ECDNETOR

Make Your Publications Visible.

A Service of zBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Working Paper
 Interpolation of discount factors

Arbeitsberichte der Hochschule für Bankwirtschaft, No. 2

Provided in Cooperation with:

Frankfurt School of Finance and Management

[^0]This Version is available at: https://hdl.handle.net/10419/27828

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

円 $n\{B$

Nr. 2
 Interpolation of Discount Factors

Heinz Cremers
Willi Schwarz

Mai 1996

Autoren:	Prof. Dr. Heinz Cremers Quantitative Methoden und Spezielle Bankbetriebslehre Hochschule für Bankwirtschaft
	Dr. Willi Schwarz
	Commerzbank AG, Frankfurt/M.
	Risk Management
Herausgeber:	Hochschule für Bankwirtschaft
	Private Fachhochschule der BANKAKADEMIE
	Sternstraße 8
	60318 Frankfurt/M.
	Tel.: 069 / 95 94 6-7213
	Fax: 069 / 95 94 6-28
	eMail: hfb@mail.pop-frankfurt.com

Abstract

This paper deals with the problem of interpolation of discount factors between time buckets. The problem occurs when price and interest rate data of a market segment are assigned to discrete time buckets. A simple criterion is developed in order to identify arbitrage-free robust interpolation methods. Methods closely examined include linear, exponential and weighted exponential interpolation. Weighted exponential interpolation, a method still preferred by some banks and also offered by commercial software vendors, creates several problems and therefore makes simple exponential interpolation a more logical choice. Linear interpolation provides a good approximation of exponential interpolation for a sufficiently dense time grid.

1 Introduction

Valuation and pricing of financial instruments generally requires knowledge of discount factors and/or zero bond prices. Fundamental to the calculation of discount factors is detailed information on interest rates, as well as on prices of fixed income securities in special market segments (Bond-, FRA-, Swap-market) at present time t_{0}. The procedure for calculating a discount structure df from this information is as follows:

- Starting with market data we define a discrete time structure $t_{1}, t_{2}, \ldots, t_{N}$ and calculate the implied discount factor $d f\left(t_{0}, t_{n}\right)$ for every time to maturity $t_{n}, n=1, \ldots, N$ e.g. by using a bootstrapping technique.
- The calculation of the present value of a cash flow $C F(t)$ occurring at time t requires the conversion of the discrete structure $d f\left(t_{0}, t_{1}\right), d f\left(t_{0}, t_{2}\right), \ldots$, $d f\left(t_{0}, t_{N}\right)$ into a continuous discount curve $t \rightarrow d f\left(t_{0}, t\right), t \in\left[t_{0}, t_{N}\right]$.

The complete set of empirical data is employed in order to derive the discrete discount structure, so that the second step of the problem is reduced to a pure interpolation problem. If the market data is incomplete then an interpolation problem may occur in the first step (e.g. this would be caused by a missing bond).

In this paper we study several widely used interpolation methods thereby confining ourselves to the study of those interpolation problems which require the knowledge of only two adjacent discount factors. McCulloch [1] has developed spline interpolation techniques by using the whole spectrum of market data. Spline interpolation offers a higher degree of smoothness, which has its price in terms of precision or even arbitrage-freeness. For a detailed discussion of this matter we
refer to Breckling, Dal Dosso [2], [3] and Shea [4]. In a forthcoming paper we will investigate interpolation methods using all available market information.

Let us state the problem in more precise terms:

Problem

Let t_{0} denote the present time, $t_{1}, t_{2}, \ldots, t_{N}$ the designated grid structure and let $d f\left(t_{0}, t_{1}\right), d f\left(t_{0}, t_{2}\right), \ldots, d f\left(t_{0}, t_{N}\right)$ be the discount factors. The problem is the valuation of a given cash flow $C F(t)=(t, 1)$, which pays an amount 1 at a time t with $t_{0} \leq t_{n-1}<t<t_{n}$, considering only the discount factors $d f_{n-1}=d f\left(t_{0}, t_{n-1}\right)$ and $d f_{n}=d f\left(t_{0}, t_{n}\right)$ (without any restriction we assume $\left.d f_{n-1}>d f_{n}\right)$. Let the index n be fixed with $n \in\{1, \ldots, N\}$.

The problem can be looked upon from two different points of view which are somehow "dual" to each other:

- Interpolation

We calculate from discount factors $d f_{n-1}$ and $d f_{n}$ an interpolated value $d f\left(t_{0}, t\right)=I p\left(t, d f_{n-1}, d f_{n}\right)$ and determine the present value ($P V=$ Present Value) of the payment $(t, 1)$ to be

$$
\begin{equation*}
P V(t, 1)=1 \cdot d f\left(t_{0}, t\right) . \tag{1}
\end{equation*}
$$

- Bucketing

Two functions $B_{1}=B_{1}\left(t, d f_{n-1}, d f_{n}\right) \quad$ and $\quad B_{2}=B_{2}\left(t, d f_{n-1}, d f_{n}\right) \quad$ (bucketing functions) are to be determined in such a way that the cash flow ($t, 1$), which pays one unit in t can be replaced by the cash flows (t_{n-1}, B_{1}) and (t_{n}, B_{2}) (Buckets). The present value of the payment $(t, 1)$ then is calculated as
(2) $\quad P V(t, 1)=1 \cdot B_{1} \cdot d f\left(t_{0}, t_{n-1}\right)+1 \cdot B_{2} \cdot d f\left(t_{0}, t_{n}\right)$.

Tying together the two dual view points, i.e. equating (1) and (2) we obtain

$$
\begin{equation*}
d f\left(t_{0}, t\right)=B_{1} \cdot d f\left(t_{0}, t_{n-1}\right)+B_{2} \cdot d f\left(t_{0}, t_{n}\right) ; \tag{*}
\end{equation*}
$$

Therefore all bucketing methods can be considered as special interpolation methods. This formula and conditions resulting from bucket hedging will be the key point in our analysis. Bucket hedging has been extensively studied by Turnbull [5].

The paper is organized as follows. First, we set some notation and state a no arbitrage condition suited for our purpose. In the second part, commonly applied interpolation techniques such as linear, exponential and weighted exponential interpolation are investigated in a qualitative manner. Their impact on zero rate structures as well as on forward rate curves is discussed in connection with some selected interest rate scenarios. It can be seen that the weighted exponential interpolation already has remarkable drawbacks. The final section contains the main results of this paper. A simple condition described by a system of differential equations is imposed on equation (*). Solutions to this system include the linear and exponential interpolation method. Interestingly, these two solutions are related by the fact that linear interpolation is the first order term of the Taylor series expansion of the exponential interpolation.

2 Notation

A continuous function

$$
d f_{t}=I p\left(t, d f_{n-1}, d f_{n}\right), \quad t \in\left[t_{n-1}, t_{n}\right],
$$

with boundary conditions

$$
\begin{equation*}
I p\left(t_{n-1}, d f_{n-1}, d f_{n}\right)=d f_{n-1} \quad \text { and } I p\left(t_{n}, d f_{n-1}, d f_{n}\right)=d f_{n} \tag{3}
\end{equation*}
$$

is called interpolation function. Let $d f_{n-1}>d f_{n}$ for all $n \in\{1, \ldots, N\}$. An interpolation function $I p$ is called arbitrage-free, if $l p$ is strictly decreasing in t, that means
(4) $\quad I p\left(s_{1}, d f_{n-1}, d f_{n}\right)>\operatorname{Ip}\left(s_{2}, d f_{n-1}, d f_{n}\right) \quad$ for $\quad t_{n-1} \leq s_{1}<s_{2} \leq t_{n}$.

Furthermore, we assume that the variables $d f_{n}$ are independent given the above restriction.

Remark 1

No arbitrage is equivalent to the fact that all forward interest rates $r\left(t_{0}, s_{1}, s_{2}\right)$ with $t_{n-1} \leq s_{1}<s_{2} \leq t_{n}$ are positive.

Proof: For the forward interest rate $r\left(t_{0}, s_{1}, s_{2}\right)$ one has

$$
r\left(t_{0}, s_{1}, s_{2}\right)>0 \quad \Leftrightarrow \quad \frac{d f\left(t_{0}, s_{2}\right)}{d f\left(t_{0}, s_{1}\right)}<1 \quad \Leftrightarrow \quad \operatorname{Ip}\left(s_{2}, d f_{1}, d f_{2}\right)<\operatorname{Ip}\left(s_{1}, d f_{1}, d f_{2}\right) .
$$

Since we are only interested in the relative distance of the time parameter t to the left boundary t_{n-1}, we will use the parameter λ instead of t where

$$
\lambda=\lambda(t)=\frac{t-t_{n-1}}{t_{n}-t_{n-1}}
$$

We denote by $d f_{\lambda}$ the following expression

$$
d f_{\lambda}=I p\left(\lambda, d f_{n-1}, d f_{n}\right), \quad \lambda \in[0,1]
$$

Then the above boundary conditions can be restated in terms of the new parameter λ as:
(5) $\quad \operatorname{Ip}\left(0, d f_{n-1}, d f_{n}\right)=d f_{n-1}$ and $\operatorname{Ip}\left(1, d f_{n-1}, d f_{n}\right)=d f_{n}$.

3 Examples of interpolation functions

In the following section we look at different interpolation functions and discuss their qualitative behaviour. In analyzing the zero rate curve and the forward rate structure the following three zero rate scenarios are considered.

Maturity	Scenario 1	Scenario 2	Scenario 3
1 yr	$5,0 \%$	$8,5 \%$	$7,0 \%$
2 yrs	$6,5 \%$	$7,0 \%$	$7,0 \%$
3 yrs	$7,5 \%$	$6,0 \%$	$7,0 \%$
4 yrs	$8,2 \%$	$5,3 \%$	$7,0 \%$

3.1 Linear Interpolation

Linear interpolation is obtained by assigning the relative distances $1-\lambda$ and λ as weights to the discount factors $d f_{n-1}$ and $d f_{n}$, i.e.:
(6) $\quad d f_{\lambda}=I p^{\operatorname{lin}}\left(\lambda, d f_{n-1}, d f_{n}\right)=(1-\lambda) d f_{n-1}+\lambda d f_{n}$.

The boundary conditions (5) are easily verified. The no arbitrage condition follows from

$$
\frac{\partial I p^{\operatorname{lin}}}{\partial \lambda}=d f_{n}-d f_{n-1}<0
$$

Discount curve

The resulting curve $t \rightarrow d f_{t}=d f_{\lambda(t)}$ is a continuous piecewise linear function which is in general not differentiable at $\left(t_{1}, d f_{1}\right),\left(t_{2}, d f_{2}\right), \ldots,\left(t_{N}, d f_{N}\right)$.

Zero rate curve

If r_{t} denotes the continuously compounded zero rate of the discount factor $d f_{t}=d f_{\lambda(t)}$, then the interpolated interest rate r_{t} is expressed as follows:

$$
r_{t}=\frac{-\ln \left(d f_{\lambda(t)}\right)}{t-t_{0}}=\frac{-\ln \left((1-\lambda(t)) e^{-r_{n-1}\left(t_{n-1}-t_{0}\right)}+\lambda(t) e^{-r_{n}\left(t_{n}-t_{0}\right)}\right)}{t-t_{0}}
$$

For the period [1 yr, 4 yrs] we obtain, using a time interval of length $\Delta=0,1 \mathrm{yrs}$, and given scenario 1 the following zero rate curve.

Graph 1. Zero rate curve with normal term structure (scenario 1)

Similarly we obtain for an inverse term structure (scenario 2) a strictly decreasing zero rate curve with convex parts of the curve. In case of a flat term structure (scenario 3), linear interpolation yields a function which has slightly convex pieces.

Graph 2. Zero rate curve with flat interest rate structure (scenario 2)

Forward rate curve

Let $d f\left(t_{0}, s_{1}, s_{2}\right)$ denote the forward discount factor and $r\left(t_{0}, s_{1}, s_{2}\right)$ its exponential forward interest rate for the time interval $\left[s_{1}, s_{2}\right] \subset\left[t_{n-1}, t_{n}\right]$. The discount factor, respectively the forward rate, can be expressed by the following formulas

$$
\begin{aligned}
& d f\left(t_{0}, s_{1}, s_{2}\right)=\frac{d f\left(t_{0}, s_{2}\right)}{d f\left(t_{0}, s_{1}\right)}=\frac{\left(1-\lambda\left(s_{2}\right)\right) d f_{n-1}+\lambda\left(s_{2}\right) d f_{n}}{\left(1-\lambda\left(s_{1}\right)\right) d f_{n-1}+\lambda\left(s_{1}\right) d f_{n}} \Rightarrow \\
& r\left(t_{0}, s_{1}, s_{2}\right)=-\frac{\ln \left(d f\left(t_{0}, s_{1}, s_{2}\right)\right)}{s_{2}-s_{1}}
\end{aligned}
$$

For constant time intervals of length $\Delta=s_{2}-s_{1}=0,1$ yrs and time interval [1 yr, 4 yrs] the forward curve is as follows:

Graph 3. Forward rate curve with normal term structure (scenario 1)

Graph 4. Forward rate curve with inverse term structure (scenario 2)
In both scenarios (normal term structure as well as inverse term structure) one obtains increasing forward rates within the interpolation interval; discontinuities appear at the boundary of the time intervals. The discontinuities are due to the method of interpolation choosen, which calculates discount factors as an average of adjacent discount factors. In a flat term structure scenario (scenario 3), forward rates are not only increasing but also show a periodic behaviour.

Graph 5. Forward rate curve with flat term structure (scenario 3)

3.2 Exponential Interpolation

This form of interpolation is obtained by assigning certain exponents to the discount factors $d f_{n-1}, d f_{n}$:

$$
\begin{equation*}
d f_{\lambda}=I p^{\exp }\left(\lambda, d f_{n-1}, d f_{n}\right)=d f_{n-1}^{1-\lambda} \cdot d f_{n}^{\lambda} \tag{7}
\end{equation*}
$$

The boundary conditions (5) are easily verified, the no arbitrage condition (4) follows from

$$
\frac{\partial I p^{\exp }}{\partial \lambda}=-\left(\ln d f_{n-1}\right) d f_{n-1}^{1-\lambda} d f_{n}^{\lambda}+d f_{n-1}^{1-\lambda}\left(\ln d f_{n}\right) d f_{n}^{\lambda}=d f_{\lambda}\left(\ln d f_{n}-\ln d f_{n-1}\right)<0 .
$$

Discount curve

Since

$$
\frac{\partial^{2} I p^{\exp }}{\partial \lambda^{2}}=d f_{\lambda}\left(\ln d f_{n}-\ln d f_{n-1}\right)^{2}>0
$$

the exponential interpolation yields strongly convex pieces in the discount curve. The discount curve $t \rightarrow d f_{t}=d f_{\lambda(t)}$ is a continuous function, but in general not differentiable at the points $t_{1}, t_{2}, \ldots, t_{N}$.

Zero rate curve

Let r_{t} denote the continuously compounded zero rate of the discount factor $d f_{t}=d f_{\lambda(t)}$. It is computed using the linearly interpolated value of the adjacent zero rates

$$
\begin{aligned}
\exp \left(-r_{t}\left(t-t_{0}\right)\right) & =d f_{\lambda(t)}=d f_{n-1}^{1-\lambda(t)} d f_{n}^{\lambda(t)} \\
& =\exp \left(-(1-\lambda)\left(t_{n-1}-t_{0}\right) r_{n-1}\right) \exp \left(-\lambda\left(t_{n}-t_{0}\right) r_{n}\right) \\
& =\exp \left(-\left((1-\lambda) \frac{t_{n-1}-t_{0}}{t-t_{0}} r_{n-1}+\lambda \frac{t_{n}-t_{0}}{t-t_{0}} r_{n}\right)\left(t-t_{0}\right)\right)
\end{aligned}
$$

and

$$
r_{t}=(1-\lambda) \frac{t_{n-1}-t_{0}}{t-t_{0}} r_{n-1}+\lambda \frac{t_{n}-t_{0}}{t-t_{0}} r_{n} .
$$

Given scenario 1, the zero rate curve appears as follows, once again by using time intervals of $\Delta=0,1 \mathrm{yrs}$ and time periods [1 yr, 4 yrs]:

Graph 6. Zero rate curve with normal term structure (scenario 1)

Given scenario 2, the zero rate curve decreases yielding convex curve pieces. Given a flat zero rate structure (scenario 3), the exponential interpolation maintains this property, which can be derived as follows: If $r_{n-1}=r_{n}$ one obtains

$$
\begin{aligned}
r_{t} & =(1-\lambda) \frac{t_{n-1}-t_{0}}{t-t_{0}} r_{n-1}+\lambda \frac{t_{n}-t_{0}}{t-t_{0}} r_{n}=\left((1-\lambda) \frac{t_{n-1}-t_{0}}{t-t_{0}}+\lambda \frac{t_{n}-t_{0}}{t-t_{0}}\right) \cdot r_{n} \\
& =\frac{\left(t_{n}-t\right)\left(t_{n-1}-t_{0}\right)+\left(t-t_{n-1}\right)\left(t_{n}-t_{0}\right)}{\left(t_{n}-t_{n-1}\right)\left(t-t_{0}\right)} \cdot r_{n}=r_{n} \quad \text { for all } t .
\end{aligned}
$$

Graph 7. Zero rate curve with flat term structure (scenario 3)

Forward rate curve

Exponential interpolation implies constant forward rates $r\left(t_{0}, s_{1}, s_{2}\right)$ for time intervals [s_{1}, s_{2}] of equal length. Let s_{1} and s_{2} be such that $t_{n-1} \leq s_{1}<s_{2} \leq t_{n}$. Then given $\lambda_{1}=\lambda\left(s_{1}\right), \lambda_{2}=\lambda\left(s_{2}\right)$ and a forward discount factor $d f\left(t_{0}, s_{1}, s_{2}\right)$ it can be rewritten as

$$
d f\left(t_{0}, s_{1}, s_{2}\right)=\frac{d f\left(t_{0}, s_{2}\right)}{d f\left(t_{0}, s_{1}\right)}=\frac{d f_{n-1}^{1-\lambda_{2}} d f_{n}^{\lambda_{2}}}{d f_{n-1}^{1-\lambda_{1}} d f_{n}^{\lambda_{1}}}=\frac{d f_{n}^{\lambda_{2}-\lambda_{1}}}{d f_{n-1}^{\lambda_{2}-\lambda_{1}}}=\left(\frac{d f_{n}}{d f_{n-1}}\right)^{\frac{s_{2}-s_{1}}{t_{n}-t_{n-1}}},
$$

i.e. $d f\left(t_{0}, s_{1}, s_{2}\right)$ and $r\left(t_{0}, s_{1}, s_{2}\right)$ as well only depend on the distance $s_{2}-s_{1}$. For time intervals with a length of $\Delta=s_{2}-s_{1}=0,1 \mathrm{yrs}$ and time periods [1 yr, 4 yrs] we obtain the following forward rate curve

Graph 8. Forward rate curve with normal term structure (scenario 1)

Graph 9. Forward rate curve with inverse term structure (scenario 2)

Graph 10. Forward rate curve with flat term structure (scenario 3)

3.3 Weighted Exponential Interpolation

This interpolation method is obtained by assigning additional time weights to the exponents in (7):
(8) $\quad d f_{t}=I p^{\text {weight exp }}\left(t, d f_{n-1}, d f_{n}\right)=d f_{n-1}^{\alpha_{n-1}(t) \cdot(1-\lambda(t))} \cdot d f_{n}^{\alpha_{n}(t) \cdot \lambda(t)}$

$$
\text { where: } \lambda=\lambda(t)=\frac{t-t_{n-1}}{t_{n}-t_{n-1}} \text { and } \alpha_{i}=\alpha_{i}(t)=\frac{t-t_{0}}{t_{i}-t_{0}}
$$

Ip weight exp satisfies the boundary conditions (3), however the no arbitrage condition (4) does not hold.

Counterexample

Let $d f_{1}=0.91, d f_{2}=0.89, t_{0}=0, t_{1}=1, t_{2}=2$ and $t=1.8$ then

$$
d f(1.8)=0.88882386<0.89=d f_{2} .
$$

According to Remark 1 in Section I, negative or zero forward rates cannot be excluded by interpolation method (8).

Remark 2

In order to obtain a valid expression for the divisor $t_{n-1}-t_{0}=t_{0}-t_{0}=0$ in formula (8) for the first time interval $\left[t_{0}, t_{1}\right]$ where $n=1$, we set: $t_{1}=t_{0}+1$ day and $r_{1}=$ overnight-rate.

Discount curve

The discount curve $t \rightarrow d f_{t}$ is a continuous function, but not necessarily differentiable at points $t_{1}, t_{2}, \ldots, t_{N}$.

Term structure

Let r_{t} be the exponential interest rate with discount factor $d f_{t}=d f_{\lambda(t)}$, then the interpolated rate r_{t} is given by

$$
r_{t}=(1-\lambda) r_{n-1}+\lambda r_{n},
$$

i.e. r_{t} is obtained by interpolating adjacent rates in a linear fashion. The term structure as defined by the previous scenarios yields the following shape:

Graph 11. Interest rate curve with normal term structure (scenario 1)

Similar graphs are obtained for inverse (scenario 2) and flat (scenario 3) term structures using piecewise linear functions.

Forward curve

For the forward discount factor $d f\left(t_{0}, s_{1}, s_{2}\right)$ and its associated weighted exponential forward rate $r\left(t_{0}, s_{1}, s_{2}\right)$ for the time period $\left[s_{1}, s_{2}\right] \subset\left[t_{n-1}, t_{n}\right]$ we have

$$
\begin{aligned}
d f\left(t_{0}, s_{1}, s_{2}\right) & =\frac{d f\left(t_{0}, s_{2}\right)}{d f\left(t_{0}, s_{1}\right)} \\
& =d f_{n-1} \underline{\left(s_{2}-t_{0}\right)\left(t_{n}-s_{2}\right)-\left(s_{1}-t_{0}\right)\left(t_{n}-s_{1}\right)}\left(t_{n-1}-t_{0}\right)\left(t_{n}-t_{n-1}\right)
\end{aligned} f_{n}^{\frac{\left(s_{2}-t_{0}\right)\left(s_{2}-t_{n-1}\right)-\left(s_{1}-t_{0}\right)\left(s_{1}-t_{n-1}\right)}{\left(t_{n-1}-t_{0}\right)\left(t_{n}-t_{n-1}\right)}} \begin{aligned}
r\left(t_{0}, s_{1}, s_{2}\right) & =-\frac{\ln \left(d f\left(t_{0}, s_{1}, s_{2}\right)\right)}{s_{2}-s_{1}} .
\end{aligned}
$$

For time intervals of equal length $\Delta=s_{2}-s_{1}=0,1 \mathrm{yrs}$ and time periods [1 yr, 4 yrs] we obtain the following forward rates, given the aforementioned scenarios:

Graph 12. Forward interest rate curve with normal term structure (scenario 1)

Graph 13. Forward rate curve with inverse term structure (scenario 2)

Graph 14. Forward rate curve with flat term structure (scenario 3)

4 Results

A large class of interpolation methods is obtained by using so called bucketing procedures. As mentioned in the introduction, »buckets« for a cash flow ($t, 1$) where $t_{0} \leq t_{n-1}<t<t_{n}$ are confined to the time period t_{n-1} and t_{n}. Two continuous functions

$$
B_{1}=B_{1}\left(t, d f_{n-1}, d f_{n}\right) \text { and } B_{2}=B_{2}\left(t, d f_{n-1}, d f_{n}\right), \quad t \in\left[t_{n-1}, t_{n}\right]
$$

with $0 \leq B_{1} \leq 1$ and $0 \leq B_{2} \leq 1$ satisfying the boundary conditions

$$
\begin{array}{lll}
t=t_{n-1}: & B_{1}\left(t_{n-1}, d f_{n-1}, d f_{n}\right)=1 & \text { and } \tag{9}\\
t=B_{n}\left(t_{n-1}, d f_{n-1}, d f_{n}\right)=0 \\
B_{1}\left(t_{n}, d f_{n-1}, d f_{n}\right)=0 & \text { and } & B_{2}\left(t_{n}, d f_{n-1}, d f_{n}\right)=1
\end{array}
$$

are called bucketing functions or a bucketing procedure. As mentioned initially, every bucketing procedure defines an interpolation method. If B_{1} and B_{2} are bucketing functions, then

$$
\begin{equation*}
I p\left(t, d f_{n-1}, d f_{n}\right)=B_{1}\left(t, d f_{n-1}, d f_{n}\right) \cdot d f_{n-1}+B_{2}\left(t, d f_{n-1}, d f_{n}\right) \cdot d f_{n} \tag{10}
\end{equation*}
$$

is the associated interpolation function. Given (9), the boundary conditions (3) are satisfied. A bucketing procedure B_{1}, B_{2} is called arbitrage-free, if the associated interpolation function $l p$ is arbitrage-free, i.e. if $l p$ is strictly decreasing in t. A sufficient condition is

$$
\frac{\bar{o} B_{1}\left(t, d f_{n-1}, d f_{n}\right)}{\partial t} d f_{n-1}+\frac{\bar{o} B_{2}\left(t, d f_{n-1}, d f_{n}\right)}{\partial t} d f_{n}<0
$$

provided B_{1} and B_{2} are differentiable in t. Boundary conditions and the no arbitrage property of bucketing procedures have analogue concepts for the associated interpolation function. However, the concept of robustness which is discussed below, seems to have no apparent similarities to interpolation. Robustness is the essential ingredient in deriving "reasonable"
interpolation/bucketing procedures. Further, we assume that the function lp is continuously differentiable in the variables $d f_{n-1}$ and $d f_{n}$.

A bucketing procedure is called robust, if B_{1}, B_{2}, and its associated interpolation function satisfy the following system of partial differential equations

$$
\begin{align*}
& \frac{\partial I p\left(t, d f_{n-1}, d f_{n}\right)}{\partial d f_{n-1}}=B_{1}\left(t, d f_{n-1}, d f_{n}\right), \tag{}\\
& \frac{\partial I p\left(t, d f_{n-1}, d f_{n}\right)}{\partial d f_{n}}=B_{2}\left(t, d f_{n-1}, d f_{n}\right) \quad \text { for all } t \in\left[t_{n-1}, t_{n}\right] .
\end{align*}
$$

Interpretation

The Taylor series of the associated interpolation function satisfying (**) is given for fixed $t \in\left[t_{n-1}, t_{n}\right]$ and $\left(d f_{n-1}^{0}, d f_{n}^{0}\right)$ by

$$
\begin{aligned}
I p\left(t, d f_{n-1}, d f_{n}\right)= & I p\left(t, d f_{n-1}^{0}, d f_{n}^{0}\right)+\frac{\bar{\partial} I p}{\partial d f_{n-1}}\left(t, d f_{n-1}^{0}, d f_{n}^{0}\right) \cdot\left(d f_{n-1}-d f_{n-1}^{0}\right) \\
& +\frac{\partial I p}{\partial d f_{n}}\left(t, d f_{n-1}^{0}, d f_{n}^{0}\right) \cdot\left(d f_{n}-d f_{n}^{0}\right)+R_{1} \\
= & B_{1}\left(t, d f_{n-1}^{0}, d f_{n}^{0}\right) \cdot d f_{n-1}+B_{2}\left(t, d f_{n-1}^{0}, d f_{n}^{0}\right) \cdot d f_{n}+R_{1}
\end{aligned}
$$

Consequently, small changes in discount factors $d f_{n-1}$ and $d f_{n}(\Rightarrow$ a small error term R_{1}) will result in invariant bucketing functions $B_{1}\left(t, d f_{n-1}, d f_{n}\right)$ and $B_{2}\left(t, d f_{n-1}, d f_{n}\right)$. Therefore, a hedge based on bucketing does not have to be adjusted for small changes in market factors.

The main conclusion of the paper is

Theorem:

Let B_{1}, B_{2} be as stated above, and $I p$ the associated interpolation function. Then
(a) $\quad B_{1}^{\text {lin }}\left(t, d f_{n-1}, d f_{n}\right)=1-\lambda(t)=\frac{t_{n}-t}{t_{n}-t_{n-1}}$ and $B_{2}^{\text {lin }}\left(t, d f_{n-1}, d f_{n}\right)=\lambda(t)=\frac{t-t_{n-1}}{t_{n}-t_{n-1}}$
is an arbitrage-free solution to the system (**) where λ denotes the relative distance of t to t_{n-1}. The associated interpolation function is linear and expressed by

$$
I p^{\text {lin }}\left(t, d f_{n-1}, d f_{n}\right)=(1-\lambda(t)) d f_{n-1}+\lambda(t) d f_{n} .
$$

(b) $\quad B_{1}^{\exp }\left(t, d f_{n-1}, d f_{n}\right)=(1-\lambda(t))\left(\frac{d f_{n}}{d f_{n-1}}\right)^{\lambda(t)}$ and

$$
B_{2}^{\exp }\left(t, d f_{n-1}, d f_{n}\right)=\lambda(t)\left(\frac{d f_{n}}{d f_{n-1}}\right)^{\lambda(t)-1}
$$

is an arbitrage-free solution to the system (**) where λ is as above. The associated interpolation function is as follows:

$$
\begin{aligned}
I p^{\exp }\left(\lambda(t), d f_{n-1}, d f_{n}\right) & =B_{1}^{\exp }\left(t, d f_{n-1}, d f_{n}\right) \cdot d f_{n-1}+B_{2}^{\exp }\left(t, d f_{n-1}, d f_{n}\right) \cdot d f_{n} \\
& =d f_{n-1}^{1-\lambda(t)} \cdot d f_{n}^{\lambda(t)}
\end{aligned}
$$

(c) The two bucketing procedures are approximately the same which can be seen from the first term of the Taylor series expansion of the exponential interpolation. Let λ be between 0 and 1 and $\left(d f_{n-1}^{0}, d f_{n}^{0}\right)$ be fixed. Then

$$
\begin{aligned}
I p^{\exp }\left(\lambda, d f_{n-1}, d f_{n}\right)= & I p^{\exp }\left(\lambda, d f_{n-1}^{0}, d f_{n}^{0}\right)+\frac{\partial I p^{\exp }}{\partial d f_{n-1}}\left(d f_{n-1}^{0}, d f_{n}^{0}\right)\left(d f_{n-1}-d f_{n-1}^{0}\right) \\
& +\frac{\partial I p^{\exp }}{\partial d f_{n}}\left(d f_{n-1}^{0}, d f_{n}^{0}\right)\left(d f_{n}-d f_{n}^{0}\right)+R_{1}\left(d f_{n-1}^{0}, d f_{n}^{0}\right) \\
= & I p^{\exp }\left(\lambda, d f_{n-1}^{0}, d f_{n}^{0}\right)+(1-\lambda)\left(d f_{n-1}^{0}\right)^{-\lambda}\left(d f_{n}^{0}\right)^{\lambda}\left(d f_{n-1}-d f_{n-1}^{0}\right) \\
& +\lambda\left(d f_{n-1}^{0}\right)^{1-\lambda}\left(d f_{n}^{0}\right)^{\lambda-1}\left(d f_{n}-d f_{n}^{0}\right)+R_{1}\left(d f_{n-1}^{0}, d f_{n}^{0}\right) \\
= & (1-\lambda)\left(\frac{d f_{n}^{0}}{d f_{n-1}^{0}}\right)^{\lambda} \cdot d f_{n-1}+\lambda\left(\frac{d f_{n}^{0}}{d f_{n-1}^{0}}\right)^{\lambda-1} \cdot d f_{n}+R_{1}\left(d f_{n-1}^{0}, d f_{n}^{0}\right)
\end{aligned}
$$

For small values of $t_{n}-t_{n-1}$ one has

$$
R_{1}\left(d f_{n-1}^{0}, d f_{n}^{0}\right) \approx 0 \text { and } \frac{d f_{n}^{0}}{d f_{n-1}^{0}} \approx 1
$$

and therefore,

$$
\operatorname{Ip} \exp ^{\left(\lambda, d f_{n-1}, d f_{n}\right) \approx(1-\lambda) \cdot d f_{n-1}+\lambda \cdot d f_{n}=I p^{\operatorname{lin}}\left(\lambda, d f_{n-1}, d f_{n}\right) ~}
$$

Remark 3
(1) The boundary conditions specified for our differential equations by no means guarantee a unique solution.
(2) The solution in (b) can be slightly generalized, if $\lambda(t)$ is replaced by a strictly increasing continuous function with values between 0 and 1 .
(3) The weighted exponential interpolation does not yield a robust bucketing procedure as

$$
\begin{aligned}
& \frac{\partial I p^{\text {weight exp }}\left(t, d f_{n-1}, d f_{n}\right)}{\partial d f_{n-1}}=\alpha_{n-1}(1-\lambda)\left(\frac{d f_{n}}{d f_{n-1}}\right)^{\alpha_{n-1}(1-\lambda)-1} \text { and } \\
& \frac{\partial I p^{\text {weight exp }}\left(t, d f_{n-1}, d f_{n}\right)}{\partial d f_{n}}=\alpha_{n} \lambda\left(\frac{d f_{n}}{d f_{n-1}}\right)^{\alpha_{n} \lambda-1}
\end{aligned}
$$

produces the following expressions for the bucketing functions $B_{1}^{\text {weight exp }}$ and $B_{2}^{\text {weight exp }}$

$$
\begin{aligned}
& B_{1}^{g e w} \exp \left(t, d f_{n-1}, d f_{n}\right)=\alpha_{n-1}(t) \cdot(1-\lambda(t)) \cdot\left(\frac{d f_{n}}{d f_{n-1}}\right)^{\alpha_{n-1}(t)(1-\lambda(t))-1} \text { and } \\
& B_{2}^{g e w} \exp \left(t, d f_{n-1}, d f_{n}\right)=\alpha_{n}(t) \cdot \lambda(t) \cdot\left(\frac{d f_{n}}{d f_{n-1}}\right)^{\alpha_{n}(t) \lambda(t)-1}
\end{aligned}
$$

The weighted exponential interpolation method, although still often used, satisfies neither the no arbitrage nor the robustness condition.

References:

[1] Mc Culloch, H.J.: Measuring the Term Structure of Interest Rates, Journal of Business, XLIV (January 1971), 19-31
[2] Breckling, J.; L. Dal Dasso: A Non-parametric Approach to Term Structure Estimation, in Hrsg. G. Bol, G. Nakhaeizadeh, K.-H. Vollmer:
Finanzmarktanwendungen neuronaler Netze und ökonometrischer Verfahren, Physica Verlag Heidelberg 1994
[3] Breckling, J.; L. Dal Dasso: Modelling of Term Structure Dynamics Using Stochastic Processes, in Hrsg. G. Bol, G. Nakhaeizadeh, K.-H. Vollmer: Finanzmarktanwendungen neuronaler Netze und ökonometrischer Verfahren, Physica Verlag Heidelberg 1994
[4] Shea, G.S.: Pitfalls in Smoothing Interest Rate Term Structure Data:
Equilibrium Models and Spline Approximations, Journal of Financial and Quantitative Analysis, Vol 19. No 3 (September 1984), 253-267
[5] Turnbull, S.M.: Evaluating and Implementing Bucket Hedging

Arbeitsberichte der Hochschule für Bankwirtschaft

Nr. Autor/Titel Jahr

1. Moormann, Jürgen 1995
Lean Reporting und Führungsinformationssysteme bei deutschen Finanzdienstleistern
2. Cremers, Heinz; Schwarz, Willi 1996 Interpolation of Discount Factors
Bestelladresse:Hochschule für Bankwirtschaftz. H. Frau Glatzer
Sternstraße 860318 Frankfurt/M.
Tel.: 069/95946-16Fax: 069/95946-28

[^0]: Suggested Citation: Cremers, Heinz; Schwarz, Willi (1996) : Interpolation of discount factors, Arbeitsberichte der Hochschule für Bankwirtschaft, No. 2, Hochschule für Bankwirtschaft (HfB), Frankfurt a. M.,
 https://nbn-resolving.de/urn:nbn:de:101:1-2008070285

