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Abstract

We collect simple and pragmatic exact formulae for the convexity
adjustment of irregular interest rate cash flows as Libor-in-arrears or
payments of a swap rate (CMS rate) at an irregular date. The results
are compared with the results of an approximative approach available
in the popular literature.

For options on Libor-in-arrears or CMS rates like caps or binaries
we derive an additional new convexity adjustment for the volatility to
be used in a standard Black & Scholes model. We study the quality
of the adjustments comparing the results of the approximative Black
& Scholes formula with the results of an exact valuation formula.

Further we investigate options to exchange interest rates which are
possibly set at different dates or admit different tenors.

We collect general quanto adjustments formulae for variable inter-
est rates to be paid in foreign currency and derive valuation formulae
for standard options on interest rates paid in foreign currency.

Key words: interest rate options, convexity, quanto adjustment, change
of numeraire

JEL Classification: G13
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1 Introduction

Increasing the return of a variable interest rate investment or cheapening
the costs of borrowing can often be achieved by taking advantage of certain
shapes of the forward yield curve. A well known and frequently used tech-
nique is a delayed setting of the variable index (Libor-in-arrears) or the use
of long dates indices like swap rates in place of Libor (CMS rate products)
or the use of foreign floating interest rate indices to be paid in domestic cur-
rency. It is well known that payments of variable interest rates like Libor or
swap rates at dates different from their natural payment dates or in curren-
cies different from their home currency imply certain convexity effects which
result in adjusted forward rates.

Pricing those structures in the framework of a fully calibrated term struc-
ture model would take the convexity effects automatically into account. How-
ever, for many applications this seems to be a modelling overkill. Many con-
vexity adjustment formulae are available in the literature ([2], [4],[1]), some
of them based on more or less theoretically sound arguments. Here we col-
lects simple and pragmatic exact formulae for the convexity adjustment for
arbitrary irregular interest rate cash flows and compare the results with the
outcomes of an approximative approach available in the popular literature.

Then we extend our analysis to options like caps, floors or binaries on
irregular interest rates. Given the market model of log-normality for stan-
dard interest rate options the consistent model for options on irregular rates
is certainly different from a log-normal one. We derive a new additional
volatility adjustment that allows an approximation of the true distribution
by a log-normal distribution with the same second moment. The results
of the approximative pricing are then compared with the exact but more in-
volved valuation. The advantage of the volatility adjustment is that standard
pricing libraries can be applied with good accuracy in this context as well.
It seems that this new volatility adjustment is so far ignored in practice.

Another application consists of options to exchange interest rates, e.g.
Libor-in-arrears versus Libor. For example, those options are implicitly con-
tained in structures involving the maximum or minimum of Libor-in-arrears
and Libor.

The final section of this notes collects general formulae for quanto ad-
justments on floating interest rates paid in a different currency and related
options.
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2 Notation

Denote by B(t, T ) the price of a zero bond with maturity T at time t ≤ T .
The zero bond pays one unit at time T , B(T, T ) = 1. At time t = 0 the zero
bond price B(0, T ) is just the discount factor for time T .

The Libor L(S, T ) for the interval [S, T ] is the money market rate for this
interval as fixed in the market at time S, this means

B(S, T ) =
1

1 + L(S, T )∆

L(S, T ) =

1
B(S,T )

− 1

∆
,

with ∆ as the length of the period [S, T ] in the corresponding day count
convention.

The forward Libor L0(S, T ) for the period [S, T ] as seen from today, t = 0,
is given by

L0(S, T ) =

B(0,S)
B(0,T )

− 1

∆
. (1)

The swap rate or CMS rate X for a swap with reference dates T0 < T1 <
· · · < Tn as fixed at time T0 is defined as

X =
1−B(T0, Tn)∑n
i=1 ∆iB(T0, Ti)

, (2)

with ∆i as length of the period [Ti−1, Ti] in the corresponding day count
convention. The tenor of X is the time Tn − T0.

The forward swap rate X0 as seen from today is then

X0 =
B(0, T0)−B(0, Tn)∑n

i=1 ∆iB(0, Ti)
. (3)

In the theory of derivative pricing the notion of a numeraire pair (N,QN)
plays a central role. In the context of interest rate derivatives the basic se-
curities are the zero bonds of all maturities. A numeraire pair (N, QN) then
consists of a non-negative process N and an associated probability distribu-
tion QN such that all basic securities are martingales under QN if expressed
in the numeraire N as base unit, i.e.,

B(t, T )

Nt

, t ≤ T, is a QN martingale for all T > 0. (4)
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The price V0(Y ) today for a contingent claim1 Y to be paid at time p is
then

V0(Y ) = N0EQN

(
Y

Np

)
. (5)

For two numeraire pairs (N,QN) and (M,QM) the transformation
(Radon-Nikodym density) between the distributions QN and QM on the
information structure up to time p is

dQM =
N0Mp

M0Np

dQN . (6)

The time T forward measure is the distribution QT referring to the nu-
meraire being the zero bond with maturity T , Nt = B(t, T ), and we write

QT = QB(.,T ). (7)

An immediate consequence of (5) applied with B(., p) as numeraire is

V0(Y ) = B(0, p)EQpY, (8)

i.e., the price of the claim Y today is its discounted expectation under the
time p forward measure.

3 Convexity adjusted forward rates

3.1 Libor-in-arrears

In standard interest rate derivatives on Libor the claim on the Libor L(S, T )
for period [S, T ] is paid at the end of the interval, i.e., at time T . Since the
Libor is set at time S this is named ”set in advance, pay in arrears”. Under
QT the process B(.,S)

B(.,T )
is a martingale and we get

EQT
L(S, T ) = EQT

( B(S,S)
B(S,T )

− 1

∆

)
=

B(0,S)
B(0,T )

− 1

∆
= L0(S, T ). (9)

This implies from (8) the well-known expression for the price of a Libor,

V0(L(S, T )) = B(0, T )L0(S, T ), (10)

as discounted forward Libor.

1We assume that Y can be hedged with the basic securities.
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In a Libor-in-arrears payment the Libor L(S, T ) for period [S, T ] is now
paid at the time S of its fixing. According to (8) its price today is

B(0, S)EQs (L(S, T )) . (11)

Our goal is to express EQs (L(S, T )) in terms of the forward rate L0(S, T )
plus some ”convexity” adjustment, the convexity charge.

Proposition 1 The following general valuation formula holds

EQs (L(S, T )) = L0(S, T )

(
1 +

∆

L0(S, T )

VarQT
L(S, T )

(1 + ∆L0(S, T ))

)
, (12)

with VarQT
L(S, T ) as the variance of L(S, T ) under the distribution QT .

Proof: Using (6) we obtain

EQs (L(S, T )) = EQT

(
L(S, T )

B(S, S)B(0, T )

B(S, T )B(0, S)

)
= EQT

(
L(S, T )(1 + ∆L(S, T ))

B(0, T )

B(0, S)

)
=

EQT
((L(S, T ) + ∆L(S, T )2)

1 + ∆L0(S, T )

=
(L0(S, T ) + ∆VarQT

L(S, T ) + ∆L0(S, T )2)

1 + ∆L0(S, T )

= L0(S, T )

(
1 +

∆

L0(S, T )

VarQT
L(S, T )

1 + ∆L0(S, T )

)
.

♦
Under the so-called market model which is the model underlying the

market valuation for caps, the Libor L(S, T ) is lognormal under QT with
volatility σ,

L(S, T ) = L0(S, T ) exp(σWS −
1

2
σ2S), (13)

with some Wiener process (Wt). In this case the convexity adjustment can
be expressed in terms of the volatility and (12) reduces to

EQs (L(S, T )) = L0(S, T )

(
1 +

∆L0(S, T )(exp(σ2S)− 1)

1 + ∆L0(S, T )

)
. (14)

Example. To illustrate the magnitude of the convexity charge we show
below as an example the convexity adjusted forward rates EQs (L(S, T )) for
various maturities S and volatilities σ. We assume L0(S, T ) = 5% and ∆ =
0.5.
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S|σ 10% 15% 20%
1 5,001% 5,003% 5,005%
2 5,002% 5,006% 5,010%
3 5,004% 5,009% 5,016%
4 5,005% 5,011% 5,021%
5 5,006% 5,015% 5,027%
6 5,008% 5,018% 5,033%
7 5,009% 5,021% 5,039%
8 5,010% 5,024% 5,046%
9 5,011% 5,027% 5,053%
10 5,013% 5,031% 5,060%

In the general case, for arbitrary payment times p ≥ S a somewhat more
involved formula can be derived, see [5]. However, using an idea similar to
the assumption of a linear swap rate model (cf. [3]), we can easily derive a
formula even for p ≥ S following the same line of arguments as above.

Let us assume a linear model of the from

B(S, p)

B(S, T )
= α + βpL(S, T ), ∀p ≥ S. (15)

The constants α and βp are straightforward to determine in order to make

the model consistent. Since B(.,p)
B(.,T )

is a QT martingale and using (9)

B(0, p)

B(0, T )
= EQT

B(S, p)

B(S, T )

= EQT
(α + βpL(S, T ))

= (α + βpL
0(S, T )),

which implies βp =
(

B(0,p)
B(0,T )

− α
)

/L0(S, T ). Also α = 1 as a consequence of

1 = B(S,T )
B(S,T )

= α + βT L(S, T ), so finally,

βp =

(
B(0, p)

B(0, T )
− 1

)
/L0(S, T ). (16)

Now we can formulate the result for p ≥ S.

Proposition 2 Under the assumption of a linear Libor model (15) we have
the following general formula for payments of the Libor L(S, T ) at arbitrary
times p ≥ S

EQp (L(S, T )) = L0(S, T )

(
1 +

1− B(0,T )
B(0,p)

(L0(S, T ))2
VarQT

L(S, T )

)
, (17)
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with VarQT
L(S, T ) as the variance of L(S, T ) under the distribution QT .

Remarks.
1. For p = S formula (17) obviously reduces to the general formula (12).
2. In case of the market model (13) for caps formula (17) gets more explicit:

EQp (L(S, T )) = L0(S, T )

(
1 +

(
1− B(0, T )

B(0, p)

)
(exp(σ2S)− 1)

)
(18)

3.2 CMS

The market standard valuation formula for swaptions is closely related to a
particular numeraire pair called the swap numeraire or PV01 numeraire pair
(PV01,QSwap) with numeraire

Nt = PV01t =
n∑

i=1

∆iB(t, Ti), t ≤ T1. (19)

Under QSwap the expectation of the swap rate X is just the forward
swap rate X0 which is again a consequence of the martingale property of
B(., T0), B(., Tn) if expressed in the numeraire PV01

QSwapX = QSwap

(
B(T0, T0)−B(T0, Tn)∑n

i=1 ∆iB(T0, Ti)

)
= QSwap

(
B(T0, T0)−B(T0, Tn)

PV01T0

)
=

B(0, T0)−B(0, Tn)

PV010

= X0. (20)

In a CMS based security, e.g., a CMS swap or cap, the rate X is paid
only once and at a time p ≥ T0. According to (8) we are interested in an
explicit valuation of

EQp(X)

in terms of the forward swap rate X0 and some ”convexity” adjustment.
Applying (6) we get

EQp(X) = EQSwap

(
X

B(T0, p)

PV01T0

PV010

B(0, p)

)
=

PV010

B(0, p)
EQSwap

(
X

B(T0, p)

PV01T0

)
.

(21)
In order to calculate the right hand side explicitly one has to express or
approximate B(T0,p)

PV01T0
in terms of simpler objects like Libor or the swap rate

9



X itself. Several approximations are studied in [5]. We rely here on a very
elegant approximation based the assumption of a linear swap rate model, see
[3] or [4],

B(T0, p)

PV01T0

= α + βp ·X, p ≥ T0. (22)

The constant α and the factor βp have to be determined consistently. Since
B(.,p)
PV01.

is a QSwap-martingale using (20) we obtain

B(0, p)

PV010

= EQSwap

(
B(T0, p)

PV01T0

)
= EQSwap

(α + βpX)

= (α + βpX
0),

and thus

βp =

B(0,p)
PV010

− α

X0
. (23)

To determine α observe that

1 =

∑n
i=1 ∆iB(T0, Ti)

PV01T0

=
n∑

i=1

∆iα +
n∑

i=1

∆iβTi
X

=
n∑

i=1

∆iα + (1−
n∑

i=1

∆iα)
X

X0
,

which yields

α =
1∑n

i=1 ∆i

. (24)

Proposition 3 Under the assumption (22) of the linear swap rate model we
have the following general valuation formula

EQpX = X0

1 +
1− (B(0,T0)−B(0,Tn))

X0B(0,p)
∑n

i=1 ∆i

(X0)2
VarQSwap

(X)

 , (25)

with VarQSwap
(X) as the variance of X under the swap measure QSwap.
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Proof: Using (21), (22) and (20) we obtain

EQpX =
PV010

B(0, p)
EQSwap

(X(α + βpX))

=
1

α + βpX0
(αX0 + βp(X

0)2 + βpVarQSwap
(X))

= X0

(
1 +

βpVarQSwap
(X))

X0(α + βpX0)

)
.

Substituting

α + βpX0 =
B(0, p)

PV010

=
B(0, p)X0

(B(0, T0)−B(0, p))

and using (24) yields the assertion. ♦

Remark. In the special case of a one period swap the CMS adjustment
formula (25) reduces to the respective formula (17) for Libor payments.

Under the market model for swaptions it is known that the swap rate X
is lognormal under QSwap,

X = X0 exp(σWT0 −
1

2
σ2T0), (26)

with some Wiener process (Wt). In this case the variance of X under QSwap

is just
VarQSwap

(X) = (X0)2(exp(σ2T0)− 1) (27)

and (25) reduces to

EQpX = X0

(
1 +

(
1− B(0, T0)−B(0, Tn)

X0B(0, p)
∑n

i=1 ∆i

)
(exp(σ2T0)− 1)

)
. (28)

Example. Again we illustrate the size of the CMS adjustment by an exam-
ple. We assume that the swap curve is flat at 5% for all maturities. Payment
of the CMS rate is at p = T0 + 1 as it happens in most cases in practice.

σ 10,00% 15% 20%
T0|Tn − T0 5 10 20 5 10 20 5 10 20

1 5,005% 5,010% 5,017% 5,010% 5,022% 5,039% 5,019% 5,039% 5,071%
2 5,009% 5,019% 5,035% 5,021% 5,044% 5,080% 5,038% 5,079% 5,144%
3 5,014% 5,029% 5,053% 5,032% 5,066% 5,121% 5,058% 5,121% 5,220%
4 5,019% 5,039% 5,071% 5,043% 5,089% 5,163% 5,079% 5,164% 5,300%
5 5,023% 5,048% 5,089% 5,054% 5,113% 5,206% 5,101% 5,209% 5,382%
6 5,028% 5,058% 5,107% 5,066% 5,137% 5,250% 5,123% 5,256% 5,469%
7 5,033% 5,068% 5,125% 5,077% 5,161% 5,295% 5,147% 5,305% 5,558%
8 5,038% 5,079% 5,144% 5,089% 5,186% 5,341% 5,170% 5,356% 5,652%
9 5,043% 5,089% 5,163% 5,101% 5,212% 5,388% 5,196% 5,409% 5,749%
10 5,048% 5,099% 5,182% 5,114% 5,238% 5,436% 5,222% 5,464% 5,850%
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Proposition 3 yields an interesting corollary.

Corollary 1 For payment times p ranging from T0 to Tn the convexity charge

C(p) = X0

1− (B(0,T0)−B(0,Tn))
X0B(0,p)

∑n
i=1 ∆i

(X0)2
VarQSwap

(X)


is monotonously decreasing in p changing its sign from positive at p = T0

to negative at p = Tn. The charge changes sign and vanishes exactly at the
point p ∈ (T0, Tn) where B(0, p)

∑n
i=1 ∆i =

∑n
i=1 ∆iB(0, Ti). Moreover,

n∑
i=1

C(Ti) = 0.

Intuitively, this is not surprising, since applying the valuation formula (25)
multiplied with B(0, p) for all p = T1, . . . , Tn and summing up we end up
with the valuation of a full interest rate swap and all convexity adjustments
should cancel out.

Observe that the qualitative statement of the Corollary remains true also
without the assumption of a linear swap rate model, see [5].

3.3 Unified approach under the linear rate model

Assuming a linear rate model (15) or (22) we derived a closed valuation
formula for a Libor or CMS rate paid at an arbitrary date. Both derivations
can be unified under one umbrella.

Write YS for a floating rate which is set at time S. Examples of particular
interest are YS = L(S, T ), the Libor for the interval [S, T ], or, YS = X with
S = T0 and X the swap rate with reference dates T0 < T1 < · · · < Tn. Let
N,QN denote the natural (”market”) numeraire pair associated with YS and
all we need is that

EQN
YS = Y0, (29)

where Y0 is known and a function of the yield curve B(0, .) today.
We are interested in todays price of the rate YS to be paid at some time

p ≥ S,

B(0, p)EQpYS.

Assume a linear rate model of the from

B(S, p)

NS

= α + βpYS, (30)
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with some deterministic α, βp which have to be determined accordingly to
make the model consistent, see (16) resp. (24), (23) for α and βp in case of

a linear Libor resp. swap rate model. From the martingale property of B(.,p)
N.

and (29) we get immediately

B(0, p)

N0

= α + βpY0.

Proposition 4 Under the assumption of a linear model (30) we have the
following general valuation formula

EQpYs = Y0

(
1 +

βp

Y0(α + βpY0)
VarQN

(YS)

)
, (31)

with VarQN
(YS) as the variance of YS under the measure QN .

If in addition, the distribution of YS under QN is lognormal with volatility
σY ,

YS = Y0 exp(σY WS −
1

2
σ2

Y S),

then

EQpYS = Y0

(
1 +

βpY0

(α + βpY0)
(exp(σ2

Y S)− 1)

)
. (32)

Proof: On the information up to time S the density of the time p forward
measure Qp w.r.t. QN is according to (6)

dQp =
N0

B(0, p)

B(S, p)

NS

dQN =
α + βpYS

α + βpY0

dQN . (33)

Therefore,

EQpYS = EQN

(
YS

α + βpYS

α + βpY0

)
= Y0

(
1 +

βp

Y0(α + βpY0)
VarQN

(YS)

)
.

♦
In case of a linear Libor model or a linear swap rate model formula (31)

reduces to (17) or (25), respectively.
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3.4 Comparison study

In this section we compare the results of the above convexity adjustment for-
mulae with the results of a popular formula which can be found, for example,
in [2], Section 16.11.

Suppose we are interested in a derivative involving a yield Y at time p
of a bond with yield to price function P (Y ). To the forward price P0 as of
today for a forward contract maturing at time p there corresponds a forward
yield Y0,

P0 = P (Y0).

Then [2] gives the following approximative formula

EQp(Y ) ≈ Y0 −
1

2
Y 2

0 σ2p
P ′′(Y0)

P ′(Y0)
, (34)

with σ as the volatility of the yield Y .

Applying this to a Libor-in-arrears, Y = L(S, T ), p = S, P (y) = 1
1+∆y

yields the formula

EQs (L(S, T )) ≈ L0(S, T )

(
1 +

∆L0(S, T )σ2S

1 + ∆L0(S, T )

)
, (35)

which is in line with the exact formula (14) as long as one approximates
(exp(σ2S)− 1) to the first order

exp(σ2S)− 1) ≈ σ2S.

It is obvious that (35) underestimates the true convexity as quantified by
(14) which becomes apparent in particular for long dated Libor-in-arrears
structures and relatively high volatilities.

For an interest rate level of L0(S, T ) = 5%2 the following table shows a
comparison of the convexity charges as resulting from equation (14) or (35),
respectively,

2On an act/360 basis.
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σ = 10% σ = 20%
S (14) (35) (14) (35)
1 0,001% 0,001% 0,005% 0,005%
2 0,002% 0,002% 0,010% 0,010%
3 0,004% 0,004% 0,016% 0,015%
4 0,005% 0,005% 0,021% 0,020%
5 0,006% 0,006% 0,027% 0,025%
6 0,008% 0,007% 0,033% 0,030%
7 0,009% 0,009% 0,040% 0,035%
8 0,010% 0,010% 0,046% 0,039%
9 0,012% 0,011% 0,053% 0,044%
10 0,013% 0,012% 0,061% 0,049%
11 0,014% 0,014% 0,068% 0,054%
12 0,016% 0,015% 0,076% 0,059%
13 0,017% 0,016% 0,084% 0,064%
14 0,019% 0,017% 0,093% 0,069%
15 0,020% 0,018% 0,101% 0,074%
16 0,021% 0,020% 0,111% 0,079%
17 0,023% 0,021% 0,120% 0,084%
18 0,024% 0,022% 0,130% 0,089%
19 0,026% 0,023% 0,140% 0,094%
20 0,027% 0,025% 0,151% 0,099%

Now we apply formula (34) to the situation of CMS rate. In this case
Y = X and Y can be interpreted as the yield of a coupon bond with coupon
dates T1, . . . , Tn and coupon C = X0. At time p = T0 the forward bond price
P0 is at par and the corresponding forward yield is Y0 = X0. For a bond
with annual coupons, Ti = T0 + i, and face value of 1 we have

P (Y ) =
n∑

i=1

C

(1 + Y )i
+

1

(1 + Y )n

P ′(Y ) =
n∑

i=1

−i C

(1 + Y )i+1
− n

(1 + Y )n+1

P ′′(Y ) =
n∑

i=1

i(i + 1)C

(1 + Y )i+2
+

n(n + 1)

(1 + Y )n+2
.

Observe that the formula (34) can be applied correctly only in case of a
payment of the CMS rate at fixing, i.e., p = T0. This is not what is of interest
in most practical applications, where usually p = T1. However, ignoring this
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inconsistency, equation (34) is often applied for p = T1 which yields a higher
convexity charge contrary to what should be the case according to the result
of Corollary 1. As we shall see below in the numerical examples, equation (34)
underestimates the convexity, so overall, luckily the inconsistency corrects
some other error.

Comparing the convexity charges of equation (34) applied to the case of
a CMS rate on one hand and of equations (25) and (27) on the other hand
we get the following results for a flat interest rate environment of X0 = 5%
and a tenor of 5 years for the underling CMS rate X:

σ = 10% σ = 20%
p = T0 (34) (25) & (27) (34) (25) & (27)

1 0,138% 0,137% 0,553% 0,558%
2 0,276% 0,271% 1,106% 1,116%
3 0,415% 0,408% 1,659% 1,709%
4 0,553% 0,549% 2,211% 2,332%
5 0,691% 0,687% 2,764% 2,967%
6 0,829% 0,829% 3,317% 3,635%
7 0,968% 0,972% 3,870% 4,330%
8 1,106% 1,116% 4,423% 5,053%
9 1,244% 1,258% 4,976% 5,789%
10 1,382% 1,405% 5,529% 6,570%
11 1,520% 1,553% 6,081% 7,383%
12 1,659% 1,703% 6,634% 8,230%
13 1,797% 1,854% 7,187% 9,111%
14 1,935% 2,007% 7,740% 10,028%
15 2,073% 2,162% 8,293% 10,982%
16 2,211% 2,318% 8,846% 11,975%
17 2,350% 2,475% 9,399% 13,009%
18 2,488% 2,634% 9,951% 14,085%
19 2,626% 2,795% 10,504% 15,205%
20 2,764% 2,958% 11,057% 16,371%

The same analysis repeated for a tenor of 10 years for the CMS rate yields
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σ = 10% σ = 20%
p = T0 (34) (25) & (27) (34) (25) & (27)

1 0,243% 0,230% 0,971% 0,934%
2 0,486% 0,460% 1,943% 1,897%
3 0,728% 0,694% 2,914% 2,904%
4 0,971% 0,929% 3,885% 3,952%
5 1,214% 1,167% 4,856% 5,039%
6 1,457% 1,407% 5,828% 6,173%
7 1,700% 1,650% 6,799% 7,354%
8 1,943% 1,895% 7,770% 8,583%
9 2,185% 2,142% 8,741% 9,855%
10 2,428% 2,392% 9,713% 11,185%
11 2,671% 2,644% 10,684% 12,569%
12 2,914% 2,899% 11,655% 14,011%
13 3,157% 3,157% 12,626% 15,510%
14 3,399% 3,417% 13,598% 17,072%
15 3,642% 3,680% 14,569% 18,696%
16 3,885% 3,946% 15,540% 20,387%
17 4,128% 4,214% 16,511% 22,148%
18 4,371% 4,485% 17,483% 23,980%
19 4,613% 4,759% 18,454% 25,886%
20 4,856% 5,035% 19,425% 27,871%

Again, (34) consistently underestimates the convexity charge, which is
particularly significant for very long dated payments and high volatilities.

Overall, for both, the convexity charge in the Libor-in-arrears case and in
the CMS case, the size of the charge increases with the time to the payment
and with the volatility of the underlying rate.

4 Options on Libor-in-arrears and CMS rates

In this section we investigate European options on interest rates like Libor
L(S, T ) for period [S, T ] or CMS rates X with reference dates T0 < T1 <
· · · < Tn. The payment date of the option is an arbitrary time point p with
p ≥ S or p ≥ T0, respectively. Of particular interest are caps and floors
or binaries. For standard caps and floors on Libor we have p = T and
the standard market model postulates a lognormal distribution of L(S, T )
under the forward measure QT . For standard options on a swap rate X, i.e.
swaptions, the market used a lognormal distribution for X under the swap
measure QSwap. However in the general case, i.e., for options on Libor or CMS
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with arbitrary payment date p a lognormal model would be inconsistent with
the market model for standard options.

In Sections 4.1 and 4.2 we follow again the general setup of Section 3.3.
YS is a floating interest rate which is set at time S and (N,QN) denotes the
”market” numeraire pair associated with YS. We assume that the distribution
of YS under QN is lognormal with volatility σY ,

YS = Y0 exp(σY WS −
1

2
σ2

Y S). (36)

For a payment date p ≥ S we further assume a linear rate model of the form
(30)

B(S, p)

NS

= α + βpYS. (37)

Recall that for the case of YS = L(S, T ), NS = B(S, T ) and p = S, i.e., the
case of Libor-in-arrears, the assumption of a linear model is trivially satisfied
and no restriction.

4.1 Volatility adjustments

In this section we derive a simple lognormal approximation for the distribu-
tion of a rate to be paid at an arbitrary date p which is based on a suitably
adjusted volatility.

The main motivation for this approximation is the desire to be able to
use standard valuation formulae also for options on interest rates which are
irregularly paid. As we shall see below in Section 4.2 there exists also exact
valuation formulae but these are somewhat more involved.

Proposition 5 Suppose (36) and (37). Then for arbitrary p ≥ S under Qp

the rate YS is approximately lognormal

YS ≈ EQp(Ys) exp(σ∗
Y WS −

1

2
(σ∗

Y )2S) (38)

with volatility

(σ∗
Y )2 = σ2

Y + ln

[
(α + βpY0)(α + βpY0 exp(2σ2

Y S))

(α + βpY0 exp(σ2
Y S))2

]
/S, (39)

and EQp(YS) given by (32).

18



Proof: We calculate the second moment of YS under Qp. Using (33) and (36)
we obtain

EQpY
2
S = EQN

(
Y 2

S

α + βpYS

α + βpY0

)
=

1

α + βpY0

EQN

(
αY 2

S + βpY
3
S

)
=

1

α + βpY0

Y 2
0

(
α exp(σ2

Y S) + βpY0 exp(3σ2
Y S)

)
.

In view of (32) we get for the variance of YS under Qp

VarQpYS = (EQpYS)2

(
exp(σ2

Y S)(α + βpY0)(α + βpY0 exp(2σ2
Y S))

(α + βpY0 exp(σ2
Y S))2

− 1

)
.

Assuming a hypothetical lognormal distribution for YS under Qp with volatil-
ity σ∗

Y as on the right hand side of (38) we would have

VarQpYS = (EQpYS)2
(
exp((σ∗

Y )2S)− 1
)
.

Now matching moments yields the assertion. ♦

4.2 Exact valuation under the linear rate model

Assuming a linear rate model it is relatively straightforward to derive exact
valuation formulae for standard European options like calls, puts or binaries
on Libor or CMS rates to be paid at an arbitrary date. However, the resulting
formulae are somewhat more involved.

We use again the setup of a general linear model , i.e. (37). Also we
assume a lognormal distribution (36) of YS under QN .

We are interested in the valuation of standard options on the rate YS but
the option payout is at some arbitrary time p ≥ S. The value of a call option
with strike K is then

B(0, p)EQp max(Ys −K, 0)

= N0EQN

(
max(Ys −K, 0)

B(S, p)

NS

)
= N0EQN

(max(Ys −K, 0)(α + βpYS))

= N0EQN

[
max

(
Y0 exp(σY WS −

1

2
σ2

Y S)−K, 0

)
(

α + βpY0 exp(σY WS −
1

2
σ2

Y S)

)]
.

This expectation is straightforward to calculate explicitly.
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Proposition 6 Under the assumptions (37) and (36) the value of a call
option on the rate YS with payment at time p ≥ S is given by

B(0, p)EQp max(Ys −K, 0) (40)

= B(0, p)
Y0N(d1)(α− βpK)− αKN(d2) + βpY

2
0 eσ2

Y SN(d1 + σY

√
S)

α + βpY0

,

with

d1 =
ln(Y0

K
) + 1

2
σ2

Y S

σY

√
S

d2 =
ln(Y0

K
)− 1

2
σ2

Y S

σY

√
S

For the special case of an in-arrears option on a Libor YS = L(S, T ),
p = S, the assumption of a linear model is obviously satisfied and the corre-
sponding valuation has been noted in [1], Section 10.2.1

4.3 Accuracy study and examples

In this section we study the accuracy of the lognormal volatility approxima-
tions derived in Section 4.1 thereby also giving some numerical examples on
the size of the volatility adjustment. We compare the prices of caps and bina-
ries on Libor-in-arrears calculated from the approximating lognormal model
with the results of the exact but more involved evaluation (40). It turns out
that the approximation proposed delivers results of high accuracy.

The following table shows some numerical results for the price (in basis
points) of a caplet3

∆ EQS
max(L(S, T )−K, 0)

for a forward rate L0(S, T ) = 5% and various scenarios for the time S to
maturity and the volatility σ. The approximate price is based on a lognormal
distribution with adjusted volatility according to (39) and adjusted forward
rates EQS

L(S, T ) from (14).

3This is the price of the caplet up to a multiplication with the discount factor B(0, S).
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S 10 S 10
σ 20,00% σ 40,00%
σ∗ 20,14% σ∗ 43,27%

EQS
L(S, T ) 5,061% EQS

L(S, T ) 5,490%
K approx. exact % error K approx. exact % error
1% 406,334 406,327 0,000000% 1% 462,996 460,630 0,000051%
2% 312,399 312,327 0,000002% 2% 402,164 396,910 0,000132%
3% 233,987 233,839 0,000006% 3% 356,308 349,029 0,000209%
4% 173,590 173,409 0,000010% 4% 320,070 311,471 0,000276%
5% 128,767 128,595 0,000013% 5% 290,500 281,079 0,000335%
6% 95,965 95,825 0,000015% 6% 265,802 255,904 0,000387%
7% 72,021 71,920 0,000014% 7% 244,804 234,668 0,000432%
8% 54,484 54,422 0,000011% 8% 226,697 216,492 0,000471%
9% 41,560 41,531 0,000007% 9% 210,902 200,747 0,000506%
10% 31,965 31,962 0,000001% 10% 196,992 186,968 0,000536%

S 20 S 20
σ 20,00% σ 40,00%
σ∗ 20,42% σ∗ 50,23%

EQS
L(S, T ) 5,15% EQS

L(S, T ) 7,92%
K approx. exact % error K approx. exact % error
1% 417,952 417,780 0,000004% 1% 733,461 722,494 0,000152%
2% 336,494 335,867 0,000019% 2% 697,997 679,488 0,000272%
3% 273,187 272,205 0,000036% 3% 670,784 647,240 0,000364%
4% 224,353 223,187 0,000052% 4% 648,358 621,272 0,000436%
5% 186,347 185,128 0,000066% 5% 629,158 599,497 0,000495%
6% 156,394 155,205 0,000077% 6% 612,312 580,746 0,000544%
7% 132,483 131,374 0,000084% 7% 597,275 564,288 0,000585%
8% 113,165 112,161 0,000090% 8% 583,681 549,633 0,000619%
9% 97,386 96,497 0,000092% 9% 571,267 536,433 0,000649%
10% 84,369 83,596 0,000093% 10% 559,839 524,435 0,000675%

Errors are shown here as percentage errors of time value.

The differences between the true distribution and the approximating log-
normal distribution become more transparent when comparing binary op-
tions, i.e. options with payout 1{L(S,T )>K} at time S. Here are some numer-
ical comparisons:

S 10 S 10
σ 20,00% σ 40,00%
σ∗ 20,14% σ∗ 43,27%

EQS
L(S, T ) 5,061% EQS

L(S, T ) 5,490%
K approx. exact % error K approx. exact % error
1% 9870 9873 0,03% 1% 7123 7447 4,34%
2% 8727 8735 0,10% 2% 5214 5459 4,49%
3% 6924 6929 0,08% 3% 4042 4205 3,89%
4% 5203 5204 0,02% 4% 3253 3357 3,10%
5% 3823 3821 -0,06% 5% 2690 2753 2,28%
6% 2790 2787 -0,14% 6% 2269 2303 1,49%
7% 2039 2035 -0,20% 7% 1944 1958 0,73%
8% 1498 1494 -0,24% 8% 1687 1687 0,02%
9% 1108 1105 -0,27% 9% 1479 1470 -0,65%
10% 826 824 -0,28% 10% 1308 1292 -1,27%
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S 20 S 20
σ 20,00% σ 40,00%
σ∗ 20,42% σ∗ 50,23%

EQS
L(S, T ) 5,152% EQS

L(S, T ) 7,916%
K approx. exact % error K approx. exact % error
1% 9097 9137 0,44% 1% 4198 5135 18,25%
2% 7190 7233 0,60% 2% 3047 3653 16,57%
3% 5540 5567 0,48% 3% 2447 2864 14,57%
4% 4288 4299 0,26% 4% 2063 2362 12,68%
5% 3359 3359 0,01% 5% 1791 2011 10,94%
6% 2665 2659 -0,23% 6% 1587 1751 9,36%
7% 2141 2132 -0,45% 7% 1426 1549 7,90%
8% 1740 1729 -0,65% 8% 1297 1388 6,57%
9% 1429 1417 -0,82% 9% 1189 1256 5,33%
10% 1184 1173 -0,97% 10% 1099 1147 4,18%

4.4 Options to exchange interest rates

Consider two interest rates Y1 and Y2 which are set (fixed) at times S1 and
S2, respectively. For example, Y1 and Y2 could be Libor rates L(S1, T1) and
L(S2, T2) referring to different fixing dates S1, S2, e.g. Libor and Libor-in-
arrears. One could also think of two CMS rates to be set at the same date
but with different tenors.

We are interested in an option to exchange both interest rates

max(Y2 − Y1, 0) (41)

with payout to be paid at time p ≥ max(S1, S2). To keep the notation simple
let us suppose that S2 ≥ S1.

We assume that both interest rates are lognormal under Qp

Yi = Y 0
i exp(σiW

i
Si
− σ2

i Si/2) (42)

Y 0
i = EQp(Yi). (43)

with EQp(Yi) given by (17), (25) or (14), (28). According to our analysis in
Section 4.1 the assumption of log-normality is at least approximately satisfied
under the market model if the market volatility is adjusted according to (39).

Proposition 7 Let the driving Brownian motions W 1 and W 2 be correlated
with dynamic correlation ρ, i.e.,

EQp(W
1
t W 2

t ) = ρ t, t ≥ 0.

The fair price of the exchange option is then given by

B(0, p)
[
Y 0

2 N(b1)− Y 0
1 N(b2)

]
(44)
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with

b1 =
ln(

Y 0
2

Y 0
1
) + 1

2
(σ2

1S1 + σ2
2S2 − 2σ1σ2ρS1)√

σ2
1S1 + σ2

2S2 − 2σ1σ2ρS1

b2 =
ln(

Y 0
2

Y 0
1
)− 1

2
(σ2

1S1 + σ2
2S2 − 2σ1σ2ρS1)√

σ2
1S1 + σ2

2S2 − 2σ1σ2ρS1

Proof. The price of the exchange option is given by

B(0, p)EQp max(Y2 − Y1, 0).

The calculation of this expectation is rather standard. We represent W 1
S1

, W 2
S2

via independent standard Gaussian random variables ξ1, ξ2

W 1
S1

=
√

S1ξ1

W 2
S2

=
√

S2(λξ1 +
√

1− λ2ξ2)

λ = ρ

√
S1

S2

.

First taking the expectation w.r.t. ξ2 leads us to a Black & Scholes type
expression

EQp max(Y2 − Y1, 0) = EQp(X2N(d1)−X1N(d2)) (45)

with

X2 = Y 0
2 exp(σ2

√
S2λξ1 −

1

2
σ2

2S2λ
2)

X1 = Y 0
1 exp(σ1

√
S1ξ1 −

1

2
σ2

1S1)

d1,2 =
ln
(

X2

X1

)
± 1

2
σ2

2S2(1− λ2)√
σ2

2S2(1− λ2)
.

The expectation on the right hand side of (45) is now further explored inte-
grating w.r.t. ξ1 and applying the following well-known formula for integrals
w.r.t. the standard normal density ϕ = N′∫ ∞

−∞
N(ax + b) exp(cx)ϕ(x)dx = N

(
ac + b√
1 + a2

)
exp(c2/2).

♦
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Remark. As expected the formula (44) is related to the well-known Mar-
grabe formula (see e.g. [2]) on the difference of two assets. Since in our
case the two underlying quantities Y2 and Y1 are not necessarily set at the
same point in time one has to adopt the inputs to Margrabes formula appro-
priately to take these effects into account and derive our formula (44) from
Margrabes formula.

5 Variable interest rates in foreign currency

Consider a domestic floating interest rate Y d
S which is set (fixed) in the market

at time S. Examples of interest are Y d
S = L(S, T ), the Libor for the interval

[S, T ], and, Y d
S = X with S = T0 and X the swap rate with reference dates

T0 < T1 < · · · < Tn.
We are interested in the price of the rate Y d

S to be paid in foreign currency
units at some time p ≥ S.

5.1 General relationships

Let N c denote a numeraire process with associated martingale measure Qc

for the domestic (c = d) and foreign (c = f) economy. The foreign exchange
rate Xt at time t is the value of one unit foreign in domestic currency at time
t. Any foreign asset Sf

t is considered to be a traded asset in the domestic
economy if multiplied with the exchange rate: Sf

t ·Xt.
The value today of a domestic payoff Zd

T to be paid in foreign units and
at time T is by the general theory

N f
0 EQf

Zd
T

N f
T

.

On the other hand, the same payoff translated back into domestic currency
with the exchange rate at time T should trade at the same price, therefore

N f
0 EQf

Zd
T

N f
T

=
Nd

0

X0

EQd

Zd
T XT

Nd
T

.

Consequently, the density of the two martingale measures Qf and Qd on the
information structure up to time T is given by

dQd

dQf
=

Nd
T

XT N f
T

X0N
f
0

Nd
0

(46)

dQf

dQd
=

XT N f
T

Nd
T

Nd
0

X0N
f
0

.
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This implies the following

Corollary 2 The process (
XtN

f
t

Nd
t

)t≥0 is a Qd martingale.

5.2 Quanto adjustments

Now we come back to the valuation of a variable interest rate Y d
S paid at

time p in foreign units. Using the time p maturity foreign zero bond Bf (., p)
as numeraire together with the foreign time p forward measure and relation
(46) for T = S as well as Corollary 2 the price is

Bf (0, p)EQf
p

Y d
S

Bf (p, p)
=

Nd
0

X0

EQd

(
Y d

S

XSBf (S, p)

Nd
S

)
=

Nd
0

X0

EQd

(
Y d

S

XSBf (S, p)

Bd(S, p)

Bd(S, p)

Nd
S

)
. (47)

By definition the ratio Bd(S,p)

Nd
S

is a Qd martingale in the time variable S ≤ p.

The expression XSBf (S,p)
Bd(S,p)

is the time S forward foreign exchange rate for
delivery at time p ≥ S.

Our goal is to make (47) more explicit in terms of market observable
quantities like forward rates, volatilities etc. To this end we need to impose
some modelling assumptions. From now on we assume that our domestic
numeraire Nd is the natural numeraire associated with the interest rate Y d

S ,
i.e., if Y d

S = L(S, T ) then Nd
· = Bd(., T ) and Qd = Qd

T or if Y d
S = X then

Nd
· =

∑
∆iB

d(., Ti) and Qd = Qd
Swap. Under the market model, which we

assume from now on, the distribution of Y d
S under the measure Qd is then

lognormal

Y d
S = Y d

0 exp(σY WS −
1

2
σ2

Y S) (48)

with expectation

Y d
0 = EQdY d

S .

The rate Y d
0 is the forward Libor L0(S, T ) (cf. (9)) or the forward swap rate

X0 (cf. (3)), respectively, as of today.
For the last term on the right hand side of equation (47) we suppose

(as we have already done in previous sections, equations (15), (22)) a linear
model of the form

Bd(S, p)

Nd
S

= α + βpY
d
S (49)

with α and βp given by (16) or (24) and (23), respectively.
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The most critical assumption we are going to require is on the distribution
of the forward foreign exchange rate. We suppose a lognormal distribution
under Qd

XS
Bf (S, p)

Bd(S, p)
= X?

0 exp(σfxW
fx
S − 1

2
σ2

fxS) (50)

with expectation

X?
0 = EQd

(
XS

Bf (S, p)

Bd(S, p)

)

to be calculated below. Observe that the assumption of log-normality of the
forward foreign exchange rate is in general not compatible with the assump-
tion of a lognomal rate Y d

S . In practice, we will identify the volatility σfx

with the implied volatility of a foreign exchange rate option with maturity
S. This would be a crucial simplification as long as the payment date p is
not close to S, which is, however, the case in most applications.

To calculate the expectation X?
0 we make use of the fact that according

to Corollary 2 (XSBf (S,p)

Nd
S

) is a Qd martingale in S ≤ p. Together with (49)

and (48) this yields

X0B
f (0, p)

Nd
0

= EQd

(
XSBf (S, p)

Nd
S

)
= EQd

(
Xs

Bf (S, p)

Bd(S, p)

Bd(S, p)

Nd
S

)
= EQd

[
X?

0 exp(σfxW
fx
S − 1

2
σ2

fxS)(α + βpY
d
0 exp(σY Ws −

1

2
σ2

Y S))

]
= X?

0 (α + βpY
d
0 exp(ρσfxσY S)),

with ρ as correlation between the driving Brownian motions W fx and W . As
a consequence the expectation of the forward foreign exchange rate under Qd

is

X?
0 =

X0B
f (0, p)

Nd
0 (α + βpY d

0 exp(ρσfxσY S))
. (51)

Now we are ready to follow up with an explicit calculation of (47). Substi-
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tuting (48), (49) and (50) we obtain

Bf (0, p)EQf
p

Y d
S

Bf (p, p)

=
Nd

0

X0

Y d
0

X0B
f (0, p)

Nd
0 (α + βpY d

0 exp(ρσfxσY S))
EQd

(
exp(σY WS −

1

2
σ2

Y S)

exp(σfxW
fx
S − 1

2
σ2

fxS)(α + βpY
d
0 exp(σY WS −

1

2
σ2

Y S))

)
= Bf (0, p)Y d

0

exp(ρσfxσY S)(α + βpY
d
0 exp(ρσfxσY S + σ2

Y S))

α + βpY d
0 exp(ρσfxσY S)

.

Proposition 8 Under the conditions (48), (49) and (50) the quanto adjusted
forward rate for a payment of the variable rate Y d

S set at time S and paid at
time p ≥ S in foreign currency units is given by

EQf
p
Y d

S = Y d
0

exp(ρσfxσY S)(α + βpY
d
0 exp(ρσfxσY S + σ2

Y S))

α + βpY d
0 exp(ρσfxσY S)

(52)

with α and βp as in (16) or (24) and (23), respectively, and ρ as correlation
between the driving Brownian motions.

Remark. In the special case of the foreign unit being the domestic unit, i.e.
σfx = 0, formula (52) reduces to (18) or (28) as expected.

Example. To illustrate the impact and size of the quanto adjustment
consider as an example a diff swap, i.e. Y d

S = L(S, T ) to be paid at time
p = T in foreign currency units. In this particular case we have α = 1 and
βp = βT = 0 and the adjustment reduces to

EQf
T
L(S, T ) = L0(S, T ) exp(ρσfxσY S).

For S = 5, σfx = 15%, σY = 18% and ρ = 50% this gives an adjustment
factor on the forward rate of

exp(ρσfxσY S) = 1, 0698.

5.3 Quantoed options on interest rates

In this section we extend the analysis of the previous section to standard
options on a domestic interest rate Y d

S with payment at an arbitrary time
p ≥ S but in foreign currency units. This can be seen also as an extension
of the result in Section 4.2.
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We use the same notation and assumptions (48), (49) and (50) as in the
previous section.

Consider a call option on the domestic rate Y d
S with strike K paid at

p ≥ S in foreign currency. By the general theory the price of this option is
(compare also (47))

Bf (0, p)EQf
p

max(Y d
S −K, 0)

Bf (p, p)

=
Nd

0

X0

EQd

(
max(Y d

S −K, 0)
XSBf (S, p)

Bd(S, p)

Bd(S, p)

Nd
S

)
=

Nd
0

X0

EQd

(
max(Y d

S −K, 0)
XSBf (S, p)

Bd(S, p)
(α + βpY

d
S )

)
=

Nd
0

X0

EQd

[
max

(
Y d

0 exp

(
σY WS −

1

2
σ2

Y S

)
−K, 0

)
X?

0 exp

(
σfxW

fx
S − 1

2
σ2

fxS

)(
α + βpY

d
0 exp

(
σY WS −

1

2
σ2

Y S

))]
.

The last expectation can be calculated again explicitly and we obtain the
following result.

Proposition 9 Under the conditions (48), (49) and (50) the call option on
the domestic variable rate Y d

S set at time S and paid at time p ≥ S in foreign
currency units is given by

Bf (0, p)EQf
p
max(Y d

S −K, 0) (53)

=
Bf (0, p)

α + βpY d
0 eσfxσY ρS

[
Y d

0 eσfxσY ρSN(d1 + σfxρ
√

S)(α− βpK)

+βp(Y
d
0 )2e(σ2

y+2σfxσyρ)SN(d1 + (σfxρ + σY )
√

S)− αKN(d2 + σfxρ
√

S)
]

with

d1 =
ln(

Y d
0

K
) + 1

2
σ2

Y S

σY

√
S

d2 =
ln(

Y d
0

K
)− 1

2
σ2

Y S

σY

√
S

and α and βp as in (16) or (24) and (23), respectively, and ρ as correlation
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between the driving Brownian motions. The corresponding put formula is

Bf (0, p)EQf
p
max(K − Y d

S , 0) (54)

=
Bf (0, p)

α + βpY d
0 eσfxσY ρS

[
− Y d

0 eσfxσY ρSN(−d1 − σfxρ
√

S)(α− βpK)

−βp(Y
d
0 )2e(σ2

y+2σfxσyρ)SN(−d1 − (σfxρ + σY )
√

S) + αKN(−d2 − σfxρ
√

S)
]
.

Finally, the formula for a digital is

Bf (0, p)EQf
p

(
1{Y d

S >K}

)
(55)

=
Bf (0, p)

α + βpY d
0 eσfxσY ρS

[
βpY

d
0 eσfxσY ρSN(d1 + σfxρ

√
S) + αN(d2 + σfxρ

√
S)
]
.

Remarks 1. For the special case of YS = L(S, T ), p = T , the assumption
(49) of a linear model is trivially satisfied and the corresponding valuation
reduces to formula (11.27) in [1], Section 11.4.2.
2. In case that the option is not quantoed, i.e., we can assume σfx = 0
formula (54) reduces to the general formula (40) for options on interest rates
with arbitrary payment date.

6 Empirical correlation estimates

The convexity and quanto adjustment formulae in the previous sections in-
volve several correlations between interest rates and interest rates and foreign
exchange rates. In this section, as a first indication and for reference, we col-
lect the results of some empirical correlation estimates for the most important
interest rate tenors and currencies.

The data underlying the analysis are daily data ranging from Aug 1, 2001
to Sep 1, 2003. We estimate correlations of daily logarithmic changes between
1M, 3M, 6M, 12M cash and 2Y,. . . , 10Y swap rates in each currency.4

4We use Euribor/Libor fixings for cash rates and closing swap rates from Reuters. A
similar analysis on forward rates instead of spot rates would be desirable, however, to cal-
culate sufficiently stable forward rates from spot rates requires sophisticated interpolation
techniques and is beyond the scope of the present analysis.
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Correlations between EUR interest rates.

1M 3M 6M 12M 2Y 3Y 4Y
1M 100,00% 83,08% 53,54% 30,61% 6,49% 3,64% 2,78%
3M 83,08% 100,00% 80,04% 57,95% 16,28% 12,32% 9,91%
6M 53,54% 80,04% 100,00% 91,06% 31,61% 24,78% 23,75%
1Y 30,61% 57,95% 91,06% 100,00% 38,95% 31,72% 31,74%
2Y 6,49% 16,28% 31,61% 38,95% 100,00% 91,04% 93,43%
3Y 3,64% 12,32% 24,78% 31,72% 91,04% 100,00% 88,24%
4Y 2,78% 9,91% 23,75% 31,74% 93,43% 88,24% 100,00%
5Y 2,77% 8,91% 20,66% 27,91% 92,50% 88,15% 98,57%
6Y 2,86% 8,45% 19,51% 26,51% 91,23% 86,71% 97,75%
7Y 1,93% 8,20% 19,76% 27,10% 90,02% 85,46% 95,84%
8Y 2,66% 8,81% 19,34% 26,41% 88,89% 84,51% 94,80%
9Y 2,63% 7,77% 17,44% 24,15% 86,97% 82,86% 93,61%
10Y 2,76% 7,55% 16,49% 22,82% 86,17% 81,99% 92,77%

5Y 6Y 7Y 8Y 9Y 10Y
1M 2,77% 2,86% 1,93% 2,66% 2,63% 2,76%
3M 8,91% 8,45% 8,20% 8,81% 7,77% 7,55%
6M 20,66% 19,51% 19,76% 19,34% 17,44% 16,49%
12M 27,91% 26,51% 27,10% 26,41% 24,15% 22,82%
2Y 92,50% 91,23% 90,02% 88,89% 86,97% 86,17%
3Y 88,15% 86,71% 85,46% 84,51% 82,86% 81,99%
4Y 98,57% 97,75% 95,84% 94,80% 93,61% 92,77%
5Y 100,00% 99,26% 97,54% 96,63% 95,68% 94,79%
6Y 99,26% 100,00% 98,21% 97,56% 96,80% 95,92%
7Y 97,54% 98,21% 100,00% 99,23% 98,73% 98,02%
8Y 96,63% 97,56% 99,23% 100,00% 99,48% 98,74%
9Y 95,68% 96,80% 98,73% 99,48% 100,00% 99,24%
10Y 94,79% 95,92% 98,02% 98,74% 99,24% 100,00%
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Correlations between USD interest rates.

1M 3M 6M 1Y 2Y 3Y 4Y
1M 100,00% 85,40% 64,78% 43,54% 7,35% 9,98% 7,36%
3M 85,40% 100,00% 88,41% 69,29% 13,20% 16,30% 13,88%
6M 64,78% 88,41% 100,00% 91,63% 17,67% 19,72% 17,74%
1Y 43,54% 69,29% 91,63% 100,00% 20,45% 22,97% 21,36%
2Y 7,35% 13,20% 17,67% 20,45% 100,00% 93,83% 91,04%
3Y 9,98% 16,30% 19,72% 22,97% 93,83% 100,00% 97,40%
4Y 7,36% 13,88% 17,74% 21,36% 91,04% 97,40% 100,00%
5Y 10,09% 16,86% 19,98% 23,31% 89,54% 96,13% 96,82%
6Y 16,26% 24,63% 33,28% 41,02% 68,00% 75,26% 75,81%
7Y 16,55% 24,67% 32,89% 39,46% 69,23% 76,69% 77,78%
8Y 16,54% 24,41% 32,90% 39,35% 65,86% 73,22% 74,38%
9Y 15,29% 22,45% 30,87% 37,30% 64,05% 71,17% 72,76%
10Y 15,35% 23,39% 31,23% 36,62% 64,65% 72,41% 73,79%

5Y 6Y 7Y 8Y 9Y 10Y
1M 10,09% 16,26% 16,55% 16,54% 15,29% 15,35%
3M 16,86% 24,63% 24,67% 24,41% 22,45% 23,39%
6M 19,98% 33,28% 32,89% 32,90% 30,87% 31,23%
1Y 23,31% 41,02% 39,46% 39,35% 37,30% 36,62%
2Y 89,54% 68,00% 69,23% 65,86% 64,05% 64,65%
3Y 96,13% 75,26% 76,69% 73,22% 71,17% 72,41%
4Y 96,82% 75,81% 77,78% 74,38% 72,76% 73,79%
5Y 100,00% 79,39% 81,32% 78,39% 76,80% 77,98%
6Y 79,39% 100,00% 95,79% 95,98% 94,96% 91,20%
7Y 81,32% 95,79% 100,00% 96,72% 95,12% 94,43%
8Y 78,39% 95,98% 96,72% 100,00% 98,04% 95,23%
9Y 76,80% 94,96% 95,12% 98,04% 100,00% 95,35%
10Y 77,98% 91,20% 94,43% 95,23% 95,35% 100,00%
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Correlations between GBP interest rates.

1M 3M 6M 1Y 2Y 3Y 4Y
1M 100,00% 77,24% 51,27% 36,86% 12,61% 8,36% 12,39%
3M 77,24% 100,00% 83,50% 66,47% 26,12% 19,80% 25,42%
6M 51,27% 83,50% 100,00% 92,63% 44,76% 38,17% 42,27%
1Y 36,86% 66,47% 92,63% 100,00% 53,78% 48,27% 52,15%
2Y 12,61% 26,12% 44,76% 53,78% 100,00% 95,07% 89,12%
3Y 8,36% 19,80% 38,17% 48,27% 95,07% 100,00% 91,04%
4Y 12,39% 25,42% 42,27% 52,15% 89,12% 91,04% 100,00%
5Y 10,27% 22,30% 38,17% 48,14% 87,24% 89,79% 99,04%
6Y 9,54% 20,17% 34,43% 44,17% 84,99% 88,02% 97,65%
7Y 8,83% 18,55% 31,31% 41,14% 82,73% 86,31% 95,67%
8Y 9,00% 17,21% 28,64% 37,92% 80,42% 84,07% 94,40%
9Y 8,40% 16,09% 26,43% 35,38% 78,27% 81,92% 92,55%
10Y 7,84% 14,76% 24,14% 32,90% 76,59% 80,36% 90,97%

5Y 6Y 7Y 8Y 9Y 10Y
1M 10,27% 9,54% 8,83% 9,00% 8,40% 7,84%
3M 22,30% 20,17% 18,55% 17,21% 16,09% 14,76%
6M 38,17% 34,43% 31,31% 28,64% 26,43% 24,14%
1Y 48,14% 44,17% 41,14% 37,92% 35,38% 32,90%
2Y 87,24% 84,99% 82,73% 80,42% 78,27% 76,59%
3Y 89,79% 88,02% 86,31% 84,07% 81,92% 80,36%
4Y 99,04% 97,65% 95,67% 94,40% 92,55% 90,97%
5Y 100,00% 99,22% 97,74% 96,81% 95,42% 94,12%
6Y 99,22% 100,00% 98,84% 98,46% 97,43% 96,39%
7Y 97,74% 98,84% 100,00% 98,82% 98,13% 97,39%
8Y 96,81% 98,46% 98,82% 100,00% 99,53% 99,02%
9Y 95,42% 97,43% 98,13% 99,53% 100,00% 99,64%
10Y 94,12% 96,39% 97,39% 99,02% 99,64% 100,00%
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Correlations between JPY interest rates.

1M 3M 6M 1Y 2Y 3Y 4Y
1M 100,00% 31,11% 29,58% 36,91% 2,11% 4,75% 2,69%
3M 31,11% 100,00% 61,47% 53,09% 6,42% 5,92% 8,27%
6M 29,58% 61,47% 100,00% 70,30% 5,54% 7,52% 6,06%
1Y 36,91% 53,09% 70,30% 100,00% 4,31% 7,37% 6,29%
2Y 2,11% 6,42% 5,54% 4,31% 100,00% 67,83% 68,25%
3Y 4,75% 5,92% 7,52% 7,37% 67,83% 100,00% 88,47%
4Y 2,69% 8,27% 6,06% 6,29% 68,25% 88,47% 100,00%
5Y 0,74% 6,25% 4,62% 5,70% 60,45% 81,24% 89,23%
6Y 1,14% 6,75% 4,35% 5,29% 56,51% 77,84% 86,81%
7Y -2,90% 3,73% -0,14% 2,21% 55,37% 67,64% 77,82%
8Y -3,15% 1,57% -2,36% -0,82% 51,44% 64,10% 74,89%
9Y -3,64% 0,29% -2,38% -0,83% 48,23% 59,65% 69,83%
10Y -4,63% 0,58% -0,46% -0,53% 53,55% 65,08% 74,95%

5Y 6Y 7Y 8Y 9Y 10Y
1M 0,74% 1,14% -2,90% -3,15% -3,64% -4,63%
3M 6,25% 6,75% 3,73% 1,57% 0,29% 0,58%
6M 4,62% 4,35% -0,14% -2,36% -2,38% -0,46%
1Y 5,70% 5,29% 2,21% -0,82% -0,83% -0,53%
2Y 60,45% 56,51% 55,37% 51,44% 48,23% 53,55%
3Y 81,24% 77,84% 67,64% 64,10% 59,65% 65,08%
4Y 89,23% 86,81% 77,82% 74,89% 69,83% 74,95%
5Y 100,00% 94,57% 85,48% 79,03% 72,33% 79,88%
6Y 94,57% 100,00% 88,63% 85,16% 78,31% 83,16%
7Y 85,48% 88,63% 100,00% 91,67% 85,34% 91,13%
8Y 79,03% 85,16% 91,67% 100,00% 95,82% 87,75%
9Y 72,33% 78,31% 85,34% 95,82% 100,00% 86,87%
10Y 79,88% 83,16% 91,13% 87,75% 86,87% 100,00%
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Correlations between CHF interest rates.

1M 3M 6M 1Y 2Y 3Y 4Y
1M 100,00% 91,65% 81,47% 60,07% 18,77% 13,02% 13,39%
3M 91,65% 100,00% 90,92% 71,07% 28,86% 22,31% 21,63%
6M 81,47% 90,92% 100,00% 83,77% 37,26% 31,07% 28,96%
1Y 60,07% 71,07% 83,77% 100,00% 45,36% 42,55% 38,18%
2Y 18,77% 28,86% 37,26% 45,36% 100,00% 90,08% 81,28%
3Y 13,02% 22,31% 31,07% 42,55% 90,08% 100,00% 90,51%
4Y 13,39% 21,63% 28,96% 38,18% 81,28% 90,51% 100,00%
5Y 12,46% 19,99% 26,60% 35,78% 80,93% 91,15% 98,51%
6Y 10,67% 18,23% 24,17% 33,23% 78,91% 88,95% 95,15%
7Y 10,76% 18,04% 23,86% 32,19% 77,81% 88,01% 93,52%
8Y 10,79% 17,93% 23,91% 31,85% 78,77% 89,14% 93,60%
9Y 10,51% 17,54% 23,00% 30,61% 77,80% 88,43% 92,38%
10Y 11,27% 17,92% 23,24% 31,04% 77,36% 87,57% 90,72%

5Y 6Y 7Y 8Y 9Y 10Y
1M 12,46% 10,67% 10,76% 10,79% 10,51% 11,27%
3M 19,99% 18,23% 18,04% 17,93% 17,54% 17,92%
6M 26,60% 24,17% 23,86% 23,91% 23,00% 23,24%
1Y 35,78% 33,23% 32,19% 31,85% 30,61% 31,04%
2Y 80,93% 78,91% 77,81% 78,77% 77,80% 77,36%
3Y 91,15% 88,95% 88,01% 89,14% 88,43% 87,57%
4Y 98,51% 95,15% 93,52% 93,60% 92,38% 90,72%
5Y 100,00% 97,27% 96,06% 96,42% 95,46% 93,98%
6Y 97,27% 100,00% 98,65% 96,49% 95,75% 94,23%
7Y 96,06% 98,65% 100,00% 97,47% 96,69% 95,18%
8Y 96,42% 96,49% 97,47% 100,00% 99,06% 97,70%
9Y 95,46% 95,75% 96,69% 99,06% 100,00% 98,53%
10Y 93,98% 94,23% 95,18% 97,70% 98,53% 100,00%
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Correlations between NOK interest rates.

1M 3M 6M 1Y 2Y 3Y 4Y
1M 100,00% 68,75% 54,16% 44,44% 12,45% 9,27% 7,11%
3M 68,75% 100,00% 86,58% 76,33% 36,18% 31,47% 27,60%
6M 54,16% 86,58% 100,00% 92,49% 47,93% 43,62% 40,25%
1Y 44,44% 76,33% 92,49% 100,00% 56,14% 52,05% 48,39%
2Y 12,45% 36,18% 47,93% 56,14% 100,00% 95,20% 91,87%
3Y 9,27% 31,47% 43,62% 52,05% 95,20% 100,00% 97,57%
4Y 7,11% 27,60% 40,25% 48,39% 91,87% 97,57% 100,00%
5Y 4,92% 24,64% 37,22% 46,43% 90,81% 92,42% 94,99%
6Y 3,04% 21,45% 33,76% 42,11% 85,49% 92,33% 96,05%
7Y 1,99% 18,40% 31,11% 39,94% 82,85% 90,17% 94,19%
8Y 1,34% 17,59% 30,99% 39,59% 80,61% 88,01% 92,57%
9Y -0,27% 16,05% 29,37% 37,72% 78,27% 86,48% 91,35%
10Y -1,28% 13,99% 26,80% 35,20% 76,22% 84,83% 89,62%

5Y 6Y 7Y 8Y 9Y 10Y
1M 4,92% 3,04% 1,99% 1,34% -0,27% -1,28%
3M 24,64% 21,45% 18,40% 17,59% 16,05% 13,99%
6M 37,22% 33,76% 31,11% 30,99% 29,37% 26,80%
1Y 46,43% 42,11% 39,94% 39,59% 37,72% 35,20%
2Y 90,81% 85,49% 82,85% 80,61% 78,27% 76,22%
3Y 92,42% 92,33% 90,17% 88,01% 86,48% 84,83%
4Y 94,99% 96,05% 94,19% 92,57% 91,35% 89,62%
5Y 100,00% 95,46% 93,52% 91,96% 90,54% 88,96%
6Y 95,46% 100,00% 97,94% 96,72% 95,75% 94,38%
7Y 93,52% 97,94% 100,00% 98,53% 97,40% 96,19%
8Y 91,96% 96,72% 98,53% 100,00% 98,87% 97,56%
9Y 90,54% 95,75% 97,40% 98,87% 100,00% 99,05%
10Y 88,96% 94,38% 96,19% 97,56% 99,05% 100,00%
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The quanto adjustments for variable domestic interest rates paid in for-
eign currency require certain correlations between interest rates and foreign
exchange rates. In estimating these quantities from data on has to be careful
using the data in the right way. Remember that our foreign exchange rate Xt

is always understood as the price of one unit foreign expressed in domestic
currency. Here are the empirical estimation results of correlations for the
given data sets.

Foreign currency exchange rate
EUR interest rates USD GBP JPY CHF NOK

1M 0,65% -4,73% 3,49% -5,27% 2,44%
3M 2,19% -4,21% -1,62% -1,72% 4,82%
6M 5,24% -3,52% -3,79% -4,44% 4,35%
1Y 5,07% -3,63% -5,40% -4,83% 3,91%
2Y 38,37% 23,40% 15,09% -12,97% 13,38%
3Y 35,07% 21,00% 13,91% -10,59% 8,80%
4Y 41,07% 26,45% 18,70% -12,68% 13,87%
5Y 41,73% 26,25% 18,90% -12,33% 14,48%
6Y 41,47% 26,88% 18,21% -11,36% 13,84%
7Y 39,96% 25,30% 17,07% -9,40% 14,02%
8Y 39,35% 25,27% 16,20% -9,68% 13,88%
9Y 39,35% 25,19% 16,38% -9,04% 14,07%
10Y 39,21% 24,70% 15,96% -8,92% 14,08%

Foreign currency exchange rate
USD interest rates EUR GBP JPY CHF NOK

1M -8,02% -11,60% -9,91% -11,07% -8,84%
3M -5,98% -12,21% -11,41% -8,47% -6,67%
6M -6,54% -12,37% -12,36% -9,40% -4,70%
1Y -6,89% -9,89% -13,64% -10,58% -4,52%
2Y -34,04% -22,07% -22,93% -35,73% -29,50%
3Y -34,13% -23,37% -23,46% -36,40% -30,28%
4Y -33,62% -22,29% -23,41% -35,18% -29,78%
5Y -33,56% -22,68% -24,00% -35,89% -30,86%
6Y -30,43% -21,44% -23,69% -32,74% -28,25%
7Y -32,37% -23,94% -25,27% -34,39% -30,67%
8Y -31,36% -22,48% -25,35% -33,32% -28,99%
9Y -30,26% -21,47% -24,47% -32,15% -27,42%
10Y -28,13% -20,78% -22,52% -30,22% -26,48%
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Foreign currency exchange rate
GBP interest rates USD EUR JPY CHF NOK

1M -2,58% -1,08% -1,76% -1,83% -0,22%
3M -1,08% -0,26% -5,44% -1,33% -1,74%
6M -1,52% -4,13% -5,91% -4,98% -3,31%
1Y 0,02% -6,59% -8,77% -8,70% -3,51%
2Y 16,21% -23,95% -6,16% -27,87% -13,20%
3Y 16,29% -24,51% -5,42% -27,30% -13,09%
4Y 15,78% -22,92% -7,19% -24,01% -11,52%
5Y 17,01% -24,21% -7,40% -24,79% -12,45%
6Y 17,67% -24,81% -7,73% -24,97% -12,73%
7Y 18,73% -23,89% -7,38% -24,41% -11,71%
8Y 19,50% -25,00% -8,23% -25,31% -12,93%
9Y 20,14% -24,35% -7,73% -25,23% -12,15%
10Y 20,69% -23,86% -6,93% -24,56% -12,11%

Foreign currency exchange rate
JPY interest rates USD EUR GBP CHF NOK

1M -0,21% -1,57% -1,80% -5,75% -3,10%
3M 12,93% 1,99% 6,94% -0,67% 0,14%
6M 0,89% 4,57% 1,13% 0,58% 0,65%
1Y 1,30% 4,11% 1,51% 2,38% 0,82%
2Y 4,06% -3,50% 1,03% -3,70% 1,90%
3Y -1,18% -9,14% -2,16% -10,72% -5,56%
4Y 2,01% -8,18% -0,12% -8,09% -4,82%
5Y 4,17% -8,82% -0,23% -9,05% -6,70%
6Y 3,66% -7,82% 0,24% -7,97% -4,57%
7Y 7,55% -7,09% 0,27% -5,31% -4,17%
8Y 8,75% -6,04% 1,01% -5,27% -2,12%
9Y 7,87% -4,32% 0,51% -3,66% -0,49%
10Y 6,43% -4,71% -0,19% -2,46% -0,96%
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Foreign currency exchange rate
CHF interest rates USD EUR GBP JPY NOK

1M -5,28% -9,03% -7,38% -6,80% 2,21%
3M -3,30% -7,53% -8,53% -5,22% 6,46%
6M -3,47% -6,23% -8,76% -7,66% 7,14%
1Y 0,25% -2,70% -9,10% -5,09% 8,50%
2Y 24,17% 9,97% 17,40% 6,90% 18,98%
3Y 22,26% 8,31% 14,67% 6,24% 14,19%
4Y 21,24% 8,57% 16,44% 6,49% 14,56%
5Y 23,76% 9,95% 18,21% 7,40% 14,85%
6Y 24,16% 11,73% 18,27% 7,00% 16,19%
7Y 24,16% 11,14% 18,95% 6,96% 16,32%
8Y 24,64% 10,12% 19,34% 7,60% 15,75%
9Y 24,03% 8,69% 18,35% 6,47% 13,96%
10Y 23,77% 8,86% 17,61% 6,42% 13,69%

Foreign currency exchange rate
NOK interest rates USD EUR GBP JPY CHF

1M -12,00% -7,78% -3,77% -12,92% -8,66%
3M -13,83% -11,09% -12,47% -12,33% -8,76%
6M -12,83% -13,46% -12,61% -12,16% -10,42%
1Y -11,33% -16,17% -12,51% -10,87% -14,09%
2Y -0,23% -23,27% -7,90% -10,86% -24,93%
3Y 2,28% -23,39% -6,93% -9,94% -24,76%
4Y 4,09% -22,09% -4,41% -7,81% -23,18%
5Y 3,40% -20,90% -3,71% -10,23% -23,62%
6Y 4,33% -21,15% -3,32% -8,26% -22,05%
7Y 6,77% -19,81% -2,15% -7,70% -21,35%
8Y 7,06% -18,87% -1,78% -7,22% -20,04%
9Y 7,49% -17,39% -0,81% -6,54% -19,21%
10Y 8,17% -17,29% -0,85% -5,79% -18,87%

38



References

[1] Brigo, D., Mercurio, F.: Interest Rate Models - Theory and Prac-
tice, Springer, 2001 4, 20, 29

[2] Hull, J.C.: Options, Futures, and other Derivatives, Prentice Hall,
1997 4, 14, 24

[3] Hunt, P.J., Kennedy, J.E.: Financial Derivatives in Theory and
Practice, Wiley, 2000 8, 10

[4] Pelsser, A.: Efficient Models for Valuing Interest Rate Derivatives,
Springer, 2000 4, 10

[5] Schmidt, W.M.: Pricing irregular cash flows, Working Paper,
Deutsche Bank , 1996 8, 10, 12

39



Arbeitsberichte der Hochschule für Bankwirtschaft
Bisher sind erschienen:

Nr.        Autor/Titel                                                                                                                                                                   Jahr

1 Moormann, Jürgen 1995
Lean Reporting und Führungsinformationssysteme bei deutschen Finanzdienstleistern

2 Cremers, Heinz / Schwarz, Willi 1996
Interpolation of Discount Factors

3 Jahresbericht 1996 1997

4 Ecker, Thomas / Moormann, Jürgen 1997
Die Bank als Betreiberin einer elektronischen Shopping-Mall

5 Jahresbericht 1997 1998

6 Heidorn, Thomas; Schmidt, Wolfgang 1998
LIBOR in Arrears

7 Moormann, Jürgen 1998
Stand und Perspektiven der Informationsverarbeitung in Banken

8 Heidorn, Thomas / Hund, Jürgen 1998
Die Umstellung auf die Stückaktie für deutsche Aktiengesellschaften

9 Löchel, Horst 1998
Die Geldpolitik im Währungsraum des Euro

10 Löchel, Horst 1998
The EMU and the Theory of Optimum Currency Areas

11 Moormann, Jürgen 1999
Terminologie und Glossar der Bankinformatik

12 Heidorn, Thomas 1999
Kreditrisiko (CreditMetrics)

13 Heidorn, Thomas 1999
Kreditderivate

14 Jochum, Eduard 1999
Hoshin Kanri / Management by Policy (MbP)

15 Deister, Daniel / Ehrlicher, Sven / Heidorn, Thomas 1999
CatBonds

16 Chevalier, Pierre / Heidorn, Thomas / Rütze, Merle 1999
Gründung einer deutschen Strombörse für Elektrizitätsderivate

17 Cremers, Heinz 1999
Value at Risk-Konzepte für Marktrisiken

18 Cremers, Heinz 1999
Optionspreisbestimmung

19 Thiele Dirk / Cremers, Heinz / Robé Sophie 2000
Beta als Risikomaß - Eine Untersuchung am europäischen Aktienmarkt

20 Wolf, Birgit 2000
Die Eigenmittelkonzeption des § 10 KWG

21 Heidorn, Thomas 2000
Entscheidungsorientierte Mindestmargenkalkulation

22 Böger, Andreas / Heidorn, Thomas / Philipp Graf Waldstein 2000
Hybrides Kernkapital für Kreditinstitute

23 Heidorn, Thomas / Schmidt Peter / Seiler Stefan 2000
Neue Möglichkeiten durch die Namensaktie

24 Moormann, Jürgen / Frank, Axel 2000
Grenzen des Outsourcing: Eine Exploration am Beispiel von Direktbanken

25 Löchel, Horst 2000
Die ökonomischen Dimensionen der ‚New Economy‘

26 Cremers, Heinz 2000
Konvergenz der binomialen Optionspreismodelle
gegen das Modell von Black/Scholes/Merton



27 Heidorn, Thomas / Klein, Hans-Dieter / Siebrecht, Frank 2000
Economic Value Added zur Prognose der Performance europäischer Aktien

28 Löchel, Horst / Eberle, Günter Georg 2001
Die Auswirkungen des Übergangs zum Kapitaldeckungsverfahren in der Rentenversicherung auf die
Kapitalmärkte

29 Biswas, Rita / Löchel, Horst 2001
Recent Trends in U.S. and German Banking: Convergence or Divergence?

30 Heidorn, Thomas / Jaster, Oliver / Willeitner, Ulrich 2001
Event Risk Covenants

31 Roßbach, Peter 2001
Behavioral Finance - Eine Alternative zur vorherrschenden Kapitalmarkttheorie?

32 Strohhecker, Jürgen / Sokolovsky, Zbynek 2001
Fit für den Euro, Simulationsbasierte Euro-Maßnahmenplanung für Dresdner-Bank-Geschäftsstellen

33 Frank Stehling / Jürgen Moormann 2001
Strategic Positioning of E-Commerce Business Models in the Portfolio of Corporate Banking

34 Norbert Seeger 2001
International Accounting Standards (IAS)

35 Thomas Heidorn / Sven Weier 2001
Einführung in die fundamentale Aktienanalyse

36 Thomas Heidorn 2001
Bewertung von Kreditprodukten und Credit Default Swaps

37 Jürgen Moormann
Terminologie und Glossar der Bankinformatik 2002

38 Henner Böttcher / Norbert Seeger
Bilanzierung von Finanzderivaten nach HGB, EstG, IAS und US-GAAP 2003

39 Thomas Heidorn / Jens Kantwill
Eine empirische Analyse der Spreadunterschiede von Festsatzanleihen zu Floatern im Euroraum
und deren Zusammenhang zum Preis eines Credit Default Swaps 2002

40 Daniel Balthasar / Heinz Cremers / Michael Schmidt
Portfoliooptimierung mit Hedge Fonds unter besonderer Berücksichtigung der Risikokomponente 2002

41 Ludger Overbeck / Wolfgang Schmidt
Modeling Default Dependence with Threshold Models 2003

42 Beiträge von Studierenden des Studiengangs BBA 012 unter Begleitung von Prof. Dr. Norbert Seeger
Rechnungslegung im Umbruch - HGB-Bilanzierung im Wettbewerb mit den internationalen
Standards nach IAS und US-GAAP 2003

43 Holger Kahlert / Norbert Seeger
Bilanzierung von Unternehmenszusammenschlüssen nach US-GAAP 2003

44 Thomas Heidorn / Lars König
Investitionen in Collateralized Debt Obligations 2003

45 Norbert Kluß / Markus König / Heinz Cremers
Incentive Fees. Erfolgsabhängige Vergütungsmodelle deutscher Publikumsfonds 2003

46 Dieter Hess
Determinants of the relative price impact of unanticipated information 2003
in U.S. macroeconomic releases

47 Wolfram Boenkost / Wolfgang M. Schmidt
Notes on convexity and quanto adjustments for interest rates and related options 2003

Printmedium: € 25,-- zzgl. € 2,50 Versandkosten
Download im Internet unter: http://www.hfb.de/forschung/veroeffen.html

Bestelladresse/Kontakt:

Hochschule für Bankwirtschaft, Sonnemannstraße 9-11, 60314 Frankfurt/M.

Tel.: 069/154008-734, Fax: 069/154008-728

eMail: johannsen@hfb.de, internet: www.hfb.de



Sonder-Arbeitsbericht der Hochschule für Bankwirtschaft
Nr.        Autor/Titel                                                                                                                                                             Jahr

1 Nicole Kahmer / Jürgen Moormann
Studie zur Ausrichtung von Banken an Kundenprozessen am Beispiel des Internet 2003
(Preis: € 120,--)

Bestelladresse/Kontakt:

Hochschule für Bankwirtschaft, Sonnemannstraße 9-11, 60314 Frankfurt/M.

Tel.: 069/154008-734, Fax: 069/154008-728

eMail: johannsen@hfb.de, internet: www.hfb.de


	1 Introduction
	2 Notation
	3 Convexity adjusted forward rates
	3.1 Libor-in-arrears
	3.2 CMS
	3.3 Unified approach under the linear rate model
	3.4 Comparison study

	4 Options on Libor-in-arrears and CMS rates
	4.1 Volatility adjustments
	4.2 Exact valuation under the linear rate model
	4.3 Accuracy study and examples
	4.4 Options to exchange interest rates

	5 Variable interest rates in foreign currency
	5.1 General relationships
	5.2 Quanto adjustments
	5.3 Quantoed options on interest rates

	6 Empirical correlation estimates

