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A B S T R A C T   

Novel combinations of technologies are usually the result of collaborative work that builds on existing knowl
edge. Albeit inventors and their respective communities tend to be specialized, inventor collaborations across 
differently specialized peers have the potential to generate co-inventor networks that provide access to a diverse 
set of knowledge and facilitate the production of radical novelty. Previous research has demonstrated that short 
access in large co-inventor networks enables innovative outcomes in regional economies. However, how con
nections in the network across different technological knowledge domains matter and what impact they might 
generate is still unknown. The present investigation focuses on ‘atypical’ combinations of technologies as indi
cated in patent documents. In particular, the role of technological specializations linked in co-inventor networks 
that result in radical innovation in European regions is analyzed. Our results confirm that the share of atypical 
patents is growing in regions where bridging ties establish short access to and across cohesive co-inventor sub- 
networks. Furthermore, the evidence suggests that the strong specialization of co-inventor communities in re
gions fosters atypical combinations because these communities manage to increase the scale and scope of novel 
combinations. Thus, bridges between communities that are specialized in different technologies favor atypical 
innovation outcomes. The work shows that not diversity per se, but links across variously specialized inventor 
communities can foster radical innovation.   

1. Introduction 

Innovation in regional economies mainly occurs in collaborative 
work that requires interpersonal relations in order to transfer and 
combine knowledge (Bettencourt et al., 2007; Burt, 2004; Wuchty et al., 
2007). The ‘Geography of Innovation’ literature (Feldman and Kogler, 
2010) highlights the relevance of co-inventor networks to proxy the 
knowledge transfer potential of social relations within and across spatial 
units. In this process, inventors are linked together according to whether 
they have collectively worked on a patented invention previously. The 
structure of these networks indicates the innovation capacity of regions 
because it can capture the potential of knowledge transfer and combi
nation activities (Bergé et al., 2018; Breschi and Lenzi, 2016; Fleming 
et al., 2007a; Li et al., 2014; Lobo and Strumsky, 2008). For example, 

Fleming et al. (2007a) investigated whether regional innovation benefits 
from the small-world networks of co-inventor collaboration (Watts and 
Strogatz, 1998). This network structure can catalyze complex knowl
edge transfer processes in cohesive co-inventor communities while at 
the same time providing access to diverse knowledge through bridging 
ties across inventor communities (Tóth and Lengyel, 2021; Uzzi and 
Spiro, 2005). 

Although prior research efforts have been directed toward investi
gating the relevance of network structures in regional innovation ac
tivities, a crucial element is still missing from the above discussion: the 
role of technological and knowledge domains along which co-inventor 
collaboration is shaped and how this might impact the inventive po
tential of regional economies. Little is known about whether the tech
nological specialization of closely-knit co-inventor communities or 
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inter-connections among technologically distant communities favor 
regional innovation outcomes. In this paper, we propose an innovative 
approach to deal with this problem at the mesoscopic level of regional 
collaboration networks — the network communities — and subse
quently investigate the creation of atypical inventions that require the 
combination of distinct knowledge to capture radical novelty in regions 
(Mewes, 2019). 

Taking an evolutionary perspective on regional economic develop
ment (Kogler, 2015a; Kogler et al., 2023a), the argument is that the 
formation of new co-inventor collaborations is decisive for radically new 
combinations of knowledge because complex knowledge flows are 
restricted to short distances in networks (Sorenson et al., 2006). Yet, 
network formation in regions is a path-dependent process because 
creating new co-inventor ties heavily depends on earlier relationships in 
the network (Glückler, 2007). 

Moreover, similar knowledge is easier to combine (Boschma, 2005; 
Hidalgo, 2018), while triadic closure is also a trait of collaboration 
networks (Newman, 2001). Thus, most new collaborations remain 
within specialized co-inventor communities that can drive regional 
innovation toward potential lock-in (Boschma and Frenken, 2010; 
Giuliani, 2013). On the contrary, a path-breaking variation most likely 
occurs when new links bridge previously separated parts of the network 
where dissimilar technological expertise reside (Glückler, 2007; Juhász 
and Lengyel, 2018). 

The pursued empirical approach rests on network communities: 
cohesive segments of networks that consist of densely connected nodes 
which are loosely connected to other communities (Girvan and New
man, 2002; Palla et al., 2005). Small-world networks can be decom
posed into network communities such that inter-community ties form 
network bridges (Girvan and Newman, 2002; Watts and Strogatz, 1998). 
Since the detection of network communities relies on the structure of 
networks only (Fortunato, 2010), one can investigate the technological 
specialization of detected communities and characterize bridges by the 
similarity or dissimilarity of the domains they link together. In this way, 
it is possible to create new measures at the regional level that can cap
ture novel aspects of regional knowledge diversity by quantifying access 
across different mesoscopic specializations. 

Following Uzzi et al. (2013), we measure radical innovation by 
identifying atypical combinations of technologies in patents using the 
European Patent Office (EPO) PATSTAT database over more than three 
decades (1980–2014). The co-inventor network is constructed for 
NUTS2 regions in a cumulative fashion that enables us to estimate the 
correlation between new link formation and regional level outcomes in a 
fixed-effect regression framework (Eriksson and Lengyel, 2019). We 
apply the ‘network of places’ method that groups structurally equivalent 
innovators into a single node to remedy biases caused by the automatic 
triadic closure when projecting bipartite collaboration networks 
(Lucena-Piquero and Vicente, 2019) and measure the degree of small- 
worldness in the networks of places transformed from co-inventor net
works (Neal, 2017). Finally, we detect network communities over five- 
year time-windows of the networks of places (Blondel et al., 2008). 
The technological specialization of communities, their interlinking, and 
the technological similarity of interlinked communities are quantified at 
the regional level. This approach enables us to estimate the share of 
atypical patents in each region in the subsequent five-year time-window 
by means of these regional-level explanatory variables. 

The results suggest that the share of atypical patents is growing in 
those regions where co-inventor collaboration resembles small-world 
networks. This finding supports the idea that short access in co- 
inventor networks matters for combining different technological 
knowledge domains. Furthermore, we find that technological speciali
zation of co-inventor communities correlates positively with the share of 
atypical patents. This correlation reveals that those regions where in
ventor communities specialize in certain knowledge domains can pro
duce higher levels of radical innovation. There is also a more significant 
potential for combinations to occur between communities. Also, a 

growing share of bridging collaborations across communities with dis
similar technological portfolios further supports atypical patenting. The 
new evidence implies that not the diversity of various technologies per 
se, but the presence of multiple, diversely specialized, and interlinked 
inventor communities favor radical innovation outcomes in regional 
economies. 

2. Prior relevant insights and hypotheses 

2.1. Co-inventor networks 

Prior knowledge provides the necessary ingredients for innovation 
(Nelson and Winter, 1982; Schumpeter, 1911), but radical novelty and 
technological breakthroughs require combinations that have rarely been 
made before or are entirely new. Such innovations are often referred to 
as atypical combinations1 (Kim et al., 2016; Uzzi et al., 2013; Wang 
et al., 2017), blending distinct knowledge domains into new knowledge 
(Fontana et al., 2020; Wagner et al., 2019). Radical innovation created 
in collaboration (Inkpen, 1996; Uzzi et al., 2013; Wang, 2016) often 
forms spatially embedded networks (Bercovitz and Feldman, 2011; Cassi 
and Plunket, 2013; Tóth et al., 2021; Tubiana et al., 2021). Recent ev
idence suggests that due to the need for diverse knowledge, atypical 
innovation is concentrated more intensively in geographical space 
(Balland et al., 2020; Mewes, 2019) than innovation in general 
(Audretsch and Feldman, 1996; Bettencourt et al., 2007). Local collab
orations facilitate atypical combinations because learning complex 
knowledge requires frequent interaction (Balland and Rigby, 2016; 
Sorenson et al., 2006; Wagner et al., 2019). 

Co-inventor networks, defined by links between inventors who 
collaborate on at least one patented invention, can approximate the role 
of collaborations in regional innovation (Fleming et al., 2007a; Lobo and 
Strumsky, 2008). These networks are helpful for two reasons. First, co- 
invention offers the potential for new knowledge combinations by 
bringing together inventors (Cowan and Jonard, 2004; Kogut, 2000; 
Kogut and Zander, 1992; Owen-Smith and Powell, 2004). Most co- 
inventor collaborations are restricted to only a few patents, and new 
collaborations offer new combinations of knowledge (Fritsch and Kudic, 
2021; Tóth et al., 2021). Second, collaboration creates social relation
ships that provide grounds for effective knowledge transfer processes, 
even after the patent is published (Breschi and Lissoni, 2009). Although 
co-inventor collaboration mostly happens within firm boundaries 
(Kogler et al., 2023b; Shin et al., 2023), the created co-inventor ties can 
cross firm boundaries (Fleming et al., 2007a; Powell et al., 1996); in
ventors can move from one firm to another. They, therefore, bring their 
social network with them (Kemeny et al., 2016; Tóth and Lengyel, 
2021). These co-inventor ties help to characterize regional innovation 
via established networks within (Cantner and Graf, 2006; Fleming et al., 
2007a) and across regions (Breschi and Lenzi, 2016; Le Gallo and 
Plunket, 2020; Tóth et al., 2021; Kogler et al., 2023b). 

Contradicting earlier approaches that argue for the importance of 
isolated inventors (Lobo and Strumsky, 2008), a few studies show that 
the structure of co-inventor networks is informative in evaluating the 
effectiveness of knowledge combination in regions (Bergé et al., 2018). 
For example, Fleming et al. (2007a) demonstrate that the short average 
path length in local co-inventor networks correlates with the number of 
patents produced in the region. They suggest that knowledge combi
nation is more straightforward in regions where networks can foster 
access to distinct knowledge. Breschi and Lenzi (2016) add that inter
regional collaboration also matters because it can increase the diversity 
of available knowledge. 

This present study addresses two missing aspects that have not been 
dealt with in the previous relevant literature. First, we investigate how 

1 In this paper, we use the terms ‘atypical combination’ and ‘novel combi
nation’ interchangeably. 
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the mesoscopic structural properties (community level) of co-inventor 
networks influence atypical patenting activities in regions. Second, we 
explore how technological specialization and the diversity in knowledge 
provided through the meso-level of collaborative networks is affecting 
regional innovative outcomes. 

2.2. Small-world networks of regional co-innovation 

The small-world structure that is among the most reflected network 
characteristics in the regional innovation context provides one point of 
departure here (Fleming et al., 2007a; Bettencourt et al., 2007). Small- 
world networks consist of cohesive subnetworks, where the ratio of 
closed triangles is high, but few bridges between these cliques reduce the 
length of shortest paths in the entire network (Watts and Strogatz, 
1998). This model reflects seminal works in the structuralist tradition of 
sociology that theorize information circulation in strongly knit cliques as 
a facilitator of specialized learning (Aral, 2016; Coleman, 1988). 
Bridging connections across cliques enables novel combinations by 
increasing access across diverse knowledge domains in the network 
(Granovetter, 1973; Burt, 2004). Studies on collaboration and co- 
inventor networks have found a non-linear, inverse U-shape relation 
between the small-worldness of the network and the quality of knowl
edge combination measured by the reception and impact of new 
knowledge (Uzzi and Spiro, 2005; Tóth and Lengyel, 2021). These 
studies suggest that an optimal structure for new knowledge production 
mixes the advantages of practical learning in cohesive cliques with ac
cess to diversity (Aral, 2016; Rocchetta et al., 2021). 

Fleming et al. (2007a) found that small-worldness does not, but short 
average path length does, correlate with patent numbers in regions. Yet, 
we have reasons to think that the small-worldness of co-inventor net
works matters for atypical combination of technologies to occur in re
gions for two reasons. First, the development of these patents requires 
access to more diverse knowledge rather than incremental innovation 
activities. Small-world networks can facilitate the circulation of diverse 
knowledge pieces due to their short average path length. Second, 
atypical combinations demand a mutual understanding of distinct 
knowledge pieces. Strongly knit cliques in small-world networks can 
improve the processing of these distinct knowledge pieces (Fleming 
et al., 2007b; Ter Wal et al., 2016; Tóth and Lengyel, 2021; Aral, 2016). 
Thus, small-world networks facilitate the development of atypical 
combinations of knowledge through diverse access in the full network as 
well as high absorptive capacity in the network communities (Uzzi and 
Spiro, 2005; Cohen and Levinthal, 1990). 

Consequently, the medium-level of small-worldness in regional co- 
inventor networks could be theoretically optimal for atypical patent
ing. The theory suggests that networks possessing too low or too high 
values on this particular indicator can miss either absorptive capacity or 
the necessary diverse knowledge inputs that reside in the network. To 
test the linear and non-linear relationship between the small-worldness 
of co-inventor networks and atypical innovations in regions, we quantify 
the small-worldness indicator and formulate Hypotheses 1a and 1b. 

H1a. The small-worldness of co-inventor networks is positively related 
to the proportion of atypical patents in the region. 

H1b. The quadratic term of small-worldness of co-inventor networks is 
negatively related to the proportion of atypical patents in the region. 

2.3. Technological specialization and diversity in co-inventor networks 

Although the spectrum of available technologies in a regional 
economy has a natural impact on the potential of knowledge combina
tions to occur, the technological dimension is still missing from the 
small-world approach. It is widely accepted that a diverse pool of 
knowledge in urban areas (Florida et al., 2017; Glaeser et al., 1992; 
Jacobs, 1961) allows for atypical combinations (Berkes and Gaetani, 
2020). However, there is also a body of literature that argues that 

specialization might facilitate innovation as well (Beaudry and Schif
fauerova, 2009; Lobo and Strumsky, 2008; Ó Huallacháin and Lee, 
2010) when critical masses of experts specialized in distinct knowledge 
pieces (Castaldi et al., 2015) are connected through knowledge transfer 
mechanisms (Berkes and Gaetani, 2020). For example, the Boston 
biotechnology cluster has emerged from local skills accumulated in 
distinct local critical masses in engineering and biology (Cooke, 2002). 
Later, they were connected by social interaction that facilitated their 
combinations (Powell et al., 1996). The variety of technologies available 
in a region conditions the structure of inventor collaboration (van der 
Wouden and Rigby, 2019) and determines the potential for radical new 
combinations in the region (Castaldi et al., 2015). However, whether the 
specialization of co-inventor cliques and the short access across similar 
or dissimilar knowledge in small-world networks is beneficial for 
generating radical innovation remains unknown. 

The present investigation argues that it is not a diverse pool of 
knowledge per se, but the presence of diverse specializations and their 
interlinking that matter for radical innovation to occur within regions. 
Our approach is based on network communities and the bridges between 
them, which is a way to represent small-world networks, as will be 
discussed in further detail later. This approach allows for the measure
ment of technological specialization in communities and the diversity 
across bridged communities. By utilizing these characteristics of com
munities and pairs of interlinked communities, we construct region-level 
measures that can be compared with the role of the small-world network 
structure present in regions. 

Most related work in economic geography and beyond seems to focus 
on network dynamics in regions as well as their evolutionary charac
teristics (Feldman and Kogler, 2010). Evidence on the role of techno
logical similarity and triadic closure in increasing the likelihood of 
inventor collaboration implies that micro-mechanisms of collaboration 
drive regions toward technological specialization (Abbasiharofteh and 
Broekel, 2020; Boschma and Frenken, 2010; Broekel and Boschma, 
2012; Cantner and Graf, 2006; Cassi and Plunket, 2013; Giuliani, 2013; 
Grabher, 1993; Ter Wal, 2013). Such mechanisms threaten radical 
knowledge production, especially in regions characterized by speciali
zation where inventors tend to partner with co-inventors of similar 
technological profiles to a greater extent than inventors residing in 
technologically diverse cities (van der Wouden and Rigby, 2019). 

However, Glückler (2007) theorizes that the process of network 
retention2 can be counter-balanced by network variation, when other
wise loosely knit network cliques bridged by few collaborations create 
momentum for radical combinations and regional diversity. 

Systematic evidence on such balancing mechanisms between 
specialization and diversity in collaboration networks to create novelty 
is somewhat limited. An exception is the work of Migliano et al. (2020), 
which describes drug discoveries with the dynamics of interaction net
works of hunter-gatherer tribes. They demonstrate that the tribes must 
accumulate knowledge in experiments with plants separated by camps 
before combining these plants into a better drug development through 
the interactions across camps; an excellent example of the two mecha
nisms needed for novelty generation in small-world networks. In the first 
step, there is the accumulation of specialized knowledge in cohesive 
network segments, followed by the combination of the newfound tech
nical expertise with radical and novel bridges across the established 
network segments. 

Co-inventor networks in regions are usually large, but techniques of 
network science can be used to find patterns in these complex structures. 
Here, we define network communities as dense and cohesive sub
networks that are loosely connected (Girvan and Newman, 2002; Palla 
et al., 2005). This network phenomenon aligns with the small-world 

2 Network retention is the tendency for the structure of a network to be 
determined by pre-existing processes that formed the structure of the said 
network in the first place. 
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theory because the subnetworks constitute strongly knit cliques, but the 
loose connections across them make the average path length short. 
These communities in the co-inventor networks represent fields of 
technological specialization due to micro-mechanisms of network 
retention. Finally, inventors of similar technological profiles create such 
communities in the network in the first place (Tóth et al., 2021). 

The suggested network community approach can contribute to pre
vious research on small-world networks along two lines. First, defining 
the borders of cohesive cliques is not a trivial task in small-world net
works but can be done with community detection that relies only on 
network topology (Fortunato, 2010). Then, one can measure the tech
nological specialization of communities and the diversity across the 
interlinked communities. Second, the communities can be re-identified 
over time. Therefore, two communities might merge if there are many 
bridges between them. This latter feature ensures that links across 
communities are indeed bridges. 

Based on the above argument, we formulate two hypotheses that 
reflect the simultaneous need for specialized knowledge production in 
cohesive co-inventor networks and their bridging to produce atypical 
knowledge combinations. The specialization of co-inventor commu
nities in specific technologies can facilitate the production of radical 
innovation because the depth of knowledge accumulated in the com
munity increases the scale and scope of expertise in a specific domain 
(Kemeny and Storper, 2015; von Krogh et al., 2003; de Noni and Belussi, 
2021). 

Specialization supports new knowledge combinations within the 
community when distinct knowledge from external sources is absorbed 
and processed in the cohesive sub-network (Ter Wal et al., 2016; Tóth 
and Lengyel, 2021) and can also provide sufficient input for knowledge 
combinations in collaboration with others (von Krogh et al., 2003; Uzzi 
et al., 2013). In this latter sense, there is a need for connections between 
specialized communities to enable combinations of distinct knowledge 
and establish channels of subsequent knowledge transfer (Powell et al., 
1996; Glückler, 2007). To avoid potential biases of extremely special
ized communities, we take the median of community specializations to 
characterize the technological knowledge expertise that resides in 
regional economies. 

H2. The median level of technological specialization of co-inventor 
communities in the region is positively related to the proportion of 
atypical patents in the region. 

H3. The proportion of inter-community ties of co-inventor networks is 
positively related to the proportion of atypical patents in the region. 

Finally, we aim to provide a better understanding of how bridging 
across co-inventor communities, in terms of their pairwise technological 
specialization, supports the development of radical combinations the 
most. The growing literature on atypical combinations suggests that 
radically new knowledge can be generated by combining distinct 
knowledge pieces (Fontana et al., 2020; Uzzi et al., 2013; Wagner et al., 
2019; Wang et al., 2017). 

A central discussion in the relevant literature, i.e., in Economic Ge
ography, concerns how the availability of dissimilar knowledge in a 
region, termed ‘related’ and ‘unrelated’ variety, favors the creation of 
novel knowledge (Frenken et al., 2007). Some argue that unrelated 
variety in a region fosters radical novelty (Castaldi et al., 2015; Miguelez 
and Moreno, 2016). Others find that regions specialized in various 
related industries can produce more breakthrough innovations (de Noni 
and Belussi, 2021). Focusing on innovative output in general, a recent 
study by Rocchetta et al. (2021) finds that different technological 
diversification measures, e.g. coherence and entropy-variety, exert 
varying degrees of non-linear effects on regional productivity growth, 
and that higher productivity returns can be found in regions that have 
invested in their existing technological capabilities as well as in more 
distant knowledge domains at the same time. 

Although collaborations within regions can facilitate the 

combination of diverse knowledge (de Noni et al., 2017), the role of 
technological relatedness across linked specializations still requires a 
more detailed analysis. One study on industry growth in regions con
cludes that co-worker links across related industries are particularly 
beneficial for weakly specialized local industries (Eriksson and Lengyel, 
2019). On the other hand, strongly specialized industries – and inventor 
communities – might be able to process unrelated knowledge because of 
greater absorptive capacity. They can do this more efficiently through 
collaborations (Ter Wal et al., 2016). 

We expect that the likelihood of atypical patenting intensifies as the 
overlap of the technological profiles of connected communities de
creases. Novel combinations are more likely when co-inventor com
munities accumulate knowledge in different domains, and then establish 
bridges to these dissimilar knowledge bases. These bridging collabora
tion links across communities increase the social proximity of otherwise 
loosely connected inventor groups. Thus, a greater degree of techno
logical dissimilarity across these linked groups can maintain more di
versity in the region (Boschma, 2005; Cassi and Plunket, 2014). We 
formalize this expectation in Hypothesis 4. 

H4. The median level of technological similarity across bridged in
ventor communities is negatively related to the proportion of atypical 
patents in the region. 

3. Empirical approach 

3.1. Data 

Innovation scholars have employed patent databases extensively in 
order to study collaboration networks, technological change, knowledge 
spaces and economic complexity (Balland et al., 2020; Castaldi et al., 
2015; Jaffe, 1986; Jaffe, 1993; Kogler et al., 2013). While the literature 
has discussed the limitations of these types of data (Archibugi and 
Planta, 1996; Kogler, 2015b), patent data indeed provide a valuable 
source of information to undertake empirical studies where the temporal 
dimension of inventive activities is under scrutiny. 

We utilize the European Patent Office (EPO) PATSTAT database and 
the final dataset includes 1,489,954 inventions filed by 2,059,171 
unique inventors between 1980 and 2014. We follow the common 
practice of aggregating collaborative ties in seven non-overlapping 5- 
year time-windows to mitigate the differences in patenting frequency 
between highly and moderately innovative regions (Abbasiharofteh and 
Broekel, 2020; Fleming et al., 2007a; Kogler et al., 2017; Menzel et al., 
2017; Ter Wal, 2014).3 The disambiguation of individuals' and entities' 
names to assign unique identifiers that can then be utilized in a mean
ingful network or related, methods-driven analyzes poses a challenging 
task. Several contributions in this context, for instance, Li et al. (2014) 
and Pezzoni et al. (2014), among others, have tackled this problem and 
subsequently provided a systematic approach. We disambiguated in
ventor and assignee names in the data utilized using an advanced 
Massacrator© algorithm described in the Pezzoni et al. (2014) paper. 
The database also contains the region of the home location of inventors. 
The PATSTAT database provides some of the harmonized indicators, e. 
g., assignee names, but further processing was necessary to locate in
ventors' addresses and disambiguate inventors' names. Application 
Programming Interface (API) access via two independent service pro
viders facilitated the geocoding of inventors' addresses. The geocodes of 
inventors' addresses correspond to the NUTS2 level as defined by 
EUROSTAT (2018). 

3 Seven time-windows: (1) 1980–1984, (2) 1985–1989, (3) 1990–1994, (4) 
1995–1999, (5) 2000–2004, (6) 2005–2009, and (7) 2010–2014. It is important 
to note that we do not dissolve created ties. This implies that once a collabo
rative tie is established, it is also present in the subsequent time-windows. Thus, 
the sheer number of ties increases over time. 
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Collaborative ties between inventors are distributed within and 
across 264 NUTS2 regions (see Appendix A). We assign interregional 
collaborative ties to all NUTS2 regions involved in the development of a 
particular patented invention to ensure that regional networks are not 
biased by the so-called modifiable areal unit problem (Scholl and 
Brenner, 2014). Also, and in the spirit of the Schumpeterian view on 
innovation (Schumpeter, 1911; Strumsky and Lobo, 2015; Weitzman, 
1998), we utilize the information on technological knowledge domains 
listed in individual patent documents to identify what technology codes 
were combined for each invention (Lee et al., 2022). We use these data 
to create a proxy for the degree of atypicality each patent introduces, 
which we return to and explain later in this section.4 

3.2. Projecting bipartite networks and networks of places 

We can observe collaboration networks in patents by the co-presence 
of inventors in one or several joint patents (Broekel and Graf, 2012; Li 
et al., 2014; Menzel et al., 2017; Stefano and Zaccarin, 2013; Ter Wal, 
2014). From a network perspective, inventors are nodes and ties be
tween every two nodes illustrate that two inventors collaborated on 
developing at least one patent. One can optimally present and explore 
the co-inventorship relations using an inventor-by-patent matrix G. Each 
row represents an inventor, and each column corresponds to a specific 
invention. Gij takes the value of one if the ith inventor participated in 
developing the jth invention. Otherwise, it takes the value of zero. Using 
linear algebra, one can project the inventor-by-patent matrix to a binary 
symmetric inventor-by-inventor matrix A (in which Amn = Anm). Amn 
takes the value of one if the mth and nth inventors collaborated on at least 
one inventive project. Otherwise, it takes the value of zero. 

While numerous empirical studies used this method in prior inno
vation studies to generate and analyze collaboration networks, there are 
concerns that this projection introduces a bias that affects the reliability 
of community detection algorithms (Newman, 2001; Zhou et al., 2007). 
The projection of inventor-by-patent networks —also known as bipartite 
networks— typically provides a high degree of network clustering in 
inventor-by-inventor matrices —also known as unipartite networks— 
potentially influencing the small-world indicators measured in networks 
(Uzzi and Spiro, 2005). This is especially problematic if these collabo
rations include more than three participants, which is increasingly the 
case in patenting (Broekel, 2019; van der Wouden, 2018). Also, the 
projection introduces technology biases for clustering-related indices 
because the average team size differs substantially across sectors (Kogler 
et al., 2013). 

We rely on ‘structural equivalence’ to deal with the projection bias 
and to decrease the bias of automatic triadic closure. Structural equiv
alence is a social network concept developed by Lorrain and White 
(1971) and Burt (1987). They claim that nodes in a network are struc
turally equivalent if they are identical in terms of relationship and 
embeddedness patterns, which provide them with access to similar re
sources in the network (Gnyawali and Madhavan, 2001; Stuart and 
Podolny, 1996). In the present investigation, we follow the method 
developed by Pizarro (2007). Thus, we created a new network (here
after, the network of places) in which new nodes (hereafter referred to as 
‘places’) replace a set of neighboring nodes (nodes that are directly 
connected) that are connected to an identical set of nodes (for a review, 
see Lucena-Piquero and Vicente, 2019). In other words, we group in
ventors into a single node if the structures of their networks are iden
tical. This technique helps us to reduce the impact of automatic triadic 
closure on our network indicators. The ‘network of places’ are simplified 
representations of the co-inventor networks in which nodes represent 
inventors, or structurally equivalent groups of inventors, and ties 

represent single co-inventor ties or several ties going from the group of 
identical inventors to their collaborators. 

Fig. 1 demonstrates how ‘networks of places’ are created from the co- 
inventor network. In case A, the collaboration of six inventors on a single 
patent is transformed into a single node in the network of places because 
all inventors have similar structural properties. In case B, where three 
inventors are connected in two collaborations, no modification has been 
made in the transformation. Case C contains two projects bridged by one 
inventor. Thus, the algorithm groups inventors involved only in one 
project into two separated nodes connected by the bridging inventor. 
Case D is a complex composition in which one can find all the pairings 
mentioned above of inventors and projects. Some of the inventors are 
structurally equivalent, and some are different. It is worth noting that 
isolated places in the ‘network of places’ are either individual inventors 
or several inventors that are structurally equivalent. A higher share of 
isolated nodes in the network of places reveals that most inventors take 
part in one or a few projects rather than being involved in numerous 
collaborations. 

Furthermore, Fig. 2 shows that while we controlled for the high 
degree of clustering in regional collaboration networks, the number of 
nodes and edges in each region scale linearly (in a log-log scale) with 
those of the ‘networks of places.’ Thus, the network of places trans
formation does not substantially change other structural properties of 
the original co-inventor networks. 

As outlined above, the places of a focal region may include multiple 
inventors from other regions that have created collaborative ties with 
inventors residing in the focal region. Indeed, the descriptive statistics 
show that places include inventors from 2 regions on average (mean: 2.1 
and median: 2). Our approach to deal with this problem is explained in 
Section 3.3.2, below. 

3.3. Measures 

3.3.1. Dependent variable 
In line with the theoretical argumentation outlined earlier, we seek 

to identify patents that introduce atypical technological knowledge 
combinations. We can determine the choice of technologies in each in
vention via the information provided in patent documents. We can thus 
measure the degree of the ‘atypicality’ of patents by noting how often a 
pair of technology codes occur in the data,5 compared with the statistical 
expectation of random co-occurrence.6 Uzzi et al. (2013) have used this 
method to define the extent to which scientific publications introduce 
atypical combinations of knowledge pieces. Mewes (2019) applied a 
similar method to identify atypical patents in the US. In doing so, we 
follow Teece et al. (1994) and estimate the z-score to capture the 
atypicality of each technology combination. The z-score is defined as 
follows: 

Zi,j =
Oi,j − Ei,j

σi,j
(1)  

where Oi, j is the number of the co-occurrence of two technology codes i 
and j. Ei,j is the statistical expectation of technologies i and j co-occurring 
randomly, and σi,j denotes the standard deviation of the expected co- 
occurrence of two given technologies. Teece et al. (1994) argue that if 
the number of occurrences of two units (technology codes here) is 
relatively high, then the co-occurrence of these units is driven by 
random effects. Thus, the expected co-occurrence (Ei,j) is given by: 

Ei,j =
ninj

N
, (2) 

4 To identify the distinct technological knowledge domains that characterize 
individual inventions we employ the Cooperative Patent Classification scheme 
that contains 650 individual codes at the 4-digit level. 

5 Since we used 650 CPC codes at the 4-digit level, it results in potentially 
max. 210,925 (n (n-1)/2) technology pairs. 

6 This implies that we excluded patents which include only one CPC tech
nology code at the 4-digit level. 
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where ni and nj are the numbers of patents with technology codes i and j, 
respectively, and N is the total number of patents. The square of stan
dard deviation is defined as: 

σ2
i,j = Ei,j

(
1 −

ni

N

)(N − nj

N − 1

)

. (3) 

Intuitively, a negative value of the z-score indicates that the number 
of random co-occurrences is higher than the number of observed ones. 
Therefore, a negative value reflects an atypical combination of two 
technology codes. It is important to note that we iteratively estimated z- 
scores for each time-window to control for technological dynamics 
(Kogler et al., 2022). In other words, each time-window includes patents 
from the preceding and current time-windows but not patents from the 
succeeding ones. A single patent might introduce a beneficial atypical 
combination of technologies, motivating other inventors to imitate the 
same pattern in the subsequent time-windows, making the combination 
more common (less atypical). Fig. 3 shows the kernel density estimates 
for z-scores in the seven time-windows. The results are consistent with 
Uzzi et al. (2013) and Mewes (2019), i.e., only a relatively small share of 
all combinations is atypical. More interestingly, the percentage of 

Fig. 1. The projected co-inventor network (left) and the co-inventor network of places (right).  

Fig. 2. The number of nodes (left) and the number of edges (right) in the projected co-inventor network versus the network of places. 
Note: Each dot represents the structural properties of a NUTS2 region in one of the seven defined time-windows. 

Fig. 3. The kernel density of z-scores for the combination of each technol
ogy pair. 
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atypical patents dropped from 30 % to 25 % between 1984 and 2014. 
We observed that the Shannon entropy of the z-score indices increases 
across time-windows,7 suggesting that inventions move toward the two 
extremes of typicality and atypicality over time (Fig. 2). 

Since z-scores are estimates for the combinations of technology codes 
and not patents per se, one needs another definition at the patent level. 
Notably, 49 % of patents include only one technology code, which do 
not introduce a combination of technology codes. On the other hand, 30 
% of patents have two technology codes that provide one combination, 
and 21 % of patents combine more than two technology codes. Thus, we 
defined atypical patents as those that include at least one combination of 
technologies with a negative z-score. The dependent variable (ATYP
ICAL) is the share of atypical patents in each NUTS2 region and time- 
window. Figs. 4 and 5 show the distribution of the share and number 
of atypical patents across European regions and different technologies. 

3.3.2. Independent variables and controls 
The first explanatory variable approximates the degree of small- 

worldness in regions' network of places. Although the notion of small- 
worldness is clearly defined by Watts and Strogatz (1998), measuring 
small-worldness of ‘real-world’ networks has been a challenging task 
(Fleming et al., 2007a; Humphries and Gurney, 2008; Neal, 2017). One 
of the main motivations for combining structurally equivalent inventors 
into places is to reduce the impact of the automatic clustering of three or 
more inventors who collaborated to develop a single patent. Next, we 
followed the more recently suggested method of a ‘double-graph 
normalized index’ to approximate the small-worldness of the networks 
of places (Neal, 2017). This method overcomes the limitations associ
ated with small-world indices that are normalized only by random 
graphs. The double-graph normalized index also enables us to compare 
indices of networks of distinct sizes. The small-worldness index is 
defined as: 

ω =
Lr

L
−

C
Cl

(4)  

where L denotes the mean path length of the observed networks of 
places and Lr the same index of random reference networks.8 C and Cl 
denote the clustering coefficients of observed networks of places and 
reference lattice networks. ω ranges between minus one (lattice 
network) and one (random network), with values near zero representing 
a high degree of small-worldness. For the sake of concreteness, we 
transformed ω in a way that large values (near one) represent a high 
degree of small-worldness, and small values (near zero) correspond to 
other structural properties (random or lattice). 

SMALLWORLDNESS = 1 − ∣ω∣ (5) 

The random and lattice reference networks are simulated based on 
methods suggested by Erdös and Rényi (1960) and Watts and Strogatz 
(1998), respectively. It is important to note that we created specific 
reference networks for each network of places having the same number 
of nodes and density. Thus, SMALLWORLDNESS captures the extent to 
which an observed network of places approaches the maximum level of 
small-worldness (i.e., SMALLWORLDNESS equals to one) (Neal, 2017). 

The following two variables of interest capture the distribution of 
knowledge pieces regarding various technologies within a region. We 
identified a set of places that are more densely connected compared to 

the rest of the network of places. Intuitively, one can expect that places 
that are more densely connected include inventors with the same or 
similar expertise and underlying knowledge bases. Yet, few inventors 
might bridge cognitive gaps and connect two or several cognitively 
distant places. It is worth noting that all places of a region (e.g., Region 
A), and network communities, include inventors located in the same 
region (Region A) and may include inventors from other regions too 
(Region B and C) that collaborated with inventors from this focal region 
(Region A). 

Empirically, we applied a community detection procedure to identify 
a set of densely connected places. While the theoretical argument is 
straightforward, the network science literature provides numerous 
community detection methods that do not necessarily provide compa
rable results. Their accuracy and efficiency mainly depend on networks' 
size and structural properties (Clauset et al., 2004). 

Yang et al. (2016) conducted an empirical analysis and compared the 
accuracy and efficiency of eight major community detection algorithms 
using various networks of different sizes and structural properties. They 
used the Lancichinetti–Fortunato–Radicchi benchmark graph to test the 
accuracy of the community detection algorithms (i.e., fast greedy, info 
map, leading eigenvector, label propagation, Multilevel, walk trap, spin 
glass, and edge betweenness). The results suggest that the Multilevel 
algorithm (also called the Louvain algorithm) provides greater accuracy 
when the number of nodes displays high variance and exceeds 1000, and 
μ (the mixing parameter9) is >0.5. Also, the time complexity of the 
Multilevel algorithm is O (N logN) which is considerably faster than most 
well-known algorithms. For instance, the computational complexity of 
the edge betweenness algorithm is O

(
E2N

)
. We opted for the Multilevel 

algorithm10 (Blondel et al., 2008) because this algorithm offers 
reasonable levels of accuracy and efficiency, given that networks of 
places vary considerably in size and density. It is important to note that 
the Multilevel algorithm counts isolated nodes (in our case, isolated 
places) as single communities. Similar to the work done by Abbasihar
ofteh et al. (2021), we deliberately do not consider them as communities 
because such isolated places contribute poorly to the diffusion of 
knowledge. 

On average, communities include 6.4 places (between 4.8 and 7.1 
places across seven non-overlapping time-windows).11 The ̂Ile de France 
region surrounding Paris has the highest number of communities 
(aggregated across all time-windows), followed by two German regions 
(Ober Bayern and Stuttgart). The distribution of the community fre
quency is highly skewed, which implies that a few regions have a high 
number of communities, whereas many regions include a limited num
ber of communities. Yet, the skewness of this distribution decreases over 

7 The Shannon entropy index for each time-window corresponds to 1984: 
15.35, 1989: 15.93, 1994: 16.15, 1999: 16.66, 2004: 17, 2009: 17.18, and 
2014: 17.18.  

8 Contrary to the original model of small-worldness suggested by Watts and 
Strogatz (1998), ‘real-world’ networks normally consist of multiple compo
nents. To estimate the mean path length of the observed and simulated net
works of places, the geodesic distance between nodes in different components 
corresponds to the number of nodes in the network minus one. 

9 The mixing parameter is the sum of the number of edges connecting to other 
communities divided by the sum of nodes' degree in the given community.  
10 We used the igraph R package by Csardi and Nepusz (2006) to apply the 

Multilevel algorithm.  
11 To ensure that the identified communities are robust, we have iteratively 

run the algorithm starting from different nodes in the network of places. 
Although each time the results slightly change, the outcomes are strongly 
correlated. Particularly, we ran the Louvain algorithm, detected communities in 
all networks of places across seven time-windows ten times, and randomly set 
the resolution parameter following a uniform distribution. We used Cramer's V 
(a measure of association between two nominal variables) to estimate the as
sociation between the membership of nodes in newly detected communities and 
the one used for variable creation. The average value of Cramer's V coefficients 
(0.99) suggests that the outcomes of community detection algorithm are not 
arbitrary, and that they do not depend on the parameters of the algorithm. 
Furthermore, we used another community detection algorithm to ensure that 
identified communities in networks of places are not dependent on the Louvain 
community detection algorithm. Using the Infomap algorithm (Rosvall and 
Bergstrom, 2008) on 500 randomly selected networks of places suggests that 
the community membership of places is very similar (mean of Cramer's V co
efficients: 0.99). 
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time. The number of communities strongly correlates with patent and 
inventor numbers of regions at the same time-window (the Pearson 
correlation coefficients: 0.95 and 0.96, respectively). However, the 
sheer community number correlates less strongly with the population of 
regions (the correlation coefficient: 0.26).12 Fig. 6 illustrates the distri
bution of community frequency across regions and seven time-windows. 

To capture the degree of communities' specialization for each region, 
we used the Hirschman-Herfindahl Index (Hall and Tideman, 1967), 
which measures the concentration of technologies in each community. 

SPECIALIZATION is a region-level variable, measured by the regional 
median of the Hirschman-Herfindahl Index of technological specializa
tion of network communities in the region, and time-window. We 
deliberately used the Herfindahl-Hirschman Index because this measure 
is not strongly correlated with the size of communities (the Pearson 
correlation coefficients: − 0.11). This index's median ensures that 
extremely specialized communities do not cause measurement biases at 
the regional level. We test other region-level aggregates (e.g., mean and 
standard deviation) that provide similar results (a further discussion on 
that follows below). It should be noted that the concentration of tech
nologies in each community approximates the technological portfolios 
of inventors embedded in the given community because inventors tend 
to utilize technologies like the ones they used in the past. In other words, 
although SPECIALIZATION approximates the technological 

Fig. 4. The share of atypical patents between 1984 and 2014 (left) and the distribution of the number of atypical patents in regions across seven time- 
windows (right). 

Fig. 5. The distribution of typical and atypical patents (1980–2014) across Cooperative Patent Classifications (CPC) schemes.  

12 Note that the number of regions' communities normalized by the inventor 
number is even less strongly correlated with population (the correlation coef
ficient: 0.03). 

M. Abbasiharofteh et al.                                                                                                                                                                                                                       



Research Policy 52 (2023) 104886

9

specialization of communities based on patents developed by inventors 
in such communities, this variable is correlated with the portfolios of 
corresponding inventors (see Appendix B). 

We needed to construct a variable that measures the inter- 
connectedness of communities in regions. Therefore, it is important to 
say that networks with different numbers of nodes typically show 
different structural properties, and we cannot directly compare size- 
dependent network indices. Thus, we followed the method suggested 
by Cimini et al. (2019) and rewired each network of places 100 times 
while keeping their size and the degree sequence constant. In other 
words, we randomly assigned ties to places while we induced a degree 
distribution like the one of the observed networks of places. As a result, 
the number of ties of each place (and, as a result, the overall number of 
ties) remains the same compared to the underlying network of places, 
whereas ties connect different sets of places in the rewired networks of 
places. Then, we normalized the number of inter-community relations 
by subtracting it from the average value of the number of inter- 
community ties observed in the rewired networks. Finally, we calcu
late SICT, which corresponds to the share of the inter-community ties by 
dividing the normalized number of inter-community relations by the 
total number of ties in the given network of places corresponding to each 
NUTS2 region in each time-window.13 

While we have an intuitive idea that communities are a hub of 
cognitively close inventors separated from other cognitively distant 
communities, large regions might host several communities that have 
similar technological portfolios but are separated by other socio- 
economic forces that are invisible to us. Thus, the increase in the num
ber of communities does not necessarily correlate with the technological 
diversity of a given region. To substantiate this claim, we used the 
technology codes (CPC codes at the 4-digit level) utilized to develop 
patents filed in each region-time in conjunction with an entropy-based 

measure (ranges between zero and one) to approximate the technolog
ical diversity. Our observation suggests that while the size of a region (i. 
e., inventor number) correlates with the number of communities in each 
region (the Pearson correlation coefficient: 0.95), these two variables 
seem not to be firmly related to technological diversity (0.23 and 0.27, 
respectively; see the three-dimensional scatter plot in Appendix C). 

Also, communities are not entirely similar or dissimilar, and we 
expect to see a varying degree of overlaps between technological port
folios among connected communities. Therefore, we calculated the 
Spearman rank correlation coefficients for each pair of communities (in 
each region-time) connected by at least one inter-community collabo
rative tie. The Spearman rank correlation (ranging between − 1 and 1) is 
defined as: 

ρ = 1 −
6
∑

d2

p(p2 − 1)
(6)  

where d and p are the difference in the paired rank of technology codes 
in two connected communities and the number of technology codes, 
respectively. The Spearman rank correlation is the preferred specifica
tion because the monotonic relationship between the number of tech
nology codes in two communities is not a strict assumption of this 
measure compared to the one of the Pearson correlation (Broekel and 
Brenner, 2007; Fornahl and Brenner, 2009).14 Using the Spearman rank 
correlation coefficients, SIMILARITY is the median of the distribution of 
all pairwise similarity coefficients of connected communities for each 
NUTS2 region in each time-window. Regions with greater (smaller) 
values of this variable show a relatively higher (lower) degree of tech
nological overlaps among their connected communities. Fig. 7 illustrates 
the distribution of the variable SIMILARITY across European regions 
over time. Fig. 8 shows the specialization of co-inventor communities, 
the share of inter-community ties, and the technological similarity 
across communities. 

Even though many network places include inventors from different 
regions, the regional aggregation of the community-level indicators 

Fig. 6. The number of detected communities in log (left) and the distribution of the number of communities in regions across seven time-windows. 
Note: The number corresponds to the median value of community numbers across seven time-windows between 1980 and 2014. The legend is in logarithmic scale. 

13 The SICT measure might be different on the network of places than on the 
network of inventors, because the transformation from inventors to places 
might eliminate more intra-community ties than inter-community ties. There
fore, we have calculated SICTINV by assigning inventors to the communities 
detected on the network of places and counting intra-, and inter-community co- 
inventor links instead of links across places. The Pearson correlation between 
SICT and SICTINV is 0.93 suggesting that the network of places transformation 
does not introduce a major bias to the SICT calculation. 

14 The Spearman rank correlation coefficients are found to be positively 
correlated with the cosine similarity measure (the Pearson correlation coeffi
cient: 0.55), and strongly correlated with the Jaccard similarity index (the 
Pearson correlation coefficient: 0.96). 
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helps us to avoid the problem that inventions created extensively in 
other regions are assigned to the region in focus. The number of in
ventors and places strongly correlates with the number of communities 
in the region (the Pearson correlation coefficients are 0.95 and 0.94, 
respectively), suggesting that the measurement captures local innova
tion. On the contrary, the share of interregional ties (defined later) is not 
correlated with SMALLWORLDNESS, SMALLWORLDNESS^2, SPECIALI
ZATION, SICT, and SIMILARITY (the Pearson correlation coefficients: 
− 0.04, 0.06, − 0.12, − 0.07, and − 0.11 respectively) also signaling that 
regions' engagement in inter-regional collaborations is independent of 
our measurements. Finally, we weight the values of specialization, the 
share of inter-community ties, and similarity indices of places by the 
share of local inventors before aggregating at the regional levels for 
creating the main network variables (i.e., SPECIALIZATION, SICT, and 
SIMILARITY) and find a strong correlation between the original and the 
weighted measures (the Pearson correlation coefficients are 0.85, 0.96, 
and 0.96 respectively). These tests confirm that the variables are not 
biased by inter-regional relations and can capture local co-inventor 
collaboration's role in atypical knowledge combinations. 

In addition to the main independent variables, we employed several 
control variables. Firstly, the related variety literature has provided 
empirical evidence that regions are more inclined to diversify into 
related products and activities (Balland et al., 2018; Boschma et al., 
2015; Boschma, 2016; Hidalgo et al., 2007). Nevertheless, it is still an 
open question whether related or unrelated variety contributes to 
atypical patenting (Castaldi et al., 2015; de Noni and Belussi, 2021; 
Miguelez and Moreno, 2016). Following the method developed by Hi
dalgo et al. (2007) we measured the related density of each technology 
code of regions, and subsequently employed the average related density 
(RELATEDNESS) for regions in each time-window (van der Wouden and 
Rigby, 2019). It is worth noting that this variable correlates with various 
variables capturing the size of regions, such as the number of patents, 
number of inventors, number of communities, and GDP. Thus, we 
refrained from including these latter variables in the regression models. 

Also, we built on the method of reflection developed by Hidalgo and 
Hausmann (2009) to control for the effect of technologies that are not 
ubiquitous in all regions (i.e., complex technologies). These technologies 
might provide comparative advantages for some regions because in
ventors in such regions can combine spatially less ubiquitous technol
ogies to introduce atypical patents. The variable COMPLEXITY 
corresponds to the median value of complexity indices of technology 
codes included in patents in each region and time-window. In other 

words, COMPLEXITY controls for the extent to which regions include 
complex technologies in each time-window.15 Since technologies are 
dynamic and their spatial distribution may change over time, we itera
tively calculated the complexity of technologies for each time-window. 
Thus, this variable is not biased by the changing number of technology 
classes over time. 

Besides, we added a proxy for how inventors in regions tap into 
external knowledge pools by measuring the share of interregional ties. 
This variable corresponds to the normalized number of the interregional 
relations divided by the total number of ties in each NUTS2 region and 
time-window (INTERREGIONAL). Additionally, POPULATION is a size- 
related control variable that corresponds to the regions' population 
(log-transformed) in each time-window. 

Moreover, we need to control for other structural properties of the 
networks of places to ensure that our new variables have a significant 
explanatory power. Following similar empirical works in innovation 
studies that investigate the structure of co-inventor networks (Bergé 
et al., 2018; Breschi and Lenzi, 2016; Lobo and Strumsky, 2008; Lucena- 
Piquero and Vicente, 2019; van der Wouden and Rigby, 2019), we 
created variables for density (DENSITY) and share of isolates16 

(ISOLATE). In addition, we normalized the number of regions' commu
nities17 by inventor numbers (COMMUNITY). As clarified earlier in this 
subsection, we used a rewiring method to normalize network indices. 
Also, we refrained from creating a variable capturing the centralization 
of regional inventor networks because that network index correlates 
significantly with SPECIALIZATION. van der Wouden and Rigby (2019) 
showed that specialized cities in the US have relatively denser co- 
inventor networks than diversified ones. A higher value of network 
density coupled with a tendency to preferentially establish new relations 
with inventors having a somewhat higher number of ties (Barabási and 
Albert, 1999) may account for a high correlation coefficient of 
SPECIALIZATION and regional network centralization. Descriptive sta
tistics of all variables and their pairwise correlation coefficients are 
presented in Appendix D. 

3.3.3. Model construction 
We opted for a fixed effects panel regression model with two-way 

fixed effects on regions and time-windows that controls for all types of 
unobservable regional- and time-variant heterogeneities. To mitigate 
endogeneity problems, independent variables are lagged by one time- 
window. 

Yr,t =α+ β1SMALLWORLDNESSr,t− 1 + β2SMALLWORLDNESS2
r,t− 1

+ β3SPECIALIZATIONr,t− 1 + β4SICTr,t− 1 + β5SIMILARITYr,t− 1

+ β6Nr,t− 1 + β7Zr,t− 1 +φt + μr + εr,t

(7) 

The dependent variable ATYPICAL is the share of atypical patents in 
each region and time-window; SMALLWORLDNESS (and its quadratic 
form), SPECIALIZATION, SICT, and SIMILARITY denote the explanatory 
variables. Nr,t− 1 stands for a set of network-related variables, i.e., 
ISOLATE, COMMUNITY, and DENSITY. Similarly, Zr, t− 1 represents four 
control variables that capture the degree of relatedness (RELATED
NESS), technological complexity (COMPLEXITY), population (POPU
LATION) in regions, and the share of interregional ties 
(INTERREGIONAL). φt is a time-window fixed effect, μr is a region fixed 
effect, and εr,t denotes regression residuals. 

Fig. 7. An approximation of the density of the variable SIMILARITY (kernel 
density estimation) over time. 

15 We used the EconGeo R-package developed by Balland (2017) for esti
mating the related density and complexity coefficients.  
16 ISOLATE (the share of isolated places) corresponds to the number of isolated 

places divided by the total number of places in each region and time-window. 
17 The number of communities is strongly correlated with the number of in

ventors and places in each region (the Pearson correlation coefficients: 0.95 and 
0.94 respectively). On average, communities include 9 inventors (median: 7.4). 
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4. Results and discussion 

We conducted a set of fixed effects panel regression models with 
control variables and added variables of interest in a stepwise manner. 
We tested for heteroscedasticity in the model. The distribution of re
siduals (Appendix E) does not perfectly follow a normal distribution 
(kurtosis: 5.28). Therefore, we use the heteroskedasticity-consistent 
White estimation of robust standard errors (White, 1980). Table 1 re
ports the results of the regression models with robust standard errors.18 

The predictive power of models improves as we add new variables to the 
regression models. However, the predictive power slightly decreases 
after including variables that capture the effects of isolate and com
munity numbers. Diagnostics for multicollinearity are estimated by 
variance inflation factors (VIF) for each predictor variable (see Appendix 
F). Although there is controversy about what value should serve as a 
threshold value for multicollinearity, there is strong evidence of multi
collinearity if the value of VIF for a given variable exceeds 10 (Chatterjee 
and Price, 1995). However, a more conservative view defines a 
threshold value between 3 and 5 (Kock and Lynn, 2012). The multi
collinearity test of the full model shows relatively high VIF values for 
RELATEDNESS, ISOLATE, and COMMUNITY (3.25, 5.39, and 5.55, 
respectively). Thus, we refrain from interpreting the reported co
efficients of these three variables. 

We find evidence for the positive relation between the small-world 
structural property of regions' network of places and the increase in 
the share of atypical patents in the next time-window. This finding is in 
line with the argument that increasing small-worldness triggers inno
vation because this structural property fosters absorptive capacity in 
network communities through local clustering and facilitates a more 
effective information transfer through decreased average path length 
(Cowan and Jonard, 2003; Schilling and Phelps, 2007; Uzzi and Spiro, 
2005). Our result does not support the one by Fleming et al. (2007a), 

who argued that both larger connected components and short average 
path length (and not the combined effects of these two variables, i.e., 
small-world structure) are positively related to innovative regional ca
pabilities. Also, contrary to Uzzi and Spiro's (2005) finding, the reported 
coefficient of the quadratic term for SMALLWORLDNESS does not pro
vide evidence for an inverse U-shape relation between SMALLWORLD
NESS and the share of atypical inventions. 

The reported coefficient of the variable associated with SPECIALI
ZATION is positive and statistically significant. The share of inter- 
community ties SICT has a significantly positive relationship with the 
share of atypical patents. The negative and significant coefficient of 
SIMILARITY suggests that technological proximity between connected 
communities correlates negatively with the dependent variable. Because 
we created networks cumulatively (we do not eliminate old ties), the 
fixed effect regression captures the role of changing technological sim
ilarity across communities that have been linked earlier or are linked by 
new ties more recently. It is important to note that we created an 
alternative variable for similarity based on the pair-wise technological 
proximity of all communities (and not exclusively based on connected 
ones). Consistent with our theoretical arguments, the new variable is not 
significantly correlated with the dependent variable. The SICT coeffi
cient becomes significant after including SIMILARITY in Model 5 and 
remains consistent across all models with various specifications. This 
finding also aligns with our theoretical argument and suggests that inter- 
community ties contribute more to the share of atypical inventions in 
regions if they bridge technologically dissimilar communities. These 
results support four out of the five hypotheses formulated in this paper 
(H1a, H2, H3, H4, but not H1b). 

The complexity of patents (COMPLEXITY) seems not statistically 
related to the extent to which regions generate atypical patents. At first 
glance, this result might come as a surprise. However, Strumsky and 
Lobo (2015) demonstrate empirically that recent patents are mainly 
developed by the ‘reusing’ and ‘recombination’ of existing technological 
capabilities. Although the authors do not provide specific evidence for 
atypical patents, this might explain why technological complexity does 
not correlate with the share of atypical patents. Of course, this calls for 

Fig. 8. Visual representations of detected communities, inter-community ties, and three variables of interests. 
Note: Regions' networks of places normally include various components. For the sake of illustration, only one large component is shown in this visualization. 

18 To run the models, estimating VIFs and robust standard errors we used the 
following R-packages: plm by Croissant and Millo (2008), sandwich by Zeileis 
(2004), and lmtest by Zeileis and Hothorn (2002). 
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careful empirical research in the future. Similarly, the results suggest 
that the share of interregional relations and regions' population do not 
account for regions' ability to introduce atypical inventions. 

Including a variable that captures the effect of the density of regions' 
networks of places supports the arguments of Vicente (2017) and 
Abbasiharofteh (2020) that dense network relations do not necessarily 
improve the diffusion of knowledge and support innovative perfor
mance. Our result suggests that network density does not correlate 
significantly with the relative number of atypical patents. Similarly, and 
across the entire spectrum of invention, Lobo and Strumsky (2008) did 
not find positive correlations between the patenting rate and the density 
of connections across US metropolitan areas. 

While we controlled for already identified critical factors at the 
micro-level (e.g., ISOLATE) and the macro-level (e.g., RELATEDNESS), 
our main contribution concerns those variables that capture the impact 
of the mesoscopic properties of regional collaboration networks (i.e., co- 
inventor communities). The same applies to their technological portfolio 
on the relative number of atypical inventions. We find that regions with 
inventors that are part of co-inventor communities with higher 
specialization tend to introduce more atypical patents. Connections that 
bridge segregated communities strongly impact atypical patenting, 
suggesting that these links enable the combination of distinct knowledge 
domains. 

Such combinations are even more likely if the inter-community links 
bridge technologically different communities. There is evidence that 
inventors partly create collaborative ties with the ones they are cogni
tively proximate with (Boschma, 2005; Nooteboom, 2000). Over time, 
however, the high degree of cognitive proximity might lead to redun
dancy and the exhaustion of radically new ideas. Therefore, these 
findings corroborate the rationale behind the small-world theory that 
postulates the simultaneous need for efficient learning in locally 

cohesive networks and access to diverse knowledge through bridges 
(Aral, 2016; Uzzi and Spiro, 2005). Although this effect emerging from 
the meso-level (communities) of collaboration networks has been a long- 
standing conjecture, most empirical works in innovation studies have 
focused only on the structural attributes of networks at the macro- 
(networks) and micro-levels (individuals). They have left out the tech
nological domains that shape these networks and determine the type of 
knowledge access in networks (Breschi and Lenzi, 2016; Fleming et al., 
2007a; Lobo and Strumsky, 2008; van der Wouden and Rigby, 2019). 

Interestingly, we observed that the small-world structural property 
correlates positively with the growth of atypical patents, but not with 
the one of all patents (see Table 2). Indeed, this finding resonates with 
Fleming et al. (2007a), who found that SMALLWORLDNESS is not 
associated with the increase in the total number of patents in regions. 
The comparison of the two models, i.e., Table 1 above and Table 2 
below, is in line with our original argument. The small-world structural 
property and the connection of communities are critical for introducing 
atypical patents, perhaps because this type of invention requires the 
combinations of different knowledge pieces, which is not necessarily the 
case for all patents, most of which are identified as typical. Having 
mentioned the main differences between the two models, the SIMI
LARITY between connected communities is less significant, while 
SPECIALIZATION correlates positively with the overall patent growth 
rate. 

To ensure the robustness of our models, we conducted several 
checks. First, we used the mean and standard deviation (instead of the 
median) of the distribution of the Hirschman-Herfindahl indices for 
technologies embedded in each community to create alternative vari
ables to approximate the degree of their specialization. As a result, the 
reported coefficients for alternative specialization variables align with 
the original ones. At the same time, the new models support the positive 

Table 1 
Results of two-way fixed effects linear regressions with robust standard errors.   

Dependent variable: share of atypical patents 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

SMALLWORLDNESS  
0.0148*** 0.0131*** 0.0131*** 0.0115*** 0.0116*** 0.0136*** 0.0114*** 0.0115**  
(0.0040) (0.0039) (0.0039) (0.0039) (0.0039) (0.0042) (0.0039) (0.0052) 

SMALLWORLDNESS^2  0.0037 0.0045 0.0048 0.0030 0.0010 0.0022 0.0029 0.0007  
(0.0043) (0.0042) (0.0043) (0.0042) (0.0042) (0.0043) (0.0043) (0.0042) 

SPECIALIZATION   
0.0458** 0.0451** 0.0405** 0.0576*** 0.0608*** 0.0437** 0.0558**   
(0.0185) (0.0186) (0.0188) (0.0189) (0.0223) (0.0195) (0.0220) 

SICT    
0.0331 0.1041** 0.1103** 0.1124** 0.1091** 0.1039**    
(0.0465) (0.0523) (0.0530) (0.0534) (0.0524) (0.0493) 

SIMILARITY     
− 0.0342*** − 0.0248** − 0.0317*** − 0.0336*** − 0.0231**     
(0.0105) (0.0102) (0.0106) (0.0105) (0.0094) 

RELATEDNESS − 0.0007 − 0.0017** − 0.0018** − 0.0017** − 0.0017** − 0.0015** − 0.0016** − 0.0017** − 0.0014* 
(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) 

COMPLEXITY 
− 0.0003 − 0.0003 − 0.0003 − 0.0003 − 0.0003 − 0.0002 − 0.0003 − 0.0003 − 0.0002 
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) 

INTERREGIONAL 
− 0.0507 − 0.0488 − 0.0509 − 0.0505 − 0.0499 − 0.0559 − 0.0524 − 0.0501 − 0.0572* 
(0.0362) (0.0356) (0.0348) (0.0348) (0.0346) (0.0348) (0.0349) (0.0348) (0.0346) 

POPULATION − 0.0001 0.0001 0.0002 0.0002 0.0001 − 0.0001 0.00002 0.0001 − 0.0001 
(0.0029) (0.0029) (0.0028) (0.0028) (0.0028) (0.0029) (0.0029) (0.0029) (0.0029) 

ISOLATE      0.1030**   0.1336*      
(0.0455)   (0.0792) 

COMMUNITY       
− 0.2746  0.0313       
(0.1958)  (0.3192) 

DENSITY        
− 0.1339 0.1943        
(0.2458) (0.2298) 

Region FE YES YES YES YES YES YES YES YES YES 
Time FE YES YES YES YES YES YES YES YES YES 
Observations 1526 1526 1526 1526 1526 1526 1526 1526 1526 
R2 0.3967 0.4048 0.4091 0.4093 0.4118 0.4166 0.4144 0.4122 0.4172 
Adjusted R2 0.2657 0.2745 0.2792 0.2788 0.2813 0.2866 0.2839 0.2812 0.2862 

Residual Std. Error 
0.0859 (df 
= 1253) 

0.0853 (df =
1251) 

0.0851 (df =
1250) 

0.0851 (df =
1249) 

0.0849 (df =
1248) 

0.0846 (df =
1247) 

0.0848 (df =
1247) 

0.0850 (df =
1247) 

0.0847 (df =
1245)  

* p < 0.1. 
** p < 0.05. 
*** p < 0.01. 
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and negative associations of the SICT and the SIMILARITY of connected 
communities with the dependent variable (Appendix G). 

Second, we added the dependent variable of each previous time- 
window (the share of atypical patents) as an independent variable in 
the models. This variable enables us to capture dynamics across each 
consequent time-window. The sign and significance of the variables of 
interest do not change (Appendix H). 

Third, we ran a model with a new variable that captured the effect of 
assortativity (also known as assortative mixing) in the regions' network 
of places. This variable (ASSORTATIVITY) is the Pearson correlation 
between places' degrees that are directly connected. The implication is 
that the variable increases if highly connected places are connected at 
the expense of those occupying peripheral positions. The result does not 
provide evidence for the positive or negative relation between assorta
tivity and the increase in the share of atypical inventions. This finding is 
contrary to the argument put forward by Vicente (2017) and Lucena- 
Piquero and Vicente (2019), who claim that assortative relations bring 
about an unfortunate network structure that hinders the optimal diffu
sion of knowledge between the core and periphery of networks (see 
Appendix I). 

Fourth, we used the normalized median size of communities (COM
MUNITY_median) instead of the normalized community number (COM
MUNITY) that correlates weakly (the Pearson correlation coefficients: 
0.26). Although this specification led to a slightly better predictive 
power of the models, the sign and significance of the variables of interest 
are consistent with the ones of the original full model specification (see 
Appendix J). 

Fifth, although the panel fixed-effects models do not strongly violate 
the basic assumptions of linear models, one may argue that the depen
dent variable (i.e., the share of atypical patents) being bounded on two 

sides may decrease the efficiency of estimated models. To remedy this 
situation, Ferrari and Cribari-Neto (2004) proposed a beta regression 
model for cases in which dependent variables are rates, proportions, or 
concentration indices. To ensure the reliability of the results, we esti
mated a beta regression using the betareg package in R (Cribari-Neto 
and Zeileis, 2010). The sign and the significance of the four variables of 
interest align with the ones of the panel fixed-effects model (see Ap
pendix K). 

Finally, following the line of argument developed in the conceptual 
part of the paper, one might expect that regions could excel in intro
ducing atypical inventions when the share of inter-community ties and 
dissimilarity of connected communities concurrently increase. Simi
larly, regions may benefit from the joint effect of the share of inter- 
community ties and the specialization of communities. Thus, we esti
mated regression models with two additional interaction terms (SICT ×
SIMILARITY and SICT × SPECIALIZATION). The models did not provide 
empirical evidence for such multiplicative effects, probably because we 
aggregate specialization and co-inventor community measures to the 
regional level. Yet, the joint effect between community specialization 
and interconnectedness might prevail on lower aggregation levels, 
which can be a matter of future research, as discussed in the next section. 

5. Concluding remarks 

A plethora of literature stresses the path-dependent nature of eco
nomic and technological progress along evolutionary trajectories 
(Kogler, 2015a; Kogler et al., 2023a), and seeks to understand how path- 
breaking advances help to renew the capacity of local economies 
(Boschma et al., 2015; Carnabuci and Bruggeman, 2009; Dosi, 1982; 
Frenken et al., 2007; Glückler, 2007; Kuhn, 1962). The ongoing 
specialization versus diversity debate is very much at the core of this line 
of inquiry and most recent efforts investigate how specialized in
dividuals, firms, or industries can establish and benefit from diversity in 
local ecosystems (Balland et al., 2022; de Noni and Belussi, 2021; 
Eriksson and Lengyel, 2019; Kim et al., 2022). Our results speak to these 
debates by emphasizing the role of collaboration networks that can 
capture path-dependent and path-breaking dynamics at the meso-level 
via practical tools that link micro-level specialization tendencies with 
the benefits of macro-level diversity. 

Grouping co-inventor collaborations into network communities, we 
quantify the level of specialization on the community level and tech
nological difference on the pairwise community level. The median of 
these measures enables us to infer region-level innovation capacities by 
capturing the tendency that inventor groups are specialized in certain 
technologies and linked to other groups that are specialized in other 
technologies. We find new evidence that small-world networks of co- 
inventor collaboration favor atypical combinations of technological 
knowledge domains more extensively in those regions where commu
nities of inventors specialized in different technologies are bridged by 
collaborations. By distinguishing between typical and atypical techno
logical knowledge, we provide empirical evidence that both types of 
knowledge benefit from specialization and being connected to techno
logically dissimilar ones. However, a small-world structural property, 
along with a higher relative number of inter-community relations only 
favors the creation of atypical technological knowledge. 

These results suggest that it is neither specialization nor diversity at 
the regional level per se that favors innovation, which resonates with 
recent findings by Rocchetta et al. (2021). Instead, the presence of 
multiple specializations at the community level and their connections 
can help knowledge combinations in regions. We argue that meso-level 
network mechanisms in collaborations are decisive for regional inno
vation and can generate benefits that derive from the advantages of 
being specialized and diverse simultaneously. Endogenous network 
formation, driven through technological similarity and triadic closure, 
helps to accumulate specialized knowledge in cohesive regional sub
networks, increasing the scale and scope of potential combinations. At 

Table 2 
Results of regression models with the original (share of atypical patents) and 
alternative dependent (total patent growth rate) variables.   

Dependent variable: 

Share of atypical 
patents 

Total patent growth 
rate 

SMALLWORLDNESS 
0.0115** 0.0336 
(0.0052) (0.0796) 

SMALLWORLDNESS^2 0.0007 − 0.0360 
(0.0042) (0.0915) 

SPECIALIZATION 0.0558** 1.6982*** 
(0.0220) (0.4397) 

SICT 
0.1039** 0.5302 
(0.0493) (0.7598) 

SIMILARITY 
− 0.0231** − 0.3266* 
(0.0094) (0.1709) 

RELATEDNESS − 0.0014* − 0.0181 
(0.0007) (0.0124) 

COMPLEXITY − 0.0002 0.0119*** 
(0.0004) (0.0036) 

INTERREGIONAL 
− 0.0572* 0.1680 
(0.0346) (0.5276) 

POPULATION 
− 0.0001 − 0.0467 
(0.0029) (0.0433) 

ISOLATE 0.1336* 1.5586 
(0.0792) (1.7011) 

COMMUNITY 0.0313 5.7878 
(0.3192) (4.7590) 

DENSITY 
0.1943 1.9777 
(0.2298) (3.4265) 

Region FE YES YES 
Time FE YES YES 
Observations 1526 1526 
R2 0.4172 0.3684 
Adjusted R2 0.2862 0.2263 
Residual Std. Error (df = 1245) 0.0847 1.4252  

* p < 0.1. 
** p < 0.05. 
*** p < 0.01. 
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the same time, bridging ties that connect divergent specializations in 
separated parts of the network can provide the necessary access to 
diverse knowledge. 

This evidence provides new insights for regional innovation policy 
on how the generation of radical inventive outcomes can be fostered via 
the support of a particular constellation of collaboration patterns. In 
particular, the recommendation is to encourage and to enable special
ized collaborations and bridging collaborations in tandem. Regional 
economies that manage such a setting are more likely to create more 
considerable proportions of atypical inventions that have distinct spe
cializations of knowledge bases. Thus, supporting the endogenous 
network formation in diversely specialized, incremental knowledge 
production is beneficial for enabling and increasing the potential of 
future, novel knowledge re-combination processes. It is specialized 
communities and local strongholds that are needed in the first place to 
generate something radically new in the long run. Nevertheless, the 
connections across diverse sets of specializations are also crucial. 
Bridging collaborations among actors and entities of dissimilar knowl
edge might require policy support because community bridging de
mands extra motivation. 

In this regard, the present investigation directly impacts place-based 
innovation policies. In the European context, e.g., Smart Specialization 
has been a central contemporary place-based innovation policy. Aiming 
at regional economic growth by building on existing competencies, 
Smart Specialization supports diversification into related economic ac
tivities, entrepreneurial discovery processes, and local institutions 
(Balland et al., 2018; Kogler et al., 2017; Foray et al., 2011; Rigby et al., 
2022). In this ongoing discussion, finding the right balance between 
specialization and diversity is a significant challenge for avoiding the 
lock-in of related development and mitigating the high risks of diversi
fication in unrelated activities. Our results suggest that specializing in 
several technologies and promoting inter-community bridges between 
such specialized islands could be a better and more successful strategic 
approach for Smart Specialization. 

The results are relevant in the context of mission-oriented policies as 
well. An increasing discussion claims that solutions to grand societal 
challenges require interdisciplinary collaborations (Mazzucato, 2018). 
However, such collaborations do not necessarily occur due to the path- 
dependent nature of creating collaborative ties and the demand for 
institutional and financial support. Since atypical inventions are asso
ciated with interdisciplinary collaborations (Fontana et al., 2020), the 
results of this paper on the role of bridging collaborations across 
different knowledge domains can be used as a point of departure for 
further research to understand the way institutional and interaction 
failures can be minimized in the context of mission-oriented and sectoral 
policy objectives (Wanzenböck and Frenken, 2020; Janssen and Abba
siharofteh, 2022; Simensen and Abbasiharofteh, 2022; Kabirigi et al., 
2022). 

We acknowledge several limitations of this study. First, we analyzed 
the co-occurrence of technology codes on patent documents to approx
imate atypical technology combinations and identify atypical patents: 
49 % of filed patents include only one technology code (at the 4-digit 
level). We did not investigate such patents as they do not provide any 
combination of technology codes. Future studies can build on newly 
developed Natural Language Processing (NLP) methods to alternatively 
identify atypical patents by analyzing the text of patent documents 
(Abbasiharofteh et al., 2023). 

Second, detecting communities of real-world networks is an ‘ill- 
defined’ problem and is subject to lively scholarly debate (Fortunato and 
Hric, 2016). Although we selected the Louvain algorithm based on 
empirical findings and suggestions in network science literature, we 
acknowledge the limitations of this method. For instance, the Louvain 
algorithm may split network communities to maximize the modularity 
of detected communities, or it does not allow detected communities to 
overlap. One may employ inferential community detection techniques 
(e.g., a stochastic block model) to remedy this situation. However, 

applying inferential techniques to large networks leads to NP-hard 
problems and unreliable results within a reasonable time (Peixoto, 
2022). Nevertheless, future research on co-inventor network commu
nities must ensure that the partitioning is stable, which we did by cross- 
checking our community structure with the Infomap algorithm. 

Third, it is of critical importance to distinguish between atypical 
inventions and breakthroughs. While one can single out breakthroughs 
by the atypical combination of existing and new technologies, they 
usually receive higher forward citation counts and exhibit a longer 
lifecycle. We acknowledge that this study focused exclusively on 
exploring factors that may trigger atypical inventions. Indeed, a larger 
share of inventions with atypical technology combinations are doomed 
to fail, while successful atypical inventions have higher payoffs 
(Fleming, 2001). Thus, we encourage future empirical studies to deter
mine the key factors that account for the development of atypical in
ventions with exceptional impact on future technologies and the 
commercial success of underlying products and services (Abbasiharofteh 
et al., 2022). 

Fourth, most inventor collaboration happens within the boundaries 
of firms that our exercise could not consider. Since we have kept past co- 
inventor ties and grew their networks cumulatively for the sake of the 
fixed-effect regression specification, we were not able to identify what 
co-inventor links remained within firms' boundaries and which links 
have linked more firms due to inventor mobility. These decisions have 
limited us in analyzing how strategy, alliances, and competition of firms 
influence atypical innovation in regions. Wanzenböck et al. (2022) 
provide some insights into the relationship between the network struc
ture of organizations in regions and their ability to enter new speciali
zations. Future research should shed light on these mechanisms by 
generating co-inventor networks differently and focusing more on inter- 
firm links. 

Fifth, alternative approaches should be developed in future research 
to tackle methodological challenges of investigating knowledge domains 
in small-world collaboration networks and especially how automatic 
clustering can be dealt with. For example, the inter-community and 
inter-regional links might be overrepresented in the network of places 
approach in case the transformation eliminates intra-community and 
intra-regional ties disproportionally. Therefore, the network of places 
method might be problematic in sorting out bridging collaborations in 
studies that aim to understand knowledge combinations in collaboration 
networks on a lower level of aggregation. 

Last but related to the previous point, we do not find multiplicative 
effects of community specialization, the proportion of inter-community 
ties, and the similarity of interlinked specializations on the regional 
level. Taking the median levels of these community-level indicators to 
characterize regions might be a reason for the missing multiplicative 
effects. In fact, inferring city-level behavior from the median of 
community-level specialization and pairwise technological similarity of 
connected communities is probably only the first step in understanding 
how technological knowledge combination leads to radical innovation 
outcomes in regions. Nevertheless, based on previous results, significant 
joint effects can be expected on a lower level (Eriksson and Lengyel, 
2019). Therefore, we urge future research to investigate how speciali
zation and access to diversity in small-world collaboration networks 
influence knowledge combinations on the level of individuals, firms, and 
industries. 
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