λ2

ît = ξ̂t + Etπ̂t+1 = ξ̂t + λ̃1π̂t + õ
δ

1− δL
∆ψgov,t = ξ̂t + λ̃1π̂t + δ

(
π̂t − λ̃1π̂t−1 −

õ

λ̃2 − 1
∆ψgov,t

)
■

Additional derivations: The path of optimal inflation.
We now provide additional derivations for the impulse responses shown in Section 4.
The case where fiscal policy is passive is trivial since inflation and output are at steady state in all

periods. Consider the case where fiscal policy is active. Focus on the case a shock in either spending
or preferences can hit the economy in t and all shocks before or after t are 0. Thus, ∆ψgov,t ̸= 0 but

∆ψgov,t+j = 0 for j ̸= 0. Moreover, let b̂t−1 = 0. The intertemporal consolidated budget in this model
can be written as:

−GĜt + (s− b)ξ̂t = −b
∑
j≥0

(βδ)j
j∑
l=0

π̂t+l
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From the above derivations we can show that:

π̂t = λ̃1π̂t−1 +
1

λ̃2 − 1
õ∆ψgov,t + õ∆ψgov,t

(given that ∆ψgov,t−1 = ∆ψgov,t−2 = ...0.) Also,

π̂t+1 = λ̃1π̂t + õδ∆ψgov,t = λ̃1π̂t−1 + õ(δ + λ̃1)∆ψgov,t + õ
λ̃1

λ̃2 − 1
∆ψgov,t

...

π̂t+l = λ̃l+1
1 π̂t−1 + õ

(
δl + δl−1λ̃1 + δl−2λ̃21 + ...+ δλ̃l−1

1 + λ̃l
)
∆ψgov,t + õ

λ̃l1

λ̃2 − 1
∆ψgov,t

Noting that

(
δl + δl−1λ̃1 + δl−2λ̃21 + ...+ δλ̃l−1

1 + λ̃l
)

=

(
δl+1−λ̃l+1

1

)
δ−λ̃1

and also that by assumption

π̂t−1 = 0, we can write the consolidated budget constraint as:

−GĜt + (s− b)ξ̂t = −bõ∆ψgov,t
∑
j≥0

(βδ)j
j∑
l=0

(
λ̃l1

λ̃2 − 1
+

(
δl+1 − λ̃l+1

1

)
δ − λ̃1

)
For brevity let us skip the algebra. The final result is:

∆ψgov,t = (1− βδ)(1− βδλ̃1)

(
GĜt + (b− s)ξ̂t

)
bõ( 1

1−βδ2 +
1

λ̃2−1
)

Now use the above derivations to derive the impulse responses. We have:

π̂t =
λ̃2

λ̃2 − 1
õ∆ψgov,t

π̂t+j = õ

(
δj+1 − λ̃j+1

1

)
δ − λ̃1

∆ψgov,t + õ
λ̃j1

λ̃2 − 1
∆ψgov,t, j ≥ 1

The case λY = 0. Now let us calculate the limit when λY = 0. In this case we have κ̃ → ∞
and it is easy to show that λ̃1 → 0 and λ̃2 → ∞. Also: limλY →0 õ = limλY →0

κ̃
λ2

b
1−βδ

1
1− δ

λ2

= b
1−βδ . We

thus have:

π̂t+j =
b

1− βδ
δj∆ψgov,t, j ≥ 0

and

∆ψgov,t = (1− βδ)2(1− βδ2)

(
GĜt + (b− s)ξ̂t

)
b
2
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A.1.4 Proof of Proposition 6 and derivations for Case 3: σ > 0 λi, λY = 0.

As in the main text we assume λY = λi = 0. The FONC for inflation are:

π̂t =
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l + σ
Y

Cκ1
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
+
ωY
κ1

∆ψgov,t (56)

In text we assumed G = 0. To find the optimal interest rate rule in the case where fiscal policy
is active we combined the Euler equation and the Phillips curve:

ît = σ

(
EtŶt+1 − Ŷt

)
+ Etπ̂t+1 + ξ̂t =

σ

κ1
Et

(
π̂t+1 − βπ̂t+2 − π̂t + βπ̂t+1

)
+ Etπ̂t+1 + ξ̂t

We can now derive Etπ̂t+1 as follows:

Etπ̂t+1 =
bδ

1− βδ

∞∑
l=0

δl∆ψgov,t−l + δ
σ

κ1
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
− σ

κ1
b∆ψgov,t =

δπ̂t − δ
ωY
κ1

∆ψgov,t −
σ

κ1
b∆ψgov,t

Moreover, it is simple to show that

Etπ̂t+2 = δ2π̂t − δ2
ωY
κ1

∆ψgov,t − δ
σ

κ1
b∆ψgov,t

Making use of this we get:

ît = ξ̂t +

(
δ +

σ

κ1
(1− δ)(δβ − 1)

)
π̂t − (δ

ωY
κ1

+
σ

κ1
b)(1 +

σ

κ1
+ β

σ

κ1
(1− δ))∆ψgov,t

Now let us turn to the passive fiscal policy case. Since the shock is a demand shock, we have
that π̂t = Ŷt = 0 (divine coincidence). The interest rate rule that can implement this outcome is
ît = ξ̂t + ϕππ̂t where ϕπ > 1.

Proof of Proposition 6: Optimal interest rate rule when G > 0. For completeness let us
also find the optimal rule when G > 0.

ît = σ
Y

C

(
EtŶt+1 − Ŷt

)
+ Etπ̂t+1 + ξ̂t + σ

G

C
Ĝt

=
σ

κ1

Y

C
Et

(
π̂t+1 − βπ̂t+2 − π̂t + βπ̂t+1

)
+ Etπ̂t+1 + ξ̂t + σ

G

C
Ĝt −

σκ2
κ1

Y

C
Ĝt

Moreover, now

Etπ̂t+1 =
bδ

1− βδ

∞∑
l=0

δl∆ψgov,t−l + δ
Y

C

σ

κ1
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
− Y

C

σ

κ1
b∆ψgov,t =

δπ̂t − δ
ωY
κ1

∆ψgov,t −
σ

κ1

Y

C
b∆ψgov,t

and

Etπ̂t+2 = δ2π̂t − δ2
ωY
κ1

∆ψgov,t − δ
σ

κ1

Y

C
b∆ψgov,t
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We therefore get:

ît = ξ̂t + σ
G

C
Ĝt −

σκ2
κ1

Y

C
Ĝt +

(
δ +

Y

C

σ

κ1
(1− δ)(δβ − 1)

)
π̂t − f∆ψgov,t (57)

where f =

(
1 + Y

C
σ
κ1
(1 + β − βδ)

)(
δ ωY

κ1
+ Y

C
σ
κ1
b

)
■

The optimal path of inflation.

The LHS of the consolidated budget constraint under the parameter values assumed here, is:

∑
j≥0

βjsŜt+j =
∑
j≥0

βj
[
−GĜt+j + (τ −G)σ

G

C
Ĝt+j − (τ −G)σ

Y

C
Ŷt+j + (τ −G)ξ̂t+j

]

= −GĜt + (τ −G)σ
G

C
Ĝt + (τ −G)ξ̂t −

∑
j≥0

βj
[
(τ −G)σ

Y

C
Ŷt+j

]
Consider the last term. We have:

−(τ −G)σ
Y

C

∑
j≥0

βj
[
Ŷt+j

]
= −(τ −G)

σ

κ1

Y

C

∑
j≥0

βj
[
π̂t+j + κ2Ĝt+j − βπ̂t+j+1

]

= −(τ −G)
σ

κ1

Y

C

(
π̂t + κ2Ĝt

)
We therefore get:

∑
j≥0

βjsŜt+j = −GĜt + (τ −G)σ
G

C
Ĝt + (τ −G)ξ̂t − (τ −G)

σ

κ1

Y

C

(
π̂t + κ2Ĝt

)
(58)

The RHS of the intertemporal constraint is:

b
∑
j≥0

(βδ)j
(
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=0

π̂t+l

)
+ bξ̂t

Let us separately derive each of the components. The first is:

b
∑
j≥0

(βδ)j
(
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)

)
= −σb

∑
j≥0

(βδ)j
(
Y

C
Ŷt+j

)
+ σb

G

C
Ĝt

− σ

κ1

Y

C
b
∑
j≥0

(βδ)j
(
π̂t+j + κ2Ĝt+j − βπ̂t+j+1

)
+ σb

G

C
Ĝt

= − σ

κ1

Y

C
b
∑
j≥0

(βδ)j
(
π̂t+j − βπ̂t+j+1

)
+ σbĜt

(
G

C
− κ2
κ1

Y

C

)

We can now substitute out the term π̂t+j−βπ̂t+j+1 using formula (40) in text. Let ν = σ
κ1

Y
C
(b−(τ−G))

we can write (40) as:

50



π̂t+j − βπ̂t+j+1 =



[
b

1−βδ (1− βδ) + ν − β σ
κ1
(1− δ)Y

C
b

]
∆ψgov,t j = 0

[
b

1−βδδ
j − σ

κ1
(1− δ)δj−1 Y

C
b

]
(1− βδ)∆ψgov,t j ≥ 1


Making use of this result we can write:

− σ

κ1

Y

C
b
∑
j≥0

(βδ)j
(
π̂t+j − βπ̂t+j+1

)
= − σ

κ1

Y

C
b

[
b

1− βδ
(1− βδ) + ν − β

σ

κ1
(1− δ)

Y

C
b

]
∆ψgov,t

− σ

κ1

Y

C
b(1− βδ)∆ψgov,t

∑
j≥1

(βδ)j
[

b

1− βδ
δj − σ

κ1
(1− δ)δj−1Y

C
b

]
=

− σ

κ1

Y

C
b∆ψgov,t

{
(1− βδ)

[
b

1− βδ

βδ2

1− βδ2
− σ

κ1
(1− δ)

Y

C
b

βδ

1− βδ2

]
+

[
b

1− βδ
(1− βδ) + ν − β

σ

κ1
(1− δ)

Y

C
b

]}
= − σ

κ1

Y

C
b∆ψgov,t

{[
b

1− βδ2
+ ν − σ

κ1

Y

C
b(1− δ)

(
(1− βδ)

βδ

1− βδ2
+ β

)]}
Consider now the term:

−b
∑
j≥0

(βδ)j
( j∑
l=0

π̂t+l

)
=

[
− b

1− βδ
ν − b

2

1− βδ

∑
j≥0

(βδ)j
1− δj+1

1− δ
+
σ

κ1
(1− δ)

Y

C
b
2∑
j≥1

(βδ)j
1− δj

1− δ

]
∆ψgov,t =

−
[

b

1− βδ
ν +

b
2

(1− βδ)2(1− βδ2)
− σ

κ1
(1− δ)

Y

C

b
2
(βδ)2

(1− βδ)(1− βδ2)

]
∆ψgov,t

We can thus write the intertemporal constraint as:

−
[
µ1 + µ2 − s

σ

κ1

Y

C

(
b

1− βδ
+ ν

)]
∆ψgov,t = −GĜt +

(
s− b

)
σ

(
G

C
− κ2
κ1

Y

C

)
Ĝt +

(
s− b

)
ξ̂t (59)

µ1 =

[
b

1− βδ
ν +

b
2

(1− βδ)2(1− βδ2)
− σ

κ1

(
1− δ

)
Y

C

b
2
(βδ)2

(1− βδ)(1− βδ2)

]
µ2 =

σ

κ1

Y

C
b

{[
b

1− βδ2
+ ν − σ

κ1

Y

C
b

(
1− δ

)(
(1− βδ)

βδ

1− βδ2
+ β

)]}
where s = τ −G.

Finally, consider the Ĝt terms in (59). We can write the ratio κ2
κ1

=
σG

C

Y
2
(γh+σ

Y
C
)
and so:

−GĜt +

(
s− b

)
σ

(
G

C
− κ2
κ1

Y

C

)
Ĝt = −GĜt +

(
s− b

)
σ
G

C

(
1− 1

Y
2
(γh + σ Y

C
)

Y

C

)
Ĝt

A.1.5 Proof of Proposition 7

We will first prove that the equilibrium under optimal policies features 0 inflation when δ = 1. Then
we will show that this outcome can be implemented with a rule of the form ît = ξ̂t + ϕ̃ππ̂t + ϕ̃Y Ŷt.
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This is a more general rule than the one considered in Proposition 7 where we focused on the case
ϕ̃Y = 0. The conditions we derive below nest this case as well.

For clarity, we write here the system of equations that needs to be resolved under the parameter
values assumed. We have:

π̂t = κ1Ŷt + βEtπ̂t+1, (60)

ît = ξ̂t + Et

(
π̂t+1 − σ

(
Ŷt − Ŷt+1)

)
(61)

b1p

(
b̂t,1 + p̂t

)
=

(
1 + p

)
b1

(
b̂t−1,1 − π̂t

)
+ b1pp̂t − τ τ̂t (62)

p̂t =

(
−ξ̂t − Et

(
π̂t+1 + σ

(
Ŷt − Ŷt+1)

))
+ βp̂t+1 (63)

where p = β
1−β denotes the steady state of the consol.

Under parameters λi = 0 λY , σ > 0 the first order conditions assuming active fiscal policy give
us:

−π̂t −
λY
κ1

∆Ŷt +
σ

κ1
b1

∞∑
l=0

(
∆ψgov,t−l −∆ψgov,t−l−1

)
+ ωY∆ψgov,t +

b1
1− β

∞∑
l=0

∆ψgov,t−l = 0 (64)

ψgov,t − Etψgov,t+1 = 0 (65)

We are required to solve the system of equations (60), (62), (63), (64) and (65) together with the
fiscal rule. 36 (62) can be written as:

b̂t,1 =
1

β

(
b̂t−1,1 − π̂t

)
− τϕτ,b

b1p
b̂t−1,1 (66)

since p̂t drops from the LHS and RHS of (66) it is also obvious that (63) can be treated as a residual in
this equilibrium system. The complete system is now (60) (66), (64) and (65). Moreover, since ξt does
not appear anywhere in these equations, it is obvious that the solution is π̂t = Ŷt = b̂t,1 = ψgov,t = 0.
It can be shown that this solution is unique.

In the passive fiscal model we know from subsection 3.2.3 that π̂t = Ŷt = 0.

Let us now show that these outcomes can be implemented with an inflation targeting rule. Now
the system of equations that we need to resolve is (60), (66) together with

ϕ̃ππ̂t + ϕ̃Y Ŷt = Et

(
π̂t+1 − σ

(
Ŷt − Ŷt+1)

)
(67)

p̂t = −ϕ̃ππ̂t − ϕ̃Y Ŷt − ξ̂t + βp̂t+1 (68)

In matrix form we can write this system as:

AEtzt+1 = Bzt + Cξ̂t (69)

36(61) can be satisfied ex post since ît is a ‘slack’ variable.
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where zt =

(
π̂t, Ŷt, p̂t, b̂t−1

)
and

A =


β 0 0 0
1 σ 0 0
0 0 β 0
0 0 0 1



B =


1 −κ1 0 0

ϕ̃π ϕ̃Y + σ 0 0

ϕ̃π ϕ̃Y 1 0

− 1
β

0 0 1
β
− τϕτ,b

b1p


and C = [0, 0, 1, 0]′. The dynamics of (69) are governed by the eigenvalues of A−1B.

A−1B =


1
β

−κ1
β

0 0
ϕ̃π
σ
− 1

σβ
κ1
σβ

+ ϕ̃Y
σ

+ 1 0 0
ϕ̃π
β

ϕ̃Y
β

1
β

0

0 0 1
β
− τϕτ,b

b1p


The characteristic polynomial is:

(
1

β
− λ

)2(
κ1
σβ

+
ϕ̃Y
σ

+ 1− λ

)(
1

β
− τϕτ,b

b1p
− λ

)
+

(
1

β
− λ

)(
1

β
− τϕτ,b

b1p
− λ

)
κ1
β
(
ϕ̃π
σ

− 1

σβ
) = 0

Rearranging we get:(
1

β
− λ

)(
1

β
− τϕτ,b

b1p
− λ

)[(
1

β
− λ

)(
κ1
σβ

+
ϕ̃Y
σ

+ 1− λ

)
+
κ1
β

ϕ̃π
σ

]
= 0

The solution is unique if we get 3 eigenvalues outside the unit circle. Suppose that fiscal policy is
‘passive’ so that 1

β
− τϕτ,b

b1p
< 1. Then the 2 eigenvalues that we can obtain from solving the second

order polynomial in the square bracket above have to exceed 1. The polynomial is:

λ2 − λ

(
1

β
+
κ1
σβ

+
ϕ̃Y
σ︸ ︷︷ ︸

χ1

+1

)
+

1

β

(
ϕ̃Y
σ

+ 1

)
+
κ1
β

ϕ̃π
σ︸ ︷︷ ︸

χ2

= 0

Focusing on positive values for parameters ϕ̃π, ϕ̃Y both roots exceed 1 if:

(χ1 + 1)−
√
(χ1 + 1)2 − 4χ2

2
> 1

or

(χ1 − 1) >
√

(χ1 + 1)2 − 4χ2 → (χ1 − 1)2 > (χ1 + 1)2 − 4χ2 → 4χ2 > (χ1 + 1)2 − (χ1 − 1)2 = 4χ1

The condition χ2 > χ1 holds when

1

β

(
ϕ̃Y
σ

+ 1

)
+
κ1
β

ϕ̃π
σ
>

1

β
+
κ1
σβ

+
ϕ̃Y
σ

or

ϕ̃Y (1− β)

κ1
+ ϕ̃π > 1 (70)

In the case where fiscal policy is active it is easy to check that a unique equilibrium requires the
opposite inequality to hold in (70). Finally, it is easy to verify that in either of these cases inflation,
debt and output are always at steady state. ■
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A.2 Matching Impulse Responses under Active Fiscal Policy

In this section we conduct the experiments described in paragraph 3.3 to derive numerically optimal
interest rate rules when at least two of parameters λi, λY and σ can be positive. As discussed in text,
we do this by matching the impulse response functions of Ramsey model with those of a model where
monetary policy follows an interest rate rule whose parameters are set to approximate the Ramsey
outcome. For simplicity we will consider only the case of spending shocks. What we will show here
can be easily extended to demand shocks.

Let us first derive an analytical result. Assume that λi, σ > 0 but λY = 0. Assume further
that debt is short term, δ = 0. We will show that a simple inflation targeting rule of the form:
ît = ϕGĜt + ϕππ̂t can fit perfectly the Ramsey impulse response function.

Combining the first order conditions under the assumed parameter values gives:

−π̂t +
σ

κ1

Y

C
(λi∆ît −

λi
β
∆ît−1) +

σ

κ1

Y

C
b(∆ψgov,t −∆ψgov,t−1) +

ωY
κ1

∆ψgov,t −
λiît−1

β
+ b∆ψgov,t = 0

Using the interest rate rule along with the initial conditions ît−1 = ît−2,∆ψgov,t−1 = 0 and the fact

that ∆ψgov,t = ϵĜt we can write:

−π̂t +
σλi
κ1

Y

C
(ϕGĜt + ϕππ̂t) + (

σ

κ1

Y

C
b+

ωY
κ1

+ b)ϵĜt = 0

Next the first order condition in t+ 1 becomes:

−π̂t+1 +
σ

κ1

Y

C
(λi∆ît+1 −

λi
β
ît)−

σ

κ1

Y

C
bϵĜt −

λiît
β

= 0

or

π̂t+1 (1−
σ

κ1

Y

C
λiϕπ)︸ ︷︷ ︸

ζ1

= − (
σ

κ1

Y

C
bϵ+ λi(

1

β
+
σ

κ1

Y

C
(1 +

1

β
))ϕG)︸ ︷︷ ︸

ζ2

Ĝt − λi(
1

β
+
σ

κ1

Y

C
(1 +

1

β
))ϕπ︸ ︷︷ ︸

ζ3

π̂t

Finally, inflation in t+ 2 solves:

−π̂t+2 +
σ

κ1

Y

C
(λi∆ît+2 −

λi
β
∆ît+1)−

λiît+1

β
= 0

or

π̂t+2ζ1 = −ζ3π̂t+1 +
λi
β

σ

κ1

Y

C
(ϕππ̂t + ϕGĜt) = ζ3(

ζ3
ζ1
π̂t +

ζ2
ζ1
Ĝt) +

λi
β

σ

κ1

Y

C
(ϕππ̂t + ϕGĜt)

Dropping the shocks for simplicity and using the policy rule the Euler equation in t can be written
as:

ϕππ̂t =

(
σ

κ1

Y

C
(1 + β) + 1

)
π̂t+1 −

σ

κ1

Y

C
π̂t − β

σ

κ1

Y

C
π̂t+2

We thus get:

ϕπ = −
(
σ

κ1

Y

C
(1 + β) + 1

)
ζ3
ζ1

− σ

κ1

Y

C
− β

σ

κ1

Y

C
(
ζ23
ζ21

+
λi
β

σ

κ1

Y

C

ϕπ
ζ1

)
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a nonlinear equation in coefficient ϕπ. Solving this we will obtain the value that makes the inflation
targeting rule fit the impulse response function of the Ramsey model.

When we assume δ > 0 or λY > 0 the approximate policy rule may feature lags of interests rates.
Our next experiments use the numerical impulse responses and the baseline calibration of the model
to determine the optimal coefficients in the interest rate rule.

In particular, we assume that fiscal policy is active and that monetary policy sets the nominal
interest rate according to:

ît = ϕππ̂t + ϕY Ŷt + ϕiît−1 + ϕ∆i∆ît−1 (71)

Evidently, the RHS of (71) has the same functional form as T in Proposition 1, and object Dt has
been omitted. We will estimate the values of coefficients ϕπ, ϕY , ϕi, ϕ∆i so that the model when
interest rates follow (71) approximates the optimal policy model.

Table 2 shows the estimates of the coefficients.37 We consider several calibrations of the model:
The table is split in 3 sub-tables. The first two correspond to the active fiscal policy model. We
set δ = 0.5 in the left, and δ = 0.95 in the middle. Moreover, in the top panel of each subtable we
let λY = 0, in which case we also constrain ϕY to be equal to 0, whereas the bottom panel assumes
λY = 0.5, thus setting the weight to output stabilization in the policy objective to be half of the
weight attached to inflation stabilization. Each of the columns of the subtables corresponds to a
different calibration of the pair λi, σ.

For comparison, the right part of the Table shows the coefficients in the passive fiscal model
corresponding to each calibration considered. Finally, the assumed values for the remaining model
parameters are reported in Table 1 (see the notes of that table for a brief discussion of the calibration).

Several results stand out. First, notice that assuming active fiscal policy reduces substantially
the values of coefficients ϕi and ϕ∆i relative to the case of passive policy. As is well known (see
Giannoni and Woodford, 2003), the optimal policy rule in the passive fiscal model is super-inertial ;
the coefficients are such that the rule contains an explosive root. In contrast, under active fiscal
policy both roots of the second order difference equation defined by the interest rate rule are stable.

Second, the estimated coefficients ϕπ, ϕY are also smaller in magnitude than their passive fiscal
counterparts. This property is in line with our previous findings.38 Third, these coefficients do
vary (as expected) as we vary the values of parameters σ, λi, λY , but also it is evident that a key
determinant of the estimates is the debt maturity. This is easily noticeable in the top panels of the
left and middle sub-tables. Assuming σ = 1 and λi = 0.5 yields an estimate ϕπ of 0.21 when δ = 0.5
and 0.43 when δ = 0.95. Moreover, when we assume λi = 1 we have -0.10 and 0.52 for δ = 0.5

37We produced these estimates through matching the impulse responses of the optimal policy model. We focused
on matching the responses to the spending shock only. Note that (71) could produce a perfect fit in some of the cases
reported in Table 2. In other cases this was not so and to improve the fit we added the spending shock as an additional
argument to the rule. We therefore estimated

ît = ϕGĜt + ϕππ̂t + ϕY Ŷt + ϕiît−1 + ϕ∆i∆ît−1

This turned out being useful when δ = 0.95. Presumably, we would need to add further lags of inflation, output and
interest rates in (71) to avoid introducing Ĝt. We did not want to extend to further lags, as we wanted to maintain as
closely as possible the structure of Proposition 1. Coefficient ϕG was found to be small in magnitude and we do not
report it in the Table.

38It is however not necessary to have ϕπ, ϕY larger in the passive fiscal model. Under a super-inertial rule, monetary
policy is active for any positive values of coefficients ϕπ, ϕY . Thus ϕπ, ϕY could even be smaller than in the active
fiscal scenario.
To claim that the estimated rules in the left and middle sub-tables define passive monetary policies, we have to

jointly consider the estimated values of ϕπ, ϕY , ϕi and ϕ∆i. These have to satisfy the usual condition that the nominal
interest rate weakly responds to the deviations of the variables from targets. This requirement is obviously met,
otherwise the Blanchard-Kahn condition would not be satisfied and the model solution could not be found.
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and δ = 0.95 respectively.39 Thus, higher debt maturity yields a stronger reaction of monetary
policy to inflation, implying a more persistent response of inflation to the shock. This feature can
be easily understood based on our previous discussion regarding optimal policy in the active fiscal
policy model.

These patterns continue to hold for many alternative calibrations of the model, which for brevity
we do not show here.

39It is not paradoxical to get a negative inflation coefficient from these regressions. As we have previously seen, for
the case σ > 0 and λi = 0 the optimal inflation coefficient is δ+ σ

κ1
(1− δ)(δβ − 1) which can be negative if δ is not of

high value. (We discuss this property in detail below.) This applies also to the case σ, λi > 0.
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B Optimal Policies with Distortionary Taxation

We now present analytical results for the case where taxes are distortionary. Under this assumption
the two model equations that need to be changed are the Phillips curve and the government budget
constraint. We now have

π̂t = κ1Ŷt − κ2Ĝt + κ3τ̂t + βEtπ̂t+1, (72)

where κ1 ≡ − (1+η)Y
θ

(γh + σ Y
C
) > 0, κ3 ≡ − (1+η)Y

θ
τd

(1−τd) ≥ 0, κ2 ≡ − (1+η)

θY
σG
C
> 0, and where τ d

denotes the steady state distortionary tax rate.
Moreover, now the surplus of the government becomes a function of output and we have:

sŜt ≡
[
−G
(
Ĝt(1 + σ

G

C
)− σ

Y

C
Ŷt + ξ̂t

)
+ r

(
R̂t + ξ̂t

)]
r is the steady state revenue of the government, and R̂t denotes the revenue scaled by marginal
utility. We have:

R̂t =

(
(1 + γh)Ŷt +

τ̂t
1− τ d

)
Iτd>0

We continue to assume that fiscal policy is given by (6).
Optimal policy solves the following system of equations:

−π̂t +∆ψπ,t −
ψi,t−1

β
+

b

1− βδ

∞∑
l=0

δl∆ψgov,t−l = 0 (73)

−λY Ŷt − ψπ,tκ1 + σ
Y

C
(ψi,t −

ψi,t−1

β
) + σ

Y

C
b

∞∑
l=0

δl∆ψgov,t−l + ωY ψgov,t = 0 (74)

−λiît + ψi,t = 0 (75)

βb

1− βδ

(
ψgov,t − Etψgov,t+1

)
− βϕτ,bEt

(
κ3ψπ,t+1 − r

dR̂t

dτ̂t
ψgov,t+1

)
= 0 (76)

where now ωY ≡ Gσ Y
C
+ r(1 + γh).

Note that (73) to (75) are essentially the same as (8) to (10) derived in text under the assumption
that taxes are lump sum. Rearranging these first order conditions (following the steps of the proof
of Proposition 1) it is again possible to express interest rates under as the sum of Tt and Dt.

B.1 The two equilibria under distortionary taxes

It is possible to show that this model admits two equilibria under active and passive fiscal policies.
However, we now need to separately treat the cases where λY = 0 and λY > 0. As we explain below
in the case λY > 0 we need to modify the objective of the planner slightly assuming that the target
is the natural level of output, not the steady state level.

B.1.1 λY = 0

Assume first that λY = 0. (76) can be written as;

βb

1− βδ

(
ψgov,t − Etψgov,t+1

)
− βϕτ,bEt

(
κ3
σ

κ1

Y

C
b

∞∑
l=0

δl∆ψgov,t−l+1 +
κ3ωY
κ1

ψgov,t+1 −
r

1− τ d
ψgov,t+1

)
= 0

(77)
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which can be written as

η̃1

(
ψgov,t − Etψgov,t+1

)
− βϕτ,bEt

(
κ3
σ

κ1

Y

C
b
∆ψgov,t+1

1− δL
+ η̃2ψgov,t+1

)
= 0

where η̃2 < 0 to be at the upward sloping part of the Laffer curve.
The above can be rearranged into a second order difference equation:

−
(
η̃1 + βϕτ,b(η̃2 + κ3

σ

κ1

Y

C
b)

)
Etψgov,t+1 +

(
η̃1(1 + δ) + βϕτ,b(η̃2δ + κ3

σ

κ1

Y

C
b)

)
ψgov,t − δη̃1ψgov,t−1 = 0

(78)

or

Etψgov,t+1 −
(
1− (1− δ)η̃2

βϕτ,b
η̃3

+
δη̃1
η̃3

)
ψgov,t +

δη̃1
η̃3
ψgov,t−1 = 0 (79)

where η̃3 =

(
η̃1+βϕτ,b(η̃2+κ3

σ
κ1

Y
C
b)

)
. It is easy to show that the characteristic polynomial has two

roots, one stable and one unstable. The unique non-explosive solution is thus ψgov,t = 0.
We can now derive the threshold value ϕτ,b. From the first order condition of inflation it is easy

to show that when ψgov,t = 0, π̂t = 0 for all t. With distortionary taxation output evolves according
to:

Ŷt = −κ3
κ1
τ̂t +

κ2
κ1
Ĝt

The Euler equation then gives us:

ît = ξ̂t + σ
Y

C
Et

(
−κ3
κ1

∆τ̂t+1 +
κ2
κ1

∆Ĝt+1

)
− σ

G

C
Et∆Ĝt+1

Analogously, the price of long term bonds evolves according to:

p̂t = −ξ̂t − σ
Y

C
Et

(
−κ3
κ1

∆τ̂t+1 +
κ2
κ1

∆Ĝt+1

)
+ σ

G

C
Et∆Ĝt+1 + βδEtp̂t+1

For simplicity, let us suppress the shocks (This does not change anything with regard to the threshold

ϕ̃τ ). Using the above expression we can then write:

p̂t = σ
Y

C

κ3
κ1
ϕτ,b(b̂t − b̂t−1) + βδEtp̂t+1 (80)

Moreover, the consolidated budget constraint (again without shocks) can written as:

βb

(
b̂t + p̂t

)
= bb̂t−1 + βδbp̂t + r(1− βδ)ϕτ,b

(
κ3
κ1

(1 + γh + σ
Y

C
)− 1

1− τ d

)
b̂t−1 (81)

(80) and (81) form the system of equations that needs to be resolved.[
βδ ϵ̃

0 βb

]
︸ ︷︷ ︸

≡A

(
Etp̂t+1

b̂t

)
=

[
1 ϵ̃

bβ(δ − 1) b+ χ̃

]
︸ ︷︷ ︸

≡B

(
p̂t
b̂t−1

)

where χ̃ ≡ R(1− βδ)ϕτ,b

(
κ3
κ1
(1 + γh + σ Y

C
)− 1

1−τd

)
and ϵ̃ ≡ σ Y

C
κ3
κ1
ϕτ,b.
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Then

A−1B =
1

det(A)

[
βb− ϵ̃βb(δ − 1) ϵ̃(β − 1)b− ϵ̃χ̃

β2δb(δ − 1) βδ(b+ χ̃)

]
The characteristic equation is:

λ2 − λ

det(A)

(
βb+ ϵ̃βb(1− δ) + βδ(b+ χ̃)

)
+

1

det(A)2

(
β2δb(b+ χ̃) + ϵ̃β3δ(1− δ)b

2
)

The smallest root is:

λ1 =
1

2

1

det(A)

[(
βb+ ϵ̃βb(1− δ) + βδ(b+ χ̃)

)
−

−

√(
βb+ ϵ̃βb(1− δ) + βδ(b+ χ̃)

)2

− 4

(
β2δb(b+ χ̃) + ϵ̃β3δ(1− δ)b

2
)]

It is easy to show that λ1 = 1 when b+ χ̃ = βb, or

ϕτ,b =
b(1− β)

r(1− βδ)

(
1

1−τd −
κ3
κ1
(1 + γh + σ Y

C
)

) ≡ ϕ̃τ

which is the expression shown in Section 5 in text.
Moreover, we can show that λ1 is monotonically decreasing in ϕτ,b and λ1 < 1 when ϕτ,b > ϕ̃τ .

Finally, the largest root always exceeds 1. Thus the unique stable equilibrium is attained when
ϕτ,b > ϕ̃τ .

B.1.2 λY > 0

Consider now the case where λY > 0 maintaining that λi = 0. Now an equilibrium under passive
fiscal policy where ψgov,t = 0 may not exist. To see this, note that (76) can now be written as:

βb

1− βδ

(
ψgov,t − Etψgov,t+1

)
− βϕτ,bEt

(
−κ3
κ1
λY Ŷt+1 + κ3

σ

κ1

Y

C
b

∞∑
l=0

δl∆ψgov,t−l+1 +
κ3ωY
κ1

ψgov,t+1

− r

1− τ d
ψgov,t+1

)
= 0

Following the notation of the previous subsection this can be rearranged into:

Etψgov,t+1 −
(
1− (1− δ)η̃2

βϕτ,b
η̃3

+
δη̃1
η̃3

)
ψgov,t +

δη̃1
η̃3
ψgov,t−1 = −βϕτ,bκ3λY

κ1η̃3

(
EtŶt+1 − δŶt

)
Notice that the forcing term EtŶt+1 − δŶt on the RHS of the above equation precludes a solution
where ψgov,t = 0. To see this suppose that indeed ψgov,t were equal to 0. Then, it should also be

that EtŶt+1 − δŶt = 0. From the first order conditions of inflation and output we would get: π̂t =
λY
κ1
(Ŷt−Ŷt−1). Using this and the Phillips curve we can derive a difference equation in aggregate output

with forcing term −κ3
κ1
τ̂t +

κ2
κ1
Ĝt. Aggregate output will generally not equal zero, and EtŶt+1 − δŶt

will not be zero either.
To interpret the above, notice that when taxes are distortionary, they become a cost push shock

in the Phillips curve which drives the inflation output tradeoff in the equilibrium with active fiscal
policy. Thus, the planner will always attempt to use the tax schedule, targeting the path of debt,
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in order to smooth the shock and thereby smoothing the inflation output tradeoff. This makes the
government debt constraint relevant, independent of the value of ϕτ,b.

40

Finally note that the above problem may not arise if we adopt an alternative specification of the
objective to smooth output and in particular if we assume that optimal policy attempts to stabilize
output not around the constant steady state value, but around the natural level. In this case, when
taxes deviate from steady state the planner will not attempt to restore the steady state level of
output, using distortionary inflation.

To show this let us assume for simplicity σ = 0 and the output objective is λY (Ŷt − Y n
t )

2 where

Ŷ n
t = − τd

γh(1−τd)
τ̂t is the natural level of output.

It is trivial to show that the model now admits an equilibrium where ψgov,t = 0. The first order
condition for bonds can be written as:

βb

1− βδ

(
ψgov,t − Etψgov,t+1

)
− βϕτ,bEt

(
−κ3
κ1
λY (Ŷt+1 − Ŷ n

t+1) + (
κ3
κ1
τ d(1 + γh)− r

1

1− τ d
)︸ ︷︷ ︸

f1

ψgov,t+1

)
= 0

(82)

where f1 < 0 otherwise the economy is on the wrong side of the Laffer curve. This in turn gives:

ψgov,t = (1 +
βϕτ,bf1

βb
(1− βδ))︸ ︷︷ ︸

<1

Etψgov,t+1 −
βϕτ,b

βb
(1− βδ)

κ3
κ1
λYEt(Ŷt+1 − Ŷ n

t+1) (83)

The solution ψgov,t = 0 is guaranteed if Ŷt+1 = Ŷ n
t+1. Note that this property will hold when output

is stabilized around the natural level and fiscal policy is passive. We will then have an inflation rate
equal to 0 for all t.

The threshold ϕ̃τ can be found using the budget constraint. Leaving out the shocks (as we
previously did) we can express this as:

βb

1− βδ
b̂t,δ + r((1 + γh)Ŷ

n
t +

τ̂t
1− τ d

) =
b

1− βδ
b̂t−1,δ

and so using the definition of Ŷ n
t above and the fiscal rule we have:

b̂t,δ =
1

β

[
1− r

(1− βδ)ϕτ,b

b(1− τ d)
(1− 1 + γh

γh
τ d)

]
b̂t−1,δ

Quite evidently we now have

ϕ̃τ =
(1− β)

1− βδ

b

r

(1− τ d)

(1− 1+γh
γh

τ d)

which is the formula shown in text assuming σ = 0. It is possible to extend the above to the case
σ > 0 and recover the expression for ϕ̃τ in text.

40In solving this model numerically, however, we found that increasing ϕτ,b can bring the model very close to the
3 equation NK model, where debt is not a constraint for monetary policy. Thus from a practical standpoint, optimal
monetary policy effectively becomes active even though this is not possible to show analytically.
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B.2 Optimal policy rules with distortionary taxation.

We first derive the formulae shown in Section 5 of the paper for the simple Fisherian model assuming
that the planner’s objective only features inflation stabilization. Then we solve for optimal policies
under the alternative versions considered in Section 3.

Simple Fisherian policies. With distortionary taxes and assuming σ = λY = λi = 0 optimal
inflation is determined by the following condition:

π̂t =
ωY
κ1

∆ψgov,t +
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l = 0

where ωY ≡ R(1 + γh). Using the Euler equation in this model we then have that:

ît = ξ̂t + Etπ̂t+1 = ξ̂t + Et(
ωY
κ1

∆ψgov,t+1 +
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l+1) = ξ̂t + δ
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l

Thus,

ît = ξ̂t + δ(π̂t −
ωY
κ1

∆ψgov,t)

which is the result we showed in text.

The canonical model, σ > 0. Now consider the case where σ > 0. In this case, optimal
inflation is still described by

π̂t =
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l + σ
Y

Cκ1
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
+
ωY
κ1

∆ψgov,t (84)

i.e. the condition we derived in subsection A.1.4. The difference is that under distortionary taxes
ωY = Gσ Y

C
+R(1 + γh).

Essentially, all the derivations of subsection A.1.4 can be repeated here. We will therefore get
the same interest rate rule, i.e. equation (57).

Interest rate smoothing. Consider now the case where λi > 0 and σ = λY = 0. We now have

π̂t = −λi
β
ît−1 +

b

1− βδ

∑
l≥0

δl∆ψgov,t−l +
ωY
κ1

∆ψgov,t

From the Euler equation we have:

ît = ξ̂t + Et

(
−λi
β
ît +

b

1− βδ

∑
l≥0

δl∆ψgov,t−l+1 +
ωY
κ1

∆ψgov,t+1

)
= ξ̂t −

λi
β
ît +

δb

1− βδ

∑
l≥0

δl∆ψgov,t−l

= ξ̂t −
λi
β
ît + δ

(
π̂t +

λi
β
ît−1 −

ωY
κ1

∆ψgov,t

)
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Thus :

ît =
1

1 + λi
β

ξ̂t +
δ

1 + λi
β

π̂t +

λi
β

1 + λi
β

ît−1 −
1

1 + λi
β

ωY
κ1

∆ψgov,t

Output stabilization. Finally let λY > 0 and σ = λi = 0. Optimal inflation obeys the following

−π̂t −
λY
κ21

(π̂t − βEtπ̂t+1) +
λY
κ21

(π̂t−1 − βEt−1π̂t) +
R

κ1
(1 + γh)∆ψgov,t +

b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0

We now define:

ζt ≡ (π̂t − Et−1π̂t) +
κ21
βλY

b

1− βδ

∞∑
k=0

δk∆ψgov,t−l +
κ21
βλY

R

κ1
(1 + γh)∆ψgov,t = 0

So that inflation again evolves according to:

Etπ̂t+1 − (1 +
1

β
+

κ21
λY β

)π̂t +
1

β
π̂t−1 = −ζt

Solving the second order polynomial we once again obtain:

π̂t =
1

λ̃2
Etπ̂t+1 +

1

λ̃2

1

1− λ̃1L
ζt =

1

λ̃2

1

1− λ̃1L

∑
j≥0

1

λ̃j2
Etζt+j

Then,∑
j≥0

1

λ̃j2
Etζt+j =

∑
j≥0

1

λ̃j2
Et

[
(π̂t+j − Et+j−1π̂t+j) + κ̃

R

κ1
(1 + γh)∆ψgov,t+j + κ̃

b

1− βδ

∞∑
k=0

δk∆ψgov,t+j−l

]
=

π̂t − Et−1π̂t + κ̃
R

κ1
(1 + γh)∆ψgov,t + κ̃

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t

and so

π̂t = λ̃1π̂t−1 +
1

λ̃2
(π̂t − Et−1π̂t) +

1

λ̃2
κ̃
R

κ1
(1 + γh)∆ψgov,t +

κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t (85)

We can once again show that

Etπ̂t+1 = λ̃1π̂t +
κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

Et
1

1− δL
∆ψgov,t+1︸ ︷︷ ︸

= δ
1−δL

∆ψgov,t

and

π̂t − Et−1π̂t =
λ̃2

λ̃2 − 1

κ̃

λ2

b

1− βδ

1

1− δ

λ̃2

∆ψgov,t
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The optimal interest rate rule is given by:

ît = ξ̂t + (λ̃1 + δ)π̂t − δλ̃1π̂t−1 −
δ

λ̃2
κ̃
R

κ1
(1 + γh)∆ψgov,t − δ

õ

λ̃2 − 1
∆ψgov,t

which is of the same form as the rule under lump sum taxes, however, now the stochastic intercept
is − δ

λ̃2
κ̃ R
κ1
(1 + γh)∆ψgov,t − δ õ

λ̃2−1
∆ψgov,t instead of just −δ õ

λ̃2−1
∆ψgov,t.

Finally, note that under output stabilization, in general the model will not admit two equilibria
under active and passive fiscal policies when taxes are distortionary. The reason is that even when
ϕτ is of high value, since taxes now appear in the Phillips curve, the budget constraint will always
be relevant for a planner that cares about stabilizing output. (Otherwise, if output stabilization is
not in the objective, then aggregate output can absorb time variation in taxes to smooth inflation).
Therefore we will not generally obtain ψgov,t = 0 endogenously in this model, though as ϕτ increases
the equilibrium will indeed resemble an active monetary/passive fiscal scenario.

In order to get two equilibria in this model we need to specify a different output stabilization
objective, assuming that monetary policy accounts for the deviations of output from its efficient
level. We will not consider this case explicitly here.

Figure 10 displays the impulse response functions to a government spending shock obtained from
the model with distortionary labor taxes.

B.3 The nonlinear model.

We present here the nonlinear equations for the simplistic NK model used in the paper.

Households Households maximize

E0

∞∑
t=0

βtξt

(
C1−σ
t

1− σ
− χ

h1+γht

1 + γh

)

subject to

PtCt + Pt,sBt,S + Pt,LBt,δ ⩽ (1− τt)Wtht − PtTt + PtDt +Bt−1,S + (1 + δPt,L)Bt−1,δ

where Ct denotes consumption and ht denotes hours worked. Dt represents firms’ profits redistributed
to households, and Pt denotes the aggregate price level. Bt,δ is a long-term government bond, a
perpetuity with coupon payments decaying at the rate 0 ⩽ δ < 1 and price Pt,L. Bt,s denotes short-
term bonds with price is Pt,S. We assume that short debt is in zero net supply. ξt is the preference
shock. 0 ≤ τt ≤ 1 denotes the (distortionary) tax rate on labour, and Tt the level of lump-sum taxes.

The first order conditions of the household’s problem are:

Pt,sξtC
−σ
t = βEtξt+1

C−σ
t+1

πt+1

Pt,LξtC
−σ
t = βEtξt+1

C−σ
t+1

πt+1

(1 + δPt+1,L)

hγht C
σ
t = (1− τt)

Wt

Pt

where πt ≡ Pt

Pt−1
is the gross inflation rate.
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Figure 10: Impulse response functions with distortionary taxes
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Notes: The figure displays the impulse responses of inflation, output, and the nominal interest rate fol-
lowing a government spending shock, in the model with distortionary labor taxes. Top panels assume
σ = λY = λi = 0, mid-panels set σ = 1 and λY = λi = 0, and bottom panels are for the case σ = 0 and
λi = λY = 0.5. In each plot, the solid blue line depicts impulse responses in the case where government
debt is short term (δ = 0); the dashed red lines and dash-dotted black lines plot the responses of variables
when δ = 0.5 and δ = 0.95, respectively.
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Firms Production takes place in monopolistically competitive firms which operate technologies
with labour as the sole input. The final good is a CES aggregate of the intermediate goods Yt(j):

Yt =
(∫ 1

0

Yt(j)
1+η
η dj

) η
1+η

(86)

where η governs the elasticity of substitution between differentiated goods. Firms set prices to
maximize profits subject to the demand curve

Yt(j) =
(Pt(j)

Pt

)η
Yt (87)

and given price adjustment costs, modelled as in Rotemberg (1982). The dynamic profit maximiza-
tion program is:

max
Pt(j)

Et

∞∑
s=0

Qt,t+s

(Pt+s(j)
Pt+s

Yt+s(j)−
Wt+s(j)

Pt+s
Yt+s(j)− ACt+s(j)

)
s.t. Yt+s(j) =

(Pt+s(j)
Pt+s

)η
Yt+s (88)

ACt+s(j) =
θ

2

( Pt+s(j)

Pt+s−1(j)
− π

)2
Yt+s (89)

where Qt,t+s ≡ βs is the discount factor of households and Wt+s is the wage rate, that is equal to the
marginal cost of production. (89) is the quadratic adjustment costs incurred by firms when resetting
their price.

Focusing on a symmetric equilibrium the first order condition from the firm’s dynamic program
gives the following non-linear Phillips Curve:

θ(πt − π)πt = 1 + η(1− Wt

Pt
) + βθEt

Cσ
t

Cσ
t+1

Yt+1

Yt
(πt+1 − π)πt+1 (90)

The firms’ technology is linear in labour and thus Yt(j) = ht(j) where j ∈ [0, 1] denotes the
generic firm.

Fiscal policy Government spending Gt evolves exogenously according to an AR(1) process in logs:

ĝt = ρgĝt−1 + ϵg,t

where ĝt ≡ logGt − logG.
The (distortionary) labor tax is set by the fiscal authority according to the simple rule described

in text (in log-linear form). The flow government budget constraint can be written as:

Pt,Lbt,δ = (1 + δPt,L)
bt−1,δ

πt
+Gt − τthtwt − Tt (91)

where bt,δ ≡ Bt,δ

Pt
denotes real long-term government debt.

We consider two alternatives regarding the fiscal instrument available to the government. In
the first case, τt = 0 for all t and the government only makes use of lump-sum taxes Tt. In the
second, Tt = 0 and only distortionary taxes are used. In each case, we denote the log-deviation of
the instrument from its steady-state value as τ̂t, and this instrument evolves according to the rule
presented in equation (6).
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Log-linearization Making use of the labor supply condition hγht C
σ
t = (1 − τt)

Wt

Pt
, as well as the

resource constraint ht = Yt = Ct + Gt to dispense with Wt, Ct and ht, we get the following linear
New Keynesian Phillips Curve:

π̂t = κ1Ŷt + κ2τ̂t − κ3Ĝt + βEtπ̂t+1 (92)

where κ1, κ2 and κ3 are defined in text. Note that when the fiscal instrument is the lump-sum tax,
κ2 = 0.

Defining it ≡ − logPt,S, log-linearizing the Euler equation for short bonds (and again making use
of the resource constraint Yt = Ct +Gt) we get:

ît = Et

(
π̂t+1 − ξ̂t+1 + ξ̂t − σ

[Y
C
(Ŷt − Ŷt+1)−

G

C
(Ĝt − Ĝt+1)

])
(93)

Finally, making use of the Euler equation for long bonds and iterating forward and making use

of the resource constraint we get Pt,L =
∑

j≥1Etβ
jδj−1 ξt+j

ξt

(Yt+j−G−σ
t+j)

(Yt−G−σ
t)

∏j
l=1 πt+l

. Using this to substitute

out PL,t from the government budget constraint we obtain:∑
j≥1

Etβ
jδj−1 ξt+j

ξt

(Yt+j −Gt+j)
−σ

(Yt −Gt)−σ
∏j

l=1 πt+l
bt,δ =

(
1 + δ

∑
j≥1

Etβ
jδj−1 ξt+j

ξt

(Yt+j −Gt+j)
−σ

(Yt −Gt)−σ
∏j

l=1 πt+l

)bt−1,δ

πt
− St

where St = τthtwt−Gt or St = Tt−Gt depending on whether the fiscal instrument is the labour tax
or the lump-sum tax. Log-linearizing this equation we get:

βb

1− βδ
b̂t,δ + b

∞∑
j=1

βjδj−1

[
Et

(
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=1

π̂t+l + ξ̂t+j

)]

= −SŜt − bσ

(
Y

C
Ŷt −

G

C
Ĝt

)
+ bξ̂t (94)

+
b

1− βδ
(b̂t−1,δ − π̂t) + δb

∞∑
j=1

βjδj−1Et

(
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=1

π̂t+l + ξ̂t+j

)
which is the equation stated in the main text.
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