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Abstract

This paper deals with the problem of interpolation of discount factors between
time buckets. The problem occurs when price and interest rate data of a market
segment are assigned to discrete time buckets. A simple criterion is developed in
order to identify arbitrage-free robust interpolation methods. Methods closely
examined include linear, exponential and weighted exponential interpolation.
Weighted exponential interpolation, a method still preferred by some banks and
also offered by commercial software vendors, creates several problems and
therefore makes simple exponential interpolation a more logical choice. Linear
interpolation provides a good approximation of exponential interpolation for a
sufficiently dense time grid.

1 Introduction

Valuation and pricing of financial instruments generally requires knowledge of
discount factors and/or zero bond prices. Fundamental to the calculation of
discount factors is detailed information on interest rates, as well as on prices of
fixed income securities in special market segments (Bond-, FRA-, Swap-market)
at present time t0. The procedure for calculating a discount structure df from this
information is as follows:

− Starting with market data we define a discrete time structure t t tN1 2, , ,K  and
calculate the implied discount factor df t tn( , )0  for every time to maturity
t n Nn , , ... ,= 1  e.g. by using a bootstrapping technique.

− The calculation of the present value of a cash flow CF(t) occurring at time t
requires the conversion of the discrete structure df t t( , ),0 1 df t t( , ),... ,0 2

df t t N( , )0 into a continuous discount curve t df t t t t tN→ ∈( , ), [ , ]0 0 .

The complete set of empirical data is employed in order to derive the discrete
discount structure, so that the second step of the problem is reduced to a pure
interpolation problem. If the market data is incomplete then an interpolation
problem may occur in the first step (e.g. this would be caused by a missing bond).

In this paper we study several widely used interpolation methods thereby confining
ourselves to the study of those interpolation problems which require the
knowledge of only two adjacent discount factors. McCulloch [1] has developed
spline interpolation techniques by using the whole spectrum of market data. Spline
interpolation offers a higher degree of smoothness, which has its price in terms of
precision or even arbitrage-freeness. For a detailed discussion of this matter we
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refer to Breckling, Dal Dosso [2], [3] and Shea [4]. In a forthcoming paper we will
investigate interpolation methods using all available market information.

Let us state the problem in more precise terms:

Problem

Let t0 denote the present time, t t t N1 2, , ,K  the designated grid structure and let
df t t df t t df t tN( , ), ( , ), , ( , )0 1 0 2 0K  be the discount factors. The problem is the
valuation of a given cash flow CF t t( ) ( , )= 1 , which pays an amount 1 at a time t
with t t t tn n0 1≤ < <− , considering only the discount factors df df t tn n− −=1 0 1( , )
and df df t tn n= ( , )0  (without any restriction we assume df dfn n− >1 ). Let the index
n be fixed with n N∈{ , , }1 K .

tn-1         t tn

     1

The problem can be looked upon from two different points of view which are
somehow “dual“ to each other:

• Interpolation

  We calculate from discount factors dfn−1  and dfn an interpolated value
df t t Ip t df dfn n( , ) ( , , )0 1= −  and determine the present value (PV = Present
Value) of the payment ( , )t 1  to be

(1) PV t df t t( , ) ( , )1 1 0= ⋅ .

• Bucketing

  Two functions B B t df dfn n1 1 1= −( , , ) and B B t df dfn n2 2 1= −( , , ) (bucketing
functions) are to be determined in such a way that the cash flow ( , )t 1 , which
pays one unit in t can be replaced by the cash flows ( , )t Bn−1 1  and ( , )t Bn 2
(Buckets). The present value of the payment ( , )t 1  then is calculated as

(2) PV t B df t t B df t tn n( , ) ( , ) ( , )1 1 11 0 1 2 0= ⋅ ⋅ + ⋅ ⋅− .

Tying together the two dual view points, i.e. equating (1) and (2) we obtain

(*) df t t B df t t B df t tn n( , ) ( , ) ( , )0 1 0 1 2 0= ⋅ + ⋅− ;

Therefore all bucketing methods can be considered as special interpolation
methods. This formula and conditions resulting from bucket hedging will be the
key point in our analysis. Bucket hedging has been extensively studied by Turnbull
[5].
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The paper is organized as follows. First, we set some notation and state a no
arbitrage condition suited for our purpose. In the second part, commonly applied
interpolation techniques such as linear, exponential and weighted exponential
interpolation are investigated in a qualitative manner. Their impact on zero rate
structures as well as on forward rate curves is discussed in connection with some
selected interest rate scenarios. It can be seen that the weighted exponential
interpolation already has remarkable drawbacks. The final section contains the
main results of this paper. A simple condition described by a system of differential
equations is imposed on equation (*). Solutions to this system include the linear
and exponential interpolation method. Interestingly, these two solutions are related
by the fact that linear interpolation is the first order term of the Taylor series
expansion of the exponential interpolation.

2 Notation

A continuous function

df Ip t df df t t tt n n n n= ∈− −( , , ), ,1 1 ,

with boundary conditions

(3) Ip t df df dfn n n n( , , )− − −=1 1 1   and Ip t df df dfn n n n( , , )− =1

is called interpolation function. Let  df dfn n− >1  for all n N∈{ , , }1 K . An interpolation

function Ip is called arbitrage-free, if Ip is strictly decreasing in t , that means

(4) Ip s df df Ip s df df t s s tn n n n n n( , , ) ( , , )1 1 2 1 1 1 2− − −> ≤ < ≤for .

Furthermore, we assume that the variables df n  are independent given the above

restriction.

Remark 1

No arbitrage is equivalent to the fact that all forward interest rates r t s s( , , )0 1 2  with
t s s tn n− ≤ < ≤1 1 2  are positive.

tn-1         s1   s2 tn

       r t s s( , , )0 1 2
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Proof: For the forward interest rate r t s s( , , )0 1 2  one has

r t s s
df t s

df t s
Ip s df df Ip s df df( ,  ,  ) 00 1 2

0 2

0 1
2 1 2 1 1 21> ⇔ < ⇔ <( , )

( , )
( , , ) ( , , ).

Since we are only interested in the relative distance of the time parameter t  to the
left boundary  tn-1, we will use the parameter λ   instead of t where

λ λ= =
−
−

−

−
( )t

t t

t t
n

n n

1

1
.

We denote by dfλ  the following expression

df Ip df dfn nλ λ λ= ∈−( , , ), [ , ]1 0 1

Then the above boundary conditions can be restated in terms of the new
parameter λ  as:

(5) Ip df df dfn n n( , , )0 1 1− −=   and  Ip df df dfn n n( , , )1 1− = .

3 Examples of interpolation functions

In the following section we look at different interpolation functions and discuss
their qualitative behaviour. In analyzing the zero rate curve and the forward rate
structure the following three zero rate scenarios are considered.

Maturity Scenario 1 Scenario 2 Scenario 3

1 yr 5,0 % 8,5 % 7,0 %
2 yrs 6,5 % 7,0 % 7,0 %
3 yrs 7,5 % 6,0 % 7,0 %
4 yrs 8,2 % 5,3 % 7,0 %

3.1 Linear Interpolation

Linear interpolation is obtained by assigning the relative distances   1− λ   and  λ
as weights to the discount factors dfn−1   and dfn,i.e.:
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(6) df Ip df df df dflin
n n n nλ λ λ λ= = − +− −( , , ) ( )1 11 .

The boundary conditions (5) are easily verified. The no arbitrage condition follows
from

∂
∂ λ
Ip

df df
lin

n n= − <−1 0.

Discount curve

The resulting curve t df dft t→ = λ ( ) is a  continuous piecewise linear function which

is in general not differentiable at ( , ),( , ),..., ( , )t df t df t dfN N1 1 2 2 .

Zero rate curve

If rt  denotes the continuously compounded zero rate of the discount factor
df dft t= λ ( ) , then the interpolated interest rate rt  is expressed as follows:

r
df

t t

t e t e

t tt
t

r t t r t tn n n n
=

−
−

=
− − +

−

− − − −− −ln( ) ln(( ( )) ( ) )( )
( ) ( )λ λ λ

0 0

1 1 1 0 0

For the period [1 yr, 4 yrs] we obtain, using a time interval of length ∆ = 0,1 yrs,
and given scenario 1 the following zero rate curve.

4

5

6

7

8

9

1 1,5 2 2,5 3 3,5 4

Zero rate [%]

Maturity[yrs]

Graph 1. Zero rate curve with normal term structure (scenario 1)

Similarly we obtain for an inverse term structure (scenario 2) a strictly decreasing
zero rate curve with convex parts of the curve. In case of a flat term structure
(scenario 3), linear interpolation yields a function which has slightly convex pieces.
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6,5

7

7,5

1 1,5 2 2,5 3 3,5 4

Maturity [yrs]

Zero rate [%]

Graph 2. Zero rate curve with flat interest rate structure (scenario 2)

Forward rate curve

Let df t s s( , , )0 1 2  denote the forward discount factor and r t s s( , , )0 1 2   its
exponential forward interest rate for the time interval s s t tn n1 2 1, ,⊂ − . The

discount factor, respectively the forward rate, can be expressed by the following
formulas

df t s s
df t s

df t s

s df s df

s df s df
n n

n n
( , , )

( , )

( , )

( ( )) ( )

( ( )) ( )0 1 2
0 2

0 1

2 1 2

1 1 1

1

1
= =

− +
− +

−

−

λ λ
λ λ

      ⇒

r t s s
df t s s

s s
( , , )

ln( ( , , ))
0 1 2

0 1 2

2 1
= −

−

For constant time intervals of length ∆ = − =s s2 1 0 1,   yrs and time interval [1 yr, 4

yrs] the forward curve is as follows:

7

8

9

10

11

1 1,5 2 2,5 3 3,5 4

Zero rate [%]

Maturity [yrs]

Graph 3.  Forward rate curve with normal term structure (scenario 1)



8

2

3

4

5

6

7

1 1,5 2 2,5 3 3,5 4

Zero rate [%]

Maturity [yrs]

Graph 4. Forward rate curve with inverse term structure (scenario 2)

In both scenarios (normal term structure as well as inverse term structure) one
obtains increasing forward rates within the interpolation interval; discontinuities
appear at the boundary of the time intervals. The discontinuities are due to the
method of interpolation choosen, which calculates discount factors as an average
of adjacent discount factors. In a flat term structure scenario (scenario 3), forward
rates are not only increasing but also show a periodic behaviour.

6

7

8

1 1,5 2 2,5 3 3,5 4

Zero rate [%]

Maturity [yrs]

Graph 5. Forward rate curve with flat term structure (scenario 3)

3.2 Exponential Interpolation

This form of interpolation is obtained by assigning certain exponents to the
discount factors df dfn n−1, :

(7) df Ip df df df dfexp
n n n nλ

λ λλ= = ⋅− −
−( , , )1 1

1 .

The boundary conditions (5) are easily verified, the no arbitrage condition (4)
follows from

∂
∂λ

λ λ λ λ
λ

Ip
df df df df df df df df df

exp

n n n n n n n n= − + = − <− −
−

−
−

−(ln ) (ln ) (ln ln ) .1 1
1

1
1

1 0
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Discount curve

Since

∂
∂λ

λ
2

2 1
2 0

Ip
df df df

exp

n n= − >−(ln ln )

the exponential interpolation yields strongly convex pieces in the discount curve.
The discount curve t df dft t→ = λ ( ) is a continuous function, but in general not

differentiable at the points t t t N1 2, , ,K .

Zero rate curve

Let rt  denote the continuously compounded zero rate of the discount factor
df dft t= λ ( ) . It is computed using the linearly interpolated value of the adjacent

zero rates

exp( ( ))

exp( ( )( ) ) exp( ( ) )

exp ( ) ( )

( )
( ) ( )− − = =

= − − − − −

= − −
−

−
+

−
−







 −











−
−

− −

−
−

r t t df df df

t t r t t r

t t

t t
r

t t

t t
r t t

t t n
t

n
t

n n n n

n
n

n
n

0 1
1

1 0 1 0

1 0

0
1

0

0
0

1

1

λ
λ λ

λ λ

λ λ

and

r
t t

t t
r

t t

t t
rt

n
n

n
n= −

−
−

+
−

−
−

−( )1 1 0

0
1

0

0
λ λ .

Given scenario 1, the zero rate curve appears as follows, once again by using
time intervals of ∆ = 0,1 yrs and time periods [1 yr, 4 yrs]:

4

5

6

7

8

9

1 1,5 2 2,5 3 3,5 4

Zero rate [%]

Maturity [yrs]

Graph 6. Zero rate curve with normal term structure (scenario 1)

Given scenario 2, the zero rate curve decreases yielding convex curve pieces.
Given a flat zero rate structure (scenario 3), the exponential interpolation
maintains this property, which can be derived as follows: If r rn n− =1   one obtains
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r
t t

t t
r

t t

t t
r

t t

t t

t t

t t
r

t t t t t t t t

t t t t
r r t

t
n

n
n

n
n n

n

n n n n

n n
n n

= −
−

−
+

−
−

= −
−

−
+

−
−







 ⋅

=
− − + − −

− −
⋅ =

−
−

−

− −

−

( ) ( )

( )( ) ( )( )

( )( )
.

1 11 0

0
1

0

0

1 0

0

0

0

1 0 1 0

1 0

λ λ λ λ

for all

6,5

7

7,5

1 1,5 2 2,5 3 3,5 4

Zero rate [%]

Maturity [yrs]

Graph 7. Zero rate curve with flat term structure (scenario 3)

Forward rate curve

Exponential interpolation implies constant forward rates r t s s( , , )0 1 2  for time
intervals s s1 2,  of equal length. Let s1 and s2 be such that t s s tn n− ≤ < ≤1 1 2 .
Then given λ λ1 1= ( )s  , λ λ2 2= ( )s  and a forward discount factor df t s s( , , )0 1 2  it can
be rewritten as

df t s s
df t s

df t s

df df

df df

df

df

df

df
n n

n n

n

n

n

n

s s

t tn n( , , )
( , )

( , )
,0 1 2

0 2

0 1

1
1

1
1

1 1

2 2

1 1

2 1

2 1

2 1

1= = = =






−

−

−
−

−

−
− −

−
− −

λ λ

λ λ

λ λ

λ λ

i.e. df t s s( , , )0 1 2  and r t s s( , , )0 1 2  as well only depend on the distance s s2 1− . For
time intervals with a length of ∆ = − =s s2 1 0 1,  yrs and time periods [1 yr, 4 yrs] we
obtain the following forward rate curve
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7

8

9

10

11

1 1,5 2 2,5 3 3,5 4

Zero rate [%]

Maturity [yrs]

Graph 8. Forward rate curve with normal term structure (scenario 1)

2

3

4

5

6

7

1 1,5 2 2,5 3 3,5 4

Zero rates [%]

Maturity [yrs]

Graph 9. Forward rate curve with inverse term structure (scenario 2)

6,5

7

7,5

1 1,5 2 2,5 3 3,5 4

Zero rate [%]

Maturity [yrs]

Graph 10. Forward rate curve with flat term structure (scenario 3)

3.3 Weighted Exponential Interpolation

This interpolation method is obtained by assigning additional time weights to the
exponents in (7):

(8) df Ip t df df df dft
weight exp

n n n
t t

n
t tn n= = ⋅− −

⋅ − ⋅−( , , ) ( ) ( ( )) ( ) ( )
1 1

11α λ α λ
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where:  λ λ= =
−
−

−

−
( )t

t t

t t
n

n n

1

1
  and  α αi i

i
t

t t

t t
= =

−
−

( ) 0

0

Ipweight exp  satisfies the boundary conditions (3), however the no arbitrage

condition (4) does not hold.

Counterexample

Let df1 0 91= . ,  df2 0 89= . ,  t0 0= ,  t1 1= ,  t2 2=   and  t = 1 8.   then

df df( . ) . .1 8 0 88882386 0 89 2= < = .

According to Remark 1 in Section I, negative or zero forward rates cannot be
excluded by interpolation method (8).

Remark 2

In order to obtain a valid expression for the divisor t t t tn− − = − =1 0 0 0 0 in formula
(8) for the first time interval t t0 1,  where n = 1, we set: t t1 0= + 1 day and r1 =
overnight-rate.

Discount curve

The discount curve t df t→  is a continuous function, but not necessarily
differentiable at points  t t t N1 2, , ,K .

Term structure

Let rt  be the exponential interest rate with discount factor df dft t= λ ( ) , then the

interpolated rate rt  is given by

r r rt n n= − +−( )1 1λ λ ,

i.e. rt  is obtained by interpolating adjacent rates in a linear fashion. The term
structure as defined by the previous scenarios yields the following shape:

5

6

7

8

9

1 1,5 2 2,5 3 3,5 4

Zero rate [%]

Maturity [yrs]

Graph 11. Interest rate curve with normal term structure (scenario 1)
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Similar graphs are obtained for inverse (scenario 2) and flat (scenario 3) term
structures using piecewise linear functions.

Forward curve

For the forward discount factor df t s s( , , )0 1 2  and its associated weighted
exponential forward rate r t s s( , , )0 1 2  for the time period s s t tn n1 2 1, ,⊂ −  we

have

df t s s
df t s

df t s

df dfn

s t t s s t t s

t t t t n

s t s t s t s t

t t t t
n n

n n n

n n

n n n

( , , )
( , )

( , )
( )( ) ( )( )

( )( )

( )( ) ( )( )

( )( )

0 1 2
0 2

0 1

1

2 0 2 1 0 1

1 0 1

2 0 2 1 1 0 1 1

1 0 1

=

= −

− − − − −
− −

− − − − −
− −− −

− −

− −

r t s s
df t s s

s s
( , , )

ln( ( , , ))
0 1 2

0 1 2

2 1
= −

−
.

For time intervals of equal length ∆ = − =s s2 1 0 1,  yrs and time periods [1 yr, 4 yrs]
we obtain the following forward rates, given the aforementioned scenarios:

6

7

8

9

10

11

1 1,5 2 2,5 3 3,5 4

Zero rate [%]

Maturity [yrs]

Graph 12. Forward interest rate curve with normal term structure (scenario 1)
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Graph 13. Forward rate curve with inverse term structure (scenario 2)
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6,5

7

7,5

1 1,5 2 2,5 3 3,5 4

Zero rate [%]

Maturity [yrs]

Graph 14. Forward rate curve with flat term structure (scenario 3)

4 Results

A large class of interpolation methods is obtained by using so called bucketing
procedures. As mentioned in the introduction, »buckets« for a cash flow ( , )t 1

where  t t t tn n0 1≤ < <−   are confined to the time period tn−1 and tn . Two
continuous functions

B B t df dfn n1 1 1= −( , , )  and  B B t df dfn n2 2 1= −( , , ),   t t tn n∈ −1 ,

with  0 11≤ ≤B   and  0 12≤ ≤B  satisfying the boundary conditions

(9) t tn= −1: B t df dfn n n1 1 1 1( , , )− − = and B t df dfn n n2 1 1 0( , , )− − =

t tn= : B t df dfn n n1 1 0( , , )− = and B t df dfn n n2 1 1( , , )− =

are called bucketing functions or a bucketing procedure. As mentioned initially,
every bucketing procedure defines an interpolation method. If B1 and B2 are
bucketing functions, then

(10) Ip t df df B t df df df B t df df dfn n n n n n n n( , , ) ( , , ) ( , , )− − − −= ⋅ + ⋅1 1 1 1 2 1

is the associated interpolation function. Given (9), the boundary conditions (3) are
satisfied. A bucketing procedure B1, B2 is called  arbitrage-free, if the associated
interpolation function Ip is arbitrage-free, i.e. if Ip is strictly decreasing in t. A
sufficient condition is

∂
∂

∂
∂

B t df df

t
df

B t df df

t
dfn n

n
n n

n
1 1

1
2 1 0

( , , ) ( , , )−
−

−+ <

provided B1 and B2 are differentiable in t . Boundary conditions and the no
arbitrage property of bucketing procedures have analogue concepts for the
associated interpolation function. However, the concept of robustness which is
discussed below, seems to have no apparent similarities to interpolation.
Robustness is the essential ingredient in deriving “reasonable“
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interpolation/bucketing procedures. Further, we assume that the function Ip is
continuously differentiable in the variables dfn−1 and dfn.

A bucketing procedure is called robust, if B1, B2, and its associated interpolation
function satisfy the following system of partial differential equations

(**)
∂

∂
Ip t df df

df
B t df dfn n

n
n n

( , , )
( , , )−

−
−=1

1
1 1   ,

∂
∂

Ip t df df

df
B t df dfn n

n
n n

( , , )
( , , )−

−=1
2 1    for all  t t tn n∈ −1 , .

Interpretation

The Taylor series of the associated interpolation function satisfying (**) is given for
fixed [ ]t t tn n∈ −1,  and ( , )df dfn n−1

0 0  by

Ip t df df Ip t df df
Ip

df
t df df df df

Ip

df
t df df df df R

B t df df df B t df df df R

n n n n
n

n n n n

n
n n n n

n n n n n n

( , , ) ( , , ) ( , , ) ( )

( , , ) ( )

( , , ) ( , , )

− −
−

− − −

−

− − −

= + ⋅ −

+ ⋅ − +

= ⋅ + ⋅ +

1 1
0 0

1
1

0 0
1 1

0

1
0 0 0

1

1 1
0 0

1 2 1
0 0

1

∂
∂

∂
∂

Consequently, small changes in discount factors dfn−1 and dfn  ( ⇒ a small error
term R1) will result in invariant bucketing functions B t df dfn n1 1( , , )−  and
B t df dfn n2 1( , , )− . Therefore, a hedge based on bucketing does not have to be
adjusted for small changes in market factors.

The main conclusion of the paper is

Theorem:

Let  B1, B2  be as stated above, and  Ip   the associated interpolation function.

Then

(a) B t df df t
t t

t t
lin

n n
n

n n
1 1

1
1( , , ) ( )−

−
= − =

−
−

λ  and B t df df t
t t

t t
lin

n n
n

n n
2 1

1

1
( , , ) ( )−

−

−
= =

−
−

λ

is an arbitrage-free solution to the system (**) where λ denotes the relative
distance of t to tn−1. The associated interpolation function is linear and expressed
by

Ip t df df t df t dflin
n n n n( , , ) ( ( )) ( )− −= − +1 11 λ λ .
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(b) B t df df t
df

df
exp

n n
n

n

t

1 1
1

1( , , ) ( ( ))
( )

−
−

= −






λ

λ
and

B t df df t
df

df
exp

n n
n

n

t

2 1
1

1

( , , ) ( )
( )

−
−

−
=







λ

λ

is an arbitrage-free solution to the system (**) where λ is as above. The
associated interpolation function is as follows:

Ip t df df B t df df df B t df df df

df df

exp
n n

exp
n n n

exp
n n n

n
t

n
t

( ( ), , ) ( , , ) ( , , )

( ) ( )

λ

λ λ
− − − −

−
−

= ⋅ + ⋅

= ⋅

1 1 1 1 2 1

1
1

(c) The two bucketing procedures are approximately the same which can be seen
from the first term of the Taylor series expansion of the exponential interpolation.
Let λ be between 0 and 1 and ( , )df dfn n−1

0 0  be fixed. Then

Ip df df Ip df df
Ip

df
df df df df

Ip

df
df df df df R df df

Ip df df df df df df

df df df df R

exp
n n

exp
n n

exp

n
n n n n

exp

n
n n n n n n

exp
n n n n n n

n n n n

( , , ) ( , , ) ( , )( )

( , )( ) ( , )

( , , ) ( )( ) ( ) ( )

( ) ( ) ( )

λ λ
∂
∂

∂
∂

λ λ

λ

λ λ

λ λ

− −
−

− − −

− −

− −
−

− −

−
− −

= + −

+ − +

= + − −

+ − +

1 1
0 0

1
1

0 0
1 1

0

1
0 0 0

1 1
0 0

1
0 0

1
0 0

1 1
0

1
0 1 0 1 0

1

1 1
0 0

0

1
0 1

0

1
0

1

1 1
0 01

( , )

( ) ( , )

df df

df

df
df

df

df
df R df df

n n

n

n
n

n

n
n n n

−

−
−

−

−

−= −








 ⋅ +









 ⋅ +λ λ

λ λ

For small values of  t tn n− −1  one has

R df dfn n1 1
0 0 0( , )− ≈   and  

df

df
n

n

0

1
0 1
−

≈ ,

and therefore,

Ip df df df df Ip df dfexp
n n n n

lin
n n( , , ) ( ) ( , , )λ λ λ λ− − −≈ − ⋅ + ⋅ =1 1 11 .

Remark 3

(1) The boundary conditions specified for our differential equations by no means
guarantee a unique solution.

 
(2) The solution in (b) can be slightly generalized, if λ( )t  is replaced by a strictly

increasing continuous function with values between 0 and 1.
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(3) The weighted exponential interpolation does not yield a robust bucketing
procedure as

∂
∂

α λ
α λ

Ip t df df

df

df

df

weight exp
n n

n
n

n

n

n( , , )
( )

( )
−

−
−

−

− −
= −









−
1

1
1

1

1 1

1
1

  and

∂
∂

α λ
α λ

Ip t df df

df

df

df

weight exp
n n

n
n

n

n

n( , , )−

−

−
=







1

1

1

produces the following expressions for the bucketing functions Bweight exp
1  and

Bweight exp
2

B t df df t t
df

df
gew exp

n n n
n

n

t tn

1 1 1
1

1 1

1
1

( , , ) ( ) ( ( ))
( )( ( ))

− −
−

− −
= ⋅ − ⋅









−

α λ
α λ

  and

B t df df t t
df

df
gew exp

n n n
n

n

t tn

2 1
1

1

( , , ) ( ) ( )
( ) ( )

−
−

−
= ⋅ ⋅







α λ

α λ
.

The weighted exponential interpolation method, although still often used, satisfies
neither the no arbitrage nor the robustness condition.
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